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Abstract

Some spherical harmonic expressions (SHEs) of gravitational and geomagnetic field elements will become infinite when compu-

tation point approaches polar regions, as the sine function of the geocentric co-latitude contained in the denominator tends to

be zero. Currently, this singularity problem has been solved for gravitational field case, however, it remains unsolved for geo-

magnetic vectors (GVs) and geomagnetic gradient tensors (GGTs). The reason is that the latter use Schmidt semi-normalized

associated Legendre function (SNALF), which is different from fully-normalized associated Legendre function (FNALF) used in

the former. To overcome this singularity problem, we derive new non-singular expressions of the first- and second-order deriva-

tives of Schmidt SNALF, and the corresponding two kinds of spherical harmonic polynomials. When the novel expressions are

applied to the traditional formulae of GVs and GGTs, more practical expressions of GVs and GGTs with non-singularity are

formulated by refining the cases that the order m equals 0, 1, 2 and other values. Furthermore, to provide flexible calculation

strategies for Schmidt SNALF, we derive four kinds of recursive formulae, including the standard forward row recursion (SFRR),

the standard forward column recursion (SFCR), the cross degree and order recursion (CDOR), and the Belikov recursion (BR).

Besides, we demonstrate the effectiveness of the new derived non-singular expressions of GVs and GGTs and analyze the com-

putation speed and stability of the four recursive formulae of Schmidt SNALF by extensive numerical experiments. Results

achieve significant improvements in solving the singularity problem of the SHEs of GVs and GGTs.
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Key Points:

 More practical expressions of geomagnetic vectors and geomagnetic gradient tensors
with non-singularity are formulated.

 Four kinds of recursive formulae of Schmidt semi-normalized associated Legendre
function are derived.

 We achieve significant improvements in solving singularity problem in geomagnetic
vectors and geomagnetic gradient tensors at poles.

Abstract Some spherical harmonic expressions (SHEs) of gravitational and geomagnetic
field elements will become infinite when computation point approaches polar regions, as the
sine function of the geocentric co-latitude contained in the denominator tends to be zero.
Currently, this singularity problem has been solved for gravitational field case, however, it
remains unsolved for geomagnetic vectors (GVs) and geomagnetic gradient tensors (GGTs).
The reason is that the latter use Schmidt semi-normalized associated Legendre function
(SNALF), which is different from fully-normalized associated Legendre function (FNALF)
used in the former. To overcome this singularity problem, we derive new non-singular
expressions of the first- and second-order derivatives of Schmidt SNALF, and the
corresponding two kinds of spherical harmonic polynomials. When the novel expressions are
applied to the traditional formulae of GVs and GGTs, more practical expressions of GVs and
GGTs with non-singularity are formulated by refining the cases that the order m equals 0, 1, 2
and other values. Furthermore, to provide flexible calculation strategies for Schmidt SNALF,
we derive four kinds of recursive formulae, including the standard forward row recursion
(SFRR), the standard forward column recursion (SFCR), the cross degree and order recursion
(CDOR), and the Belikov recursion (BR). Besides, we demonstrate the effectiveness of the
new derived non-singular expressions of GVs and GGTs and analyze the computation speed
and stability of the four recursive formulae of Schmidt SNALF by extensive numerical
experiments. Results achieve significant improvements in solving the singularity problem of
the SHEs of GVs and GGTs.
Key words Geomagnetic Vectors (GVs); Geomagnetic Gradient Tensors (GGTs);
Non-singular; Spherical Harmonic Function; Legendre Function; Polar Region
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Plain Language Summary According to the spherical harmonic expressions (SHEs) of
geomagnetic field elements (such as geomagnetic potential, geomagnetic vectors (GVs), and
geomagnetic gradient tensors (GGTs)), some GVs and GGTs become infinite at poles when
sine function of geocentric co-latitude in the denominator is equal to zero, which is called the
singularity problem. For satellite and aviation magnetic measurement, it is necessary to solve
the singularity problem of SHEs of the geomagnetic field elements in the polar regions.
Therefore, we formulate new non-singular expressions of GVs and GGTs based on a linear
combination of Schmidt semi-normalized associated Legendre function (SNALF), which
achieves significant improvements. In addition, four recursive formulae of Schmidt SNALF
are also derived, and a flexible calculation strategies for Schmidt SNALF are presented. The
research results can be applied to data processing and modeling of airbore and satellite
measurements of GVs and GGTs in the polar regions.

1 Introduction

Spherical harmonic functions are generally developed to represent gravitational field

elements (such as disturbing potential, disturbing gravity vectors, and disturbing gravity

gradient tensors), and geomagnetic field elements (such as geomagnetic potential,

geomagnetic vectors (GVs), and geomagnetic gradient tensors (GGTs)), because it can

simplify calculations. However, according to the spherical harmonic expressions (SHEs) of

gravitational and geomagnetic field elements, some GVs and GGTs become infinite at poles

when the sine function of geocentric co-latitude in the denominator is equal to zero, which is

called the singularity problem. In fact, the gravitational and geomagnetic field elements

should be finite. Due to limited sphere of activity in early days, it is not necessary to solve the

singularity problem, and people usually take flexible measures to avoid it in practice. For

example, gravitational and geomagnetic field elements are directly expressed in Cartesian

coordinates. However, the complicated formulae and parameters tend to result in unstable and

inaccurate calculations. With the development of satellite and aviation gravimetry and

magnetic measurement, the sphere of human activities are expanded across the globe, which

makes it necessary to solve the singularity problem of SHEs of the gravitational and

geomagnetic field elements.

Some previous efforts have solved the singularity problem of SHEs of gravitational field

elements (Hotine and Morrison, 1969; Ilk, 1983; Balmino et al., 1990; Bettadpur, 1995;

Petrovskaya and Vershkov, 2006, 2007, 2008; Casotto and Fantino, 2007; Eshagh, 2008, 2009;

Eshagh and Sjöberg, 2009; Wan, 2011; Liu et al., 2010, 2013; Zhu et al., 2017), whereas the

same problem still exists in GVs and GGTs. The reason is that the gravitational field elements

are expressed by fully-normalized associated Legendre function (FNALF) (Chen et al., 2006;
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Jekeli and Lee, 2007; Fantino and Casotto, 2009; Hirt et al., 2010; Rummel et al., 2011; Pail

et al., 2011; Liu et al., 2012; Fukushima, 2012a, 2012b; Pavlis et al., 2012; Wan and Yu, 2013;

Šprlák and Novák, 2017), while the GVs and GGTs are expressed by Schmidt

semi-normalized associated Legendre function (SNALF) (Malin and Pocock, 1969;

Barraclough, 1974; Benton et al., 1982; Quinn et al., 1986; Blakely, 1995; Ravat et al., 1995;

Shao et al., 1999; Chambodut et al., 2005; Hemant and Maus, 2005; Wardinski and Holme,

2006; Kim et al., 2007; Huang et al., 2011; Kotsiaros and Olsen, 2012; Du et al., 2015; Liu et

al., 2019), whose recursive formulae is different from that of FNALF.

Although non-singular formulae of GVs and GGTs have been derived by Du et al.

(2015), there are still some drawbacks. For example, the non-singular formula of the

first-order derivative of Schmidt SNALF is incorrect when the order m is equal to 0, and the

formula of the second-order derivative of Schmidt SNALF is also incorrect when the order m

is equal to 0 or 1. Hence, it can be deduced that those non-singular formulae lead to incorrect

computation of GVs and GGTs, especially when order m is equal to 0 or 1. The goal of this

paper is to derive new non-singular expressions of GVs and GGTs, which can be used in

geomagnetism, geophysics, geodesy, and other related disciplines. In addition, considering

the efficiency and accuracy of the calculation of Schmidt SNALF, four kinds of recursive

formulae are introduced, i.e., the standard forward row recursion (SFRR), the standard

forward column recursion (SFCR), the cross degree and order recursion (CDOR), and the

Belikov recursion (BR). Numerical experiments are performed to demonstrate the conclusion.

The article is organized as follows. Section 2 formulates the singularity problem. Section

3 derives new non-singular expressions for both GVs and GGTs. Section 4 introduces four

kinds of recursive formulae of Schmidt SNALF. Section 5 demonstrates the effectiveness of

newly derived non-singular expressions, and analyzes the speed and stability through

extensive numerical experiments. Section 6 summarizes the main contributions and draws the

conclusion.

2 Statement of the problem

The traditional SHEs of GVs are expressed as:
2

1 0
( 1) cos sin (cos )

nN n
m m m

z n n n
n m

RB n g m h m P
r

  


 

          
  (1)

2

1 0

(cos )cos sin
n mN n

m m n
x n n

n m

dPRB g m h m
r d

 




 

        
  (2)

2

1 0

(cos )sin cos
sin

n mN n
m m n

y n n
n m

mPRB g m h m
r

 




 

        
  (3)
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The traditional SHEs of GGTs are expressed as:
3

1 0

1 ( 1)( 2) cos sin (cos )
nN n

m m m
zz n n n

n m

RB n n g m h m P
R r

  


 

          
  (4)

3 2

2
1 0

(cos )1 cos sin ( 1) (cos )
n mN n

m m mn
xx n n n

n m

d PRB g m h m n P
R r d


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



 

              
  (5)

3

1 0

2

2

1 cos sin

(cos ) (cos )cos         ( 1) (cos )
sin sin

nN n
m m

yy n n
n m

m m
mn n
n

RB g m h m
R r

dP m P n P
d

 

  
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

 
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3

2
1 0

(cos )1 cossin cos (cos )
sin sin

n mN n
m m m n

xy n n n
n m

dPR m mB g m h m P
R r d

  
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 
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1 0

(cos )1 ( 2) cos sin
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m m n
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  (8)

3

1 0

(cos )1 ( 2) sin cos
sin

n mN n
m m n

yz n n
n m

mPRB n g m h m
R r

 




 
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  (9)

In Equations ~, (x, y, z) are the coordinates in the local-north-oriented reference frame

(LNORF), where the z axis points downward in the geocentric radial direction, the x axis

points to the north, and the y axis points to the east (that is, a right-handed system). Bx, By, Bz
denote the north, east and vertical component of GVs, respectively. Bxx, Byy, Bzz, Bxy, Bxz and

Byz denote six components of GGTs. R=6371.2 km is the average radius of the Earth; r is the

geocentric radius; θ is the geocentric co-latitude; λ is the geocentric longitude; n and m are

the degree and order of spherical harmonic coefficients, respectively; N is the truncation

order; ,m m
n ng h are the Gauss spherical harmonic coefficients of the internal field.

(cos )m
nP is the Schmidt SNALF, which can be expressed as

   0
( )!cos (2 ) cos
( )!

  
 


m m m
n n

n mP P
n m

(10)

where 0
m is the Kroneker symbol

0

1               0
0               0




  
m m

m
(11)

 cosm
nP is the Legendre polynomial, which can be expressed as

 
2(cos ) 1 sincos sin sin

(cos ) 2 ! (cos )
   

 



  
m n m n

m m mn
n m n n m

d P dP
d n d

(12)

(cos ) m
ndP d is the first-order derivative of Schmidt SNALF, its traditional recursive
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formula is (Heiskanen and Moritz, 1967; Holmes and Featherstone, 2002a, 2002b;

Fukushima, 2012a)

1

0

(cos ) cos ( 1)( )(cos ) (cos )
sin 1

   
  

  
 



m
m mn
n nm

dP n m n mm P P
d

(13)

To continue the derivation of Equation , the traditional recursive formula of the

second-order derivative of Schmidt SNALF, 2 2(cos ) m
nd P d can be obtained as

2 2
2

2 2 2

1

0

(cos ) cos ( )( 1) (cos )
sin sin

1 cos                      ( )( 1) (cos )
1 sin

  
  

 
 



 
       
 

  


m
mn
n

m
nm

d P mm n m n m P
d

n m n m P
(14)

From Equations and , it is straightforward to see that the first- and second-order

derivatives of Schmidt SNALF become infinite when the computation point is approaching

the poles, because the sinθ in the denominator equals zero. Since the Bx, Bxx, Byy, Bxy and Bxz
contain the first- and second-order derivatives of Schmidt SNALF, as shown in Equations ,

and -, the singularity problem also exists in the calculation of above GVs and GGTs.

Equations , , , and contain two kinds of spherical harmonic polynomials, namely

(cos ) sin m
nmP and 2 2(cos ) sin m

nm P , which will be infinite at the poles when the sinθ

in the denominator equals zero. It means that the singularity problem will also occur in the

calculation of By, Byy, Bxy and Byz.

Based on the above analysis, we know that some GVs and GGTs still have the

singularity problem in the polar regions. Although Du et al. (2015) provided non-singular

expressions of (cos ) m
ndP d , 2 2(cos ) m

nd P d , (cos ) sinm
nP   , 2(cos ) sinm

nP   ,

(cos ) (sin )m
ndP d   , etc., the non-singular expressions of the first- and the second-order

derivatives of Schmidt SNALF are incorrect when the order m is equal to 0 or 1, which leads

to incorrect non-singular expressions of some GVs and GGTs. In order to solve this problem,

we derive new non-singular expressions of the first- and second-order derivatives of Schmidt

SNALF and its two kinds of spherical harmonic polynomials, and formulate more practical

non-singular expressions of GVs and GGTs.

3 New non-singular expressions of GVs and GGTs

3.1 Development of the non-singular first-order derivative of Schmidt SNALF

When m≥1, according to Equation , we can obtain

  ( )(cos )cos sin sin (cos )
(cos )

   


 
m

m m m mn
n nm

d PP P
d

(15)
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For equation (15), first-order derivative with respect to θ reads

1 ( 1) 1 ( )(cos ) sin (cos ) sin cos (cos )     


    
m

m m m mn
n n

dP P m P
d

(16)

According to the differential equation of ( )nP x (Heiskanen and Moritz, 1967; Moritz,

1980; Bernhard and Moritz, 2006),
2 ( 2) ( 1) ( )(1 ) ( ) 2( 1) ( ) ( )( 1) ( ) 0        m m m

n n nx P x m xP x n m n m P x (17)

Replacing x in Equation with cosθ, the resulting equation can be expressed as
2 ( 2) ( 1) ( )sin (cos ) 2( 1)cos (cos ) ( )( 1) (cos ) 0           m m m

n n nP m P n m n m P (18)

We obtain
( 1) 2 ( 2)

( ) 2( 1)cos (cos ) sin (cos )(cos )
( )( 1)

   
  
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n
m P PP

n m n m
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Substituting Equation into Equation , we obtain

1 ( 1)

1 2 ( 1) 1 ( 2)

(cos ) sin (cos )

2 ( 1)sin cos (cos ) sin cos (cos )                     
( )( 1)


 


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 
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 
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According to Equation , we find below relations
 1

( 1)
1

cos
(cos )

sin









m
nm

n m

P
P (21)

 2
( 2)

2

cos
(cos )

sin









m
nm

n m

P
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Substituting Equations and into Equation , we obtain:
2 1 2

1
2

(cos ) 2 ( 1)cos (cos ) sin cos (cos )(cos )
( )( 1)sin

     
 

 
  

  
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m m m
mn n n
n

dP m m P m PP
d n m n m

(23)

According to the the recursive formulae of the Legendre polynomial of the SFRR

(Colombo, 1981; Holmes and Featherstone, 2002a, 2002b)

1 2

1
1

1 2( 1)cos (cos ) (cos )      
( )( 1) sin(cos )
(2 1)sin (cos )                                                  ( 0)

m m
n nm

n
m
m
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 



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It can be derived that

2 1cos(cos ) 2( 1) (cos ) ( )( 1) (cos )
sin

  


      m m m
n n nP m P n m n m P (25)

Substituting Equation into Equation , we can obtain
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1(cos ) cos(cos ) (cos )
sin

  
 
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m

m mn
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According to the Equation , we can write
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From Equation (27), we can obtain:
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Substituting Equation into Equation , the non-singular formula of the first-order

derivative of the Legendre polynomial when m≥1 can be expressed as
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According to the Equation , the non-singular formula of the first-order derivative of

Legendre polynomial when m=0 can be expressed as
0

1(cos ) (cos )



 n

n
dP P

d
(30)

According to Equation , Equations and are Schmidt semi-standardized and the

non-singular formulae of the first-order derivative of Schmidt SNALF can be expressed as

1
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1 1
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3.2 Development of the non-singular second-order derivative of Schmidt SNALF

Seeking the derivation of Equation with respect to θ, we can obtain
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According to the Equation , we have
1
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Substituting Equations and into Equation , the non-singular formula of the
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second-order derivative of Legendre polynomial when m＞1 can be obtained as follows
2

2 2 2
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(35)

Seeking the derivation of Equation with respect to θ, we can obtain
2 1

2 2

(cos ) (cos ) (cos ) cos (cos )
sin sin

    
    



   
m m m

mn n n
n

d P dP dP m m P
d d d

(36)

According to Equation , we can write
1

2 1(cos ) ( 1)cos(cos ) (cos )
sin

  
 


 

  
m

m mn
n n

dP mP P
d

(37)

Substituting Equations and into Equation , we can derive
2 2

2 1
2 2

(cos ) (2 1)cos ( cos 1)(cos ) (cos ) (cos )
sin sin

    
  

  
  

m
m m mn
n n n

d P m m mP P P
d

(38)

Therefore, in Equation , when m=0, there is
2 0

2 1
2

(cos ) cos(cos ) (cos )
sin

  
 

 n
n n

d P P P
d

(39)

According to Equation , we can obtain

1 2 0cos 1 1(cos ) (cos ) ( 1) (cos )
sin 2 2

   


  n n nP P n n P (40)

Substituting Equation into Equation , the non-singular formula of the second-order

derivative of Legendre polynomial when m=0 can be obtained as follows
2 0

2 0
2

(cos ) 1 1(cos ) ( 1) (cos )
2 2


 


  n

n n
d P P n n P

d
(41)

In Equation , when m=1, there is
2 1

3 2 1
2

(cos ) 3cos(cos ) (cos ) (cos )
sin

   
 

  n
n n n

d P P P P
d

(42)

According to Equation , there is

2 3 12cos 1 1(cos ) (cos ) ( 1)( 2) (cos )
sin 2 2

   


   n n nP P n n P (43)

Substituting Equation into Equation , the non-singular formula of the second-order

derivative of Legendre polynomial when m=1 can be obtained as follows
2 1

3 2 1
2

(cos ) 1 1(cos ) (3 3 2) (cos )
4 4


 


   n

n n
d P P n n P

d
(44)

Similarly, according to the Equation , the Legendre polynomials in Equations , , and
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are Schmidt semi-standardized and the non-singular formulae of the second-order derivative

of Schmidt SNALF can be expressed as

2 0

3

2 1
2

2

1 ( 1)( 1)( 2) 1(cos ) ( 1) (cos )                 0
2 2 2

1 ( 2)( 1)( 2)( 3) (cos )
4

1 (3 3 2) (cos )                                                               1(cos ) 4

n n

n

m n
n

n n n n P n n P m

n n n n P

n n P md P
d

 






  
  

   

   


2

2 2
0

2 2

1 ( 1)( )( 1)( 2) (cos )
4
1 (1+ )( 1)( )( 1)( 2) (cos )
4
1 ( ) (cos )                                                                  2
2

m
n

m m
n

m
n

n m n m n m n m P

n m n m n m n m P

n n m P m



 





 














       



       

   

(45)

3.3 Development of the non-singular first kind spherical harmonic polynomial
According to the differential equation of Legendre polynomial (Heiskanen and Moritz,

1967; Moritz, 1980; Bernhard and Moritz, 2006), there is
2 2

2

(cos ) (cos )sin cos ( 1)sin (cos ) 0
sin

m m
mn n
n

d P dP mn n P
d d

 
   

  
 

     
 

(46)

When m≥1, we can obtain
2

2

(cos ) (cos ) (cos )1 ( 1)sin (cos ) cos sin
sin

m m m
mn n n
n

mP dP d Pn n P
m d d

  
   

  
 

    
 

(47)

Substituting Equations and into Equation , we can derive

2 2 1

1 2

2

(cos ) 1 1( )sin (cos ) cos (cos )
sin 2 2

1 1                      ( )( 1)cos (cos ) sin (c os )
2 4
1                      ( 1)( )( 1)( 2)sin (cos )

4

m
m mn
n n

m m
n n

m
n

mP n n m P P
m m

n m n m P P
m m

n m n m n m n m P
m


   



   

 



 



    

    

      

(48)

According to Equation , we can write

2 12( 1) cos 1(cos ) (cos ) (cos )
( 2)( 1) sin ( 2)( 1)

m m m
n n n

mP P P
n m n m n m n m

  


 
 

       
(49)

Substituting Equations and into Equation , we can obtain

1 1(cos ) 1 cos (cos ) ( )( 1) (cos ) sin (cos )
sin 2

m
m m mn
n n n

mP P n m n m P m P
    


         (50)
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The Legendre polynomial in Equation is Schmidt semi-standardized and the

non-singular formula of the first kind spherical harmonic polynomial can be expressed as

1

1 1
0

(cos ) 1 cos [ ( )( 1) (cos )
sin 2

                      (1+ )( )( 1) (cos )] sin (cos )


 



   



 

    

   

m
mn
n

m m m
n n

mP n m n m P

n m n m P m P
(51)

3.4 Development of the non-singular second kind spherical harmonic polynomial

According to Equation , when m≠0, we can obtain
2 2

2 2

(cos ) (cos ) (cos )cos( 1) (cos )
sin sin

m m m
mn n n
n

m P dP d Pn n P
d d

  
   

    (52)

Substituting Equations and into Equation , we can obtain
2

2 2 1
2

1 2

2

(cos ) 1 cos( ) (cos ) (cos )
sin 2 2sin

1 cos 1                        ( )( 1) (cos ) (cos )
2 sin 4
1                        ( 1)( )( 1)( 2) (cos )
4

m
m mn
n n

m m
n n

m
n

m P n n m P P

n m n m P P

n m n m n m n m P

  
 

  






 



    

    

      

(53)

According to Equation , when m≥2, we can obtain
1

2

1

( 1) (cos ) 1 cos (cos ) ( 1)( ) (cos )
sin 2

                                 ( 1)sin (cos )

m
m mn
n n

m
n

m P P n m n m P

m P


  


 






        


(54)

1
2

1

( 1) (cos ) 1 cos (cos ) ( 1)( 2) (cos )
sin 2

                                 ( 1)sin ( cos )

m
m mn
n n

m
n

m P P n m n m P

m P


  


 






         


(55)

Substituting Equations and into Equation , we can obtain
2

2 2 2
2 2

2
1 2

1

(cos ) 1 ( 1)( ) cos (cos )
sin 2 2( 1)

1 1 cos                        sin cos (cos ) 1 (cos )
2 4 1
1                        ( )( 1)sin cos (cos )
2

   

m
mn
n

m m
n n

m
n

m P n nn n m P
m

P P
m

n m n m P


 



   

  

 



 
      

 
    

   

2
21 cos                     ( 1)( )( 1)( 2) 1 (cos )

4 1
m
nn m n m n m n m P

m
  

         

(56)

The Legendre polynomial in Equation is Schmidt semi-standardized and the

non-singular formula of the second kind spherical harmonic polynomial can be expressed as
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2 2
2 2

02

1

2 2 2
2

(cos ) 1 cos  1 (1+ )( 1)( )( 1)( 2) (cos )+
sin 4 1

1                           ( )( 1) sin cos (cos )
2
1 ( 1)                           ( ) cos
2 1

   


  



 



 
          

   

   


m
m mn

n

m
n

m P n m n m n m n m P
m

n m n m P

n nn n m
m

1

2
2

(cos )

1                           ( 1)( ) sin cos (cos )
2
1 cos                           1 ( 1)( )( 1)( 2) (cos )
4 1



  

 





   

   

 
         

m
n

m
n

m
n

P

n m n m P

n m n m n m n m P
m

(57)

3.5 New non-singular expressions of GVs

From Equation we can see that there is no singularity in Bz, and we only have to

deduce the non-singular formulae of Bx and By.

Substituting Equation into Equation , the explicit non-singular formulae of Bx can be

expressed as
2

1 0

1

2 0

cos sin

( 1) (cos )                                                                                     0
2

1 1( 1)( 2) (cos ) 2( 1) (cos ) 
2 2

        

nN n
m m

x n n
n m

n

n n

RB g m h m
r

n n P m

n n P n P

 



 



 

         


 

    

 

1 1

1

                                    1

1 1( )( 1) (cos ) ( )( 1) (cos )     > 1
2 2

1 2 (cos )                                                                                    
2

m m
n n

n
n

m

n m n m P n m n m P n m

nP

 



 





        

1m n















  

(58)

Substituting Equation into Equation , the explicit non-singular formulae of By can be

expressed as
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2

1 0

2

sin cos

0                                                                                                                        0

1 cos [ ( 1)( 2) (co
2

       

nN n
m m

y n n
n m

n

RB g m h m
r

m

n n P

 





 

         


 

 

0 1

1

1

1

s ) 2 ( 1) (cos )] sin (cos )          1

1 cos [ ( )( 1) (cos )
2

( )( 1) (cos )] sin (cos )                                        > 1

2 cos (cos ) sin (cos )    
2

n n

m
n

m m
n n

n n
n n

n n P P m

n m n m P

n m n m P m P n m

n P n P

   

 

  

   







   

   

    

                                                    1m n

















 


(59)

3.6 New non-singular expressions of GGTs

It can be seen from Equation that there is no singularity in Bzz, we only need to seek

the non-singular formulae of the other five components of GGTs. Below, using the equations

above, we give non-singular formulae of these five components one by one in details.

Substituting Equation into Equation , the explicit non-singular formulae of Bxx can be

expressed as
3

1 0

2 0

3 1

1 cos sin

1 ( 1)( 1)( 2) 1(cos ) ( 1)( 2) (cos )                0
2 2 2

1 1( 2)( 1)( 2)( 3) (cos ) (3 1)( 2) (cos )       1
4 4

1 ( 3)(
4

        

nN n
m m

xx n n
n m

n n

n n

RB g m h m
R r

n n n n P n n P m

n n n n P n n P m

n n

 

 

 



 

         

  
   

       

 

 

4

0 2 2

2

2

2 2

2)( 3)( 4) (cos )

1 12 ( 1)( 2)( 1) (cos ) ( 3 2) (cos )               2
4 2
 
1 ( 1)( )( 1)( 2) (cos )
4
1 ( 1)( )( 1)( 2) (cos )
4
1 ( 3 2) (cos )       
2

n

n n

m
n

m
n

m
n

n n P

n n n n P n n P m

n m n m n m n m P

n m n m n m n m P

n n m P



 











  

      

       

       

  

2

                                                      > 2

1 1(2 1) (cos ) (3 2) (cos )                                  2 
2 2

n n
n n

n m

n n P n P m n 























 




    


(60)
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Substituting Equations and into Equation , the explicit non-singular formulae of Byy
can be expressed as

3

1 0

2 2

1

2 0

1 cos sin

1 ( 1)( 1)( 2) cos (cos )
2 2

( 1) sin cos (cos )
2

1 ( 1)( cos 2) (cos )                                                        
2

         

nN n
m m

yy n n
n m

n

n

n

RB g m h m
R r

n n n n P

n n P

n n P

 

 

  

 



 

         

  
 




 

 

2 3

2

2 1

4

       0

1 ( 2)( 1)( 2)( 3) cos (cos )
4
( 1)( 2) sin cos (cos )

1 ( 1)cos 4 ( 2) (cos )                                                       1
4

1 ( 3)( 2)( 3)( 4) (cos )
4

1

n

n

n

n

m

n n n n P

n n P

n n P m

n n n n P

 

  

 





     

  

     

     

2 2

0

2

2

2 2

( 3 6) (cos )
2
1 2 ( 1)( 1)( 2) (cos )                                                         2
4

1 ( 1)( )( 1)( 2) (cos )
4

1 ( 1)( )( 1)( 2) (cos )
4
1 ( 3
2

n

n

m
n

m
n

n n P

n n n n P m

n m n m n m n m P

n m n m n m n m P

n n m













  

   

        

       

 

2 2

2) (cos )                                                              > 2

1 1(2 1) (cos ) (2 3 2) (cos )                       2
2 2

m
n

n n
n n

P n m

n n P n n P m n



 






































  



      

(61)

Substituting Equations and into Equation , the explicit non-singular formulae of Bxy
can be expressed as
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3

1 0

0

1 sin cos

0                                                                                                                   0

1 2 ( 1) sin (cos
2

         

nN n
m m

xy n n
n m

n

RB g m h m
R r

m

n n P

 

 



 

          



 

 

2 1

2 2

2 3

2 0

)

1 (1 cos )( 1)( 2) 8 cos (cos )
8
1 (1 cos )sin ( 1)( 2) (cos )
2
1 (1 cos )cos ( 2)( 1)( 2)( 3) (cos )                             1
8

1 cos 2 ( 1)( 1)( 2) cos 3 (cos )
8
1
4

n

n

n

n

n n P

n n P

n n n n P m

n n n n P

  

  

  

  



      

   

     

      

2 1

2 2 2

2 3

2 4

2

sin ( 1)( 2) cos 4 (cos )

1 cos (12 ) ( 1)cos (cos )
12
1 sin ( 2)( 3) 4 cos (cos )
4
1 cos ( 3)( 2)( 3)( 4) 7 cos (cos )                       2
24

1 cos (
2

n

n

n

n

n n P

n n n n P

n n P

n n n n P m

n n
m

  

  

  

  



     

      

     

       

 
2 2 2

2 2
2 2

2 2 1

2 2
2

2

( ) ( )) cos (cos )
1 1
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Substituting Equation into Equation , the explicit non-singular formulae of Bxz can be

expressed as
3
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Substituting Equation into Equation , the explicit non-singular formulae of Byz can be

expressed as
3
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(64)

4 New expressions of the Recursive calculation of Schmidt SNALF

At present, the commonly used recursive formulae of Legendre polynomials include

SFRR, SFCR, CDOR, and BR, which are Schmidt semi-normalized in this section. Then

these recursive formulae of Schmidt SNALF can be used to improve the speed and stability

in calculating GVs and GGTs.



Journal of Geophysical Research: Solid Earth

16

(1) Development of the recursive formulae of the SFRR

According to Equation , Equation is Schmidt semi-standardized and the recursive

formulae of the SFRR can be formulated as
1
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(2) Development of recursive formulae of the SFCR

The recursive formulae of the Legendre polynomial of the SFCR is expressed as

(Colombo, 1981)
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According to Equation , Equation is Schmidt semi-standardized and the recursive

formulae of the SFCR can be formulated as
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(3) Development of recursive formulae of the CDOR

When order m equals to 0 and 1, the Legendre polynomial of the CDOR is calculated by

Equation . When m≥2, the Legendre polynomial of the CDOR can be calculated based on the

recursive formulae of the spherical harmonic functions as follows
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According to Equation , Equation is Schmidt semi-standardized and the recursive

formula of the CDOR can be formulated as
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The values of Schmidt SNALF can be obtained by their linear combination when m≥2.

Moreover, the coefficients in front of 2 (cos )m
nP  , 2

2 (cos )m
nP 
 , and 2 (cos )m

nP  are less

than 1, so the recursive formula of the CDOR is stable and reliable.

(4) Development of recursive formulae of the BR

In the first three recursive formulae, because their recursive coefficients are a function of

degree n and order m, the recursion workload increases dramatically with the increase of n

and m. To avoid this, a new abnormal spherical harmonic function is introduced (Belikov et

al., 1991, 1992)
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m
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and the recursive formulae are given as follows
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where the recursive initial values are 0
0̂ (cos ) 1P   , 0

1̂ (cos ) cosP   , and
1

1̂ (cos ) sinP   . The recursion of ˆ (cos )m
nP  can be realized by using Equation . Obviously,

the coefficients of the recursive formulae are independent of degree n and order m, and the

absolute value is less than 1, so the recursive formulae are fast and stable.
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where the recursive initial values are 0 0 1
0 1 1

ˆ ˆ ˆ 1N N N   .

(5) Checking of the recursive calculation of Schmidt SNALF

According to the characteristics of Schmidt SNALF, for the arbitrary θ we know that
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Therefore,
1         2,3, ,   n nNA f n N (75)

is taken as the standard to check the calculation accuracy of various recursive formulae. The

closer NAn is to 0, the higher the calculation accuracy of the recursive formulae can achieve.

A smaller NAn represents higher accuracy of numerical calculation.

5 Numerical experiments

5.1 The effectiveness analysis of the new non-singular expressions of GVs and GGTs
For convenience, the traditional formulae (such as the first- and second-order derivatives

of Schmidt SNALF and its two kinds of spherical harmonic polynomials, GVs and GGTs) are

denoted as M1, the non-singular formulae derived in Du et al. (2015) are denoted as M2, and

our newly derived non-singular formulae are denoted as M3 hereinafter.

Since the singularity problem does not exist outside polar regions, the calculation results

of the non-singular and traditional formulae should be basically the same. The results by M2,

and M3 are compared to those by M1 for case θ=60°, to access their efficientness. The

calculation results for case n=2 and 0≤m≤1 are shown in Table 1. When n＞2 and 0≤m≤1, the

calculation results of M1, M2, and M3 are similar to those in Table 1, and will not be given

again. Similarly, the calculation results of M1, M2, and M3 of two kinds of spherical

harmonic polynomials are also the same, and not shown here
Table 1 Comparison of calculation results derived by M1, M2, and M3 when θ=60°

Calculation items Degree and order Models Calculation results

(cos )m
ndP
d




n=2, m=0

M1 -1.299

M2 -0.650

M3 -1.299

n=2, m=1

M1 -0.866

M2 -0.866

M3 -0.866

2

2

(cos )m
nd P
d




n=2, m=0

M1 1.500

M2 0.938

M3 1.500

n=2, m=1

M1 -3.000

M2 -1.875

M3 -3.000

It is found that, outside polar regions, the results derived by our non-singular formulae

are exactly the same as the results by the traditional formulae, proving its validity . However,
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according to Du et al. (2015), their non-singular formula of the first-order derivative of

Schmidt SNALF is incorrect when m=0, and that of the second-order derivative of Schmidt

SNALF is incorrect when the order m is equal to 0 and 1. Therefore, the non-singular

formulae of Bx and Bxz are incorrect when the order m is equal to 0; the non-singular formulae

of Bxx, Byy, and Bxy are incorrect when the order m is equal to 0 and 1.

Based on the geomagnetic field model EMM2017 up to degree 720, the M1, M2, and

M3 are used to calculate Bx, By, Bxx, Byy, Bxy, Bxz, and Byz for a selected point (60.25°N,

155.75°E) on the surface of the Earth. The results are shown in Tables 2 and 3.
Table 2 Results comparison of GVs calculated by M1, M2, and M3 (Unit: nT)

Calculation items Models Calculation results

Bx

M1 14790.63

M2 8878.44

M3 14790.63

By

M1 -1968.23

M2 -1968.23

M3 -1968.23

Table 3 Results comparison of GGTs calculated by M1, M2, and M3 (Unit: nT/km)

Calculation items Models Calculation results

Bxx

M1 11.648

M2 11.128

M3 11.648

Byy

M1 9.111

M2 9.631

M3 9.111

Bxy

M1 -0.381

M2 -0.428

M3 -0.381

Bxz

M1 -6.651

M2 -4.392

M3 -6.651

Byz

M1 2.164

M2 2.164

M3 2.164

As shown in Tables 2 and 3, the calculation results of By and Byz by M1, M2, and M3 are
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the same, for those of the first kind of spherical harmonic polynomial contained in By and Byz
are the same. The calculation results of Bx, Bxx, Byy, Bxy, and Bxz of M2 are different from those

of M1 and M3, because the non-singular formulae from Du et al. (2015) are incorrect for

calculating the first- and second-order derivatives of Schmidt SNALF contained in Bx, Bxx,

Byy, Bxy, and Bxz when order m is equal to 0 and 1.

5.2 Analysis of the recursive calculation of Schmidt SNALF
(1) Analysis of recursive calculation time

The calculation speed of four recursive formulae of Schmidt SNALF is analyzed.

Selecting a special value of θ and calculating it from the degree 1 to the degree 2160 by each

recursive formula, the calculation time are presented in Table 4.
Table 4 Time consuming of various recursive formulae (Unit: msec)

Serial number Recursive formulae Calculation time
1 SFRR 242
2 SFCR 148
3 CDOR 89
4 BR 481

It can be seen that the calculation speed of the CDOR is the fastest, followed by the

SFCR and the SFRR, and the BR is the slowest.

(2) Stability analysis of recursive calculation

We consider both high and low latitude regions, and choose cosθ to be, 0.01, 0.1, 0.9,

0.99. Equation is used to access the calculation stability for each recursive formula. The

results are shown in Figs. 1-4.

Figure 1.Accuracy checking results of four recursive formulae when cosθ=0.99
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Figure 2.Accuracy checking results of four recursive formulae when cosθ=0.9

Figure 3.Accuracy checking results of four recursive formulae when cosθ=0.1



Journal of Geophysical Research: Solid Earth

22

Figure 4.Accuracy checking results of four recursive formulae when cosθ=0.01

It is observed from Figs. 1 and 2 that in high latitude areas, such as cosθ＞0.9, a larger

degree n causes extremely unstable recursive calculation of SFRR, because its recursive

formula has sinθ in the denominator, which leads to a large calculation error in high latitude

areas. Thus, this recursive formula is seldom used in the calculation of Schmidt SNALF.

If the degree n is larger than 1900, the recursive error in the SFCR increases

dramatically, as shown in Figure 2. Therefore, this recursive formula can be only used in the

calculation of Schmidt SNALF for low degree in low latitude areas.

From Figs. 1 and 2 we find that in high latitude areas, the accuracy of BR is better than

that of CDOR. The opposite is true in low latitude areas, as shown in Figs. 3 and 4.

The above four recursive formulae can satisfy the accuracy requirements when

calculating Schmidt SNALF for low degree, say n＜360. However, when calculating Schmidt

SNALF for high degree in high latitude areas, the accuracy of the SFRR and the SFCR

decreases rapidly. On the other hand, the accuracy of the CDOR and the BR is still high,

which is not limited by the degree, and can be calculated to degree 2160 or higher.

5.3 Calculation and analysis of GVs and GGTs
(1) Calculation and analysis of GVs

Based on the geomagnetic field model EMM2017 up to degree 720, the GVs terms are

calculated for polar regions with orbit height of 300 km, using our newly derived

non-singular expressions. The grid resolution is 30′×30′. The statistical results for Arctic

region (66.5°N~90°N) and Antarctic region (-90°S~-66.5°S) are shown in Tables 5 and 6,

respectively.
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Table 5 The statistical results of GVs data in the Arctic region (Unit: nT)

GVs Maximum Minimum Average value Standard deviation

Bx 13399.07 -1746.16 4376.62 3315.05

By 4464.75 -4859.62 1.39×10-9 2034.21

Bz 63419.54 50640.30 56305.76 1728.32

Table 6 The statistical results of GVs data in the Antarctic region (Unit: nT)

GVs Maximum Minimum Average value Standard deviation

Bx 19501.09 -16536.47 5042.06 10720.05

By 16601.79 -17368.02 -8.26×10-8 11357.32

Bz -30030.44 -66216.28 -50170.52 8246.31

We find that Bz has the largest magnitude in Maximum, Minimum, and average,

followed by Bx and By. However, Bz has a smaller standard deviations than Bx and By. The

average value of By is substantically smaller than the average value of both Bx and By.

The contour map of GVs calculated for Arctic and Antarctic regions are shown in Figs. 5

and 6, respectively. It is observed that the magnitude of each component of GVs is consistent

with the analysis in Tables 5 and 6. In addition, according to Figs. 5 and 6, each component

of GVs data in the eastern and western hemispheres is symmetrical.

Figure 5. Contour map of each component of GVs data in Arctic region

Figure 6. Contour map of each component of GVs data in Antarctic region
(2) Calculation and analysis of GGTs

Theoretically, according to the Laplace equation, Bxx+Byy+Bzz=0. Numerically the closer

Bxx+Byy+Bzz is to 0, the higher accuracy of the non-singular formulae of Bxx and Byy can

achieve. M1, M2 and M3 are used to calculate the GGTs data for polar regions at the orbit

height of 300 km, based on the geomagnetic field model EMM2017 up to degree 720. The

regions are gridded into a 30′×30′ grid. The accuracy statistics of Bxx+Byy+Bzz in Arctic and
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Antarctic regions are shown in Tables 7 and 8, respectively.
Table 7 The accuracy statistics of Bxx+Byy+Bzz in Arctic region (Unit: nT/km)

Models Maximum Minimum Average value Standard deviation

M1 1.279×10-13 -1.279×10-13 -9.718×10-16 3.332×10-14

M2 1.421×10-13 -1.350×10-13 1.124×10-15 3.348×10-14

M3 1.279×10-13 -1.315×10-13 -9.040×10-16 3.332×10-14

Table 8 The accuracy statistics of Bxx+Byy+Bzz in Antarctic region (Unit: nT/km)

Models Maximum Minimum Average value Standard deviation

M1 1.243×10-13 -1.528×10-13 -4.273×10-17 3.078×10-14

M2 1.208×10-13 -1.315×10-13 -2.926×10-16 3.045×10-14

M3 1.208×10-13 -1.315×10-13 2.074×10-16 3.031×10-14

As shown in Tables 7 and 8, we find that the results by M3 numerically satisfies the

Laplace equation in polar regions with very high accuracy, and are better than those of M1

and M2.

The statistical results of GGTs data in Arctic and Antarctic regions, which are simulated

by our newly derived non-singular formulae, are shown in Tables 9 and 10.
Table 9 The statistical results of GGTs data in the Arctic region (Unit: nT/km)

GGTs Maximum Minimum Average value Standard deviation

Bxx 12.607 8.808 10.646 0.973

Byy 12.794 8.279 10.245 1.113

Bzz -18.310 -25.006 -20.890 1.278

Bxy 1.447 -1.367 1.327×10-17 0.819

Bxz 1.381 -5.099 -1.056 1.400

Byz 2.599 -2.969 5.463×10-17 1.326

Table 10 The statistical results of GGTs data in the Antarctic region (Unit: nT/km)

GGTs Maximum Minimum Average value Standard deviation

Bxx -2.568 -14.542 -9.593 2.697

Byy -4.921 -13.594 -9.717 1.888

Bzz 27.847 8.367 19.310 4.476

Bxy 1.498 -1.238 2.247×10-17 0.680

Bxz 8.551 -9.384 -2.124 5.380

Byz 9.322 -8.573 2.011×10-16 5.839

It can be seen that Bzz has the largest magnitude, followed by Bxx and Byy, then Bxz and Byz,

and Bxy has the smallest magnitude.
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The contour maps of the GGTs data in Arctic and Antarctic regions are shown in Figs. 7

and 8. It can be seen that the magnitude of each component of GGTs is consistent with the

analysis in Tables 9 and 10. In addition, in Figs. 7 and 8, each component of GGTs data in the

eastern and western hemispheres is symmetrical.

Figure 7. Contour map of GGTs data in Antarctic region

Figure 8. Contour map of GGTs data in Arctic region

6 Conclusion
In this paper, based on a linear combination of Schmidt SNALF, a novel non-singular

expressions are derived for the first- and second-order derivatives of Schmidt SNALF, along
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with its two kinds of spherical harmonic polynomials. When applying above non-singular

derivatives and polynomials to traditional formulae of GVs and GGTs, special cases that the

order m equals to 0, 1, 2 and other values are considered, more practical non-singular

expressions of GVs and GGTs are formulated, which achieves significant improvements in

solving the singularity problem of the SHEs of GVs and GGTs in polar regions. In addition,

four recursive formulae of Schmidt SNALF are derived, and the calculation speed and

stability are analyzed and evaluated as well. The application scenarios of these four recursive

formulae are also analyzed and the flexible calculation strategies for Schmidt SNALF are

presented. The research results can be applied to data processing and modeling of airbore and

satellite measurements of GVs and GGTs in polar regions.

Data Availability Statement

The geomagnetic field model EMM2017 can be downloaded from CIRES's website

(http://geomag.colorado.edu/).
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Appendix

For the convenience of the formulae derivation, the initial values of the first three orders

of Legendre polynomials and Schmidt SNALF are given here, and later orders can be

calculated with the initial values of the first three orders.
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