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Abstract

Lots of works aim to reveal the driving factors of COVID-19 pandemic trajectory yet ignore the confidence of utilized trajectory

data, making consequent results suspicious. Hereby, we proposed a pandemic metric with confidence (PMC) model in the

hypothesis of Bernoulli Distribution of nine trajectories reported from 113 countries. Results exhibit the average confidence

of trajectories across the global not in excess of 12.1% with the error threshold configuration of 1E-5. In contrast, the 95%

high confidence setting also failed to predict the trajectory containing the acceptable error not beyond 1E-3. Thus, a proposed

trade-off strategy between two contradictory expections (>50% confidence, <1E-3 error) supports 61% of investigated countries

to predict the varying trajectory with confidence beyond 50%. Moreover, PMC model recommend the remanent 39% countries

to extend the proportion of populaces in COVID-19 detecting-pool to a suggested-value (>1% of populations), ensuing the

average confidence up to 70%.
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Key Points: 7 

 PMC model is proposed in the hypothesis of Bernoulli Distribution of pandemic 8 

trajectory to dig the real trajectory data. 9 

 The average confidence of COVID-19 pandemic trajectory across the global is not in 10 

excess of 12.1%. 11 

 Trade-off strategy in PMC model supports 61% countries to predict realer trajectory data 12 

with confidence beyond 50%. 13 
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Abstract 15 

Lots of works aim to reveal the driving factors of COVID-19 pandemic trajectory yet ignore the 16 

confidence of utilized trajectory data, making consequent results suspicious. Hereby, we 17 

proposed a pandemic metric with confidence (PMC) model in the hypothesis of Bernoulli 18 

Distribution of nine trajectories reported from 113 countries. Results exhibit the average 19 

confidence of trajectories across the global not in excess of 12.1% with the error threshold 20 

configuration of 1E-5. In contrast, the 95% high confidence setting also failed to predict the 21 

trajectory containing the acceptable error not beyond 1E-3. Thus, a proposed trade-off strategy 22 

between two contradictory expections (>50% confidence, <1E-3 error) supports 61% of 23 

investigated countries to predict the varying trajectory with confidence beyond 50%. Moreover, 24 

PMC model recommend the remanent 39% countries to extend the proportion of populaces in 25 

COVID-19 detecting-pool to a suggested-value (>1% of populations), ensuing the average 26 

confidence up to 70%. 27 

Plain Language Summary 28 

There are two main obstacles to reveal the real climatic role in the COVID-19 pandemic, that is 29 

to separate coupling effects of climatic and non-climatic factors on its trajectory, and to raise the 30 

confidence of utilized trajectory. Our previous work published on Earths’ Future overcame the 31 

first obstacle, and this work focuses on the second obstacle with two steps. First, a pandemic 32 

metric with confidence (PMC) model is proposed in the hypothesis of Bernoulli Distribution of 33 

nine trajectories reported from 113 countries, containing two tunable variables (confidence and 34 

error) as well as two observed variables (trajectory data and test strategy). One capacity of PMC 35 

model is to predict either the confidence or according error of existing trajectory data. The other 36 

capacity is either to dig the real trajectory data with the certain confidence and error threshold, or 37 

to adjust present test strategy for more reliable trajectory data. Second, a trade-off strategy is 38 

proposed given the coupling relationship of four PMC variables. Results reveal that error 39 

threshold within scope of 1E-5 to 1E-3, confidence in excess of 50%, and the number of 40 

populaces participating COVID-19 detecting pool beyond 1E+8 together yield the optimal 41 

prediction of reliable trajectory data. 42 

1 Introduction 43 

The coronavirus disease 2019 (COVID-19) pandemic is a rapidly evolving global emergency 44 

that continues to strain healthcare systems (Gallo Marin et al., 2021). To curb pandemic, lots of 45 

works were carried out to uncover the potential driving factors to its trajectory. NATURE and 46 

SCIENCE published articles affirming the positive effect of non-natural factors on mitigating the 47 

pandemic (Lai, 2020; Tian and Liu, et al., 2020), but still the possibility cannot be ruled out that 48 

the up-to-date varying trajectory is partially attribute to other unknown climatic factors. Hereby, 49 

to promote the profounder cognition on COVID-19, various natural driving factors such as 50 

temperature, humidity, solar radiation, aerosol, wind speed and vegetation were used to discover 51 

associations between the pandemic trajectory and those factor. However, different studies 52 

showed diverged and even contradictory results. Previous studies support temperature a key 53 

driving factor (Wang and Jiang et al., 2020; Wang and Tang et al., 2020) whereas the other 54 

studies (Yao et al., 2020; Ma et al., 2020) do not support that. Besides, such diverged 55 

conclusions also occur in humidity driving factor. References (Ahmadi et al., 2020; Wang and 56 

Tang et al., 2020) support high humidity reduces the transmission of COVID-19. However, 57 

reference (Luo et al., 2020) concludes that the role of absolute humidity in transmission of 58 
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COVID-19 has not been established. In addition, COVID-19 may transmit through aerosol (Liu 59 

et al., 2020; Wang and Du, 2020), whereas there are also important reasons to suspect it plays a 60 

role in the high transmissibility of virus (Sima, 2020). Further, a study shows that an outbreak at 61 

low wind speed is remarkable (Islam et al., 2020), but this result is nullifled by another study 62 

(Oliveiros et al., 2020). Recently, EARTHS FUTURE published an article summarizing 46 63 

contradictory conclusions (Zuo et al., 2021). 64 

There are two main snags to disclose the climatic role in the urgent human public health events. 65 

On the one hand, the spreading mechanism of virus is very complex, coupling numerous factors. 66 

However, most of aforesaid public researches only consider single climatic factors and ignore 67 

their coupling relationship. Besides, the utilized COVID-19 trajectory is the interaction outcome 68 

of both natural factors and human interventions. Thus, the direct correlation analysis between 69 

climatic factors and such COVID-19 trajectory yet cannot reveal the real climatic influence on 70 

the pandemic, because the human interventions are the dominant factors and the accessorial 71 

climatic influence will certainly be inhibited (ignored) in such correlation analysis. Owing to this, 72 

the influence separation of these two types of driving factors is quite important for the better 73 

understanding and authenticity of the climatic influence on the pandemic. On the other hand, we 74 

cannot deny that the uncertainty existing in the reported data concerning pandemic trajectory 75 

makes the capacity of published researchs questionable for delivering the accurate results. For 76 

example, references (Cordes and Castro, 2020; Morrison et al., 2020) summarized two classes of 77 

pandemic trajectories concerning the transmission of COVID-19 that are quite sensitive to 78 

distinct COVID-19 test strategy adopted by the global (Onder et al., 2020). There are two main 79 

test technologies such as reverse transcription-polymerase chain reaction (RT-PCR) (Freeman et 80 

al., 1999) and nucleic-acid test (NAT) (Wu et al., 2020). However, due to high false-positive rate 81 

of NAT (Zhuang et al, 2020) and high false-negative rate of RT-PCR (Li and Yao et al., 2020), 82 

traces of virus detected by NAT and RT-PCR are not properly correlated with the real trajectory 83 

(Xiao et al., 2020). The similar uncertainties are also observed in pandemic trajectory concerning 84 

the other metrics (Section 2.2). In a short, the first snag was solved by our previous work (Zuo et 85 

al., 2021), and the main contribution of this paper is to overcome another snag through the 86 

pandemic metrics with confidence (PMC) model.  87 

2 Materials and Methods 88 

2.1 Data Collection 89 

This work first aims to investigate the effect of region-specific test strategy on the 90 

reported pandemic data across the global. Hereby, we selected 113 countries as a research 91 

region (e.g., US, India, China, etc. in which their testing rate data are public avaliable), 92 

and the corresponding data are avaliable from the world info meter of COVID-19 93 

(https://www.worldometers.info/coronavirus/). Besides, the time series of pandemic raw 94 

data reported from January 21 and August 31, 2020 are respectively collected from the 95 

COVID-19 data repository (https://github.com/CSSEGISandData/COVID-19), i.e., total 96 

confirmed cases, total deaths, total recoveries and total confirmed cases with critical 97 

symptoms. Finally, all data for this study are available in the Zenodo repository (PMC-98 

2021. (2021, May 28). PKU-2021/PMC-Model: PMC-Model (Version v1.0.0). Zenodo. 99 

http://doi.org/10.5281/zenodo.4831821). 100 

2.2 Pandemic Metrics 101 

https://www.worldometers.info/coronavirus/
https://github.com/CSSEGISandData/COVID-19
http://doi.org/10.5281/zenodo.4831821
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Derivative pandemic metrics are widely used in many statistical researchs concerning 102 

COVID-19, i.e., the proportion of the positive tests (Cordes and Castro, 2020) and 103 

positivity rate (Morrison et al., 2020) to uncover the infection-specific characteristic of 104 

the COVID-19; case fatality rate (Yang et al., 2020), mortality rate (Baud et al., 2020) 105 

and closed case fatality rate (Pueyo et al., 2020) for death-specific characteristic; 106 

discharge rate (Tian and Hu et al., 2020), recovery rate (Li and Huang et al., 2020) and 107 

survival case discharge rate (Khafaie and Rahim, 2020; Bhatraju et al., 2020) for 108 

recovery-specific characteristic; ICU case rate (Bhatraju et al., 2020; Felice et al., 2020) 109 

and clinical deterioration rate (Felice et al., 2020) for worsening-specific characteristic, 110 

respectively. The details about those metrics calculation are listed in Table S1 and the 111 

geometric probability representation of the Bernouli Distribution in investigated 112 

pandemic metrics is drawn on Figure S1. 113 

2.3 Pandemic Metrics with the Confidence (PMC) Model 114 

To guarantee a fine match between the reported pandemic metrics and the actural 115 

pandemic trajectory, and to provide a probability that the reported metrics could be 116 

trusted, a PMC model is developed to predict the reported metric with certain confidence 117 

(Figure 1), and the area of blue in Figure 1-a represents the according confidence with the 118 

allowable maximum of error (Figure 1-b). Consequently, the PMC model could be 119 

expressed with the function of �̅�, 𝑛, and 𝜀 in Equation 1, where 1 − 𝛼 is the final output 120 

of confidence, �̅� is the mean of all sample values for each metric, n is the sample size, 121 

and 𝜀 is the allowable maximum of error. The detailed formula derivation can be found in 122 

the file of Supporting Information (Equation S1~S6). 123 

{
  
 

  
 1 − 𝛼 =

𝑧𝛼 2⁄ +0.2021

1.972

𝑧𝛼
2⁄

2 =
√𝑏2−4𝑎𝑐−𝑏

2𝑎

𝑎 = 1 − 𝜀2

𝑏 = 4𝑛�̅�(1 − �̅�) − 2𝑛𝜀2

𝑐 = −𝜀2𝑛2

                                            (1) 124 

For instance, we set the allowable maximum of error as ε=1E-5 (see the detailed 125 

threshold selection in Section 3.1), and the reported value of the first metric (Table S1) in 126 

USA (reported date is 8-31, 2020) is about 7.57% (i.e., �̅�=7.57%) with the total number 127 

of 81,102,397 tests. Therefore, this reported data with the error that satisfies the 128 

configured threshold could be trusted with the confidence of only 18.88% (more results 129 

can be found in Section 3.3). Owing to this, it is significant to add the confidence and 130 

errors into the existing statistical conclusions and further relevant sciences which were 131 

(or would) drawn on those reported raw metrics. 132 
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 133 
Figure 1. The data confidence and the allowable maximum error of the expected value of the investigated 134 

pandemic metrics. (a) shows the probability density curve of z statistical quantity where the area of blue 135 

represents the data confidence (the second equation in Equation S3); Besides, the black curve and two 136 

stationary points in (b) correspond to the first equation in Equation S3 and two boundaries of the confidence 137 

interval, respectively. The distance between two boundaries describes the allowable maximum of error. 138 

3 Results 139 

3.1 Relationship between Confidence and Error Threshold Configure of the Reported 140 

Pandemic Metrics 141 

Figure 2 shows a response of the confidence for the reported pandemic metrics to the 142 

allowable maximum error configure. Except for metrics in Figure 2-a, -g, -h, the 143 

confidence of the other metrics with the 1E-05 of error threshold (red line) exhibits the 144 

notable differentiation across the global countries. Meanwhile, the confidence of the 145 

worldwide reported data exhibited the significant decrease when the error threshold to be 146 

more minor, especially in the decline from 1E-5 (red line) to 1E-06 (blue line). 147 

Whereafter, the confidence tends to be robust (insensitive) whatever the decline of the 148 

error threshold (1E-7 with green, 1E-8 with black, and 1E-9 with yellow line). 149 

Accordlingly, the error threshold of setting in excess of 1E-5, it is difficult to distinguish 150 

the country-wise confidence for the reported data. Therefore, the error threshold of 1E-05 151 

is preferred in this work. 152 
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 153 
Figure 2. The response of the confidence for the reported pandemic metrics to the allowable 154 

maximum error configure (i.e., error threshold), such as 1E-5, 1E-6, 1E-7, 1E-8 and 1E-9 which 155 

individually corresponds to the red, blue, green, black and yellow dotted line in each subfigure (Figure 156 

2-i shares the legend with the other subfigures). a) represents the aforementioned response for the 157 

proportion of the positive tests, b) for the case fatality rate, c) for the mortality rate, d) for the closed 158 

case fatality rate, e) for the discharge rate, f) for the recovery rate, g) for the survival case discharge 159 

rate, h) for the ICU case rate and i) for the clinical deterioration rate, respectively. Onward, in each 160 

subfigure, the horizontal axes represents the number of 113 investigated countries and the vertical 161 

axes represents the confidence of each reported pandemic metric (calculated based on the method in 162 

Section 2.3). 163 

3.2 Relationship between Confidence and Country-wise Test Strategy 164 

Apart from the error threshold, the varying strategies to detect COVID-19 cases also 165 

effect the region-specific data confidence (Figure 3). It was observed that the confidence 166 

of all pandemic metrics raises as the COVID-19 detection pool widens. Meanwhile, 167 

circles on box charts distributed more dispersed along the x-axis direction of Figure 3, 168 

which reveals the consequently enlarged differentiation of data credibility among 169 

diverged countries with the widen COVID-19 detection pool. Ignoring the outliers 170 

beyond the red line in Figure 3-h and -i, we can observe the larger confidence and more 171 

notable region-wise differentiation contributed by the detecting strategy of 1E+8. 172 
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However, Figure S3 shows that no one country carryed out the detecting strategy of 1E+8 173 

until the day of August-31, 2020. Accordingly, tuning up the detecting strategy to 1E+8 174 

supports the prediction of more credicable pandemic trajectory.  175 

Prior to the credicable prediction, Figure S4 also demonstrates the region-wise sensitivity 176 

of data confidence to the distinct COVID-19 detecting strategy. Specifically, the data 177 

confidence—concerning the pandemic metric -1, -8 and -9—reported from China 178 

exhibits the most sensitivity to the detecting strategy, respectively. Subsequently, 179 

regarding the pandemic metric from -3 to -7, the data confidence reported from Qatar 180 

indicates the most sensitivity. Moreover, Guatemala reveals the most sensitivity for the 181 

pandemic metric -10. Also, it could be observed the more detailed sequence of 182 

aforementioned sensitivity in Figure S4. 183 

 184 
Figure 3. The response of the confidence for the reported pandemic metrics to the total test size, such 185 

as 1E+3, 1E+4, 1E+5, 1E+6, 1E+7 and 1E+8 which individually corresponds to the dark-black, 186 

moderate-black, grayish-black, dark-green, moderate-green and grayish-green boxes in each subfigure 187 

(Figure 3-i shares the legend with the other subfigures). Additionally, the vertical locations of the 188 

circles on each box chart exhibites the data confidence at each country (n=113). Specifically, a) 189 

represents the aforementioned response for the proportion of the positive tests, b) for the case fatality 190 

rate, c) for the mortality rate, d) for the closed case fatality rate, e) for the discharge rate, f) for the 191 

recovery rate, g) for the survival case discharge rate, h) for the ICU case rate and i) for the clinical 192 

deterioration rate, respectively. 193 
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3.3 Global Pandemic Metric with Data Confidence 194 

Section 2.2 combined with Section 2.3 (set error threshold as 1E-5) supported the 195 

estimation of the data confidence for each reported pandemic metric across the global. 196 

Figure 4-a shows that almost all countries (China-except) exhibited the data confidence 197 

of 20% below for the first metric. Specifically, China exhibited the highest confidence of 198 

89% for this metric, followed by Australia (20.0%), Russia (19.6%), USA (18.9%), 199 

Germany (16.1%), India (15.9%), and Jordan (15.0%), etc. whereas this metric value 200 

reported from the Turks and Caicos exhibited the lowest confidence (10.3%). Apart from 201 

that, a quite few countries (only about 4%) exhibited the data confidence in excess of 202 

20% for the other three metrics in Figure 4-b, -c and -d, respectively. For instance, the 203 

confidence sequence of the metric in Figure 4-b is USA (23.5%), India (22.4%), Russia 204 

(21.9%) and China (20.9%) in turns. Analogously, Figure 4-c shows the sequence of 205 

USA (22.8%), Russia (21.6%), India (21.0%), and China (20.9%) in turns. However, 206 

Figure 4-d exhibited the sequence of India (21.0%), Russia (20.9%), China (20.8%), and 207 

USA (20.5%) in turns. As a whole, these three metrics exhibited the similar yet low 208 

confidence (24% below), and the reported metric values in Figure 4-d is much higher 209 

than the other two (Figure 4-b and -c). 210 

Subsequently in Figure 4-e, -f and -g, three metrics (along with the estimated data 211 

confidence) in terms of the pandemic recovery are here. Likewise, metrics in Figure 4-e 212 

and -f exhibited the low confidence (21% below), whereas the maximum of the 213 

confidence for the metric in Figure 4-g was in excess of 54%, which could be, to some 214 

extent a preferable metric in the estimation of the global recovery state from the COVID-215 

19 pandemic. Specifically, China exhibited the largest confidence of 54.08%, followed 216 

by USA (14.86%), Russia (14.31%), India (14.14%), Germany (13.61%), and Canada 217 

(13.16%), etc. It is worthy to mention that China (the red patch in Figure 4-h) exhibited 218 

the outlier of the confidence in excess of 1 with the error threshold of 1E-5. In this 219 

regard, combined with Figure 2-h, the allowable maximum of error for the metric in 220 

Figure 4-h should be replaced with 1E-6 for the reasonable confidence output. In the last 221 

metric (Figure 4-i), USA (green patch) exhibited the highest confidence of 39.11%, 222 

followed by China (yellow patch, 27.27%), India (orange patch, 25.23%), Russia (gray-223 

green patch, 23.18%), Italy (green patch, 22.93%), and France (green patch, 22.90%), etc. 224 

Despite that a few countries exhibited a relatively high confidence for the certain reported 225 

metrics, its average value is not in excess of 12.1%, i.e., metric in Figure 4-a 226 

(mean=12.36%), -b (mean=12.13%), -c (mean=12.02%), -d (mean=11.91%), -e 227 

(mean=11.04%), -f (mean=11.91%), -g (mean=11.40%), and -i (mean=13.39%), 228 

respectively. Hereby, to estimate and predict the pandemic trajectory in terms of those 229 

metrics with high confidence is quite necessary and significant.  230 



manuscript submitted to Earth’s Future 

 

 231 
Figure 4. The nine of reported pandemic metrics along with the corresponding data confidence in our 232 

research region (i.e., 113 countries in map), where the graduated colors at each subfigure represent the 233 

value of certain pandemic metric reported from a specific country, and the circle size on each colored-234 

patch represents the corresponding confidence. Onward, the detailed value could be linked to each 235 

legend, in which the first colum and the second column exhibited the value range of the certain 236 

pandemic metric and the data confidence, respectively. Specifically, a) represents the proportion of 237 

the positive tests with the data confidence, b) for the case fatality rate, c) for the mortality rate, d) for 238 

the closed case fatality rate, e) for the discharge rate, f) for the recovery rate, g) for the survival case 239 

discharge rate, h) for the ICU case rate and i) for the clinical deterioration rate, respectively. Note, the 240 

color sequence (top to down) in legend are describe as green, gray-green, yellow, orange, and red, 241 

respectively in the main text. 242 

4 Discussion 243 

4.1 Impossible to Predict Pandemic Trajectory with the High Confidence and the Minor 244 

Error Simultaneously 245 

Based on the PMC model in Section 2.3, given that the allowable maximum of error is 246 

1E-5, the confidence (credibility) of nine investigated pandemic metrics, which were 247 

reported from 113 countries respectively, was predicted in Section 3.3. The result 248 

exhibited the average confidence not in excess of 12.1% for all the COVID-19 pandemic 249 

metric (Figure 4). Owing to this, the setting of the allowable maximum error of 1E-5 250 

(minor error) failed to predict the pandemic trajectory with the high credibility. 251 

Meanwhile, the setting of the confidence of 95% (high credibility) also failed to predict 252 

the trajectory with the minor error (Figure 5). For instance, the trajectory simulated with 253 



manuscript submitted to Earth’s Future 

 

the tenth metric in Antigua and Barbuda was predicted with the the highest error of 254 

76.34% across the global (Figure 5-i), followed by the eighth (11.18%, Figure 5-g) and 255 

sixth metric (11%, Figure 5-e) in Saint Martin, then the fifth and seventh metric (10.88%) 256 

in Martinique (Figure 5-d and -f), the third (6.62%, Figure 5-c) and fourth metric (6.55%, 257 

Figure 5-b) in Antigua and Barbuda, the ninth metric in Saint Martin (5.29%, Figure 4-h), 258 

and the first metric in Turks and Caicos (2.78%, Figure 5-a). Moreover, China exhibited 259 

the minimal error of 1.08E-5 and 0.06% in Figure 5-a and –g, while India presented 260 

0.03% in Figure 5-d and –f, and USA displayed 0.02%, 0.03%, 0.07% and 7.1E-5 in 261 

Figure 5-b, -c, -e, and –h, respectively.  262 

What will happen if the confidence of 95% (high credibility) and the allowable maximum 263 

error of 1E-5 (minor error) are together input into the PMC model to predict the 264 

pandemic trajectory simulated with different metrics? The result exhibited the predicted 265 

values in excess of 99% for all metrics across the global (Figure S5), which is quite an 266 

impossible outcome in the pandemic trajectory. Meanwhile, the predicted sample size for 267 

each pandemic trajectory simulated by aforementioned metrics is faraway the real in the 268 

condition of 95% confidence and the allowable maximum error of 1E-5 (Figure S6). For 269 

example, the pandemic trajectory (simulated by the first metric) with 95% of confidence 270 

and 1E-5 of error existed only in the hypothesis that the average population of COVID-19 271 

detection in excess of 9.49E+9 (Figure S6-a), which exceed the total population on the 272 

earth. Likewise, neigher of the existing pandemic trajectories simulated by metrics in 273 

Figure S6-b to -i satisfies such conditions. Owing to this, the expection of the high 274 

confidence and the low error in the pandemic trajectory predicted through the PMC 275 

model are contradictory, and we should make a trade off between them.  276 
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 277 
Figure 5. The error with the confidence of 95% which is predicted for each pandemic metric through 278 

the PMC model. Onward, the blue dotted line and the red error bar represent the country-specific 279 

reported value of each metric and the corresponding predicted errors, respectively. In each subfigure, 280 

the maximum and the minimum of error are marked with the ellipse, respectively. 281 

4.2 Trade off between the Confidence and the Allowable Maximum of Error 282 

Tracking back Section 3.1, despite the capacity of the setting of allowable maximum 283 

error of 1E-5 to distinguish the confidence of the simulated pandemic trajectory across 284 

the global (Figure 2), the predicted confidence not in excess of 12.1% is impossible to 285 

support any futher conclusions drawn on those trajectories. Owing to this, a trade off 286 

between those two contradictory expections is significant. Subsequently, the acceptable 287 

confidence (>50%) with the maximum error not in excess of 1E-3 was predicted in 288 

Figure 6 based on the trade-off strategy. We observe the maximum error scope of 1E-5 to 289 

1E-3 supports the prediction of acceptable confidence in most of countries. Setting the 290 

maximum error of 1E-5, reported data (0.09%) only from China with respect to the first 291 

pandemic metric exhibits the acceptable confidence (e.g., 88.90%). However, with the 292 

boost of maximum error to 9E-5 , eight countries support the prediction of acceptable 293 

confidence, such as Australia, Russia, USA, Germany, India, Jordan, Denmark and New 294 
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Zealand. Besides, the maximum error setting of 1E-4 to 1E-3 with the interval of 1E-4 295 

suppots the prediction of acceptable confidence of 7, 17, 26, 34, 27, 23, 20, 18, 13 and 13 296 

countries, respectively.  297 

On the contrary, due to the current low proportion of country-specific populaces 298 

comprised in the COVID-19 detection pool, the remaining 44 countries fail to support the 299 

trade-off strategy between the confidence beyond 50% and the maximum error within 300 

1E-3. However, the upsurge of the percentage of populaces as the member of the 301 

COVID-19 detection pool could make those countries support the trade-off strategy. 302 

Specifically, fixing the maximum error of 1E-3, the raise of detecting-rate to 1% aids 303 

Guatemala and Oman give prediction of the confidence in excess of 50%, that is 85.14% 304 

and 68.08%, respectively. Onward, the promotion of detecting-rate to 2% also helps the 305 

other five countries to forecast the confidence beyond 50%, such as Senegal (60.74%), 306 

Cameroon (65.57%), Afghanistan (56.60%), Malawi (57.80%) and Madagascar 307 

(53.44%). Subsequently, there are more countries (the number of 17, 7 and 7 countries) 308 

with the predicted confidence upstairing over to 50% since the upgrade of detecting-rate 309 

to 10%, 20% and 100%, respectively. 310 

Nevertheless, eight regions still cannot predict the confidence in excess of 50% even with 311 

all populaces as the member of the COVID-19 detection pool, such as French Guiana, 312 

Aruba, Mayotte, Antigua and Barbuda, Suriname, Saint Martin, Sint Maarten and Turks 313 

and Caicos. To promote the trade-off strategy work, the maximum error is tuned up to 314 

2E-3 in five regions and to 3E-3 in three regions. Consequently, Suriname and French 315 

Guiana separately exhibit 88.08% and 83.78% of data confidence along with the 316 

maximum error of 2E-3, followed by Antigua and Barbuda (83.02%), Mayotte (71.22%) 317 

and Aruba (66.87%). Also, given the maximum error of 3E-3, Saint Martin, Sint Maarten 318 

and Turks and Caicos show 95.19%, 66.33% and 50.07% of data confidence, 319 

respectively. Similarily, the trade-off strategy could also be applied in other pandemic 320 

metrics shown in Table S1. 321 
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 322 
Figure 6. The trade off between the confidence and the allowable maximum error for the first 323 

pandemic metric. The different color represents the predicted confidence (i.e., exceeds 50%) that is 324 

acceptable in the trade off strategy. Onward, values on the horizontal axis describes the tunable 325 

adaptive setting of the allowable maximum of error. Moreover, the term #% p and t in the bracket 326 

represent the denominator of the first pandemic metric (Table S1), that is the number of certain 327 

percentage of populace, and the number of populace who participated the COVID-19 detection, 328 

respectively. Onward, the vertical axis exhibits the name of 113 investigated countries / regions. 329 

5 Conclusions 330 

Many works aim to reveal the driving factors of COVID-19 pandemic trajectory yet 331 

ignore the data confidence of utilized trajectory. In this work, we proposed the PMC 332 

model in the hypothesis of Bernoulli Distribution of nine utilized trajectories announced 333 

from 113 countries. The first merit of PMC model is to predict the region-specific 334 

confidence of utilized nine trajectories and the predicted average confidence across the 335 
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global is not in excess of 12.1% with the error threshold configuration of 1E-5, cutting 336 

the reliability of relevant researchs. Another merit of PMC model is to dig the real 337 

trajectory data with the certain confidence and error threshold, but the purpose of the high 338 

confidence (>95%) and the minor error (<1E-5) threshold is impossible to achieve 339 

simultaneously. Therefore, a proposed trade-off strategy between those two contradictory 340 

expections (>50% confidence; <1E-3 error) supports 61% of investigated countries to 341 

predict the varying trajectory with confidence in excess of 50%. The third merit of PMC 342 

model is to recommend the remanent 39% countries to extend the proportion of 343 

populaces in COVID-19 detecting-pool to a suggested-value (at least 1% of populations), 344 

ensuing the average confidence up to 70%. Finally, PMC model in combination with 345 

trade-off strategy jointly reveal that error threshold within scope of 1E-5 to 1E-3, 346 

confidence in excess of 50%, and the number of populaces participating COVID-19 347 

detecting pool beyond 1E+8 together produce the optimal prediction of the reliable 348 

trajectory data. It is significant to add the confidence and error concepts into the existing 349 

statistical conclusions and future relevant studies. 350 

Nevertheless, the study also has a limitation that the hypothesis of Bernoulli Distribution 351 

of pandemic trajectory in PMC model brings some uncertainty to the predicted outcomes 352 

of the confidence and according trajectory. Apart from extending PMC model to global-353 

city level in COVID-19 pandemic trajectory, a more difficult task that awaits our 354 

community is using reliable trajectory data predicted by PMC model to reveal the real 355 

climatic role in this urgent human public health events. 356 
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