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Abstract

Faults and fractures play a significant role in drilling operations, trapping hydrocarbon, and reservoir development in oilfields;

exploring faults quickly and accurately can help to reach the target more manageable. In this approach, to improve faults and

fractures detection, applicable seismic attributes have been combined using a Multilayer Perceptron (MLP) neural network and

applied to a 3-D seismic cube of the Changuleh oil field. First of all, high probabilistic faulted areas, as an interesting area,

have been identified using a hand-picking method on a single seismic section. It is used as a pattern and one input set for

the MLP neural network. Then, some single seismic attributes (e.g., Similarity, Coherency, Curvature, Instantaneous, etc.)

were applied to the data. Next, the Multilayer Perceptron (MLP) neural network has been used to assess and determine the

most contributed attributes. The less contributed ones are eliminated and the best seismic attributes, as another input set,

combined using the MLP. Finally, the outputs of the MLP network will be two cubes named ‘faulted cube’ and ‘non-faulted

cube’. Differences between faulted zones and non-faulted zones on each cube were conspicuous, and there was no need to be

interpreted manually. By comparing initial seismic sections and the MLP network’s outputs, it is easy to see where the faulted

and fractured zones are.
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Key Points

• Applying single seismic attributes on seismic section

• Combining the most applicable seismic attributes by MLP artificial neural
network

• Generating interpreted faulted cube and non-faulted cube as the outputs

Abstract

Faults and fractures play a significant role in drilling operations, trapping hy-
drocarbon, and reservoir development in oilfields; exploring faults quickly and
accurately can help to reach the target more manageable. In this approach, to
improve faults and fractures detection, applicable seismic attributes have been
combined using a Multilayer Perceptron (MLP) neural network and applied to
a 3-D seismic cube of the Changuleh oil field. First of all, high probabilistic
faulted areas, as an interesting area, have been identified using a hand-picking
method on a single seismic section. It is used as a pattern and one input set for
the MLP neural network. Then, some single seismic attributes (e.g., Similarity,
Coherency, Curvature, Instantaneous, etc.) were applied to the data. Next, the
Multilayer Perceptron (MLP) neural network has been used to assess and deter-
mine the most contributed attributes. The less contributed ones are eliminated
and the best seismic attributes, as another input set, combined using the MLP.
Finally, the outputs of the MLP network will be two cubes named ‘faulted cube’
and ‘non-faulted cube’. Differences between faulted zones and non-faulted zones
on each cube were conspicuous, and there was no need to be interpreted manu-
ally. By comparing initial seismic sections and the MLP network’s outputs, it
is easy to see where the faulted and fractured zones are.
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Drilling toward oil and gas reservoirs at an optimum time is one of the most im-
portant parameters in operation. It is inevitable to encounter fractured areas in
the drilling path. So how to find these areas before starting to drill, significantly
affects the operation efficiency. Seismic attributes as indicators of these events
can help to solve the issue. Using a specific type of artificial neural network to
combine the seismic attributes will make outputs that indicate fractured zones.

1 Introduction

Oilfield development and drilling development wells are a continuous strategy
in oil-bearing countries. Hence it is so important to consider to faulted zones
to figure out where and in which direction wells should be drilled. Faults and
fractures detection is an essential parameter in any parts of oilfields operations,
including exploration, extraction, and production.

In conventional methods, interpreter has to spend too much time to detect fault
and fractures visually and then should interpret them by hand-picking. If quality
of the data is inadequate or the formations structure is complicated, sometimes
it would be difficult or impossible for them to pick the events. For example,
when faults run parallel to strike, they become more challenging to see because
the fault lineaments become superimposed on bedding lineaments.

Nowadays, soft computing is used more and more to extract reservoir charac-
terizations. Some researchers such as Taner (2001), Roberts (2001), Tingdahl
et al. (2005), Aminzadeh et al. (2006), Ashraf et.al (2020) ,and Xiaoxia et.al
(2020) have conducted lots of researches in these filed and their applications in
different seismic objects detection.

The most general and most widely used neural network model is the Multilayer
Perceptron (MLP).

Multilayer Perceptrons are the standard algorithms for any supervised learning
pattern recognition process and the subject of ongoing research in computational
neuroscience and parallel distributed processing. They are useful in research in
terms of their ability to solve problems stochastically, which often allows one to
get approximate solutions for extremely complex issues.

2 Study Zone

Changuleh oilfield is located in the Anaran exploration block in the south-west
of Iran ‘Figure.1’.
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Figure 1. Location of Changuleh on the map.

The 3D seismic data used in this research belongs to this area. The Changuleh
area comprises a nearly rectangular shape abutting the border with Iraq, ori-
ented northwest-southeast with about 30Kilometers long axis. The Area width
is about 15 kilometers extending from the border up into the foothills of the Za-
gros Mountains. This area includes three groups of formations shown in ‘Figure
2’; 1) Fars, 2) Asmari and Pabdeh, and 3) Bangestan group. Also nine horizons
of these groups have been interpreted: 1) Gachsaran, 2) Asmari, 3) Kalhor, 4)
Pabdeh, 5) Ilam, 6) Sarvak, 7) Lower Sarvak, 8) Kajdomi, and 9) Darian.
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Figure 2. Three group formations of the Changuleh oilfield.

3 Materials and Methods

A seismic attribute is any measure of seismic data that helps us visually enhance
or quantify features of interpretation interest (Marfurt & Chopra, 2007).

In the following, Single attributes (Instantaneous, Energy, Coherency, Similarity,
etc.), which are used for faults and fractures detection, were described and
applied to the Changuleh seismic cube.

First of all, faults were picked on a 2D seismic section, as an input pattern for
neural networks, using a conventional method (hand-picking). The Changuleh
seismic cube and interpreted section (In-line 122) are shown in ‘figure 3a’ and
‘figure 3b’.

Figure 3. The Changuleh seismic cube (a) and the Interpreted seismic section
(In-line 122) as a pattern for MLP (b). The red triangles and the black circles
are more probabilistic zones for fault and Non-fault zones, respectively.

3.1 Energy

The higher the Energy, the higher the Amplitude. This attribute calculates
the squared sum of the sample values in the specified time-gate divided by the
number of samples in the gate. Energy is a measure of reflectivity in the specified
time-gate. The Energy attribute defines as:

𝐸 = ∑𝑁−1
𝑖=0 𝑓(𝑡0 +𝑖.dt)2

𝑁 (1)

Where f is the amplitude of the trace, t0 is the upper limit of the time-gate, N
is the number of samples in the gate, and dt is the sample interval (Tingdahl &
de Rooij, 2005).

After evaluating the Energy attribute parameters, the best time-gates were se-
lected. These time-gates were chosen based on their positive effect, which helps
more accurate object detection in considered section (s). The results of applying
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the Energy with different time-gates are shown in ‘figure 4’. Areas colored in
gray shows more probabilistic faulted zones because the Energy is lower than
the other areas. Red regions are more probabilistic for Non-faulted zones be-
cause the Energy is higher than the other places. The Energy in faulted areas
is lower than their surrounded areas, because of decrease in amplitude in these
zones.
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Figure 4. The Energy attribute results with four different time-gates applied to
both seismic cube and the In-line 122 as an example; a1 for the seismic cube
and a2 for the In-line 122 by the time gate [-14,+8] and Energy output, b1 for
the seismic cube and b2 for the seismic section by the time gate [-14,+14] and
Energy output, c1 for the seismic cube and c2 for the seismic section by the
time gate [-14,+28] and Energy output, d1 for the seismic cube and d2 for the
seismic section In-line 122 shown in figure 2 with [-28,+28] and Energy output,
applied on the same In-line, cross-line and time-slice of the Changuleh seismic
cube.

Input attributes with most weight and most positive effect are the most im-
portant attributes. Therefore some parameters like different time-gates and
step-outs might affect desired outputs.

3.2 Dip Steering

Directivity is a concept in which dip and azimuth information are used to im-
prove attribute accuracy and object detection power. Dip-steering uses the
local dip and azimuth to track the event locally to the trace-segments under
investigation (Tingdahl & de Rooj, 2005), so it helps us to calculate attributes
with steering (e.g., coherency, similarity, curvature, etc.) more accurate. The
Steering Cube contains the dip and azimuth of the seismic events in In-line and
cross-line directions at every sample point. How to calculate trace dip is shown
in figure (5).
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Figure 5. The algorithm looks for a maximum and minimum along the trace for
calculating dip of a particular trace, alternatively. Each of these Max. or Min.
events is matched with two neighboring traces, e.g., in the inline direction. The
distances of the neighboring traces depend on the step-out (is the horizontal
distance between two in-lines or two cross-lines). Now the difference in time
values on these two neighboring traces (Δt) is divided by the horizontal distance
between the traces to get the inline dip (x). The same procedure is repeated for
the cross-line direction to get the cross-line dip. Then In-line dip and cross-line
dip define as following:

In-line dip= (Δt)/x, cross-line dip= (Δt)/y.

The azimuth of the dip direction is in the range of the degrees -180 to +180.
Positive azimuth is defined from the in-line in the trend of increasing cross-
line numbers. Azimuth = 0 indicates that the dip is dipping in the direction
of growing cross-line numbers. Azimuth = 90 demonstrates that the dip is
dropping in the direction of increasing in-line numbers. Figure (6) shows the
dip steering attribute applied to Changuleh seismic data.

Dip steering attribute is used as a prerequisite attribute for other attributes like
Similarity and Coherency.

7



Figure 6. The dip steering attribute applied on the in-line 122.

3.3 Coherency

Coherence or Coherency is a term used for a set of algorithms ascertaining
how much adjoining traces are alike. Chopra et al. (2000) found that faults
and fractures can be detected by traking advantage of azimuthal fluctuation of
coherence. Here cross-correlation Coherency is used to find more discontinuities.
This type shifts one of the traces up and down to see the maximum cross-
correlation (usually three traces for this type). This attribute thus enhances
variations in seismic data related to changes in continuity among neighboring
traces. The mathematics of the Coherency attribute is mentioned in appendix
A.

‘Figure 7’ shows the results of the Coherency for different time-gates and the
Coherency cube. Probabilistic faulted areas are shown in red and yellow with
less coherency.
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Figure 7. The Coherency attribute results with different time-gates for In-line
122 (a with time-gate [-8,+8], b with time-gate [-14,+14], c with time-gate [-
14,+28] , d with time-gate [-28,+14] and e with time-gate [-28,+28]) and the
Coherency cube (f) with time-gate [-28,+28]. The maximum dips that were
selected for all of them are 250 (us/m).

3.4 Similarity

Similarity is a form of ”coherency” that expresses how much two or more trace
segments look alike. The Similarity of 1 means the trace segments are entirely
identical in waveform and amplitude, while the Similarity of 0 means they are
completely dissimilar. Compared with the traditional coherence (Bahorich &
Farmer, 1995), similarity also takes into account the amplitude differences be-
tween the two trace-segments. Faults are discontinuities in the data that give
a low response to the similarity. This attribute is defined as (Tingdahl & de
Rooj, 2005):

𝑆 = 1 − |𝑣−𝑢|
|𝑣|+|𝑢| (2)
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Where

𝑓 (𝑡1, 𝑥𝑣 , 𝑦𝑣)
𝑓 (𝑡1 + 𝑑𝑡 , x𝑣, 𝑦𝑣)

⋮

𝑓(𝑡2, 𝑥𝑣 , 𝑦𝑣)

𝑓 (𝑡1, 𝑥𝑢 , 𝑦𝑢)
𝑓 (𝑡1 + 𝑑𝑡, 𝑥𝑢, 𝑦𝑢)

⋮

𝑓 (𝑡2 − 𝑑𝑡, 𝑥𝑢, 𝑦𝑢)
𝑓 (𝑡2, 𝑥𝑢, 𝑦𝑢)

t is the time-depth of investigation, dt is the sampling interval, and t1 and t2
are the limits of the time gate. (xv, yv) and (xu, yu) are the two trace positions
that are to be compared, and f (t, x, y) is the amplitude value in the cube, and
V and U are vectors, which are functions of amplitude. It means Similarity is
defined as one minus the Euclidean distance between the vectors, normalized
over the vector lengths.

A computing of the Similarity attribute for a reference trace (0, 0) is shown in
‘Figure 8’ schematically; it shows each trace has a local position and depends on
a reference trace. Some attributes need dip steering as a prerequisite attribute;
these attributes like Similarity can use an extension mode called a full block,
which can be applied to data in a cube. Therefore using the full block as an
extension makes all possible trace pairs (in the in-line and cross-line directions
and the two diagonals) in the rectangle to be computed. Hence after applying
the Similarity to the seismic cube and computing it in full steering and full
block mode and investigating whole data cube, the result can be processed as
Similarity cube.

The Similarity attributes in different time-gates and the Similarity cube prop-
erties are shown in ‘Table 3’. ‘Figure 9’ shows the results of Similarity and
Similarity cube.
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Figure 8. Definition of trace position related to the reference trace (0, 0).

Table 3. The Similarity attributes with different time-gates and the
Similarity cube properties. The “Step-out” is equal to the trace
position; the first number refers to in-line, and the second one refers
to the cross-line number. “None steering” means that local dip and
azimuth have not been computed. “Full steering” means that local
dip and azimuth have been computed for all traces in the seismic
cube. “Output” for ‘6e’ is a statistic variance of Similarities for all
traces in the cube.

Figure Attribute Lateral Position Other Settings
6a [-14,+14] Step-out (1,1) Full block and None Steering
6b [-24,+32] Step-out (1,1) Full block and Full Steering
6c [-28,+32] Step-out (1,1) Full block and None Steering
6d [-32,+14] Step-out (1,4) Full block and Full Steering
6e [-32,+32] Step-out (1,1) Full Steering, Output=Variance
6f [-28,+28] Mirror 90 degree (0,1)(0,-1) None Steering
6g [-56,+38] Step-out (2,5) Full block and Full Steering
6h Similarity Cube[-14,+14] Step-out (1,1) Full block and Full Steering
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Figure 9. The Similarity attribute results for different time-gates applied to
In-line 122 of the Changuleh seismic cube. The lowest values in every color
bar show the probability of the fault zone. Different colors in the Similarity
attribute with variance output (e) and the Similarity cube (h) used to prove
fault zones more transparent.

3.5 Curvature

Curvature is a measure of how curved a surface is at a particular point and
highly relevant to the second derivation of the surface. The more bent a surface
is, the larger its curvature (Chopra & Marfurt, 2007). Curvature is a family
of attributes that characterizes the local shape of a horizon. Robert (2001)
describes that the curvature attribute is tremendously impact on extracting
geometrical characteristics such as fault and fractures. The curvature is an
adequate attribute to identify small scale faults and fractures with few move-
ments that would impossible to be detected with the other fracture attributes
like similarity or coherency. The most sufficient faults and fracture detection
attributes are most positive and most negative carvatures. Here most positive,
most negative, maximum, and minimum curvature are used as single attributes.
The definition of 2D Curvature is shown in ‘Figure 10’.

Figure 10. An illustrated definition of 2D curvature. Anticlinal features have
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positive curvature, synclinal features have negative curvature, and planar fea-
tures (horizontal or dipping) have zero curvature (Chopra & Marfurt, 2007).

The most negative curvature returns to the infinite number of normal curvatures
that exist. This attribute is shown in ‘figure 11’.

Figure 11. The most negative curvature applied to time-slice 844.

3.6 Instantaneous Attributes

Every signal in the time domain is a combination of a series of frequencies in
the furrier domain that has a real part and imaginary part. This signal is:

(4)

Where f(t) is real, f*(t) is an imaginary part, and A(t) is instantaneous Ampli-
tude.

The real seismic trace f (t) can be expressed in terms of a time-dependent
amplitude A(t) and a time-dependent phase �(t) as (Taner et al., 1979):

f(t)= A(t) Cos�(t) (5)

f*(t)= A(t) Sin�(t) (6)

Where A(t) and �(t) are define as:

A(t)= [f2(t)+f*2(t)]1/2=F(t) (7)

(t)= tan-1[f*(t)/f(t)]

And t is the instantaneous phase. Cosine of the instantaneous phase is:

Cosine of phase= Cos(�(t)) (8)

Derivation of instantaneous phase depends on time is equal to instantaneous
frequency:

w(t)= d�(t)/dt (9)
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3.6.1 Instantaneous Phase

This attribute calculates the instantaneous phase at the sample location; it em-
phasizes spatial continuity/discontinuity of reflections by providing a way for
weak and strong events to appear with equal strength. This attribute is of cen-
tral importance since it describes the location of events in the seismic trace and
leads to the computation of other instantaneous quantities. The instantaneous
phase makes events clearer. It is effective for highlighting the discontinuities
of reflectors, faults, pinch-outs, angularities, and bed interfaces. ‘Figure 12a’
shows the result of applying this attribute on In-line 122. Discontinuities are
indicated clearly, on the right-hand side of the section.

3.6.2 Cosine of Instantaneous Phase

Cosine of the instantaneous phase has the same uses as the instantaneous phase
with one additional benefit: It is continually smooth. The conclusion of this
attribute for In-line 122 is shown in ‘Figure 12b’. As ‘figure 12a’, discontinuities
are shown on the right and middle of the section.

3.6.3 Instantaneous Frequency

The instantaneous frequency attribute responds to both wave propagation ef-
fects and depositional characteristics. Hence it is a physical attribute and can
be used as a useful discriminator. It can be used as Fracture zone indicator,
since fractures may appear as lower frequency zones. This attribute is applied
to In-line 122; ‘figure 12c’ shows the result. As mentioned, lower frequency
zones shown in red have more probability of being faulted zone.
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Figure 12. Instantaneous Phase (a), Cosine of Instantaneous Phase (b), and
Instantaneous Frequency (c).

Selecting different individual attributes with unique abilities in faults and frac-
tures detection and then applying them to the data will help to define the best
set of attributes to be integrated using an MLP neural network.

3.7 Neural Network

In a Multilayer Perceptron (MLP), the perceptrons are organized in layers. In
its simplest form, there are three layers since Hornik et al. (1988) proved that a
three-layer network could model any arbitrary continuous function. The “back-
propagation”, learning algorithm that is widely used to train this type of net-
works, attempts to minimize the error between the predicted network result
and the known output by adjusting the weight of the connections (Aminzade &
deGroot, 2006).

MLPs have two properties of interest: abstraction and generalization. Abstrac-
tion is the ability to extract the relevant features from the input pattern and
discard the irrelevant ones. Generalization allows the network, once trained, to
recognize input patterns that were not part of the training test.

This type of neural network is in a supervised class and fully connected network.
A fully connected MLP network is shown in ‘figure 13’.
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Figure 13. Schematic representation of the MLP neural network.

The MLP was designed with one input layer involves 12 input variables, six
nodes in the hidden layer, and two outputs. All the selected attributes at all
picked points should be computed by the neural network to be able to create
a training set. Also, 30% of all data are used for “test set” creation. Neural
network training was stopped when the misclassification didn’t change; after the
training, the network gives weight to every single attribute. Total misclassifica-
tion was 39.49%. The Less contributed seismic attributes have been eliminated,
and the most contributed are selected as the input variables for Artificial Neural
Network (MLP).

Table 4 shows the seismic attributes that have been applied to the data and used
as the input variables of the artificial neural network, based on their weights,
respectively.

Table 4. The seismic attributes were used as MLP inputs, based on their weight,
respectively.

Seismic attribute Time-gate (ms) Lateral Position Other Settings
Energy [-14,+28] - -
Similarity Cube [-14,+14] Full Block Output= max, Full Steering
Frequency [-14,+14] - Output= dominant Freq.
Instantaneous - - Output= Amplitude
Curvature - Step-out 3 Min. Curvature, Full Steering
Energy [-28,+28] - -
Coherency [-28,+28] - Max Dip= 250 (us/m)
Position [-12,+12] (0,0) Full Steering, Output= Energy
Curvature - Step-out 3 Max. Curvature, Full Steering
Curvature - Step-out 3 Mean. Curvature, Full Steering
Dip Steering - - Output= Cross-line Dip
Dip Steering - - Output= In-line Dip
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Then, the single attributes were integrated using a neural network, produce two
outputs called faulted cube and non-faulted cube, ‘figure 14’.

Figure 14. The MLP Neural Network Outputs. In the faulted cube, the green-
colored areas is the most probabilistic faulted zone (a), and in the non-faulted
cube, the green-colored areas is the most probabilistic Non-faulted zone (b).

By comparing the interpreted section, shown in ‘figure 3a’, and the MLP outputs
for In-line122, demonstrated in ‘figure 15a’, it will be easy to find faulted and
non-faulted areas more precisely. Also, it would be the same for a comparison
of these two outputs by the results of the other single attributes.

‘Figure 16’ shows the procedures that applied to the Changuleh seismic cube to
achieve the results.

18



Figure 15. The faulted cube applied to In-line 122 without the interpretation
pick-sets (a) on In-line 122, with interpretation pick-sets (b), and on the time
slices number 200 (c), 476 (d), and 844 (e).
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Figure 16. Schematic representation of the procedures that applied to the
Changuleh seismic cube.

4. Conclusion

Detecting faults in this way is more precise and less time consuming than the
other fault detection methods (e.g., single attributes, Coherency, Similarity,
Energy, etc.).

The neural network spent more time to understand the relations between the
attributes. However, in theory, all the attributes could be used as the inputs
of the neural network. Still, the problem is that increasing seismic attribute
numbers causes swelling of the training time without improving the network
efficiency. Hence, optimizing the number of seismic attributes would help the
network to be more concentrated on the critical relations and increases efficiency.

This method can be used to detect more other seismic objects such as sequence
stratigraphy to find out stratigraphic traps and gas chimney, etc.

Comparing this type of neural network with other Networks (e.g., Radial Basis
Function (RBF), and Unsupervised Vector Quantizer (UVQ), etc.) could cause
to find out the performance of MLP in seismic object detection.
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6. Appendix

Some additional about the Coherency attributes write by following:
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There are three conventional methods for calculating the Coherency: Cross-
correlation, Semblance, Eigenstructure. The cross-correlation that mentioned
above is explained here.

If the target trace slide by an amount �x and define a vertical analysis window
to range between ±K samples above and below the analysis point at time t, the
normalized cross-correlation coefficient �x would be:

𝜌𝑥 (𝑡, 𝜏𝑥 ) =
∑+𝑘

𝑘=−𝑘
{[𝑢0(𝑡 + 𝑘�𝑡) − 𝜇0(𝑡)]

[𝑢1 (𝑡 + 𝑘�𝑡 − 𝜏𝑥) − 𝜇1 (𝑡 − 𝜏𝑥)]}
√{∑+𝑘

𝑘=−𝑘 [𝑢0(𝑡 + 𝑘�𝑡) − 𝜇0(𝑡)]2

∑+𝑘
𝑘=−𝑘 [𝑢1 (𝑡 + 𝑘�𝑡 − 𝜏𝑥) − 𝜇1(𝑡 − 𝜏𝑥)]2}

(A.1)

Where

< 𝑢𝑛 > (𝑡) = 1
2𝑘+1 ∑+𝑘

𝑘=−𝑘 𝑢𝑛(𝑡 + 𝑘�𝑡) (A.2)

denotes the running-window mean of the nth trace. Because it is known that the
true mean of properly processed seismic data is 0, to make the computational
simplification assume <u>(𝑡) = 0. That is a reasonable approximation if the
analysis window is greater than a seismic wavelet ‘figure A1’ and ‘figure A2’.
The �y (t, �y) in cross-line direction calculates in the same way.

Figure A1. Spatial (multi-trace) analysis windows commonly used in coherency
calculation for the cross-correlation algorithm (Marfurt & Chopra, 2007).
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Figure A2. schematic diagram showing the cross-correlation between two traces.
a) Trace number 1 is held fixed while a window of trace number 2 (here, 40ms)
is slid along at a suite of time lags and is cross-correlated. The delay having the
maximum signed cross-correlation is a crude measure of in-line (or cross-line)
dip. b) The cross-correlation value that corresponds to this peak is then used in
equation (A.3) to generate 3D estimate coherence (Marfurt & Chopra, 2007).

In the cross-correlation algorithm, the target trace (in magenta) first cross-
correlated with the in-line trace (in orange) over a suite of temporal lags. Then
the same process repeats between the target trace and the cross-line trace (in
cyan). The coherence estimation obtains using equation (A.3):

𝐶xc ≡ √[max 𝜌𝑥(𝑡, 𝜏𝑥, 𝑥𝑖, 𝑦𝑖)][max 𝜌𝑦 (𝑡, 𝜏𝑦, 𝑥𝑖, 𝑦𝑖)] (A.3)
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