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Abstract

Simulating sea-ice drift and deformation in the Arctic Ocean is still a challenge because of the multi-scale interaction of sea-ice

floes that compose the Arctic sea ice cover. The Sea Ice Rheology Experiment (SIREx) is a model intercomparison project

formed within the Forum of Arctic Modeling and Observational Synthesis (FAMOS) to collect and design skill metrics to evaluate

different recently suggested approaches for modeling linear kinematic features (LKFs) and provide guidance for modeling small-

scale deformation. In this contribution, spatial and temporal properties of LKFs are assessed in 36 simulations of state-of-the-art

sea ice models and compared to deformation features derived from RADARSAT Geophysical Processor System (RGPS). All

simulations produce LKFs, but only very few models realistically simulate at least some statistics of LKF properties such as

densities, lengths, or growth rates. All SIREx models overestimate the angle of fracture between conjugate pairs of LKFs

and LKF lifetimes pointing to inaccurate model physics. The temporal and spatial resolution of a simulation and the spatial

resolution of atmospheric forcing affect simulated LKFs as much as the model’s sea ice rheology and numerics. Only in very high

resolution simulations ([?]2\,km) the concentration and thickness anomalies along LKFs are large enough to affect air-ice-ocean

interaction processes.
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Nils Hutter1, Amélie Bouchat2, Frédéric Dupont3, Dmitry Dukhovskoy4,4

Nikolay Koldunov1, Younjoo Lee5, Jean-François Lemieux6, Camille Lique7,5

Martin Losch1, Wieslaw Maslowski5, Paul G. Myers8, Einar Ólason9, Pierre6
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Key Points:24

• there are multiple methods to simulate leads and pressure ridges in sea ice mod-25

els26

• resolved LKFs are affected by spatial and temporal resolution of model grid and27
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• Skill metrics are designed and applied to evaluate linear kinematic features in the29

model intercomparison30
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Abstract31

Simulating sea-ice drift and deformation in the Arctic Ocean is still a challenge because32

of the multi-scale interaction of sea-ice floes that compose the Arctic sea ice cover. The33

Sea Ice Rheology Experiment (SIREx) is a model intercomparison project formed within34

the Forum of Arctic Modeling and Observational Synthesis (FAMOS) to collect and de-35

sign skill metrics to evaluate different recently suggested approaches for modeling lin-36

ear kinematic features (LKFs) and provide guidance for modeling small-scale deforma-37

tion. In this contribution, spatial and temporal properties of LKFs are assessed in 36 sim-38

ulations of state-of-the-art sea ice models and compared to deformation features derived39

from RADARSAT Geophysical Processor System (RGPS). All simulations produce LKFs,40

but only very few models realistically simulate at least some statistics of LKF proper-41

ties such as densities, lengths, or growth rates. All SIREx models overestimate the an-42

gle of fracture between conjugate pairs of LKFs and LKF lifetimes pointing to inaccu-43

rate model physics. The temporal and spatial resolution of a simulation and the spatial44

resolution of atmospheric forcing affect simulated LKFs as much as the model’s sea ice45

rheology and numerics. Only in very high resolution simulations (≤2 km) the concen-46

tration and thickness anomalies along LKFs are large enough to affect air-ice-ocean in-47

teraction processes.48

Plain Language Summary49

Winds and ocean currents constantly push and break the ice cover of the Arctic50

ocean into many floes. The distribution of ice floes and open water between them is im-51

portant for climate research, as ice reflects more light and energy and open water takes52

up more heat from the atmosphere leading to warmer oceans. Current climate models53

cannot simulate sea ice as individual floes. Various methods have been proposed to rep-54

resent the deformation and fracture of ice in sea-ice models. The Sea Ice Rheology Ex-55

periment (SIREx) compares these different approaches and assesses the deformation of56

sea ice in 36 simulations. In this study, we identify and track deformation features in the57

ice cover and explore specific spacial and temporal properties, for example, if there are58

specific regions where the ice is more fractured than in others, or how long individual59

deformation events take. These spacial and regional properties are compared to satel-60

lite observations to find out how realistic the simulations are. From this comparison, we61

can learn how to improve sea-ice models for more realistic simulations of sea-ice defor-62

mation.63

1 Introduction64

Continuous and omnipresent deformation turns the Arctic sea ice cover into a mo-65

saic of ice floes. The deformations concentrate in narrow bands along floe boundaries,66

where the ice breaks and ridges in divergent, convergent, and especially shear motions.67

Recently, the focus of the sea-ice modeling community on thermodynamics and large-68

scale circulation of sea ice has extended to resolving these small-scale deformation pro-69

cesses in sea-ice dynamics. High resolution applications as well as changes to the model70

physics describing the material properties of ice allow to explicitly resolve deformation71

that is localized in narrow lines consisting of segments of leads and pressure ridges. These72

elongated deformation bands are referred to as Linear Kinematic Features (LKFs).73

Leads and pressure ridges represent only a small fraction of the large scale ice cover,74

but their presence changes the interaction of sea ice with the ocean and atmosphere in75

the Arctic climate system substantially. The opening of the ice cover in a lead results76

in intensified heat and humidity exchange between the ocean and atmosphere, result-77

ing in ice growth, brine rejection in the ocean, and convective processes in both the ocean78

and atmosphere (e.g. Lüpkes et al., 2008). The sea ice piled along pressure ridges de-79

termine the regional surface roughness which in turn affects the atmospheric and oceanic80
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boundary layer circulation, snow distribution, and drag forces acting on the ice (e.g. Mar-81

tin et al., 2016). Currently, coarse resolution Global Climate Models resolve very poorly82

discontinuities in the pack ice (or LKFs). Instead, the effects of leads on heat and fresh-83

water fluxes and ultimately on the Arctic climate are modeled by sub-grid scale param-84

eterizations such as fractional ice cover variables. To directly simulate these processes85

and to provide a more detailed picture of the complex Arctic climate system, we need86

sea-ice models that explicitly resolve LKFs. A dynamical framework with strongly lo-87

calized sea ice deformation is the first step towards a realistic representation of leads and88

pressure ridges in continuum sea ice models that will be used in climate simulations for89

the foreseeable future (Hunke et al., 2020; Blockley et al., 2020).90

Various adjustments have been suggested to improve the representation of LKFs91

and to resolve leads in continuum sea-ice models: (1) increasing the model resolution to92

a horizontal grid spacing smaller than 5 km (e.g. Q. Wang et al., 2016; Hutter et al., 2018),93

(2) modifying the yield curve (e.g. Bouchat & Tremblay, 2017), and (3) introducing new94

rheological frameworks (e.g. Elasto Brittle (EB), Maxwell Elasto Brittle (MEB), Girard95

et al., 2011; Bouillon & Rampal, 2015; Dansereau et al., 2016). All three approaches re-96

quire the convergence of the dynamics solver to ensure accurate solutions (Lemieux &97

Tremblay, 2009; Losch et al., 2014; Q. Wang et al., 2016; Koldunov et al., 2019). In most98

cases, the observed localization of deformation rates have been assessed with multifrac-99

tal scaling analyses to describe the LKF representation in space and time (Marsan et al.,100

2004; Rampal et al., 2016; Bouchat & Tremblay, 2017; Hutter et al., 2018; Rampal et101

al., 2019). The scaling analysis does not allow unambiguous discrimination between dif-102

ferent rheologies in comparison to satellite observations (Rampal et al., 2016; Bouchat103

& Tremblay, 2017; Hutter et al., 2018). This raises two questions: First, if all rheologies104

perform similarly well, are the scaling analyses a sufficient tool to investigate differences105

between the rheologies? Second, scaling analyses give insights into the underlying ma-106

terial properties and deformation physics, but is this relevant for LKF properties on cli-107

mate scales (e.g. LKF size, opening times, etc.)? It is plausible that explicit simulations108

of the interaction of atmosphere, ice, and ocean associated with sea ice leads may require109

a realistic spatial and temporal distribution of LKFs (e.g. Ólason et al., 2020). Hutter110

and Losch (2020) showed that scaling analyses alone cannot evaluate this aspect in their111

simulations with the viscous-plastic (VP) rheology (Hibler, 1979). However, using a com-112

bination of scaling analysis and statistics from automated LKF detection algorithms (Linow113

& Dierking, 2017; Hutter et al., 2019) allows for a comprehensive evaluation of LKFs.114

In 2017, the sea-ice modeling working group of the Forum of Arctic Modeling and115

Observational Synthesis (FAMOS, Proshutinsky et al., 2020) launched the Sea Ice Rhe-116

ology Experiment (SIREx) model intercomparison project with two aims: (1) to extend117

the current research on simulating small-scale sea ice deformation to additional model-118

ing frameworks, namely all rheologies used in the sea-ice modeling on climate scales, and119

(2) to develop, compare, and combine new and existing evaluation metrics to gauge the120

realism of the simulated features. In total, 10 international groups participated with 36121

simulations from 11 different models. The contributed simulations cover all rheologies122

commonly used in Pan-Arctic sea ice simulations with continuum models (viscous plas-123

tic or its elastic-viscous-plastic variation — (E)VP, elastic anisotropic plastic — EAP,124

and, Maxwell elasto brittle — MEB), as well as a large range of model resolutions (1 km125

to 15 km), different atmospheric forcing (reanalysis with different spatial and temporal126

resolution as well as interactively coupled atmospheric models), and different parame-127

terisations with different effects on the ice strength (different number of ice thickness cat-128

egories or ITD classes and modified yield curve parameters). The analysis of this suite129

of simulations is structured in two parts: Part I (Bouchat et al., 2020) focuses on the con-130

ventional scaling metrics to study the heterogeneity and intermittency in the simulated131

deformation fields. Combined with new uncertainty estimates (Bouchat & Tremblay, 2019),132

this analysis offers insights into the physical properties of the simulated ice deformation133

that forms LKFs. In SIREx Part II — the subject of this paper — we make use of au-134
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tomated detection and tracking algorithms (Hutter et al., 2019) to study the spatial and135

temporal distribution and characteristics of LKFs, for example, densities, lengths, and136

lifetimes. This analysis provides a comprehensive description of simulated deformation137

features and allows for the evaluation of LKF properties that are highly relevant for in-138

teraction processes at the air-ice-ocean interface.139

The objective of this paper is to evaluate the spatial and temporal properties of140

simulated deformation features in all SIREx models with satellite observations. We use141

detection and tracking algorithms to extract LKFs in simulated deformation fields and142

compare them to the RGPS LKF data set (Hutter et al., 2019). The comparison is made143

for the two winters (JFM) 1997 and 2008. The results of this comparison are interpreted144

in light of the different model parameters and parameterisations (for example, rheology145

or spatial resolution) to assess the impact and importance of individual parameters on146

the quality of resolved LKFs. We link our feature-based evaluation to the scaling anal-147

ysis of SIREx Part I (Bouchat et al., 2020) and to an analysis of sea-ice thickness and148

concentration anomalies along resolved LKFs. This forms an in-depth comparison of dif-149

ferent dynamical modeling frameworks for sea ice and their capabilities for simulating150

localized deformation along floe boundaries. A special focus of this intercomparison project,151

besides the insights for sea-ice rheology and model development, is to provide guidance152

for users of sea-ice models in the context of coupled climate simulations in the Arctic.153

2 Data154

In this section, we introduce the different model simulations and the observational155

data-set that we use for the comparison.156

2.1 RGPS LKF data157

The RGPS data set is a high spatial resolution data set of sea-ice deformation that158

is often used for model evaluation (e.g. Spreen et al., 2016; Bouchat & Tremblay, 2017;159

Rampal et al., 2019; Hutter & Losch, 2020). From the RGPS deformation data set, an160

LKF data set was generated (Section 3.1, Hutter et al., 2019; Hutter et al., 2019) that161

contains 165 000 detected and 36 000 tracked LKFs in the winters 1996/97 to 2007/08.162

For this study, we subsample the RGPS LKF data set to the two SIREx winters (Jan-163

uary, February, and March in 1997 and 2008) for the model evaluation. The remaining164

winters (JFM 1998 to 2007) are used to estimate the interannual variability of LKF statis-165

tics in the RGPS data set.166

2.2 Model data167

Eleven models contributed to the second part of SIREx with a total of 22 simu-168

lations and 36 simulated winters. The participating models cover a broad variety in terms169

of rheology, spatial grid resolution, temporal and spatial resolution of atmospheric forc-170

ing, ITD classes, and grid type (structured vs. unstructured, Lagrangian vs. Eulerian).171

Some important details of the model simulations are summarized in Table 1; for further172

information we refer to the specific references provided in Table 1. Note that the MER-173

CATOR model participating in SIREx Part I does not participate in our analysis. For174

all simulations sea-ice drift, concentration, and thickness were provided for at least one175

SIREx winter (14 of the simulations cover both years and 8 simulations cover either 1997176

or 2008). The SIREx winters have been chosen based on availability of existing model177

output and to be representative of a large period of sea ice retreat. Most of the model178

output is provided as daily mean fields, only some groups provided daily snapshots. The179

PDFs of deformation rates are robust to the choice of output diagnostic (snapshots vs.180

daily mean, results not shown). For this reason, we process both types of output in the181

same way in the processing steps outlined in Section 3.2.182
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3 Methods183

In this section, we describe how the LKF detection and tracking algorithms are ap-184

plied and what sampling we use for the model data.185

3.1 LKF detection and tracking algorithms186

At the core of our feature-based evaluation are data-sets of LKFs. These are de-187

rived from sea ice deformation fields from satellite observations and simulation data by188

automatic feature detection and tracking. The automatic feature detection and track-189

ing algorithms are described in Hutter (2019). A brief summary follows.190

From the original map of deformation, a binary map of LKF pixels is created that191

have significantly higher deformation rates than their immediate neighborhood. Then,192

this binary map is divided into short segments of neighboring LKF pixels. Finally, seg-193

ments are reconnected based on a probability function that describes their distance, the194

orientation relative to each other, and the difference in deformation rate.195

The tracking algorithm uses drift information between pairs of subsequent LKF fields196

to advect the LKFs of the first field. The advected features are then compared to the197

LKFs in the second field. Tracked LKFs are identified based on the degree of overlap be-198

tween advected LKFs of the first field and detected LKFs of the second field.199

3.2 Detection and tracking of LKFs in the model data200

The LKF detection and tracking algorithms require the data to be on a regular grid201

(Hutter et al., 2019). The output fields from the unstructured grid models were inter-202

polated onto regular grids with similar spatial resolution (FESOM to the grid of MIT-203

gcm 4.5km, FESOM2 to the grid of MITgcm 2km, and neXtSIM to a grid with 10km204

grid spacing in Polar Stereographic projection). All other model output was processed205

on the native model grids.206

We adapt the filtering technique of the LKF detection algorithm to account for the207

fact that the model and RGPS data do not have the same sampling frequencies (3-day208

for the RGPS and 1-day for the models). We mimic the 3-day sampling of RGPS by com-209

bining three daily deformation fields in the following way: (1) total deformation rates210

are computed by finite differences from the daily drift output. (2) Pixels are flagged as211

LKF pixels in each daily total deformation field with a difference of Gaussian (DoG) fil-212

ter in the following way: We scale the original kernel sizes of the DoG filter (radii r1 =213

1 pixel and r2 = 5 pixel) by a factor f = 1
2 + 1

2
∆xrgps

∆xmodel
to take into account the fact214

that very high resolution simulations can have finer scale features than RGPS data. Pix-215

els are then flagged as LKF when their total deformation exceeds the average deforma-216

tion rate in the immediate neighborhood (averaged over a radius of 62.5 km) by dLKF =217

0.01 day−1. This threshold is determined to be fine enough to filter all LKFs, but still218

high enough to prevent spurious detection of noise in the deformation fields that is caused219

by a lower accuracy of the solution. Only the neXtSIM simulation contains LKFs lower220

than this threshold such that we use a threshold of dLKF = 0.002 day−1 for this sim-221

ulation. (3) The three daily deformation fields are combined into one binary map where222

a specific pixel is flagged as LKF if any of the three daily fields are flagged as LKF at223

this pixel position. (4) A morphological thinning algorithm is applied to the combined224

binary map to reduce all LKFs to a width of 1 pixel. By applying the morphological thin-225

ning algorithm explicitly after combining the daily LKF maps, we ensure that LKFs that226

move within 3 days are not detected more than once. A detailed discussion of the com-227

parability of the RGPS LKF data set and the derived model LKF data sets with respect228

to spatial and temporal resolution is included in Appendix A.229
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The detection routines (segment detection and reconnection of Hutter et al., 2019)230

are applied to the combined and thinned binary maps. Both algorithms utilize optimized231

parameters for the RGPS data set (Table 1 in Hutter et al., 2019), with the minimal length232

of LKFs scaled by the corresponding model resolution. The simulated ice drift fields are233

also used, besides for deriving deformation, to advect the LKFs over three day intervals234

(between the 3-daily records) for the tracking algorithm. In the following, we use the op-235

timized tracking algorithm parameters for the RGPS data set (Table 2 in Hutter et al.,236

2019).237

3.3 Principles of the model-observation comparison238

The RGPS data set covers most of the Arctic Ocean, but the coverage varies in time239

depending on the available SAR imagery. Gaps in the deformation data can split long240

LKFs into multiple smaller LKFs or inhibit tracking of LKFs. This affects derived LKF241

statistics leading to, for instance, fewer LKFs with long lifetimes (Hutter & Losch, 2020).242

In contrast, the model output fields provide deformation data for the whole study re-243

gion without any gaps in time. Thus, we mask the LKFs detected in each simulation with244

the RGPS coverage in order to exclude any effects of varying RGPS coverage on the com-245

parison between model and observations. The tracking of LKFs is repeated only for the246

masked LKFs. We use the masked LKFs for all statistics presented in this paper, be-247

cause these results are directly or indirectly affected by the number, length, or lifetime248

of the LKFs. The original unmasked LKFs are only used in the concentration and thick-249

ness anomaly analysis, as we do not compare to RGPS data in this analysis, and in the250

intersection angle analysis, because in the coarse resolution simulations there are oth-251

erwise too few LKFs available for this analysis. We tested with all high-resolution sim-252

ulations that masking the LKFs with the RGPS coverage does not affect the distribu-253

tion of simulated LKF intersection angles (not shown).254

A direct comparison of LKFs detected in RGPS and model output is not possible255

due to the chaotic nature of ice fracture (Coon et al., 2007; Kwok et al., 2008). Instead,256

statistics of the spatial and temporal properties of the simulated features can be com-257

pared to the statistics derived from observations (Hutter & Losch, 2020). This paper fo-258

cuses on a comparison between the probability distribution functions (PDFs) of LKF prop-259

erties related to space (length, intersection angle) and time (lifetime, growth rates). In260

addition we study the density of LKFs described by the regional distribution of relative261

LKF frequency. To properly evaluate the simulations with RGPS, we seek a quantita-262

tive way to compare the PDF of a given LKF property obtained from model and RGPS263

LKF data. Most of these distributions have a heavy tail so that standard metrics, such264

as the Kolmogorow-Smirnov statistic or the Wasserstein distance, cannot be applied. In-265

stead we define the skill metric as the integral of the difference between two (more specif-266

ically, between RGPS and simulation) PDFs of a given property on a logarithmic scale.267

We choose this metric as it is closest to the visual comparison of the PDFs and it em-268

phasizes the tail of the distributions. For clarity and consistency, we also use the same269

statistic to define the misfit in intersection angles, although the data is not heavy tailed.270

By using the log-scale in the skill metric all parts of the intersection angle PDFs are weighted271

without overemphasizing the peak of the distribution. As not all simulations contribut-272

ing to SIREx are run over the same time period, we use the RGPS years consistent with273

each simulation in the computation of the metric functional. In this manner, we take in-274

terannual variability of the LKF statistics between both SIREx winters into account. By275

definition the skill metric increases with larger misfit between model and observations.276

Thus, a lower skill metric value indicates better model performance.277

For reference of the magnitude of the skill metric, we use the interannual variabil-278

ity of different LKF properties within the RGPS data set. To this end, we compute the279

PDFs of each property for all RGPS winters (JFM 1998 to 2007) individually. Compar-280

ing these PDFs with both SIREx winters, reference values are computed using the same281

–7–



manuscript submitted to JGR: Oceans

“skill” metric as for comparison between the simulations and RGPS data. For each prop-282

erty, we average the computed “skill” values of all years to quantify the interannual vari-283

ability that can be compared to the computed models’ skill. We note here that for quan-284

tities with little year-to-year variability, for example, the intersection angle, the inter-285

annual variability is a reasonable benchmark to assess model performance. For quanti-286

ties that are thought to be affected more strongly by wind patterns and ice condition287

and thus vary stronger from year to year (e.g. LKF density), the interannual variabil-288

ity provides a maximum of the skill metric that should not be exceeded by a model sim-289

ulation to be called useful.290

4 Simulated deformation features291

In this section, we present the characteristics of the simulated LKFs and compare292

them to satellite observations. First, we describe the overall number of LKFs in each sim-293

ulation and their regional distribution, followed by an analysis of the spatial properties,294

length and intersection angle, and the characteristics related to time, lifetime and growth295

rate. We include a short metric-specific discussion of the results in this section. The re-296

lation between specific model parameters on the skill values of simulated LKFs is dis-297

cussed specifically in Section 5.298

4.1 Number of simulated LKFs299

Recent sea-ice modeling studies described in a qualitative way how the number of300

resolved deformation features varies with model parameters (e.g., Bouillon & Rampal,301

2015; Q. Wang et al., 2016; Spreen et al., 2016), but only very few quantified these vari-302

ations (Koldunov et al., 2019; Hutter & Losch, 2020). Visual analysis of deformation fields303

does not provide enough information to distinguish the tendencies in the number of LKFs304

and the total length of all LKFs, as both are proportional to the total number of grid305

cells associated with LKFs. Our object-based approach allows assessing both properties306

in a quantitative way. In Fig. 1(a) we present how the numbers of detected LKFs changes307

with model resolution for the SIREx simulations. Fig. 1(b) shows the total length of all308

LKFs as function of the model resolution. For the discussion, the total length of all LKFs309

is more interesting, because it is directly related to the total area of potential air-ice-ocean310

interactions, whereas the number of LKFs does not include the length, and hence, area311

information.312

For our set of simulations we find that both the number of LKFs (Fig. 1a) and the313

total length of all LKFs (Fig. 1b) increase as the grid resolution becomes finer, even though314

for both metrics there is considerable variation also between simulations with the same315

grid resolution. Note that we can not comment on the effect of the resolution for EAP316

and MEB, as there are only simulations using these rheologies in our comparison at one317

specific resolution. Most models underestimate both the number of LKFs and their to-318

tal length. MITgcm (2km, ITD) agrees with RGPS data in the total length of all LKFs,319

but has too many LKFs indicating that too short LKFs are simulated (see the PDFs of320

LKF length in Fig. 4).321

Besides the effect of grid resolution, some other model parameters seem to affect322

the number of LKFs as well: (1) More ITD classes lead to more resolved LKFs in the323

simulations, and to an increase of the total length of all LKFs as seen by comparing MIT-324

gcm (2km) and FESOM2 to MITgcm (2km, ITD), or by comparing ANHA (4km), FE-325

SOM, and MITgcm (4.5km) to HYCOM-CICE (FSU) and RIOPS. All simulations listed326

here use an (E)VP rheology. (2) The comparison of RASM-WRF (both EAP and EVP327

simulations) with RASM-CORE2 (EAP) suggests that coupling the sea-ice model to an328

interactive atmosphere rather than forcing it with atmospheric reanalysis increases the329

number of resolved LKFs. While this is plausible, because prescribed forcing generally330

suppresses internal variability, the available simulations alone do not allow to conclude331
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Figure 1. The average number of detected LKFs in three day intervals (a) and the total

length of all LKFs together in three day intervals (b) in all simulations as a function of spatial

grid resolution. The inter-annual variability of LKF number and length for each model that con-

tributed simulations for two years is shown as a thin vertical line around the multi-year mean.

The thin gray lines represent the RGPS value across all spatial resolution for reference.
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if the increase in LKFs is caused by the coupling itself or the higher spatial and tempo-332

ral resolution of the wind fields driving the ice. We note here that the coupled RASM333

simulation also use an increased number of EVP subcycles, which also likely improves334

the LKF representation. A coupling time step of 20 min as in RASM-WRF allows to re-335

solve inertial oscillations leading to higher variable wind forcing that potentially initi-336

ates the formation of additional LKFs. Simulations using very high spatial and tempo-337

ral resolution atmospheric forcing also tend to show better agreement with observations338

than simulations forced by medium resolution winds (ANHA (4km), FESOM, and MIT-339

gcm (4.5km) vs. HYCOM-CICE (FSU) and RIOPS; DMI vs. McGill). (3) The neXtSIM340

simulation shows results much closer to observations than other simulations with sim-341

ilar resolution. Its grid resolution of 10 km is in the range of all models, still this sim-342

ulation stands out for the potential following reasons: It is the only simulations to use343

a brittle rheology (MEB) and it uses a Lagrangian modeling approach (i.e. an unstruc-344

tured moving grid) and high resolution atmospheric forcing. This makes it difficult to345

clearly separate the effects of the individual parameters. The similarity of the two FE-346

SOM simulations, which also use unstructured, but fixed grids, with the MITgcm sim-347

ulations of similar resolution suggests that the type of grid itself has little effect. The348

relatively high resolution forcing (40km or less) will add more variability to the system,349

but does not guarantee good agreement with RGPS observations (see e.g., RIOPS HYCOM-350

CICE (FSU), DMI), so that the MEB rheology — potentially when associated with a351

Lagrangian grid — appears to be responsible for the better agreement with observations.352

Clearly, a direct comparison of MEB and VP rheologies in the same model framework353

(grid, forcing, etc.) is required to illustrate the differences between these different rhe-354

ology approaches.355

4.2 Regional distribution356

There are LKFs in the entire Arctic Ocean, but particularly high densities are found357

along coastlines and bathymetric features (shoals and continental slopes), with sightly358

pronounced densities in the Beaufort sea, and low densities in fast ice regions (Mahoney359

et al., 2012; Wernecke & Kaleschke, 2015; Willmes & Heinemann, 2016; Hutter et al.,360

2019). The distribution of LKFs in the SIREx simulations have stronger regional vari-361

ations than RGPS (Fig. 2). In general, there is a large spread in modeled LKF densi-362

ties and their difference to the observed LKF densities (Fig. 3). Indeed, nearly all mod-363

els strongly underestimate LKF densities by far more than the range of interannual vari-364

ability of RGPS. As expected from the analysis of the number of LKFs, low resolution365

models using (E)VP or EAP rheologies tend to underestimate the LKF density more than366

high resolution models. The largest differences are mainly in the pack ice area (here de-367

fined as sea ice regions that are more than 150 km away from the coastline) with gen-368

erally too few LKFs compared to observations. In coastal regions the distribution of LKFs369

is better reproduced with half of the models showing differences within the range of the370

RGPS interannual variability. Along the closed boundary of the coastline stress concen-371

trates and initiates ice fracture. Our results indicate that this process forms LKFs in-372

dependent of the model’s grid resolution.373

In the pack ice area, only the MITgcm (2km, ITD) and the neXtSIM simulation374

produce overall LKF densities within the interannual variability of RGPS (both in pack375

ice and the entire Arctic). Both models use mechanisms to locally reduce the ice strength376

based on the deformation history, which initiates fracture in pack ice (the direct defor-377

mation feedback by damage parameterization in neXtSIM and the indirect deformation378

feedback on the ice strength defined in Rothrock (1975) by preferred opening in lower379

ITD classes). We analyzed only two model winters, but the interannual variability of LKF380

distribution in the RGPS data set is small, so that the underestimation of sea ice defor-381

mation in the pack ice area by nearly all models is very likely a general issue in every382

year.383
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Figure 2. LKF densities for RGPS and all models defined as the relative frequency of LKFs

within 150×150km boxes in a Polar stereographic projection normalized by the number of defor-

mation observations available for the box. Cells without any LKF are indicated by a grey dot.

Note that the RGPS coverage for both SIREx years is different leading to a slightly different

masks for the simulations.
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Figure 3. Cumulative box-wise differences of LKF density for all simulations compared to

RGPS separated into three regions: entire Arctic (left), within 150 km of the coastline (middle),

and pack ice area 150 km away from the coastline (right). Regions where models underestimate

LKF densities are accumulated in the blue bar, while the overestimation of LKF densities is given

by the red bar. The two colormaps indicate the size of the over- or underestimation in each grid

cell. In the bottom row, we illustrate how the RGPS LKF densities of the other RGPS years

differ from the two SIREx winters. Two boxplots show this interannual variability of both under-

and overestimation. The dotted grey lines show the first quartile of the underestimation and the

third quartile of the overestimation of LKF densities in all RGPS years as a reference range for

LKF densities.
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4.3 LKF length384

Deformation features criss-cross the sea ice cover at ranges from meters to multi-385

ple kilometers (Kwok, 2001). The distribution of LKF lengths in the RGPS data set is386

heavy-tailed and can be described by a stretched exponential distribution (Hutter et al.,387

2019), which is consistent with the notion of scale-invariant sea-ice deformation. The LKF388

length distributions of all SIREx models also have fat tails (Fig. 4), even though most389

models overestimate the number of very long LKFs. This phenomenon is most pronounced390

for models with fewer LKFs (see 4.1). Some models (FESOM2, HYCOM-CICE (FSU),391

MITgcm (2km, ITD), MITgcm (2km, e=1,↓P), MITgcm (2km, e=0.7,↓P)) overestimate392

the amount of small LKFs thereby overly steepening the tail of the distribution. An ob-393

vious reason for this it that if more LKFs cover the same area it is more likely that the394

intersection with other LKFs makes them shorter (Hutter & Losch, 2020). Only HYCOM-395

CICE (FSU) and both MITgcm (2km, ↓e) simulations with reduced ellipse ratio repro-396

duce the LKF length distribution within the range of the reference, which represents the397

interannual variability of the RGPS data set.398

4.4 Intersection angle399

The material properties of sea ice affect the intersection angle of its deformation400

features (Erlingsson, 1988; K. Wang, 2007), and intersection angles have been used to401

evaluate the dynamics of high resolution sea-ice simulations (Heorton et al., 2018; Ringeisen402

et al., 2019; Hutter & Losch, 2020). Acute intersection angles ranging around 30◦–50◦403

have been reported from both satellite imagery (Walter & Overland, 1993; Cunningham404

et al., 1994; E. M. Schulson & Hibler, 2004; K. Wang, 2007) and laboratory measure-405

ments (E. Schulson et al., 2006). These studies focused on intersecting LKFs, so-called406

conjugate faults, that form simultaneously under the same compressive forcing. The dis-407

tribution of intersection angles in the RGPS LKF data set also peaks in this range (see408

Fig. 5 and Hutter et al., 2019). For an intersecting pair of LKFs, two intersection an-409

gles can be computed, both of which add up to 180◦. For conjugate faults the fracture410

angle of each LKF δ is measured relative to the direction of compressive stress with the411

intersection angle summing up to 2δ. Except for laboratory experiments, the direction412

of stress is unknown, also in the SIREx simulations and RGPS. The stress states caus-413

ing the deformation, however, can be also deduced from the resulting sea ice drift (see414

Appendix B). In this study, we introduce a new approach using the vorticity of two in-415

tersecting LKFs to interpret the deformation behavior at the intersection. The vortic-416

ities of two LKFs of a conjugate fault are of different sign, such that we can determine417

a main direction of compressive stress and choose an intersection angle (0◦ to 180◦) rel-418

ative to this direction. Using this method, we determine that roughly one third of in-419

tersecting pairs of LKFs in RGPS are conjugate faults. If the vorticities of both LKFs420

have the same sign, there is no clear stress direction. In this case, both potential inter-421

section angles are taken into account when computing the distribution of intersection422

angles but weighted down by a factor of two. The distribution of intersection angles is423

computed for all SIREx models (Fig. 5). We do not mask the LKFs with the RGPS cov-424

erage, because some models with very few LKFs do not show intersecting LKFs within425

the region covered by RGPS. For all other models with intersecting LKFs within the RGPS426

coverage, we have tested that the region of the analysis does not affect the distribution427

of intersection angles significantly (not shown).428

We find that the distributions of intersection angles in all models peak around 90◦,429

in strong contrast with the peak at 45◦ for RGPS observations. Only for the McGill sim-430

ulations with non standard yield curves (e=1,↑S; e=0.7, ↓P; e=1, ↓P; these values of e431

are outside the commonly used range, but they still follow the principle that ice is stronger432

in compression than in shear), there is a peak around 55◦. However, these simulations433

also produce a second peak of similar magnitude at 180◦−55◦ = 125◦. This peak can434

mean that (1) the corresponding intersecting pairs are not formed under uniaxial com-435
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Figure 4. (a) Distribution (PDF) of LKF lengths for all models and RGPS. The color ref-

erences for the models are provided in (b). The difference between the PDFs of simulated LKF

lengths and RGPS LKF lengths is shown in (b) for each model. A scalar metric for LKF length

is the integrated area between the LKF length PDF of the model and RGPS, given on the right

hand side. As reference we compute the differences between the LKF length PDFs of all RGPS

years and the two SIREx years to quantify the interannual variability. The differences in all bins

and all RGPS years are summarized in the box plot given in the colorbar. The reference value of

this metric for the interannual variability is computed and provided at the right hand side of the

colorbar.
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Figure 5. (a) Distributions (PDF) of intersection angles between pairs of LKFs for RGPS

and all models. The color references for the models are provided in (b). The difference between

the PDFs of simulated intersection angles and intersection angles observed with RGPS is shown

in (b) for each model. A scalar metric for intersection angles is defined as the integrated area

between the intersection angle PDF of the model and RGPS. For each model the value of this

metric is given at the right hand side of (b). The interannual variability in the RGPS data set is

presented in the same way as in Fig. 4. Note, that the intersection angles are not periodic data

as we define them relative to the stress direction.
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pressive forcing, or (2) the yield curve settings allow a wider range of intersection an-436

gles. The normal flow rule used in these models determines the fracture angle to be nor-437

mal to yield curve at the stress state of the fracture (Ringeisen et al., 2019). By decreas-438

ing the ellipse aspect ratio e, the fracture angle varies more strongly with the stress state439

assuming that shear deformation is dominant. This could cause the larger variety of in-440

tersection angles in these simulations. This interpretation is supported by the fact that441

the MITgcm and IFREMER simulations with reduces ellipse ratio (e=0.7 and e=1) sim-442

ulation leads to a broader distribution of intersection angles compared to the simulations443

with the standard ellipse ratio (e=2).444

The three simulations with rheologies for which the previous reasoning does not445

apply (neXtSIM, RASM-CORE2 (EAP), and RASM-WRF (EAP)) also produce a peak446

at 90◦, while compared to (E)VP simulations the peak is broader showing similar prob-447

abilities for intersection angles between 70◦−110◦. The strong underestimation of small448

intersection angles compared to RGPS, especially in the neXtSIM simulations, results449

in a larger overall misfit between simulated and observed PDF distributions than for VP/EVP450

simulations.451

Experiments with simple geometry and uniform forcing suggest a clear connection452

between rheology and intersection angles (e.g. Ringeisen et al., 2019, 2020). The SIREx453

simulations with realistic forcing and realistic geometry produce a large variety of stress454

states that eventually lead to deformation. This is manifested in the broad distributions455

of intersection angles (Fig. 5). Some models that use atmospheric forcing with low res-456

olution have a better representation of the intersection angles compared to observations.457

We speculate that the stronger gradients in high resolution atmospheric forcing partly458

imprint on the simulated deformation field, which reduces the impact of the rheology on459

simulated intersection angles and explains why all rheologies lead to similar angle dis-460

tributions. However, observations point towards a distinct peak of intersection angles461

that depends less on the forcing conditions. Thus, the apparent connection between wind462

forcing and simulated intersection angles in the simulations in this study does not ap-463

pear realistic and points to problems in the model physics.464

4.5 LKF lifetimes465

The lifetime of an LKF describes the period when the LKF actively deforms. The466

lifetime of LKFs together with the area covered by LKFs are key factors for air-ice-ocean467

interaction. For instance, the overall heat loss through a lead strongly depends on its open-468

ing time. The majority of LKFs are active for less than 3 days, but the distribution of469

LKF lifetimes shows an exponential tail such that LKFs up to a month old can be ob-470

served as well (Kwok, 2001; Hutter et al., 2019). For both SIREx years, RGPS recorded471

on average shorter LKF lifetimes compared to the other RGPS years. This is likely to472

be caused by exceptional wind forcing leading to enhanced LKF formation and rapidly473

varying satellite coverage that makes tracking of LKFs more difficult. Here, both effects474

reduce the LKF lifetimes. As we use atmospheric reanalysis to drive the simulations and475

mask the simulated LKFs with the satellite coverage for this analysis, all models are ex-476

pected to reproduce these shorter lifetimes.477

All SIREx models agree with RGPS in the sense that LKFs younger than 3 days478

are most abundant. In addition, the lifetime distributions of simulated LKFs follow an479

exponential tail for all SIREx models (Fig. 6). The only exception is ANHA (4km) with480

no LKFs older than 15 days. In both IFREMER simulations there are no LKFs lifetimes481

longer than 21 days.482

Most models overestimate the relative frequency of long-lived LKFs and produce483

a too slow decay rate of the exponential tail. This is particularly the case for simulations484

with low absolute LKF numbers, for which LKFs concentrate in coastal regions. Coastal485

LKFs, like flaw leads, are a frequently occurring and stable phenomena, as they are mainly486
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Figure 6. (a) Distribution (PDF) of LKF lifetimes for RGPS and all models. The color

references for the models are provided in (b). The differences between the PDFs of simulated

lifetimes and lifetimes observed with RGPS are shown in (b) for each models. The scalar metric

for lifetime is defined as the integrated area between the lifetime PDF of each model to RGPS

normalized by the interannual variablilty in the RGPS data set. For each model this value is

given at the right hand side of (b). The interannual variability in the RGPS data set is presented

in the same way as in Fig. 4.
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determined by coastal geometry. Thus, LKF lifetimes are likely to be overestimated in487

simulations that show too many coastal LKFs compared to LKFs in the pack ice area.488

Simulations with a better representation of LKFs in the pack ice area also reduce the489

overestimation of LKF lifetimes (e.g. FESOM2, RIOPS, HYCOM-CICE (FSU), MIT-490

gcm (2km), MITgcm (2km, e=1,↓P)). We speculate that this remaining overestimation491

may have its root in the deformation ice-strength feedback initiating LKF growth in non492

brittle models: the strong deformation localized in LKFs leads to a reduction in concen-493

tration and thickness, which reduces the ice strength. In the next time step, the reduced494

ice strength makes deformation in the same grid cell more likely. The locally incurred495

thickness and concentration anomalies can only be reduced by converging ice motion or496

thermodynamic ice growth. The overestimation of LKF lifetimes by VP, EVP, and EAP497

models indicates that the memory of past deformation associated with this feedback may498

be too strong. Instead of this deformation ice-strength feedback, the MEB rheology of499

the neXtSIM model uses a sub-grid-scale damage parameterization that scales the ice500

strength based on how strongly the stress exceeds the Mohr-Coulomb yield criterion. The501

memory of the damage parameter is limited by a healing time parameter that is inde-502

pendent of the thermodynamic parameters. Although neXtSIM overestimates the LKF503

lifetimes as other models in our comparison, neXtSIM simulations with a modified dam-504

age criterion (not shown) have shown better agreement with RGPS LKF lifetimes. Thus,505

tuning the healing parameter could probably improve the overestimation of LKF life-506

times in neXtSIM.507

4.6 LKF growth rates508

In this section we study how quickly LKFs grow and shrink. We define the LKF509

growth rate as the change in length of an LKF between two records (for definition see510

Hutter & Losch, 2020). In our analysis, we combine three different growth rates: the ini-511

tial growth of the LKF at formation, and the growing and shrinking of persistent LKFs.512

We find that the distribution of growth rates shows a heavy tail for RGPS data and all513

models (Fig. 7). The majority of the models overestimate large growth events. We note514

that most of these models also produce too few LKFs (Sec. 4.1). Models that overesti-515

mate the number of LKFs (neXtSIM and MITgcm (2km, ITD)) show fewer large growth516

rate events. We find a similar dependence on the number of LKFs for the distribution517

of LKF lengths and note here that the models’ performance in terms of LKF length and518

growth rates are correlated. This correlation emerges because the temporal resolution519

of 3 days is not high enough to accurately observe the speed with which a fracture in the520

ice can propagate through the entire Arctic Ocean. Propagation speeds in the sea ice521

cover are linked to elastic wave speeds and range from 10 to 1000 m/s (Stamoulis & Dyer,522

2000; Marsan et al., 2011; Dempsey et al., 2012). Thus, the growth rates computed for523

our 3-daily data are limited by the length of the LKFs. Still, all reported growth rates524

are within a physically reasonable range. In particular, the fact that we find very high525

growth rates in all simulations shows that all rheological frameworks in our comparison526

simulate fast fracture propagation. A temporal sampling rate of seconds to minutes would527

be required to avoid the limiting effect of LKF length and determine the actual fracture528

speed of the models.529

4.7 Summary of LKF properties530

Values of all LKF statistics and all simulations are summarized in Fig. 8, where531

all skill metrics are normalized with the RGPS interannual variability. A cumulative skill532

metric is computed from the weighted average of all model metrics. In this weighted av-533

erage, both density metrics (distribution and total length) are considered and the life-534

time metric is weighted by a factor two in order to take into account that these skill met-535

rics are most relevant to interaction processes along LKFs in coupled climate simulations.536

We find that no model in the comparison is able to reproduce the spatial and tempo-537
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Figure 7. (a) Distribution (PDF) of LKF growth rates for RGPS and all models. The color

references for the models are provided in (b). The differences between the PDFs of simulated

growth rates and growth rates observed with RGPS are shown in (b) for each models. The scalar

metric for growth rates is defined as the integrated area between the lifetime PDF of each model

to RGPS. For each model this value is given at the right hand side of (b). The interannual vari-

ability in the RGPS data set is presented in the same way as in Fig. 4.
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Figure 8. Summary table of the individual model skill metrics. Each entry provides the

absolute value of the metric as a number along with a grey color code. All model values are

normalized with the interannual variability for the given property in the RGPS data set, that

is, model values within the RGPS interannual variability are smaller than one. The magnitude

of the underestimation and overestimation contributing to the skill metric value are shown in

blue and red color code. For density two skill metric values are computed: the sum of over- and

underestimation as a measure for the entire distribution of LKFs and the difference between both

as a measure for the overall area covered by LKFs. The last column provides the weighted sum

of all skill metrics for each model. To put more emphasis on properties that are mostly relevant

to air-ice-ocean interaction processes along LKFs, we take both densities metrics (distribution

and total length) into account and scale the lifetime metric by a factor of 2. Details of the model

configuration that help to explain the overall performance of individual models are provided by

footnotes to the cumulative skill metric.
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ral statistics of LKFs within the range of the interannual variability of the RGPS data538

set, as all simulations have cumulative skill metrics larger than 1. The best simulations539

in the comparison (MITgcm (2km, e=1, ↓P), MITgcm (2km, e=0.7, ↓P), MITgcm (2km),540

HYCOM CICE (FSU), RIOPS) show cumulative skill metric values between 1 and 2.541

The cumulative skill metric values of MITgcm (2km, ITD), DMI, FESOM2, and neXtSIM542

range between 2 and 3 showing an overall good performance but too high values for spe-543

cific LKF statistics. The cumulative skill metric values larger than 3 of MITgcm (4.5km),544

McGill, IFREMER, ANHA, FESOM, and RASM are caused by large skill metric val-545

ues for multiple LKF statistics. A common feature within these simulations is that they546

strongly underestimate the number of LKFs in the pack ice area, which negatively af-547

fects other statistics.548

The good performance of some simulations is related to a combination of several549

aspects: high resolution atmospheric forcing, a high number of ITD classes, high spa-550

tial resolution, or a brittle rheology. In contrast, simulations with a large time step have551

higher cumulative skill metric values. In Section 5 we will discuss these dependencies in552

more detail.553

In the summary table of all model skill metrics (Fig. 8) links between different LKF554

statistics become apparent: (1) An overestimation of LKF density coincides with too short555

LKFs (MITgcm (2km, ITD)) and vice versa (McGill, FESOM, and RASM). (2) Simu-556

lations that overestimate LKF lengths likely overestimate LKF lifetime as well. (3) The557

skill metrics for LKF length and LKF growth rates are correlated, because the low tem-558

poral resolution of the data does not allow to study the actual propagation speed of ice559

fracture.560

5 Relationship between model configuration parameters and deforma-561

tion features562

In this section, we study how different parameters of the model configuration af-563

fect the LKF statistics to provide advice for the configuration of sea-ice models. The fol-564

lowing configuration parameters are considered: grid spacing, time step, number of ITD565

classes, spatial and temporal resolution of the atmospheric forcing, and rheology. The566

dependence of the model performance on the choice of the parameters is investigated by567

employing a linear regression (Fig. 9). The wide spread of skill metric values for simi-568

lar configuration parameters illustrates the high sensitivity of sea-ice models to param-569

eter combinations and different code implementation of model physics. Despite the large570

spread, some trends emerge and provide guidance on how to appropriately choose model571

parameters. We need to be cautious with making inferences from the intersection an-572

gle metric, as all simulations produce too large intersection angles. Some models with573

a slightly better skill in intersection angles use somewhat extreme parameters (e.g. 3600s574

time step, very coarse resolution atmospheric forcing). The implications may be mislead-575

ing, also because these models usually have poor skill scores in other LKF statistics such576

as density and lifetime. We note that, rather than tuning configuration parameters stud-577

ied in this paper, model physics need to be adapted to improve the intersection angles578

skill.579

From all configuration parameters, the time step of the simulation and the spatial580

resolution of the atmospheric forcing have the strongest effect on the skill metrics, mainly581

their density, length, and growth rates (r2 > 0.25). Increasing the spatial resolution582

of the model only improves the density of deformation feature. Thus, the effect of a small583

time step on LKF length and growth rate is independent of the coupling between high584

resolution and short time step. LKF lifetimes are not significantly affected by the choice585

of any of considered configuration parameters. A high temporal resolution of the atmo-586

spheric forcing improves the simulated LKF length distribution and LKF growth rates587

(r2 ≈ 0.2). Horizontal grid spacing (Spreen et al., 2016; Hutter et al., 2018), rheology588
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Figure 9. Box plots showing the dependence of the individual skill metrics on the following

configuration parameters used in the simulations: (a) spatial resolution of the model, (b) tem-

poral resolution, (c) number of ITD classes, (d) spatial resolution of the atmospheric forcing, (e)

temporal resolution of the atmospheric forcing and (f) rheology. The skill metric values on the

y-axis are normalized. For each combination of skill metric and model parameter a linear regres-

sion analysis is performed and the r2-value of all regressions is summarized at the top of each

subfigure. The box plots are faded with decreasing r2-value, where saturated colors represents

skill model-parameter combinations with r2 > 0.25.
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and ice strength parameters (Hutchings et al., 2005; Girard et al., 2011; Rampal et al.,589

2016; Bouchat & Tremblay, 2017), and solver accuracy (Q. Wang et al., 2016; Koldunov590

et al., 2019) have been reported to have an effect on the amount of LKFs in Pan-Arctic591

simulations, while so far time stepping and atmospheric forcing have not been studied592

in realistic model configurations. In idealized sea ice model configurations, improvements593

in the scaling characteristics of sea ice deformation were found for experiments driven594

by high-resolution atmospheric forcing fields (Hutter, 2015) in agreement with the find-595

ings presented here.596

More simulations using an MEB or EAP type of rheology are needed to robustly597

disentangle the effect of the rheology on LKF simulations from the effect of other pa-598

rameters. Both rheologies are only used by one model each. All RASM configurations599

show very high cumulative skill metric values, also for the EAP simulations. Compar-600

ison of the RASM simulations using the EAP rheology versus RASM-WRF (EVP) shows601

that LKF intersection angles are better reproduced, however the skill of the simulation602

with the EAP rheology in terms of the other LKF properties is lower than that in the603

RASM-WRF. The neXtSIM simulation with the MEB rheology generally reproduces LKFs604

statistics in closer agreement with RGPS than the (E)VP simulations at the same res-605

olution. The neXtSIM model is also the only model running on a Lagrangian grid, which606

therefore does not allow us to undoubtedly conclude from this study on the respective607

importance of the rheology versus the advection scheme. In addition, the neXtSIM sim-608

ulation are driven with relatively high resolution atmospheric forcing (∼40 km), which609

may have a positive effect on the LKF skill metrics. The combination of its brittle rhe-610

ology and the use of a Lagrangian moving mesh allows neXtSIM to achieve a good rep-611

resentation of LKFs despite the coarser grid spacing — as it was designed to do.612

Three (E)VP models (MITgcm, McGill, and IFREMER) in the comparison run613

sets of simulations that differ only in yield curve parameters, namely the compressive614

ice strength parameter P ∗ and ellipse ratio e. In these simulations, the yield curve pa-615

rameters have an impact on the LKF quality. For all models we find that simulations616

with reduced ellipse ratio show improved LKF densities compared to the simulations with617

standard ellipse ratio e = 2, as one could expect from the more localized deformation618

in these simulations (Bouchat & Tremblay, 2017; Bouchat et al., 2020). For other LKF619

statistics the effects vary from model to model and might therefore dependent on other620

configuration parameters that are different between the models, for instance resolution.621

We note, however, that three of the five models with the lowest cumulative skill metric622

value (< 2) in our comparison use an reduced ellipse ratio (MITgcm (2km, e=1, ↓P),623

MITgcm (2km, e=0.7, ↓P), RIOPS (e=1.5)). In contrast to the ice strength, the ellipse624

ratio has rarely been considered as tuning parameter in systematic parameter optimiza-625

tions of sea-ice models. Nevertheless, the few studies that include the ellipse ratio in their626

optimization to our knowledge (Ungermann et al., 2017; Sumata et al., 2019) show that627

a reduced ellipse ratio also improves the simulated sea-ice extent, volume, and drift. There-628

fore, we recommend to also adjust the ellipse ratio to reduce the overall model-observation629

misfit.630

6 Relationship between LKF statistics and scaling analysis of defor-631

mation632

Scaling analysis of sea-ice deformation has been the main tool to evaluate the re-633

alism of lead-permitting sea-ice simulations. There are indications, however, that the com-634

puted scaling exponents are linked to the number of LKFs, but do not provide insights635

in other LKF statistics such as LKF lifetime or intersection angles (Hutter & Losch, 2020).636

In this section, we study if the deformation statistics obtained in SIREx part I (Bouchat637

et al., 2020) are linked to the LKF statistics in this study. To this end, we define skill638

metrics for the deformation rate PDFs (as the sum of the integrated area between the639

divergence and shear PDF of a SIREx simulation and RGPS) and for all scaling param-640
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Figure 10. Relationship between skill metrics of the scaling analysis of deformation rates

(SIREx Part II, Bouchat et al., 2020) and the skill metrics of the LKF statistics. For each combi-

nation of skill metrics a scatter plot is shown, where the correlation coefficient between both skill

metrics is given in upper right in each subplot.
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eters (relative error of the parameter compared to RGPS, e.g. (βmodel − βRGPS) /βRGPS).641

In this analysis, we group and average the multi-fractal parameters (degree of multi-fractality642

µ, fluctuation exponent H, and degree of heterogeneity C1 – Bouchat et al., 2020) to-643

gether to one skill metric each for spatial and temporal multi-fractal scaling. We test the644

correlation between all these deformation statistics metrics and all metrics defined for645

the LKF statistics (10). From all possible combinations, we only find a significant cor-646

relation (> 50%) of the metrics for the PDF of deformation rates and LKF density and647

total length, as well as of the metrics for the spatial scaling exponent β and spatial multi-648

fractal scaling with the LKF density and total length (Fig. 10). All other combinations649

are not clearly correlated. This shows that good agreement of a simulation with obser-650

vations in terms of the temporal (multi-fractal) scaling analysis or the more complicated651

spatio-temporal coupling of multi-fractal statistics does not guarantee realistic LKFs in652

the simulation. As the LKF density and total length are linked to the number of LKFs,653

our results generalize the findings of Hutter and Losch (2020) to a broader set of sim-654

ulations. The link between the PDF of deformation rates and LKF density allows to use655

the PDF of deformation rates as an easy-to-compute metric to quickly assess a sea-ice656

simulation before using more sophisticated analysis like our feature-based comparison657

for a thorough evaluation.658

7 Anomalies in sea-ice concentration and thickness along LKFs659

So far we have defined LKFs as bands of deformation rates that exceed the local660

neighborhood. In the context of climate simulations, however, it makes sense to link LKFs661

to leads and pressure ridges, that is, reduced or increased sea-ice concentration or thick-662

ness, because the interaction of sea ice with the atmosphere and ocean strongly depends663

on the anomalies in the concentration and thickness fields. For instance, the sea-ice con-664

centration and thickness in a lead determines the size of the heat fluxes from the ocean665

to the atmosphere. We compute estimates of concentration and thickness anomalies along666

LKFs for all SIREx simulations and visualize them in two dimensional PDFs (Fig. 11).667

We define the anomalies as the difference between the average concentration along an668

LKF and the local mean concentration, which is computed as the average around the669

LKF weighted by a Gaussian kernel of 150 km. We use the same definition for thickness670

anomalies. We determine the kernel size by balancing the two effects: (1) to be large enough671

to average out the LKF information itself, but (2) still be small enough to take into ac-672

count regional variations in the sea ice concentration and thickness. The anomaly anal-673

ysis is restricted to pack ice regions by taking only LKFs into account that are at least674

150 km away from the coast.675

The majority of LKFs shows little to no variation in the concentration and thick-676

ness field (on average +10.7 cm in pressure ridges and -12.8 cm in leads and +0.5 % in677

closing and -1.0 % in opening). Given the km-scale resolution of the models in this com-678

parison, it makes sense that only some deformation features are associated with large-679

scale opening and closing, while the majority of LKFs represents smaller scale or pure680

shear deformation. The anomalies are caused by the divergent and convergent compo-681

nent of the deformation field along the line of failure of the ice that forms the LKF. The682

anomalies feed back into the ice strength favoring further deformation in sea-ice mod-683

els using the standard Hibler (1979) ice strength. This positive feedback cycle of defor-684

mation - reduced concentration - further deformation can amplify the initial anomalies,685

make them persistent, and thereby lead to more LKFs. Obviously, the magnitude of the686

anomalies depends on the model grid resolution, as a much larger area needs to be opened687

or ridged in a coarse resolution model to obtain the same variation in sea ice concentra-688

tion and thickness. Therefore the feedback cycle is enhanced with increasing resolution689

and the number of LKFs increases: The concentration anomalies in models with a res-690

olution of ∼ 5 km are as large as -10 %, while the simulations MITgcm (2km) and FE-691

SOM2 (1km) with even higher resolution feature LKFs with concentration reduction of692
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Figure 11. Concentration and thickness anomalies along LKFs for all models given in two

dimensional PDFs. The anomaly is defined as the difference of average concentration and thick-

ness along an LKF and the local mean of these fields that is determined by an average weighted

by a Gaussian kernel of 150 km. Only LKFs in pack ice area are considered that are further than

150 km away from the coast. The numbers summarize the mean concentration anomalies for

opening and closing, as well as the mean thickness anomalies for pressure ridges and leads given

in centimeters. Note that, the interpolation of the model output of the simulations on unstruc-

tured grids (FESOM, FESOM2, and neXtSIM) to regular grids leads to a slight underestimation

of the anomalies for these simulations.
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the order of 50 % and higher. Also the average reduction over all openings in these sim-693

ulations is higher than in the coarse resolution models.694

In general, we find that thickness anomalies are more pronounced than concentra-695

tion anomalies especially for coarse resolution models. In these models, the initial anoma-696

lies caused by deformation are smaller given the smaller effect of advection due to the697

large grid spacing. Therefore, the reduction in ice strength is less likely sufficient for fur-698

ther deformation and advection. Thermodynamic growth closes the ice cover, which slows699

down the deformation ice-strength feedback significantly and inhibits the deformation700

(the Hibler (1979) ice strength depends exponentially on the concentration and linearly701

on thickness). The thin ice in openings grows vertically only slowly by thermodynamic702

ice growth, so a long-term memory of deformation is retained in the ice. Under changed703

forcing conditions these long-term thickness anomalies are likely to be a seeding point704

for new deformation. To catch the effects of very short-lived concentration anomalies in705

climate simulations, short coupling time steps may be useful.706

High-resolution simulations have the tendency to produce more negative thickness707

anomalies associated with leads than positive thickness anomalies that are found along708

pressure ridges, because the deformation ice-strength feedback accelerates opening. Only709

the MITgcm (2km, ITD) that uses an active ice thickness distribution together with the710

Rothrock (1975) ice strength stands out in this respect with a considerable amount of711

positive thickness anomalies with an average ridging of 27.6 cm. Simulations with reduced712

aspect ratio of the elliptical yield curve also produce higher mean ridging along LKFs713

(MITgcm, McGill and IFREMER), as with a “fat yield curve” convergent deformation714

is more likely for compressive stress states with confinement (Bouchat & Tremblay, 2017).715

8 Conclusions716

Linear kinematic features (LKFs) emerge in the sea-ice simulations with increas-717

ing resolution and/or with improved sea-ice physics. In this comparison between differ-718

ent sea-ice models and model configurations, only very few models reproduce some statis-719

tics of LKF properties, namely density, number, length, and growth rate, within an ac-720

ceptable range as defined by the interannual variability of satellite-based RGPS defor-721

mation data. Most models, however, simulate unrealistic LKF distributions. This is par-722

ticularly true for the intersection angle between pairs of LFKs, where none of the par-723

ticipation models reproduces the relative frequency distribution of observed angles. The724

LKF lifetime is also overestimated in nearly all simulations in the comparison. Even among725

the models with the highest skill scores, none simulates more than three LKF charac-726

teristics within the reference skill based on the interannual variability of satellite obser-727

vations.728

The models that have some skill use either high grid resolution, short time steps,729

different physics (brittle rheology or modified (E)VP yield curve), different numerical730

techniques (Lagrangian moving grid), high resolution atmospheric forcing in space and731

time, or a combination of these factors. To advance sea-ice model dynamics, one should732

carefully choose these parameters. But it also means that it is in principle possible to733

reproduce at least some LKF properties with currently available modeling techniques.734

Model resolution, rheology, and solver accuracy have been reported before to af-735

fect the number of resolved LKFs (Girard et al., 2011; Rampal et al., 2016; Spreen et736

al., 2016; Q. Wang et al., 2016; Hutter et al., 2018; Bouchat & Tremblay, 2017; Koldunov737

et al., 2019; Rampal et al., 2019). Here, we find that the temporal resolution of the model738

(i.e. the time step) and the spatial resolution of the atmospheric forcing also have a strong739

impact on the spatial and temporal characteristics of resolved deformation features. The740

temporal resolution of the atmospheric forcing also affects the simulated LKF proper-741

ties but with a lower impact. The dependence on the time step length may be related742
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to the solver convergence, as shorter time steps imply smaller changes in external forc-743

ing between time levels and hence less work for the numerical solver.744

From our analysis, it is not possible to unambiguously identify a single factor de-745

termining the accuracy of LKF representation in a model, because some factors only ap-746

pear in combination. Still, our analysis suggests that a sea-ice model produces more re-747

alistic LKFs if the model configuration meets at least three of the following requirements:748

(1) time step smaller than 400 s, (2) grid spacing smaller than 5 km, (3) brittle visco-elastic749

rheology in combination with a Lagrangian grid, and (4) atmospheric forcing at resolu-750

tions smaller than 60 km. The number of ITD classes and the temporal resolution of the751

atmospheric forcing appear less important to explain the skill metrics scores. Thus, we752

recommend to choose the four parameters above with care when setting up sea ice sim-753

ulations. Explicitly, models with a viscous-plastic rheology will always require very high754

grid resolution (see also Appendix A). The skill metrics defined in our study can be used755

as cost functions in systematic model parameter optimizations to quantify the observation-756

model misfit for LKF statistics. Based on our promising results for simulations with mod-757

ified compressive and shear strength, we recommend to also consider the ellipse ratio e758

in such an optimization for (E)VP models.759

SIREx is the first sea-ice model intercomparison effort that includes the main three760

rheologies employed in state-of-the-art sea-ice models. The (E)VP rheology, which is used761

in most, if not all, climate models, is well represented in our study with 30 out of 36 sim-762

ulations. This emphasizes how important our findings for improving the representation763

of sea-ice conditions in climate projections. The MEB and EAP rheology, however, are764

each based on simulations of only one model code. For the MEB simulations, it is also765

not possible to cleanly disentangle whether it is the rheology alone or the combination766

with the Lagrangian grid that makes neXtSIM scoring higher than the average (E)VP767

model at the same resolution. A more different set of simulations or ideally a single mod-768

eling framework for all three rheologies would be required to unambiguously assess the769

effect of the rheology.770

The combination of the deformation statistics from SIREx part I and the LKF statis-771

tics from SIREx part II shows that only the realism of deformation rate PDFs and spa-772

tial scaling analysis are correlated to LKF density skill metrics. This suggests that PDFs773

of deformation rates, which are relatively easy to compute, can be used to quickly as-774

sess sea-ice simulations, for instance during model tuning, before applying more sophis-775

ticated metrics such as the LKF statistics of part II or the scaling analysis of part I. There776

is, however, no clear correlation between the temporal multi-fractal scaling parameters777

and the LKF statistics, so that the scaling metrics of sea-ice deformation provide only778

some information on the number of deformation features, but that the feature-based eval-779

uation of sea-ice deformation used in this study is required to deduce other properties780

of deformation features.781

Finally, our feature-based evaluation of LKFs uses sea-ice deformation fields im-782

plicitly assuming that these deformation-field-based LKFs coincide with leads and pres-783

sure ridges. We find, however, that not all models develop the expected concentration784

and thickness anomalies along LKFs. In particular, the magnitude of these anomalies785

depends strongly on the model resolution. Only simulations with a resolution smaller786

than 2 km produce sea ice concentration down to 50 % in grid cells tagged as “leads”.787

These differences due to model resolution could have a large impact on high-resolution788

coupled climate simulations to come, as ice-air-ocean interaction processes, such as heat789

flux or form drag and the extent to which they are resolved by an atmospheric model,790

depend fundamentally on the magnitude of the concentration and thickness along leads791

and pressure ridges. The evaluation of leads and pressure ridges as features of ice con-792

centration and thickness fields will become feasible with increasing resolution of both sim-793

ulations and satellite products. This will nicely complement the analysis of LKFs based794

exclusively on deformation data.795
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Appendix A Comparability of RGPS and model data796

RGPS is a Lagrangian drift data set derived from SAR imagery. In the beginning797

of each winter, a network of virtual buoys is initialized on a regular grid with a grid spac-798

ing of 10km (in coastal regions 25km; Kwok, 1998). The position of each virtual buoy799

is updated every time a new SAR image is available which covers the position of this vir-800

tual buoy. The timing of the individual position record is different for all buoys, as they801

were covered by different or multiple overflights. On average the position of all buoys802

are updated every 3 days. Deformation rates are computed from the virtual buoy po-803

sitions using line integral approximations. The temporal and spatial scales associated804

with this deformation rates vary due to the irregular temporal sampling and distortion805

of the cells caused by the advection. The average temporal and spatial scale is 3 days and806

10 km. The Lagrangian deformation data is interpolated onto a regular grid with a spac-807

ing of 12.5km. This Eulerian deformation data set was used to derive the RGPS LKF808

data-set used in our analysis (Hutter et al., 2019).809

The principle of computing deformation rates from tracked displacements has in-810

teresting consequences with respect to the resolution of deformation features that are811

resolved in the data. All displacements originating from fracture between two position812

records are recorded regardless their duration, as long as they exceed the spatial reso-813

lution of the SAR images, which is roughly 100 m. Therefore, the deformation features814

do not have a specific temporal resolution. The spatial resolution of the SAR images lim-815

its only the magnitude of the deformation rates (Lindsay et al., 2003), but not the width816

of the deformation features causing the deformation. In the context of model-observation817

comparisons, it is reasonable to choose the spatial resolution of LKFs referring to their818

minimal width. As a minimal width of LKFs can not be derived from RGPS, we refer819

to the RGPS data set having a 3-day temporal and 12.5 km spatial sampling rate, in-820

stead of using the term resolution.821

The fact that the deformation derived from RGPS is not limited to a certain fea-822

ture width nor a deformation duration time complicates the comparison with models that823

do not use a subgrid parameterisation of small-scale deformation, but explicitly resolve824

deformation features. In our comparison, these are all (E)VP, and EAP models. In those825

models, 6-10 grid cells are needed to resolve an LKF as a discontinuity in the concen-826

tration and thickness fields. Thus, the effective resolution of these simulations is accord-827

ingly larger than model’s grid spacing. This explains in parts why the coarser resolution828

models in the comparison show fewer LKFs than RGPS (Fig. 1). Since the effective res-829

olution has not been quantified, adapting of the model-observation analysis to the ef-830

fective resolution in our analysis is not possible.831

The spatial sampling of RGPS does not allow to distinguish if the recorded displace-832

ment is caused by one or multiple deformation features. Very high resolution models could833

resolve multiple deformation features within a 12.5×12.5 RGPS cell, which would dis-834

tort the model-observation comparison of LKF numbers. The highest resolution mod-835

els in our comparison, however, have a resolution of 1-2 km. Thus, their effective reso-836

lution is in the range of the spatial sampling rate of RGPS and we can exclude that this837

effect from affects our results.838

The 3-day RGPS deformation rates can be seen as an ”integral” of all deformation839

taking place within the 3-day sampling period of RGPS. We mimic this by filtering LKF840

pixels for each daily field and then combine three daily maps to a cumulative 3-day LKF841

map. Assuming that the exponential tail of the LKF lifetime distribution (Fig. 6) also842

holds for lifetimes smaller than 3 days, we potentially miss very short-lived LKFs in our843

model LKF data sets. However, LKFs are associated with strong velocity gradients and844

their signal are imprinted in the daily mean fields. In addition, forcing at very short tem-845

poral scale is needed to cause these short-lived deformations. Actually, we do not find846

differences in the deformation rate PDFs when using daily vs. hourly snapshot vs. mean847
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Figure B1. Schematic of relative displacement, vorticity, stress direction, and intersection

angle along two intersection LKFs.

model diagnostics. Thus, we are confident that the different temporal sampling for mod-848

els and RGPS does not have have a significant effect on our analysis. Very high frequency849

model output could be used to quantify this effect in a dedicated study.850

Appendix B Principles of intersection angle selection851

We study the intersection angle of LKFs, because it is directly related to the frac-852

ture angle for conjugate faults. The fracture angle is the angle between the LKF and the853

direction of the main stress, so therefore half of the intersection angle, and provide in-854

sights on the fracture physics. To compute the fracture angle, the direction of stress must855

be known. For RGPS and model simulations, however, only the drift and deformation856

data are provided. In our analysis, we use the vorticities derived from the relative dis-857

placement along two intersecting LKFs to determine the main direction of stress. The858

vorticity is computed from the sea-ice drift fields. The two LKFs of a conjugate fault have859

vorticities of opposite sign (Fig. B1). Thus, we label intersecting pairs of LKFs with vor-860

ticities of opposite sign as conjugate faults and compute the intersection angle relative861

to stress direction by measuring the angle from the LKF with positive vorticity to the862

LKF with negative vorticity. If both intersecting LKFs have vorticities of the same sign,863

it is not possible to determine the main stress direction causing the deformation. In this864

case, we take both possible intersection angles (angle measured from the LKF with pos-865

itive vorticity to LKF with negative vorticity and vice versa) into account for the com-866

putation of the intersection angle PDF (Fig. 5).867
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