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Abstract

We develop an open source algorithm to apply Transfer learning to Aurora image classification and Magnetic disturbance

Evaluation (TAME). For this purpose, We evaluate the performance of 80 pretrained neural networks using the Oslo Auroral

THEMIS (OATH) data set of all-sky images, both in terms of running time and feature accuracy. From the features extracted

by the best network, we retrain the last neural network layer using the Support Vector Machine (SVM) algorithm to distinguish

between the labels “arc”, “diffuse”, “discrete”, “cloud”, “moon” and “clear sky / no aurora”. This transfer learning approach

yields 90% accuracy in the six classes; if we aggregate the 3 auroral and 3 non-aurora classes after classification, we achieve up

to 98% accuracy. We apply our classifier to a new dataset of 550,000 images and evaluate the classifier based on these previously

unseen images. To show the potential usefulness of our feature extractor and classifier, we investigate two test cases. First, we

compare our predictions for the “cloudy” images to meteorological data and second we train a linear ridge model to predict

perturbations in Earth’s locally measured magnetic field. We demonstrate that the classifier can be used as a filter to remove

cloudy images from datasets and that the extracted features allow to predict magnetometer measurements. All procedures and

algorithms used in this study are publicly available, and the code and classifier provided, which opens possibility for large scale

studies of all-sky images.
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Key Points:6

• A pretrained CNN feature extractor and an SVM can successfully classify all-sky7

images8

• Up to 98% accuracy can be achieved in the classification9

• From the underlying image feature representation we predict physical quantities such10

as magnetic disturbance and cloud height11
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Abstract12

We develop an open source algorithm to apply Transfer learning to Aurora image classifi-13

cation and Magnetic disturbance Evaluation (TAME). For this purpose, We evaluate the14

performance of 80 pretrained neural networks using the Oslo Auroral THEMIS (OATH)15

data set of all-sky images, both in terms of running time and feature accuracy. From the16

features extracted by the best network, we retrain the last neural network layer using the17

Support Vector Machine (SVM) algorithm to distinguish between the labels ”arc”, ”diffuse”,18

”discrete”, ”cloud”, ”moon” and ”clear sky / no aurora”. This transfer learning approach19

yields 90% accuracy in the six classes; if we aggregate the 3 auroral and 3 non-aurora classes20

after classification, we achieve up to 98% accuracy.21

We apply our classifier to a new dataset of 550,000 images and evaluate the classifier based22

on these previously unseen images. To show the potential usefulness of our feature extrac-23

tor and classifier, we investigate two test cases. First, we compare our predictions for the24

”cloudy” images to meteorological data and second we train a linear ridge model to predict25

perturbations in Earth’s locally measured magnetic field. We demonstrate that the classi-26

fier can be used as a filter to remove cloudy images from datasets and that the extracted27

features allow to predict magnetometer measurements.28

All procedures and algorithms used in this study are publicly available, and the code and29

classifier provided, which opens possibility for large scale studies of all-sky images.30

Plain Language Summary31

In the interest of auroral research and space physics, many images capturing the night32

sky have been taken automatically over the last decades. Sifting through these images33

manually takes a lot of time and is generally impractical. We use Convolutional Neural34

Networks (CNN), which are good at image classification to extract a set of numbers per35

image (”features”) that capture the essential contents of the image.36

A Support Vector Machine (SVM) is trained to interpret these features and assign labels to37

the images. We search for the best configuration between different CNNs and SVMs and38

achieve up to 98% accuracy.39

To show that our method can be extended to other datasets, we classify half a million images40

from a different dataset and evaluate the performance of our classifier based on these results.41

We show that our classifier also excels at detecting clouds in images. It can therefore be42

used to filter unusable images from this kind of datasets.43

Based on the images’ features, we create a model to predict disturbances in the Earth’s local44

magnetic field.45

To enable other researches to work with our results, we use industry-standard, open-source46

software and make our algorithms and results available the same way.47

1 Introduction48

Created by particles precipitating into the ionosphere, the aurora are a direct conse-49

quence of interactions between the solar wind and the magnetosphere. A connection between50

different auroral shapes and behaviours simultaneously across the polar region has been first51

shown in 1964, when analysing auroral images taken across northern continental America52

and Antarctica (Akasofu, 1964). The established model of auroral substorms, describes53

the activity of the aurora from its beginning, when the aurora is calm, over active phases54

towards another calm phase. This model was later refined to include the three currently55

used phases ”growth”, ”expansion” and ”recovery” (McPherron et al., 1973). Interaction56

between the solar wind and the interplanetary magnetic field lead to storage of energy in the57

magnetosphere during the growth phase. In the expansion phase energy is released, before58

the magnetosphere returns to normal conditions in the recovery phase.59

Since the beginning of auroral research, images have therefore been the most important tool60

to analyse and diagnose the complex processes in the ionosphere and magnetosphere, often61
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supplemented by magnetometers measuring the local Earth’s magnetic field or satellites62

performing similar measurements. All Sky Imagers, taking pictures of the night sky and63

capturing aurora in regular intervals, can for example be found in Ny-Ålesund and Longyear-64

byen on Svalbard, operated by the University of Oslo (UiO), in Canada and Alaska as part65

of THEMIS operated by NASA (Mende et al., 2009) and at the Yellow River Station in66

Ny-Ålesund operated by the Polar Research Institute of China.67

Since their establishment, the imagers operated by the University of Oslo (UiO) have taken68

approximately 8 million images. THEMIS is long term operating using more cameras with69

about a hundred million images acquired, both imager arrays adding several hundred thou-70

sand images each season. Analysing and labelling images manually and consistently would71

take many humans to even keep up with the production of images, not including the afore-72

mentioned backlog, which is why researchers usually select smaller events on the timescale73

of a few hours or days and manually analyse the images in combination with other sources74

(see for example (Murphy et al., 2013; Rae et al., 2017)). It is clear that statistical analyses75

at scale require highly automatic image processing algorithms.76

First attempts have been performed by M. Syrjäsuo and Pulkkinen (1999) who determined77

the skeletons of auroral images which they later used to find images showing auroral arcs78

(M. T. Syrjäsuo et al., 2000; M. Syrjäsuo et al., 2001). Later M. Syrjäsuo and Donovan79

(2002) proposed an algorithm utilizing a KNN-classifier based on the images’ mean and80

maximum brightness to differentiate between images showing aurora and images not show-81

ing aurora for which they reported 92% accuracy. The classifier has been improved over82

the years (M. Syrjäsuo et al., 2002; M. T. Syrjäsuo & Donovan, 2004) for example by using83

Fourier descriptors on a segmented image (M. T. Syrjäsuo et al., 2004). This allowed them84

to obtain a rotation invariant descriptor of the auroral features present in the image and85

building a database upon which similar images could be identified and queried for. Further86

improvements (M. T. Syrjäsuo & Donovan, 2005) led to an automated classifier (M. Syrjäsuo87

et al., 2007) making use of Basic Gray Level Aura Matrices (BGLAM) to classify images88

into 6 classes (unknown, cloudy and 4 types of aurora) with 70-80% accuracy.89

Another approach is to use convolutional neural networks as aides in classifying and cat-90

egorizing the images. A common benchmark for convolutional neural networks is the91

dataset provided for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)92

(Russakovsky et al., 2015), which provides over one million labelled images in 1000 classes.93

This database can be used to train networks without the costly process of having to label94

large amounts of training images. The 2012 winner of ILSVRC was the AlexNet convo-95

lutional network, which was the first to demonstrate GPU based computing to train the96

network and achieved a top-5 error of 15.3%, compared to the second best entry of 26.2%97

(Krizhevsky et al., 2017). This was an important stepping stone, since the GPU computa-98

tion allowed for much faster training of networks. When the original challenge retired in99

2017 to focus on other objects, the top-performing network SENet achieved a top-5 error100

below 5% (Hu et al., 2020). These networks are made available publicly in their trained101

form and allow others to be used for validation of their results, comparison and further102

research.103

Using the AlexNet architecture, X. Yang et al. (2018) finetuned the pretrained network,104

taking local, regional and global features in the image into account and provide an algo-105

rithm that retrieves images similar to that one queried with an accuracy of 65-70%. This106

was further improved by detecting regions of interest aligned along the magnetic field first107

(X. Yang et al., 2019). To extract key local structures around the aurora also allows for108

retrieval of similar aurora images with an accuracy of up to 92% (Q. Yang et al., 2019).109

Kvammen et al. (2020) used results obtained by Clausen and Nickisch (2018) to remove110

non-auroral images from their data and trained different established neural network archi-111

tectures on the 7 auroral labels they introduced earlier (McKay & Kvammen, 2020). The112

performance of their neural networks is compared to a support vector machine (SVM) and113

k-nearest neighbor classification trained on the histogram of oriented gradients and the114

method by Clausen and Nickisch (2018). With the best performing network they report115

up to 92% precision and 90% recall and F1-score displaying the neural network’s ability to116
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recognize challenging classes.117

Using Generative adversarial networks (GANs), a special form of unsupervised neural net-118

works, to extract Key Local Structures around the aurora also allows for retrieval of similar119

aurora images with an accuracy of up to 92% (Q. Yang et al., 2019).120

While these methods become more and more accurate, the underlying models are getting121

more sophisticated and are therefore difficult to implement or require expensive training or122

finetuning. They often also require filtered input data such that only images of aurora are123

shown. A convolutional neural network (CNN) predicts an image class, by first extracting124

a numerical representation of the image – the image features – which it then uses to predict125

the class label. In transfer learning, these features are used to train smaller or simpler mod-126

els at greatly reduced training cost. This method has already been shown to be successful127

by Clausen and Nickisch (2018), who achieved 82% accuracy distinguishing aurora images128

between 6 classes - 3 different classes of aurora and 3 different non-aurora classes.129

Using the same dataset, we propose an improvement to this technique, by evaluating differ-130

ent pretrained networks to select the one best suited for this task and use an SVM instead131

of ridge regression for training the last classification layer of the network. We achieve 98%132

aggregated classification accuracy when distinguishing between images that show aurora133

and images that do not show aurora and 90% accuracy in the same 6 classes as the pre-134

vious publication. We also show that the features extracted by the neural network can be135

used to infer information about the local magnetic field. The data supporting our Transfer136

learning Aurora image classification and Magnetic disturbance Evaluation (TAME) is made137

available under the Attribution 4.0 International (CC BY 4.0) license 1 and can be used to138

classify vast amounts of all sky images in a short amount of time.139

2 Description of Data Sources140

We combine data from 3 different sources.141

The first is an All Sky Imager, taking images of the sky when the Sun is below the hori-142

zon in intervals of 10 s to 60 s in wavelengths of 5570�A and 6300�A, located in Ny Ålesund143

near Sverdrup Research Station (78.92 °N 11.93 °E). The imager uses an electron multiply-144

ing CCD camera (EMCCD) with a narrow monochromatic filter allowing only the desired145

wavelengths to pass, taking images through a fisheye lense with a field of view of 180°. The146

camera saturates at a luminosity of ≈9 kR and produces images at a resolution of 460 px147

by 460 px. The images are stored as 16-bit gray level files, where the luminosity is roughly148

linear to the brightness of the pixel. In order to protect the camera from oversaturation it149

is turned off when the Sun or Moon are within the field of view.150

Second we use data from a magnetometer in Ny Ålesund operated by Tromsø Geophysical151

Observatory (TGO) (Tanskanen, 2009). The magnetometer is located in close proximity to152

the all sky imager and takes measurements of the earth’s local magnetic field X-, Y-, and153

Z- component. We use data with 60 s resolution.154

At last we use data from a ceilometer operated by AWIPEV Research Base at the Ny155

Ålesund Research Station (Maturilli & Herber, 2017) that are described in Maturilli and156

Ebell (2018). This instrument measures the base height of clouds every 60 s. While this only157

gives the measure of cloud base height (CBH) right above the instrument, it is expected to158

be a good indicator of the cloudiness of the sky for a given time interval.159

Although there are all sky images available since 2006, we will restrict ourselves in this160

analysis to the season of Nov 2010 to Feb 2011, because this is the year when the ceilometer161

reports the highest chance to have clear skies at any given time.162

1 https://creativecommons.org/licenses/by/4.0/
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3 Methods163

3.1 Feature Extraction164

To evaluate the images, we make use of the ShuffleNet V2 neural network pretrained165

on imagenet to extract numerical features from the images (Ma et al., 2018). The imagenet166

database contains labelled sample images of different categories (e.g. animals, household167

objects, vehicles), which the neural network is trained to detect and classify such as to be168

able to classify a previously unknown image into one of the trained categories.169

For our purposes, we remove the last layer of the neural network - the classification layer -170

and are left with a 1000 dimensional feature vector ~ϕi = ~ϕ(xi) = (ϕi,0, ϕi,1, ϕi,2, ..., ϕi,999)171

for every image xi, that contains features of the image as numerical values. Under the172

premise that these values are a descriptor of the image, we use these values for further173

processing.174

We are using a pretrained neural network instead of training one ourselves or finetuning this175

existing neural network to our liking because we want to evaluate possible out-of-the-box176

solutions that can be achieved using readily available tools in just a few lines of code and177

without the need of computationally expensive methods.178

Compared to classic image processing methods, where features are extracted by determin-179

istic algorithms instead of by neural networks, the features we use are more abstract and180

not directly connected to the original image any more.181

182

3.2 Classification183

Because the neural network’s classification layer was pretrained on classes different to
ours, we replace the last layer with a different, easy to train algorithm. The two methods we
will be using in this last layer will be ridge classifiers and support vector machines (SVM).
Ridge classifiers are a special case of Tikhonov regularization, where the parameters used
to describe the classifier are regularized equally to prevent overfitting and thus yielding a
better result when presenting the classifier with previously unknown data (Raschka, 2015).
A linear predictor might optimize the following loss functions measuring the discrepancy
between a target label t ∈ 0, 1 and a predicted function value f ∈ R

`2(t, f) = (t− f)2,

`h(t, f) = max(1− tf),

`c(t, f) = −t log f − (1− t) log(1− f)

(1)

where `2 is the L2-norm used in ridge regression and classification, `h is the hinge loss used184

by SVMs and `c is the binary cross entropy used in neural networks and logistic regression.185

For ridge classification, the regularised objective function becomes

L =
1

N

N∑
i=1

`2(yi, ~w
T ~ϕi) + λ||~w||22 (2)

where N is the amount of samples, yi the target value, ~w the vector of weights and ~ϕi the186

vector of features belonging to the image and training value. Depending on the regularization187

parameter λ, the additional term λ||~w||22 regularizes the magnitude the values of ~w can take.188

SVMs work by spanning the datapoints into an N-dimensional hyperspace divided by
hyperplanes into as many regions as there are different labels (Wang, 2005). A new point
is classified depending on which division of the hyperspace it falls into or might be rejected
if it is too close to one of the hyperplanes.
SVMs employ a regularization parameter C substituting λ = 1/(2CN) in Equation 2 to
weigh misclassified training data. The larger C (the smaller λ), the more accurate the
training data will be classified but the more vulnerable the SVM is to overfitting. If data
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Figure 1: The flow of data (images and magnetometer) used in this work

cannot be separated by hyperplanes, a kernel can be used to transform the points into a
higher dimensional space which can in turn be divided by hyperplanes. The radial basis
function (RBF) kernel is one of the most commonly used kernels for this kind of application.

K(~x, ~x′) = exp(−γ ‖~x− ~x′‖2) (3)

The kernel measures the similarity between the two points ~x and ~x′ where 1/
√

2γ corresponds189

to the effective length scale between two points up until which the kernel is effective. The190

larger the parameter γ > 0, the fewer points in the vicinity are taken into account. Ridge191

classifiers are easier to use and fine tune and SVMs require computation to train but are192

generally more precise. The ridge classifier is a linear classifier and can be optimised in193

closed form by solving a linear system, while the SVM requires a numerical approach to194

optimise its convex but non-linear hinge loss function `h(t, f) (Hastie et al., 2009).195

In Figure 1, we show the flow of how the images and other data are processed at a later stage.196

The training images (blue) are processed by the neural network (purple) to train a classifier197

(blue) using the known training labels. Previously unknown images (cyan) are preprocessed198

such that they are normalised to their maximum value the same way the training images199

are, before their features are extracted by the same neural network. These features can then200

be used to predict the images’ labels (yellow) or predict for example magnetometer data201

(green).202

4 Results203

4.1 Creating a new classifier204

To find the best pretrained neural network suitable for our work, we evaluated several
network architectures compatible with PyTorch (an open source machine learning frame-
work for Python, see Paszke et al. (2019)) based on the accuracy of the prediction using
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the extracted features in a linear ridge classifier and the time it took to extract the feature
vector. First using the network for feature extraction and then predicting the classes with
a linear classifier or SVM using the extracted features effectively replaces the network’s last
layer that is used for classification with a different algorithm. This approach allows us to
extract the images’ features quickly on GPU, store them and resume processing on CPU.
The process is easier to apply because feature extraction has to be done only once and
training does not require expensive hardware. The extracted features are also more space
efficient and therefore easier to access and use for later processing. One TB of images will be
reduced to features the size of a few GB, which can be loaded completely into the memory
of an average desktop computer.
PyTorch provides its own library of pre-made neural network architectures, datasets and
pretrained neural networks called ”torchvision”2, which is usually installed alongside Py-
Torch. In addition to the pretrained neural networks provided through torchvision we used
pretrained networks provided by the python package ”pretrained-models.pytorch” (Cadene,
2020).
The images we used were part of the OATH dataset as described by Clausen and Nickisch
(2018). They were each normalized according to the value specified in the documenta-
tion provided with the pretrained model. Because neural networks in general require input
images to exactly match their desired input size, we either zero-padded or resized our im-
ages to match this requirement. Most neural networks we tested required an input size of
224 px× 224 px, about half the size of our original images of 460 px× 460 px. We provide a
full list of all tested neural networks including the used parameters in the appendix in Table
A1.
In Table 1 we show an overview of some of the tested pretrained networks. Accuracy was
calculated once for two class labels (”aurora” and ”no aurora”) and for six class labels
(”arc”, ”diffuse”, ”discrete”, ”cloudy”, ”moon”, ”clear sky/no aurora”). For this we trained
a ridge classifier on the features extracted by each neural network. The categories, their
labels and explanations are shown in Table 2.

Table 1: Time used for feature extraction and classification performance using a Ridge
classifier based on the features extracted from the OATH data by several neural networks.
The last two columns show the ranking of the networks’ features’ performance for classi-
fication and the table is sorted by the ranking in the 6 class classification. Only a subset
of the tested networks is shown. A full list can be found in the appendix in Table A1.
Networks denoted by † have been installed through ”pretrained-models.pytorch” (Cadene,
2020), those denoted by ‡ through torchvision.

model name time [s]
images processed

per second
2 class acc [%] 6 class acc [%]

2 class acc
ranking

6 class acc
ranking

SE-ResNet152 †(Hu et al., 2020) 67.71 86 95.98± 0.31 83.66± 0.48 8 1
SE-ResNet50 †(Hu et al., 2020) 50.68 115 96.06± 0.28 83.52± 0.58 6 2
SENet154 †(Hu et al., 2020) 101.32 57 95.76± 0.44 83.15± 0.56 16 3
ShuffleNet V2 x1 0 ‡(Ma et al., 2018) 40.65 143 95.51± 0.29 83.05± 0.44 28 4
MNASNet 1 0 ‡(Tan et al., 2019) 47.87 122 96.68± 0.37 82.95± 0.79 1 5

DenseNet161 †(Cadene, 2020) 64.70 90 95.83± 0.27 82.83± 0.50 10 6
SE-ResNet101 †(Hu et al., 2020) 57.30 102 96.50± 0.45 82.81± 0.88 2 7
DenseNet161 ‡(Huang et al., 2017) 60.50 96 96.07± 0.49 82.47± 1.21 5 10
SE-ResNeXt101 32x4d †(Hu et al., 2020) 66.58 87 96.29± 0.31 82.47± 0.64 3 11
MNASNet 0 5 ‡(Tan et al., 2019) 42.29 138 95.54± 0.46 82.30± 0.78 25 13

SE-ResNeXt50 32x4d †(Hu et al., 2020) 55.15 106 95.61± 0.34 82.27± 0.44 24 14
InceptionV3 †(Szegedy et al., 2016) 59.16 98 95.47± 0.22 82.18± 0.26 30 15
InceptionV3 ‡(Szegedy et al., 2016) 60.57 96 95.14± 0.29 80.66± 1.07 42 40
InceptionV4 †(Szegedy et al., 2017) 73.14 80 95.04± 0.37 79.69± 0.71 46 53
VGG ‡(Simonyan & Zisserman, 2015) 56.42 103 93.82± 0.20 77.49± 0.34 74 75

2 https://pytorch.org/vision/stable/index.html
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Table 2: The different class labels and their explanations

Label Explanation Class 2 Class 6

arc The image shows aurora with well defined edges
with bands spanning all or most of the field of
view of the imager

0 0

diffuse The image shows aurora that are fuzzy or patchy
and do not follow a certain shape. The brightness
is usually lower and of the order of the stars.
This category is also often referred to as ”patchy”
in other publications.

1

discrete The Image shows discrete, but not arc-like aurora.
This could for example be swirls or crossing arcs.

2

cloud The Image shows clouds or the dome of the imager
is covered in snow.

1 3

moon The image shows the moon but no aurora. 4

clear sky
no aurora

The sky is clear and no aurora are visible. 5

For each set of extracted features, the data was split into 5 randomly selected splits of 70%
training and 30% testing data. The mean accuracy and standard deviation of the 5 trained
and predicted runs is given as the accuracy and standard deviation in the table.
Every neural network was given a ranking based on how the features extracted by the neu-
ral network performed in classification. The features extracted by the SE-ResNet152 for
example performed best in classifying the images in six classes and they were the eight best
features in classifying the images in 2 classes. The table is sorted by the accuracy for six
classes.
We can see, that for our method the features extracted by the top-performing neural net-
works show no significant difference in their predictive capability. The fourth best perform-
ing model ”ShuffleNet V2” (Ma et al., 2018) is however significantly faster than other net-
works. It was able to extract features from all 5824 images in 41 s and classified 95.51±0.29%
of the two-class labelled images and 83.05± 0.44% of the six-class labeled images correctly.
We also see fast performance for MNasNet with similar accuracies, because it was built with
high performance especially on mobile devices in mind (Tan et al., 2019).
We then chose ShuffleNet for further processing because it was the fastest without perform-
ing worse in the classification task.
To improve on the classification, we trained an SVM with RBF kernel on the extracted
features. Using tenfold cross-validation we perform a grid search for the optimal hyperpa-
rameters (cf. Figure B1 in the appendix). For γ = 0.001 and C = 10 the classifier performs
best and achieves an accuracy of 89.58 ± 0.90% in six class classification. Classifying the
testing data we observe the following confusion matrix for the last of the 10 runs:

arc diffuse discrete cloud moon clear
arc 166 13 28 0 0 4

diffuse 15 277 39 0 0 8
discrete 22 23 383 1 1 5
cloud 0 2 1 249 4 0
moon 0 0 0 2 178 2
clear 7 12 4 0 1 300

–8–
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We see that the biggest confusion arises between the different classes of northern lights. If we205

bundle this into two classes - aurora and no aurora - we achieve an accuracy of 97.81±0.41%.206

Another issue is that northern lights images are classified as images showing clear skies and207

vice versa. This might be because some images show northern lights which are very faint208

and humans as well as the classifier cannot decide consistently whether to classify them as209

aurora or not.210

Overall there is a significant improvement over the classifier previously demonstrated by211

Clausen and Nickisch (2018) which achieved an accuracy of 81.7± 0.1%.212

4.2 Evaluating unknown images using the new classifier213

With the new classifier we are now able to classify any image taken with an all sky214

imager. On a dedicated computer with a GeForce GTX 1080 Ti, extracting features and215

applying the classifier to all 8 million images taken by UiO and available to us took less than216

a week, the bottleneck being the hard drive. We make the classifier and supplementing code217

available with this publication. Applying it to the THEMIS images could classify all images218

in about 3 months on our computer. On other computers, the speed of the application will219

vary depending on the available hardware.220

We use the previously mentioned timeframe to show some examples and test how well the221

classifier has performed.222

Figure 2 shows the 6 images with the highest confidences in each class. The probability for223

each class is plotted as bar graph on the right-hand side of each individual image. The bars224

are normalized to the maximum value in each image and sum up to 1. The slanted line225

is drawn at a probability of 20%, which is the probability the classifier is correct by pure226

chance. The bars are ordered the same way we present the names, classes and corresponding227

colors in Table 2.228

For the images classified as arcs (Figure 2a) we see different images of arcs. The second229

and third image in the right show only faint aurora, but the visible features still span the230

whole image in a single bow. The other images show a much brighter, discrete, single bow231

of aurora spanning over the whole image. Although arcs often follow an east-west-direction,232

the classifier also managed to classify the north-south images correctly. This is most likely233

due to the fact that the training images were randomly rotated before the features were234

extracted for training the classifier. The classifier therefore has no bias towards rotation of235

the images.236

Figure 2b shows the diffuse auroras and we can see that the images represent this class well.237

While the aurora are clearly visible, there is no clear structure in them.238

Figure 2c shows the discrete, but not arc-like aurora. Every image shows one or more warped239

or deformed arcs, but no arcs that span in a single, well-defined bow over the whole image.240

Figure 2d corresponds to a cloudy image. We can see that there was auroral activity in the241

background of some images, but in every case the aurora is obstructed by clouds.242

Figure 2e was to label images as showing the moon. To avoid damage due to oversatura-243

tion, the camera is disabled when the moon is in the field of view of the imager. The whole244

dataset therefore does not contain a single image showing the moon and only 48 images out245

of the subset of 550286 of the 2010/2011 season in total were labelled as such. What the246

classifier seems to have picked up on are images that show a clear background with single,247

very bright but small spots. The second image for example was taken on midnight of New248

Year’s Eve and shows exploding fireworks.249

Figure 2f shows a clear night sky with some auroral activity near the bottom left field of250

view of the imager or a slightly cloudy image with auroral activity in the background. These251

images would have likely been rejected by a human because they do not show enough and252

clear aurora to be useful.253

The examples show auroral images that clearly belong in the classes they have been assigned254

by the classifier. There are some false positives for the ”moon” class, but those images are255

rare, the classifier is not very confident in them and they sometimes show phenomena in256

the image the classifier has never seen before. The classifier is therefore very confident in257
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Highest confidence in arc

(a)

Highest confidence in diffuse

(b)

Highest confidence in discrete

(c)

Highest confidence in cloud

(d)

Highest confidence in moon

(e)

Highest confidence in clear sky

(f)

Figure 2: Images with highest confidences for each class (a) arcs, (b) diffuse aurora, (c)
discrete aurora, (d) cloudy, (e) moon (f) clear sky. The probability assigned to each class are
given as bar graph normalized to the highest probability for each image beside each image.
The dashed lines indicate equal class probability of 20%. The colors of the bars correspond
to the colors of the classes shown in Table 2.
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images that would have been labelled with the same confidence by a human operator. We258

have however seen above that sometimes there are difficulties for the classifier to distinguish259

between aurora classes and classification as clear skies.260

In Figure 3 we see an explanation why the classifier might have problems discerning between261

clear skies and different types of aurora. Each row in the figure shows two almost identical262

images, where the left image has been assigned the ”clear skies” label and the right image263

one of the different classes of aurora each. All of the images show a strong feature near264

the border of the image but an otherwise almost clear sky. Images like these were probably265

labelled as ”clear skies” because they are of no scientific use. These borderline cases are266

already ambiguous when labelled by a human, because different people would draw the line267

between usable and not-usable somewhere else.268

The same way we analyzed the images the classifier had its highest confidence in, we can269

analyze the images with the lowest confidence. These are the images where the label is270

assigned but the probability of the image being in the class is lowest for all images assigned271

to this class. We have plotted the images in Figure 4, the style is the same as for Figure 2.272

For the three aurora classes and the clear sky class we see that there are mostly images with273

auroral features near the bottom border of the image on an otherwise clear sky. These are274

again evidence for the problem of the classifier to distinguish edge cases.275

For the third class (cloudy) we see three of those images and two images that show a mostly276

dark background without any stars visible and only very faint aurora. For all of these the277

probabilities are again very close. The last image in the bottom left is almost completely278

dark. The probability for the moon-class is very high in this image compared to previous279

examples. This might be, because the only time the classifier has seen completely dark280

images without any stars, clouds or aurora has only been when the moon was visible in the281

image. Dark images without any features are not present in the training dataset.282

In the previous we have demonstrated an improved way to classify all sky images by first283

extracting their features using a convolutional neural network before using these features284

in an SVM for classification. The testing data performs well with 89.6% six-class accuracy.285

We show that our classifier handles unknown images from a different source equally well. In286

both cases, misclassification is largest for cases that would also be ambiguous to humans.287

288

4.3 UMAP of features289

Next, we want to understand how the extracted features relate to the images and their290

predicted classes. In the middle of Figure 5 we show how the features can be mapped into a291

2D space using Uniform Manifold Approximation and Projection for Dimension Reduction292

(UMAP) (McInnes et al., 2018). While we do not need this for further processing, this293

algorithm is good at picking out similarities and differences in numerical features and there-294

fore allows us to display the 1000-dimensional feature space condensed into a 2D space. All295

550286 images have been used to create the map and a random selection of 3000 images has296

been used to create the figure. Each point in the plot represents one of the 3000 selected297

images. The colors represent the classes they belong to, using the same color scheme as298

explained in Table 2 and used in Figures 2 and 4.299

The UMAP algorithm calculates a lower-dimensional feature representation of the orig-300

inal high-dimensional feature representation, grouping points of data with similar high-301

dimensional features close together and those with different features far apart. This means302

that points which lie close together in this mapping represent images which show similarities303

in their original features, images that are placed far apart are also far apart in their features.304

If the neural network succeeded in extracting the most important information out of the305

images into the features we expect to see optically similar images close to each other and306

optically different images to be far apart.307

To illustrate this, we have selected some parts or clusters of the mapping and plotted some308

images contained in these areas. Those areas are marked by red rectangles in the mapping309

and assigned a number which connects them to one of the groups placed around the map-310

–11–



manuscript submitted to JGR: Space Physics

(a) (b)

(c) (d)

(e) (f)

Figure 3: Labelled images of the OATH dataset. Left column: images labelled as ”clear
skies / no aurora”. Right column: images labelled ”discrete”, ”arc”, ”diffuse” respectively
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Lowest confidence in arc

(a)

Lowest confidence in diffuse

(b)

Lowest confidence in discrete

(c)

Lowest confidence in cloud

(d)

Lowest confidence in moon

(e)

Lowest confidence in clear sky

(f)

Figure 4: Images with lowest confidences for each class (a) class 0, (b) class 1, (c) class 2,
(d) class 3, (e) class 4 (f) class 5. The probability assigned to the label by the classifier is
given below each individual image. The slanted lines give a probability of 20%. The colors
of the bars correspond to the colors of the classes shown in Table 2.
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Figure 5: Features embedded into a 2D Space using the UMAP algorithm. Some areas of
interest are highlighted by red boxes with 4 random images from within each area shown
around the mapping. The numbers by the figures on the outside correspond to the numbers
of areas marked in the 2D space.

ping. Each of the groups consists of 4 randomly selected images with the predicted class311

given below the image and the number assigned to the group in the middle between the312

images.313

The first interesting cluster (areas 1 and 5) is located around (-7, 7) in the coordinate sys-314

tem of the mapping. Most of the images are predicted to be discrete aurora and some to be315

cloudy images. Upon inspection however we see that all of the images show the dome of the316

imager covered in snow. All of the images have been clearly misclassified. We can however317

also see that there are two subclusters, the bottom one (area 5) containing lighter images,318

the top one (area 1) darker images.319

The two clusters around (7, -7) (area 10) and (7, 22) (area 2) contain images which have320

been classified as cloudy. We can see important optical differences between the two areas:321

Area 2 contains images where sometimes fuzzy aurora are visible behind the clouds and322

the cloud cover appears to be quite thin. Area 10 contains darker and more homogeneous323

images. Although light is sometimes visible through these clouds, they appear to be thicker324
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than on the other images. Measurements taken with the ceilometer confirm that the cloud325

base height for clouds in area 2 is between 350 m to 750 m, whereas the cloud base heights326

for the clouds in area 10 are between 600 m to 1800 m or designated as ”cloud free” in about327

20% of the images. Although this does not give information about the thickness of the328

clouds, the difference in altitude could also explain the optical differences in the images.329

Those images in areas 2 and 10 are correctly predicted by the classifier to belong to the330

same class, but according to UMAP they are feature wise different enough to be placed far331

apart from each other, with clusters of images showing aurora placed in between them.332

Two such clusters showing aurora and placed between areas 2 and 10 are the two clusters333

around (13, 6) (area 12) and (11, 8) (area 8) and show images mostly classified as discrete334

aurora. For area 12 we can see that the bottom right image has been labelled to show the335

moon. All of the images in general show light sources near the bottom of the image, but336

the aurora is usually barely visible. We have already shown above that the classifier has337

problems discerning images with light-sources near the field of view of the imager, which338

explains the misclassification of at least one of the images.339

Area 8 also shows images that belong in the diffuse class and have been labelled as such.340

Around (9, 3) (area 11) we see a cluster of diffuse aurora. It is placed close the one of the341

previously discussed clusters of cloudy images. The images clearly contain aurora, but are342

still very similar to the cloudy images.343

Another cluster of mostly patchy aurora is placed around (12, 10) (area 6). Those images344

have a much darker and more homogeneous background but aurora is again clearly visible.345

The classification of these images would be ambiguous for humans and the classifier also346

occasionally classifies images as ”discrete” or ”cloudy” in this cluster.347

Next to it is area 4 around (11, 12), where we see a cluster of mostly arcs and non-auroral348

classes. Because arcs are defined to be thin bands spanning most of the sky, they are op-349

tically similar to images showing a clear night sky. The classifier again had problems and350

was not consistent in assigning the correct labels to images.351

Around (11, 14) (area 3) there is a cluster of almost completely dark images. They are352

located next to the previously analyzed cluster but show no features. Most of these images353

are predicted to be clear sky images or cloudy. As explained before, there are no completely354

black images of the night sky available for training. The images showing clouds also always355

show a uniform, thick cloud cover, which might be why the classifier labels a uniformly black356

image as cloudy.357

At last we have images around (6, 3) (area 7). These are the images which show auroral358

features near the bottom edge of the image and are labelled as showing no aurora. Many359

of these images will not be of scientific use, because the aurora are too fuzzy, too weak or360

make up to little of the image. This cluster contains 16238 of the 550286 images shown361

in this mapping (≈ 3.0%) which is comparable to the error between aurora classes and the362

clear sky class (≈ 2.3%) obtained from the testing data of the classifier. The cluster is also363

bordered by correctly classified images on its right and to its bottom. This means that the364

amount of images where this problem shows is likely confined to this cluster. While the365

error is higher than that of the testing data of the oath dataset, because all of the images366

have not been seen before, we estimate images like this make up less than 5% of the total367

images, accounting for images that are located somewhere else than this cluster.368

4.4 Potential applications369

To show applications beyond image classification we have selected two tasks. The first370

will be comparing our prediction of whether an image is cloudy to available meteorological371

data, the second will be modelling the perturbation in Earth’s magnetic field as measured372

locally for every image.373

Meteorological data in the form of the Cloud Base Height (i.e. the lowest part of a cloud374

directly above the ceilometer) is unique for us in such a way that we can obtain a ground375

truth for whether it is cloudy or not. For the other predictions there is no such way to obtain376

a reliable comparison. The reliability of our classifier with regards to the cloud prediction377

–15–



manuscript submitted to JGR: Space Physics

is not necessarily related to the reliability of the prediction for auroral classes, but good378

performance in this task suggests that prediction of other classes may perform equally well.379

Additionally, if this performs well, it can be applied to reliably filter and remove cloudy380

images from unclassified datasets before further processing.381

Magnetometer data is not related directly to any measurable quantity in the images, but382

as explained in the introduction, northern lights and variations in the Earth’s magnetic383

field show a strong physical connection. The aurora are the optical manifestation of how384

the Earth’s magnethosphere is influenced by the solar wind, and how ionospheric currents385

due to energetic particles influence the measurements of the Earth’s magnetic field. Being386

able to connect images to physical measurements could allow researchers to analyze many387

images at once or enable large scale statistical analysis of images. Studies that need to388

analyze many images could therefore be sped up or expanded to larger timescales or missing389

data could be extrapolated from auroral images.390

Based on the features extracted by the neural network we therefore try to predict values391

for the perturbations in the Earth’s local magnetic field as measured by the magnetometer392

collocated to the all sky imager.393

4.4.1 Predicting Cloud Coverage394
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Figure 6: Assessment of the prediction quality for ”cloudy” versus ”non-cloudy”. Panel
(a) shows the accuracy as a function of the threshold and Panel (b) shows the ROC curve.
In both plots, the continuous blue line shows our thresholded prediction and the orange
dotted line corresponds to a random classifier. In the thresholded prediction of Panel (a),
a small threshold of 0 is equivalent to predict every image as being cloudy (giving 30%
accuracy which is equal to the overall fraction of cloudy images). A large threshold of
1 is equivalent to predict every image as being non-cloud (giving 70% accuracy which is
equal to the overall fraction of non-cloudy images). The two distinguished working points of
Panel (b) correspond to a ”cloud removal” (green) and ”cloud extraction” (red) application
scenario.

It is important to note that the ceilometer only measures the Cloud Base Height395

directly above it, therefore the prediction and measurement might disagree slightly, but it396

is still good for a general evaluation. Here, every image is assigned the label ”cloudy” if the397
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value returned by the ceilometer is below 2000 m or ”not cloudy” otherwise. Clouds at a398

medium altitude are not considered to make the image cloudy because they do not obstruct399

enough of the field of view of the classifier.400

We are using the classifier that we previously trained on the OATH images without retraining401

it on the ceilometer data. The images and ceilometer data of this section belong to a new402

set of data previously unknown to the classifier.403

Because the classifier not only returns the final assigned class, but also the probabilities for404

each class, we can use the probability for each image to be ”cloudy”. Ignoring all other405

probabilities, we can slide the threshold above which an image is classified as ”cloudy” by406

our classifier. For each threshold we calculate the accuracy of the prediction, i.e. how407

often the predicted label agrees with the label assigned by the CBH extracted from the408

ceilometer.409

The result of this is shown in blue in Figure 6a. For a low threshold, every image is410

classified as cloudy and we achieve an accuracy of about 30%, equal to the amount of cloudy411

images. The maximum accuracy of 84.0% is achieved at a threshold of 49.6%. Increasing412

the threshold further, the limit goes towards classifying everything as non-cloudy, which is413

the case in about 70% of the images. If we were to randomly predict an image to be either414

cloudy or not at a probability of 30:70 according to the classes’ distribution in the dataset,415

we would obtain a curve as shown in orange in Figure 6a. The shape of the curve based416

on our thresholded prediction suggests that our classifier performs significantly better than417

randomly guessing and that the two classes are well separated by a threshold near 50%418

although there are twice as many non-cloudy images as there are cloudy images.419

In Figure 6b we show the true positive rate plotted against the false positive rate. Because420

we use the ceilometer as ground truth, an image is a true positive, if both ceilometer and421

classifier label it ”cloudy” and false positive, if the ceilometer labels ”not cloudy” but the422

classifier labels ”cloudy”. We see a typical receiver operating characteristic (ROC) curve423

with an area under the curve of 0.88. The ROC curve summarizes how well the two classes’424

distributions can be separated by the classifier and can be used to tune the classifier to the425

desired thresholds. On the curve we have marked two possible scenarios for how to tune the426

classifier when using it to filter out cloudy images in a dataset.427

For the red mark, the false positive rate was set to 5%. In this case, 49% of the cloudy428

images would be identified correctly and the remaining 51% of cloudy images would go429

undetected. This could be a desirable setting to remove the most cloudy images, if some430

filtering is required but the following processing is robust enough to handle some cloudy431

images or if the sample size of the remaining images should be kept as large as possible.432

The green marking shows the opposite case. Here, the true positive rate was set to 95%,433

meaning that almost every cloudy image was detected. This however leads to falsely labelling434

46% of the non-cloudy images as well. This approach could be used when rigid filtering is435

required at the cost of reducing the remaining sample size.436

Overall we see that our classifier compares well to real-world data where we have a ground437

truth available to compare it to. It will be useful for filtering if there are no other means of438

filtering available or to support other filtering methods. The accuracy of this method will439

however depend on the distribution of classes in the dataset it is applied to. Depending on440

the application, an initial threshold for filtering can be chosen based on our ROC curve but441

should be refined on some manually labelled test cases. Retraining the classifier on a pure442

”cloudy” vs ”not cloudy” basis could also further improve this technique.443

4.4.2 Predicting magnetometer values444

To show that the features can be used beyond image classification we try to predict445

perturbations in the Earth’s local magnetic field. We only used images and their respective446

features where our classifier placed the images into one of the categories showing aurora and447

where the Cloud Base Height was above 2000 m. This gives 178783 images for analysis out of448

originally 550286 within the timeframe November 2010 - February 2011. This is even more449

restrictive than relying solely on the classifier’s prediction to ensure our dataset contains as450
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little noise as possible at the cost of removing some otherwise good images.451

Figure 7 shows the predictions of the perturbations in Earth’s local magnetic field based452

on the extracted features. We have selected 3 events based on their effects on the magnetic453

field. The first is shown in Figure 7a, which shows an event with weak perturbations in the454

magnetic field. Figure 7b shows an event with medium sized perturbations and 7c the event455

where the strongest perturbations have been observed. In all figures the blue connected456

line shows all data available for the season, whereas the orange dots mark the values used for457

testing. The green dots then represent the values belonging to these testing data predicted458

by a linear ridge model trained on the extracted features. The red line shows a running459

average (n=50) through the predicted values and the purple line a running average through460

the differences between the predicted and testing data.461

Observing the single, weak event on 2010-12-06 (Figure 7a), we see that although the pre-462

dictive capability per image is low, the running average is able to follow the trend measured463

by the magnetometer well. An exception to this is the second half of the peak around464

10:00UTC, where the prediction already drops to the value observed after the peak. Manu-465

ally analyzing the images for this point in time yielded no answer as to why this could have466

happened.467

A stronger event on 2011-01-08 (Figure 7b) shows how well the model is able to follow even468

larger peaks such as the one at around 21:00UTC and keeping the same trend as the testing469

data before and after the event.470

For the last event on 2011-02-05 (Figure 7c) we see much worse predictive capability of the471

model. Single data points are trying to fit onto the large peaks and we see that the run-472

ning average is trying to follow the peaks, but only the last peak around 21:00UTC can be473

somewhat matched. This comes to no surprise because this is the strongest event observed474

during the whole season. Out of the approximately 200000 datapoints used for training,475

only a few hundred belong to this event. The model has therefore not seen enough data like476

this to be able to accurately predict it.477

In Figure 7d we show a scatter plot of the predicted data vs the testing data. In blue we478

show points taken on their own, in orange we show the time-averaged data as explained479

previously.480

For both cases, the points’ center of mass lies in the origin and 96% of the points are within481

a 100 nT radius around the origin. These points correspond to events as displayed in Figure482

7a and Figure 7b except for the large peak in the beginning.483

Ideally every point would fall on the black line that is drawn where Btest = Bprediction. For484

points closer to the origin, the smoothed predictions are closer to the line, whereas the sin-485

gle predictions show larger errors. Towards larger negative test values, the predicted values486

underestimate the testing values in most cases.487

In Table 3 we give the errors and coefficients of determination obtained for each event and488

the whole season. The data for the whole season as well as for the weak and medium events489

produces lower errors when the running average of the data is taken instead of every point490

of data on its own. Only for the largest event this method performs worse. A likely reason491

is that the width of the running average of n=50 is larger than the width of the peaks that492

are to be predicted. Strong but narrow peaks can not accurately be smoothed onto, even if493

the single values perfectly matched the data.494

Over the whole season the coefficient of determination is R2 = 0.57 for the smoothed data.495

Table 3: Mean squared errors and absolute errors for single values and the running average
of the prediction for the whole season and 3 selected events.

figure Event length Mean squared error [nT] Mean absolute error [nT] Coefficient of Determination (R2)
[# of test-datapoints] single value running average single value running average single value running average

all data 35 706 1208.4 975.0 20.3 15.0 0.47 0.57
weak event 7a 1000 348.1 119.4 13.8 8.0 −1.61 0.10
medium event 7b 1290 942.2 788.6 23.5 19.4 0.16 0.29
large event 7c 320 25 982.3 29 938.2 109.8 113.3 −0.01 −0.17
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Figure 7: Predictions of the magnetic field component in the X direction for the 2010 /
2011 season, based on features extracted by the neural network. Panel (a) shows a small
event during the season, Panel (b) an event of medium strength and Panel (c) the strongest
perturbation event during the season. Note that the scale of the y-axis differs. Panel (d)
shows a scatter plot of the predicted vs the testing data for single data points and their
smoothed values.

For the selected weak and medium events, this value is lower each, but the coefficient ob-496

tained for the smoothed data is in each case better. The large event performs bad in general.497

Here the smoothing had a negative effect on the coefficient, likely for the same reasons why498

the errors also increased for the smoothed data.499

Overall, we find that that our model cannot predict the perturbations on a single-image-500

basis but performs well when modelling the trend of the perturbations based on single-501

image-predictions. The model performs best for small perturbations < 100 nT because 96%502
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of the data lie within this range. Larger perturbations are indicated, but cannot be matched503

due to the nature of the model and unavailability of training data.504

5 Conclusion and Outlook505

Based on the Oslo Auroral THEMIS (OATH) dataset, containing 5824 labelled all-506

sky images in six categories - ”arc”, ”diffuse”, ”discrete”, ”cloud”, ”moon”, ”clear sky/no507

aurora”, we have evaluated the performance of 80 pretrained neural networks in terms of508

speed of feature extraction and performance of the extracted features for classification using509

a ridge classifier. The best performing network’s features have been used to train a support510

vector machine, where the best hyperparameters have been evaluated using tenfold cross val-511

idation. We achieve 89.58±0.90% accuracy in the six-class classification, and 97.81±0.41%512

when aggregating images into two classes ”aurora” and ”no aurora” after classification.513

For our test images, the biggest errors arise from misclassification between auroral classes514

among each other and between the auroral classes and ”clear sky”. Both problems can be515

shown to originate in the training data, where images cannot be identified to clearly belong516

only in either class, resulting in ambiguity in the labels.517

We show the application of our classifier to 550,000 previously unlabelled images taken in518

Ny Ålesund between Nov 2010 and Feb 2011. To test the classifier, we analyse its confi-519

dence in several subsets of the data. We show that images are assigned their correct labels520

with high confidence but that there are also images where aurora is only visible in small521

parts of the sky that are labelled ambiguously by the classifier, most likely because of the522

same problem in the training data as for the testing data. Improving the training data by523

introducing more labelled images from different sources and allowing multi labelled images524

(e.g ”arcs & clouds”) could lead to an improvement in prediction.525

To better understand the extracted features, we employ UMAP to create a 2D representa-526

tion of the 1000-dimensional feature space. This showed that optically similar images lie527

close together in the mapped feature space.528

To show physical application beyond classification and test our classifier’s performance on529

real-world data, we compared the predictions of the ”cloudy” class to meteorological data530

and predict perturbations in the Earth’s local magnetic field based on the extracted features.531

We find that the classifier accurately distinguishes between cloudy and non-cloudy images in532

84% of the images, performing better than randomly guessing. The output of the classifier533

can easily be finetuned to be used as a filter to remove cloudy images from a dataset with534

desired sensitivity or specificity.535

When predicting the magnetic field values, we find that the predictive capability of a sin-536

gle image is not enough to accurately predict the magnetic field values, however a rolling537

average is able to accurately follow the measured values’ trend. This shows the rudimen-538

tary connection between the features extracted from the images and underlying physical539

phenomena. Because auroral images are taken as a time series, modelling of magnetic field540

values could be improved by employing a model that takes the time-series nature of the541

data into account.542

We have therefore shown that the approach demonstrated in a previous paper is viable543

for large scale application. All our methods use publicly available, tested and trustworthy544

python libraries (PyTorch and scikit-learn), which are already used in many other scientific545

environments and can be applied in just a few lines of code.546

The images used for training and the images the classifier was applied to are from different547

origins, are of different size and are in a different format but were compatible to each other548

without requiring major modifications to the code. The classifier is also made publicly549

available under the Attribution 4.0 International (CC BY 4.0) license giving anyone the550

possibility to classify images with just a few lines of code. GPU based feature extraction551

followed by classification could be applied to millions of images in a week, showing that this552

is a viable approach for our datasets and others like the THEMIS images.553
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Appendix A Overview of tested neural networks567

Table A1 shows all tested pretrained neural networks. The data is taken from the568

”times.csv” file we provide in machine-readable format alongside. This data can therefore569

be used to recreate our extraction techniques without manual modifications to the contents570

of the file. The ”model” column gives the name of the model as used by torchvision or571

pretrained-models.pytorch. and the origin of the model. The suffix ” cadene” marks mod-572

els from pretraine-models.pytorch (Cadene, 2020) and ” torchvision” those from PyTorch’s573

(Paszke et al., 2019) torchvision3. The ”key” column gives the name of the dataset this574

network was trained on. In most cases, this is the ”imagenet” dataset, but some networks575

may differ. ”num classes” is the amount of output classes, equal to the amount of classes in576

the traning dataset. ”size” is the size of the input image the neural network requires. This577

size has to be matched exactly, images therefore might need to be scaled, resized, cropped578

or padded to match this requirement. ”mean” and ”std” are the mean and standard de-579

viation of the training dataset in the RGB-channels of the image. All images have to be580

transformed according to these values. ”diff” and ”mem” are the time used for extraction581

of features from all images in the OATH-dataset and the amount of memory used during582

extraction. The last four columns give the accuracy and standard deviation for 2 and 6583

classes prediction each.584

Appendix B Gridsearch for Hyperparameters585

Figure B1 shows the gridsearch performed to find the best hyperparameters. In order586

to emphasize the plateau for which the highest performance is achieved, we have decided to587

cut off accuracies below 85%. The jagged edges in the top area of the figure are artefacts588

due to interpolation and the cut-off, not reflecting the actual data. The classifier performs589

best for γ = 0.001 and C = 10. For higher values of C and constant γ almost the same590

accuracy on the data can be achieved, but increasing C would likely lead to overfitting on591

the training data and decreased classification performance on unseen data.592
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Table A1: Overview of all tested pretrained neural networks. The ”model” column contains
the networks’ identifier, where the first part is the name, the second part the source of the
network, the ”key” on which set of data it has been trained on, ”num class” the amount
of features extracted by the network, ”size”, ”mean” and ”std” the required size and nor-
malisation values for the provided image, ”diff” and ”mem” the time in seconds and used
memory in MB to extract all features, ”acc class2”, ”dev class2”, ”acc class6”, ”dev class6”
the accuracies and standard deviations for predicting OATH images. The table is sorted in
the order of which the neural networks were evaluated. Floating point numbers have been
rounded to 4 decimal places for convenience. The table is accessible in machine readable
form as the ”times.csv”-file.

model key num classes size mean std diff mem acc class2 dev class2 acc class6 dev class6
0 fbresnet152 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 68.2068 2175.0000 0.9513 0.0039 0.8015 0.0067
1 bninception cadene imagenet 1000 224 [104. 117. 128.] [1. 1. 1.] 45.9797 3369.0000 0.8815 0.0078 0.6857 0.0066
2 resnext101 32x4d cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 65.0266 3369.0000 0.9580 0.0041 0.8042 0.0048
3 resnext101 64x4d cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 83.1215 4153.0000 0.9484 0.0018 0.8066 0.0093
4 inceptionv4 cadene imagenet 1000 299 [0.5 0.5 0.5] [0.5 0.5 0.5] 73.1479 4153.0000 0.9504 0.0037 0.7969 0.0071
5 inceptionv4 cadene imagenet+background 1001 299 [0.5 0.5 0.5] [0.5 0.5 0.5] 71.0594 4153.0000 0.9483 0.0021 0.7973 0.0070
6 inceptionresnetv2 cadene imagenet 1000 299 [0.5 0.5 0.5] [0.5 0.5 0.5] 77.2813 4189.0000 0.9568 0.0014 0.8185 0.0032
7 inceptionresnetv2 cadene imagenet+background 1001 299 [0.5 0.5 0.5] [0.5 0.5 0.5] 78.1985 4189.0000 0.9550 0.0028 0.8215 0.0082
8 alexnet cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 40.4227 4189.0000 0.9343 0.0047 0.7815 0.0066
9 densenet121 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 48.8951 4189.0000 0.9573 0.0058 0.8247 0.0092
10 densenet169 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 51.6538 4193.0000 0.9582 0.0040 0.8063 0.0059
11 densenet201 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 55.1744 4257.0000 0.9582 0.0044 0.8189 0.0072
12 densenet161 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 64.7054 4313.0000 0.9583 0.0028 0.8284 0.0050
13 resnet18 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 43.8311 4313.0000 0.9492 0.0044 0.7922 0.0082
14 resnet34 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 46.2278 4313.0000 0.9462 0.0039 0.7936 0.0075
15 resnet50 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 50.5016 4321.0000 0.9524 0.0029 0.8096 0.0020
16 resnet101 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 59.4153 4373.0000 0.9573 0.0025 0.8088 0.0077
17 resnet152 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 63.5194 4455.0000 0.9571 0.0037 0.8133 0.0070
18 inceptionv3 cadene imagenet 1000 299 [0.5 0.5 0.5] [0.5 0.5 0.5] 59.1663 4493.0000 0.9548 0.0023 0.8219 0.0027
19 squeezenet1 0 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 44.2880 4495.0000 0.9554 0.0052 0.8198 0.0048
20 squeezenet1 1 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 42.5836 4497.0000 0.9517 0.0023 0.8196 0.0041
21 vgg11 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 51.5564 5281.0000 0.9496 0.0024 0.7828 0.0063
22 vgg11 bn cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 49.1940 6065.0000 0.9442 0.0020 0.7981 0.0051
23 vgg13 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 52.7669 6065.0000 0.9446 0.0040 0.7897 0.0037
24 vgg13 bn cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 54.1080 6849.0000 0.9448 0.0019 0.7829 0.0093
25 vgg16 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 56.4526 6849.0000 0.9342 0.0045 0.7756 0.0096
26 vgg16 bn cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 55.4583 6849.0000 0.9449 0.0033 0.7785 0.0070
27 vgg19 bn cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 58.5755 6849.0000 0.9445 0.0038 0.7731 0.0049
28 vgg19 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 56.6498 7633.0000 0.9386 0.0023 0.7710 0.0042
29 nasnetamobile cadene imagenet 1000 224 [0.5 0.5 0.5] [0.5 0.5 0.5] 50.6985 7633.0000 0.9512 0.0022 0.8076 0.0112
30 nasnetalarge cadene imagenet 1000 331 [0.5 0.5 0.5] [0.5 0.5 0.5] 159.2706 11131.0000 0.9517 0.0023 0.8163 0.0095
31 nasnetalarge cadene imagenet+background 1001 331 [0.5 0.5 0.5] [0.5 0.5 0.5] 161.6795 11131.0000 0.9573 0.0027 0.8254 0.0036
32 dpn68 cadene imagenet 1000 224 [0.4863 0.4588 0.4078] [0.2348 0.2348 0.2348] 52.6899 11131.0000 0.9442 0.0039 0.7962 0.0071
33 dpn68b cadene imagenet+5k 1000 224 [0.4863 0.4588 0.4078] [0.2348 0.2348 0.2348] 52.3839 11131.0000 0.9542 0.0037 0.8159 0.0061
34 dpn92 cadene imagenet+5k 1000 224 [0.4863 0.4588 0.4078] [0.2348 0.2348 0.2348] 62.0724 11131.0000 0.9588 0.0031 0.8068 0.0040
35 dpn98 cadene imagenet 1000 224 [0.4863 0.4588 0.4078] [0.2348 0.2348 0.2348] 77.0900 11131.0000 0.9471 0.0069 0.7915 0.0053
36 dpn131 cadene imagenet 1000 224 [0.4863 0.4588 0.4078] [0.2348 0.2348 0.2348] 88.3290 11131.0000 0.9460 0.0042 0.8003 0.0062
37 dpn107 cadene imagenet+5k 1000 224 [0.4863 0.4588 0.4078] [0.2348 0.2348 0.2348] 93.2658 11131.0000 0.9494 0.0018 0.7943 0.0040
38 xception cadene imagenet 1000 299 [0.5 0.5 0.5] [0.5 0.5 0.5] 71.9872 11131.0000 0.9525 0.0072 0.8184 0.0071
39 senet154 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 101.3283 4105.0000 0.9576 0.0045 0.8316 0.0057
40 se resnet50 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 50.6819 4105.0000 0.9606 0.0029 0.8353 0.0059
41 se resnet101 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 57.3070 4123.0000 0.9651 0.0045 0.8282 0.0088
42 se resnet152 cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 67.7151 4159.0000 0.9598 0.0031 0.8366 0.0049
43 se resnext50 32x4d cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 55.1590 4159.0000 0.9562 0.0034 0.8228 0.0044
44 se resnext101 32x4d cadene imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 66.5890 4159.0000 0.9629 0.0031 0.8247 0.0064
45 cafferesnet101 cadene imagenet 1000 224 [102.9801 115.9465 122.7717] [1. 1. 1.] 55.7170 4159.0000 0.8600 0.0057 0.6546 0.0080
46 pnasnet5large cadene imagenet 1000 331 [0.5 0.5 0.5] [0.5 0.5 0.5] 158.9650 8331.0000 0.9434 0.0066 0.7961 0.0079
47 pnasnet5large cadene imagenet+background 1001 331 [0.5 0.5 0.5] [0.5 0.5 0.5] 158.2496 8331.0000 0.9465 0.0049 0.7955 0.0080
48 polynet cadene imagenet 1000 331 [0.485 0.456 0.406] [0.229 0.224 0.225] 136.7295 9367.0000 0.9551 0.0065 0.8188 0.0096
49 alexnet torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 40.2826 9367.0000 0.9368 0.0034 0.7863 0.0078
50 vgg11 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 51.1166 9367.0000 0.9477 0.0016 0.7869 0.0099
51 vgg11 bn torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 48.9552 9367.0000 0.9476 0.0049 0.7989 0.0044
52 vgg13 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 52.3303 9367.0000 0.9442 0.0032 0.7858 0.0064
53 vgg13 bn torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 54.1776 9367.0000 0.9475 0.0052 0.7912 0.0128
54 vgg16 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 55.1364 9367.0000 0.9291 0.0069 0.7782 0.0045
55 vgg16 bn torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 59.0248 9367.0000 0.9452 0.0041 0.7804 0.0045
56 vgg19 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 56.4227 9367.0000 0.9383 0.0021 0.7749 0.0035
57 vgg19 bn torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 57.9345 9367.0000 0.9408 0.0057 0.7742 0.0080
58 resnet18 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 42.8714 9367.0000 0.9472 0.0036 0.7927 0.0073
59 resnet34 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 45.7796 9367.0000 0.9477 0.0030 0.7923 0.0042
60 resnet50 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 52.6868 9367.0000 0.9524 0.0053 0.8061 0.0051
61 resnet101 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 55.1196 9367.0000 0.9543 0.0026 0.8160 0.0128
62 resnet152 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 62.0644 9413.0000 0.9578 0.0045 0.8049 0.0049
63 squeezenet1 0 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 43.7105 9417.0000 0.9562 0.0033 0.8182 0.0041
64 squeezenet1 1 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 41.6251 9419.0000 0.9483 0.0021 0.8124 0.0075
65 densenet121 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 53.7737 9451.0000 0.9571 0.0013 0.8243 0.0086
66 densenet169 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 53.0848 9503.0000 0.9578 0.0024 0.8112 0.0085
67 densenet161 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 60.5094 9559.0000 0.9607 0.0050 0.8247 0.0121
68 densenet201 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 54.9551 9617.0000 0.9614 0.0033 0.8169 0.0095
69 inception v3 torchvision imagenet 1000 299 [0.485 0.456 0.406] [0.229 0.224 0.225] 60.5731 9641.0000 0.9515 0.0030 0.8066 0.0108
70 googlenet torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 43.8201 9653.0000 0.9508 0.0040 0.8141 0.0048
71 shufflenet v2 x0 5 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 39.8624 9653.0000 0.9539 0.0048 0.8190 0.0048
72 shufflenet v2 x1 0 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 40.6544 9655.0000 0.9551 0.0029 0.8306 0.0044
73 mobilenet v2 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 44.5089 9663.0000 0.9523 0.0036 0.8065 0.0081
74 resnext50 32x4d torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 57.5930 9671.0000 0.9526 0.0027 0.8072 0.0052
75 resnext101 32x8d torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 76.8500 9683.0000 0.9602 0.0042 0.8195 0.0051
76 wide resnet50 2 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 55.4168 9691.0000 0.9534 0.0017 0.8096 0.0053
77 wide resnet101 2 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 65.0305 9701.0000 0.9483 0.0021 0.8061 0.0086
78 mnasnet0 5 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 42.2927 9703.0000 0.9555 0.0047 0.8230 0.0079
79 mnasnet1 0 torchvision imagenet 1000 224 [0.485 0.456 0.406] [0.229 0.224 0.225] 47.8704 9713.0000 0.9668 0.0038 0.8295 0.0079
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Figure B1: Performance for hyperparameters C and γ evaluated using 10 fold cross valida-
tion
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Syrjäsuo, M. T., & Donovan, E. F. (2005). Using Relevance Feedback in Retrieving Auroral693

Images. In Computational intelligence (pp. 420–425).694
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