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Abstract

Large-scale measurements of the spatial distribution of water content in soils and snow are challenging for state-of-the-art

hydrogeophysical methods. Cosmic-ray neutron sensing (CRNS) is a non-invasive technology that has the potential to bridge

the scale gap between conventional in-situ sensors and remote-sensing products in both, horizontal and vertical domains. In this

study we explore the feasibility and potential of estimating water content in soils and snow with neutron detectors in moving

trains. Theoretical considerations quantify the stochastic measurement uncertainty as a function of water content, altitude,

resolution, and detector efficiency. Numerical experiments demonstrate that the sensitivity of measured water content is almost

unperturbed by train materials. And finally three distinct real world experiments provide a proof of concept on short and

long-range tracks. With our results a trans-regional observational soil moisture product becomes a realistic vision within the

next years.
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Key Points:8

• Cosmic-ray neutron detectors in trains respond to spatial patterns of water con-9

tent.10

• First experiments and analysis provide a proof of concept.11

• Using the railway system for regular environmental monitoring could extend the12

measurement capability to trans-regional and nationwide scales.13
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Abstract14

Large-scale measurements of the spatial distribution of water content in soils and snow15

are challenging for state-of-the-art hydrogeophysical methods. Cosmic-ray neutron sens-16

ing (CRNS) is a non-invasive technology that has the potential to bridge the scale gap17

between conventional in-situ sensors and remote-sensing products in both, horizontal and18

vertical domains. In this study we explore the feasibility and potential of estimating wa-19

ter content in soils and snow with neutron detectors in moving trains. Theoretical con-20

siderations quantify the stochastic measurement uncertainty as a function of water con-21

tent, altitude, resolution, and detector efficiency. Numerical experiments demonstrate22

that the sensitivity of measured water content is almost unperturbed by train materi-23

als. And finally three distinct real world experiments provide a proof of concept on short24

and long-range tracks. With our results a trans-regional observational soil moisture prod-25

uct becomes a realistic vision within the next years.26

Plain Language Summary27

Large-scale measurements of the spatial distribution of water content in soils and28

snow are challenging for state-of-the-art hydrogeophysical methods. Cosmic-ray neutron29

sensing (CRNS) is a mobile and non-invasive technology that has the potential to bridge30

the scale gap between conventional in-situ sensors and satellite measurements in both,31

the horizontal and the vertical domain. In this study we explore the feasibility and po-32

tential of estimating water content in soils or snow with neutron detectors in trains. The-33

oretical considerations estimate how train velocity and recording period influence the un-34

certainty of such measurements and demonstrate that train materials hardly affect the35

neutron response to water content. Three distinct experiments provide a proof of con-36

cept on short and long-range tracks. With our results a trans-regional observational soil37

moisture product becomes a realistic vision within the next years.38
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1 Introduction39

Water stored in soils and snow controls the energy and water exchange between40

the terrestrial surface and the atmosphere (Vogel et al., 2018), impacts regional weather,41

and shapes the development of hydrometeorological extremes like heat waves, droughts,42

floods, or avalanches (e.g., Lehning et al., 1999; Douville & Chauvin, 2000; Liang & Yuan,43

2021). Therefore, a solid estimation of land surface water at relevant spatiotemporal scales44

is of utmost importance.45

Satellite-based remote sensing platforms aim at global estimations of water in soils46

and snow at resolutions of several kilometers with the prospect of finer resolutions us-47

ing new instrumentation and algorithms (Chan et al., 2016; Mattia et al., 2018; Foucras48

et al., 2020). However, major limitations are the shallow measurement depth (∼cm), long49

return frequencies (∼days), and low performance during complex weather conditions, un-50

der vegetation cover, and in complex terrain (Fang & Lakshmi, 2014; Lawford, 2014).51

Ground-based in-situ sensors have been developed to measure water content in differ-52

ent soil depths with high spatiotemporal precision and extent from the point to smaller53

field scales (Bogena et al., 2010; Romano, 2014; Ochsner et al., 2013; Dorigo et al., 2021).54

However, the sensors require regular maintenance, the spatial representativity is low (∼m),55

and the concept is not scalable to regional scales (Pan & Peters-Lidard, 2008; Schelle et56

al., 2013).57

The critical scale gap between in-situ and remote sensing techniques could be closed58

by Cosmic-Ray Neutron Sensing (CRNS) (Zreda et al., 2012; Andreasen et al., 2017).59

The proximal sensing technique is based on the passive and non-invasive detection of cosmic-60

ray neutrons. Their intensity strongly depends on the hydrogen abundance in the sur-61

rounding environment and thereby responds to water. According to Köhli et al. (2015),62

the signal intrinsically covers large areas (∼15 ha) and soil depths (∼10–70 cm), mak-63

ing it a ”fundamental breakthrough . . . in the monitoring . . . of soil moisture status”64

(Romano, 2014). Stationary CRNS has been successfully applied in research, agriculture,65

and water resource management, usually at single locations, sometimes integrated in small66

or national networks (Evans et al., 2016; Andreasen et al., 2017; Fersch et al., 2020). To67

overcome this spatial limitation, the detector can be used in a mobile mode similar to68

the so-called car-borne CRNS rover. This mobile variant can capture spatially resolved69

information of root-zone soil moisture (or snow) from the field to catchment scale en pas-70
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Figure 1. CRNS on rails may close the gap for soil moisture products at relevant scales. (a)

Horizontal and vertical footprint of soil moisture measurement techniques (log scale). (b) Spatial

and temporal extent of stationary CRNS, mobile CRNS, and satellite systems.
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sant (Dong et al., 2014; McJannet et al., 2014; Schrön, Rosolem, et al., 2018; Fersch et71

al., 2018; Vather et al., 2019). However, this car-borne CRNS roving is a demanding method72

in terms of personnel and time constraints. A monitoring concept to support a trans-73

regional observational product would require significantly larger scales and more frequent74

measurements (see Fig. 1). One option for a new mobile platform is the use of existing75

transport infrastructure, such as public or cargo transportation (buses, trucks, or trains).76

While railway infrastructure is already attracting some interest in the field of ap-77

plied geophysics (Lavoué et al., 2021; Ižvolt et al., 2016), the present feasibility study78

specifically pushes the current limitation of mobile CRNS towards trans-regional mon-79

itoring. We will begin with theoretical considerations about the expected measurement80

uncertainty and spatial resolution, followed by a sensitivity study on the influence of ve-81

hicles and track beds using numerical simulations. We will then showcase three exper-82

iments in real trains to demonstrate the feasibility of train-based CRNS roving to trans-83

regionally monitor water content of soils and snow.84
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2 Basic considerations on the general feasibility85

The CRNS method relies on the detection of the natural neutron radiation in the86

energy range of 1–1000 eV. The key features of this method are:87

• neutrons are mostly insensitive to most materials other than hydrogen (Zreda et88

al., 2012),89

• the detector receives signals from all directions, integrating over a footprint area90

of ∼ 100–300 m radius (Köhli et al., 2015),91

• neutron intensity provides information regarding soil moisture from depths of up92

to 70 cm (Franz et al., 2013; Köhli et al., 2015).93

CRNS detectors usually consist of shielded proportional gas counters to detect passing94

epithermal neutrons (Zreda et al., 2012; Schrön, Zacharias, et al., 2018; Köhli et al., 2018).95

Their count rates are typically measured in counts per hour (cph) or counts per minute96

(cpm).97

2.1 From neutrons to water98

The measured neutrons respond to all static and dynamic hydrogen pools in the99

footprint, such as water in soils (Scheiffele et al., 2020), vegetation (Jakobi et al., 2018),100

and snow (Schattan et al., 2019). They are corrected for the effect of variable air pres-101

sure, air humidity, and incoming cosmic rays (Zreda et al., 2012; Hawdon et al., 2014;102

Schrön et al., 2016) using direct measurements or data from weather services. The re-103

lationship between corrected neutrons, N , and the total water θ contained in the var-104

ious pools has been described by Desilets, Zreda, and Ferré (2010) and adopted by most105

authors in the last decade. According to analysis from Köhli, Weimar, Schrön, and Schmidt106

(2021) it can be reformulated as:107

θ(N) ≈ p0
1−N/Nmax

p1 −N/Nmax
, (1)

where Nmax is the maximum neutron flux under dry conditions which mainly de-108

pends on the individual detector sensitivity, but has also been suspected to reflect site-109

specific conditions (Zreda et al., 2012). Parameters p0 = −0.115, p1 = 0.346, and Nmax =110

1.075N0 can be derived from the parameters used so far in the Desilets equation (Desilets111

et al., 2010) which most of the previous research studies refer to. Here, Nmax (or N0)112

represents site- and detector-specific efficiency and is often used as a calibration param-113

eter. In order to generate gravimetric and volumetric soil moisture products, we account114

for soil bulk density, soil lattice water, and organic material as described in Dong et al.115

(2014); McJannet et al. (2017); Schrön, Rosolem, et al. (2018) using the soil grids database116

(Hengl et al., 2017). Road-effect corrections are only applied for car-borne roving fol-117

lowing Schrön, Rosolem, et al. (2018) and should be adapted to railways in future re-118

search. Those and other factors could introduce systematic uncertainty to a specific de-119

rived product as has been quantified by Baroni et al. (2018) and Jakobi et al. (2020).120

In addition, Fersch et al. (2018) suggested a method to reduce uncertainties from land-121

scape heterogeneity passed by the moving detector. Nevertheless, all measurements have122

a lower limit of stochastic uncertainty in common due to the random nature of neutron123

detection.124

2.2 Stochastic measurement uncertainty and spatial resolution125

High count rates are essential to ensure a sufficiently high signal-to-noise ratio and126

reliable data products. Mobile measurements require a particularly high sensor efficiency127

to reduce the data accumulation period and the corresponding areal coverage (i.e., foot-128
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print length). This balance is a major challenge for large-scale CRNS applications that129

inextricably links measurement quality with spatial resolution.130

Due to the non-linearity of Eq. 1, the propagated water content uncertainty, ±σθ =131

θ(N)−θ(N∓σN ), is highly asymmetric. For simplicity, it can be estimated by a sym-132

metrical approximation approach suggested by Jakobi et al. (2020):133

σθ ≈ σN
p2N0

(N − p3N0)4

√
(N − p3N0)4 + 8σ2

N (N − p3N0)2 + 15σ4
N , (2)

where the count rate N(θ) follows from Eq. 1, σN ∼
√
N is its Gaussian uncertainty,134

N0 represents the detector-specific efficiency, and p2 = 0.0808, p3 = 0.372. The more135

neutrons N are collected per measurement, the lower are the signal-to-noise ratio σN/N136

and consequently the lower the uncertainty of the soil moisture product, σθ. N depends137

primarily on the water content, but it is ultimately constrained by detector type, aggre-138

gation window, and background radiation intensity. To express these dependencies, we139

introduce a new practical quantity, the so-called base counts:140

N0,base = N0 × a× b, (3)

where the aggregation factor a (in minutes) is the rolling filter window or record period141

over which neutron counts are aggregated (Schrön, Zacharias, et al., 2018), and b ∼ exp (β P )142

is the barometric factor which accounts for the cosmic radiation dependency on air pres-143

sure P at various altitudes (see Hendrick & Edge, 1966; Desilets et al., 2006, and sup-144

plement material S1). The detector used in this study typically runs at N0 ≈ 200 cpm145

at sea level, which corresponds to base counts of 200–1200 for temporal resolutions of146

a = 1–6 minutes, respectively.147
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Figure 2. Stochastic measurement uncertainty σθ (in absolute gravimetric percent) based

on actual soil moisture θ, the type of detector used, target spatiotemporal resolution, and typi-

cal topographic elevation. Base counts per measurement denotes the potential total number of

counts collected during a given aggregation period at a certain altitude. For example, a detector

with characteristic N0 = 500 cpm at sea level could generate soil moisture products with 1–18 %

uncertainty at 1 minute resolution. With a 3-minute moving average filter (factor a = 3) at 820 m

altitude (factor b = 2), this would be equivalent to 3000 base counts and 0.5–6.1 % uncertainty.

The temporal aggregation, however, also stretches out the footprint from 1 to 3 km at 60 km/h

speed. Shaded area of the barometric line indicates the parameter range of β = 135 ± 5 hPa.
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For increasing a, the footprint gets stretched out along the track and thereby in-148

creases the spatial scale of the measurement:149

footprintlength L = v · a/60 , (4)

With the velocity v (in km/h) and aggregation window a (in minutes) this leads to foot-150

print lengths of several kilometers. This already indicates an imminent tradeoff between151

the vehicle’s travel speed and spatial resolution.152

Figure 2 shows the uncertainty range of the derived soil water content (Eqs. 1 and153

2) that can be obtained with different base counts N0,base (Eq. 3). Due to the non-linearity154

of Eq. 1, the method provides a range of uncertainties from dry to wet conditions. Higher155

base counts, e.g. determined by more efficient detectors, longer aggregation periods (mid-156

dle panel), or higher topographic elevation (right panel), lead to a substantial decrease157

of σθ. In the case of regularly operated train routes, there is even a fourth option to re-158

duce the uncertainty along a track by repeated measurements during the day. The num-159

ber of repetitions would improve the measurement precision in a similar way as the ag-160

gregation factor a.161

2.3 Sensitivity analysis of neutron detection in a train wagon162

The hypothesis that neutron detectors can be used inside a train to measure wa-163

ter content in the surrounding area is not trivial, but has been supported by previous164

experiments using cars and by theoretical studies of neutron transport physics. In or-165

der to more specifically assess potential effects of train-like environments to the detec-166

tion efficiency, we set up neutron transport simulations with the Monte-Carlo tool URA-167

NOS (Köhli et al., 2015, 2018). In the model we defined rails as 25x25 cm steel bars and168

a 3 or 9 m wide track bed as soil with 6 % water content in accordance to data from Ižvolt169

et al. (2016). Two types of wagons have been modelled, an ”open” wagon consisting of170

a 10 cm thick steel plate at the bottom, and a ”closed” wagon with additional ceiling (10 cm171

steel rails
detector
Al. frame 1-10 mm
steel ceil 10 mm

a) b) c)

track bed 3-9m

so
il Ɵ

 

3
 m

steel wagon 25 mm
HDPE shield 15 cm
stoney subgrade
soil 6% moisture

Figure 3. a) The CRNS Rail Rover system mounted on a dolly in a train. b) Simulation de-

sign of a rail track and wagon made of steel bottom, steel ceiling, and an aluminium frame. c)

Simulation results show the dependency of the neutron count rate on dry and wet soil in various

scenarios: 1 track (3 m), 3 parallel tracks (9 m), an open wagon without frames/ceiling, alum-

nium frames of different widths, 15 cm HDPE shielding below the detector (cmp. photograph),

and the presence of people in adjacent wagons at 25 m distance from the (empty) detector wagon.

A constant relative span between neutrons under dry and wet conditions (given in %) indicates

constant measurement precision and general applicability of the θ(N) relationship independent of

the housing.
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steel of 1/10 density, i.e., effectively 1 cm thickness) and an aluminium frame at the sides172

of various widths. The whole train box exhibits a width of 3 m and contains a 1.5×0.5 m173

detector and an optional 15 cm thick polyethylene plate (HDPE) below. The latter is174

an experimental method aimed at reducing potential local effects (known as the road-175

effect, Schrön, Rosolem, et al., 2018). Humans in adjacent wagons (25 m distance from176

the detector) may depict an additional source of hydrogen in the sensor’s footprint and177

have been modeled by 1.5× 0.5 m objects of humid gas with 30 kg/m2 water content.178

The simulation results in Fig. 3 show the overall count rate for dry soil (light blue)179

relative to a bare soil scenario (first bar). They also emphasize the expected intensity180

drop for wet soil (dark blue), which is a measure for the sensitivity to soil moisture changes.181

The single track scenario (3 m width, second bar) increases the overall count rate, as ex-182

pected from the known road effect, but simultaneously reduces the sensor sensitivity from183

46 to 40 %. The steel bottom of the open wagon (bar 3) reduced the count rate by 18 %,184

but also restocks the sensitivity to 43 %. This bottom material thereby reduces the lo-185

cal effect of the track bed by half such that even the additional support of the much smaller186

HDPE shield becomes negligible, as indicated by the sixth bar. In the closed wagon, the187

steel ceiling also reduces the count rate by a few more percent, while the frame width188

does not seem to have significant influence on the signal (bars 4–5). Crowded adjacent189

wagons do not show substantial influence, but two additional rail tracks (total width of190

9 m) again reduce the sensitivity to soil moisture.191

It is important to note that measurement sensitivity, i.e. the neutron response to192

soil moisture between 10 and 50 % volumetric water content, remains almost unchanged193

throughout all scenarios. Wide track beds have the largest influence on the sensitivity,194

but this effect is already well understood and correction approaches for roads exist (Schrön,195

Rosolem, et al., 2018). The results indicate that the standard relationships to convert196

neutrons to soil moisture (Eq. 1) can be applied for CRNS monitoring using train wag-197

ons and probably need only very minor adaptions for specific vehicle configurations.198
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3 Experimental proof of concept199

Experiments along various train tracks have been performed to verify the theoret-200

ical considerations with empirical evidence. The detector used in this study is similar201

to the one used by Schrön, Rosolem, et al. (2018) with an original record period of 10202

seconds and a 15 cm polyethylene shield at the bottom. It has been fixed in a vertical203

mode on a dolly to ensure easy movement by a single person (see Fig. 3).204

3.1 Detecting landscape features with a regional train205

The first experiment challenges the hypothesis of whether or not a detector inside206

a train is capable of detecting environmental changes of water content outside a mov-207

ing train wagon. The railway from Leipzig to Berlin passes several different natural and208

urban landscape features at an altitude of ∼ 50 m a.s.l. and 30–140 km/h. On a ride in209

January 2019 their influence on the neutron response has been observed and shown ex-210

emplarily in Fig. 4. Nearby lakes, swamps, and forests substantially decreased the count211

rate (depending on their distance to the railway) due to their higher amount of water212

content. An intensity increase has been observed particularly in urban areas and near213

highly artificial structures, such as road network infrastructure, where stones, drainages,214

and dry and dense soil have been assembled. Underpass stations and underground tracks215

led to an extraordinary drop of the count rates, which almost ceased in deeper tunnels.216

This expected behaviour is just natural due to the limited penetration depth of atmo-217

spheric cosmic-ray neutrons. Residual neutron intensity can be explained by the natu-218

ral background radiation of soils (Missimer et al., 2019) and by the large scattering length219

of neutrons in air following underground pathways (Köhli et al., 2015).220
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Figure 4. Exemplary sections from the train ride with a regional train from Leipzig to Berlin.

Measurement points are visualized along the path at the end of each record period (10 sec).

Neutron count rates drop on passing lake Gröberner See and on passing a swamp near Wiesen-

hagen. High count rates can be observed near extensive motorway or railway structures, large

concrete areas or buildings. The cosmogenic neutron radiation drops substantially at a station

underpassing a massive railway bridge, and it almost vanishes in the 14 m deep tunnel below the

groundwater level in Berlin. Map background provided by OpenStreetMap.

–9–



manuscript submitted to Geophysical Research Letters

3.2 Train-based regional soil moisture measurements and groundtruthing221

Groundtruthing of CRNS measurements on rails with conventional point measure-222

ments is a difficult challenge due to the mismatch of scales. To make groundtruthing pos-223

sible, we used car-borne CRNS roving, which has been extensively validated by various224

independent measurements already in previous studies (e.g. Schrön, Rosolem, et al., 2018).225

Between the German cities Dessau and Zerbst, the train route is often crossed by reg-226

ular roads which in some parts also run in the close vicinity to the track. Measurements227

were conducted on the train several times a day at ∼ 60 m a.s.l. and 60–120 km/h. Af-228

terwards, the sensor was loaded into a car in horizontal mode and without bottom shield,229

and the railway route was followed on nearby roads. Occasionally, additional soil mois-230

ture measurements were taken using a hand-held TDR device at 0–10 cm depth along231

the track. The sparse data (not shown) ranged between 1 and 7 %, confirming the very232

dry conditions on that day as well as the overall performance of the mobile CRNS tech-233

nique in this region.234

Figure 5 presents the CRNS railway measurements (blue) and CRNS rover mea-235

surements within < 150 m distance around the railway. The neutron data has been fil-236

tered with a 1-minute moving average window and converted to soil moisture using Nmax =237

223 cpm. Car-borne rover processing and parameters were similar to Schrön, Rosolem,238

et al. (2018) with corrections for 5 m-wide concrete roads. The measurements on rails239

and on roads show a good agreement along the track despite the only partial spatial over-240

lap, the different type of vehicles used, and potential influence of track beds and passen-241

ger fluctuations. The influence of those and other local environmental features to both242

methods might be substantial (Schrön et al., 2017; Schrön, Rosolem, et al., 2018; Fer-243

sch et al., 2018) and may pose some challenge for future signal processing.244
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Figure 5. Validation experiment at the rail track between Dessau to Zerbst with a CRNS

system in a local train (blue line and shaded stochastic error) and the same CRNS system in a
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ularly dry summer conditions (RMSE=1.9 %). The track passed a number of urban areas, nearby

forests, and served two railway stations, Roßlau and Rodleben, which may have led to fluctuations

of passengers. Map background provided by OpenStreetMap.
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3.3 Train-based long-distance measurement of snow water equivalent245

To examine the capabilities of mobile CRNS on trans-regional railways, we con-246

ducted a long-distance experiment in February 2019 using a regional train from Garmisch-247

Partenkirchen (pre-alpine, southern Germany) to Munich, and a high-speed train from248

Munich to Leipzig (lowland, central Germany). The train journey covered altitudes from249

735 to 200 m a.s.l. and ran at 50–250 km/h. Data on air temperature and air humidity250

were taken from the German weather services. Incidental gaps in the GPS signal (due251

to the electrostatic shielding of train windows) were interpolated linearly.252

Figure 6 presents the measured neutron counts versus the 5 km product of Snow253

Water Equivalent (SWE) based on space-borne microwave radiometry and weather sta-254

tion data (Pulliainen, 2006; Takala et al., 2011). Since the separation of snow and soil255

water from the signal is still an open research topic, we do not offer a final SWE prod-256

uct from CRNS at this stage of the analysis. The data, however, already show a clear257

correlation between SWE obtained from remote sensing and neutron counts on rails, up258

to the observed maximum of 80 mm SWE, which is in accordance with the theory and259

observations made with stationary CRNS sensors (Schattan et al., 2017, 2019; Bogena260

et al., 2020). Larger values of snow pack could be expected near Garmisch-Partenkirchen261

following the topographic trend, however, these space-borne products are not available262

in complex alpine terrain (grey shaded area in the figure). The variability of the neu-263

tron counts and SWE measurements can be attributed to the larger CRNS uncertainty264

under wet conditions as well as the high heterogeneity of snow pack which is represented265

differently by both methods (Schattan et al., 2017).266

CRNS

CRNS neutrons versus Copernicus SWE (inverted) 

  3 Min aggregate

10 Min moving average

Berlin

Munich

Leipzig

Garmisch

Copernicus SWE
+/- uncertainty

C
o

p
e
rn

ic
u

s 
S
W

E

Copernicus  SWE

Figure 6. Left: Railway experiment on a long-distance train journey between Garmisch-

Partenkirchen and Leipzig along a clear snow gradient (color scale). Note that mountainous

regions cannot be resolved by this remote sensing product (hashed areas). Right: Measured

neutrons (blue) show an inverse dependence on surrounding snow water equivalent (SWE) as

indicated by the 5 km satellite product (black, inverted). Frequent variability indicates spatial

heterogeneity along the railway track which is differently represented by the two methods. The

letter ”S” indicates railway stations.
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4 Future challenges and potential for large-scale geophysics267

This study demonstrates a proof of concept for trans-regional monitoring of soil268

water content and snow with cosmic-ray neutron sensors on rails. Theoretical consid-269

erations showed that the stochastic precision of derived soil moisture lies in the range270

of 0.5–3 % or 5–25 % for dry or wet soil, respectively. It largely depends on the detec-271

tor efficiency, altitude, and averaging period. The latter also influences the spatial res-272

olution, which could span several kilometers depending on vehicle velocity. Repeated tran-273

sits along the same route would further contribute to higher measurement precision. Sim-274

ulations revealed that the sensitivity to soil water changes remains almost unchanged275

for sensors in trains, suggesting that the same processing approaches are applicable as276

for the established method of car-borne CRNS roving. Several experiments in different277

trains provided clear evidence for significant neutron response to surrounding changes278

of water content and confirmed the theoretical considerations.279

The footprint of mobile neutron measurements could cover up to half of a km2 pixel.280

While currently there is a lack of alternative geophysical methods which could observe281

root-zone water content at comparable scales (Binley et al., 2015), further research is needed282

to resolve a potential spatial scale mismatch to remote-sensing or model resolutions. Fu-283

ture studies are also required to further test this method under variable conditions. Cal-284

ibration and validation along the railway will remain a difficult challenge in the future285

but could be addressed by car-borne roving or mobile soil moisture sensor networks. Fu-286

ture research should particularly investigate ways to correct the signal for non-hydrological287

features, e.g. track beds, urban structures, or forest biomass. Artificial intelligence or288

the application of elementary orthogonal functions could be promising approaches to iden-289

tify those constant spatial patterns (Finkenbiner et al., 2019). Dynamic train load, such290

as cargo or human passengers, may have little impact as long as the sensor system is lo-291

cated in a separate wagon.292

The method indicates huge potential for large-scale mapping of soil water in the293

root zone and snow. Due to regular train traffic in public or cargo transport at national294

and international scales, CRNS on rails has the potential to become a highly distributed295

technique with minimal infrastructural investment. The method could be particularly296

useful on slow-moving trains in mountainous regions, where hydrological research is cur-297

rently very limited by low coverage of observations, while models and satellite products298

still have issues with complex terrain and weather conditions. Due to the hectare-scale299

footprint and the potentially large spatial extent, CRNS on rails could make an impor-300

tant contribution to filling the critical gaps between in-situ data, hydrologic modeling,301

and remote sensing products. Smart combinations of CRNS on rails, remote sensing, mod-302

els, and regionalization approaches could have the potential to support near-realtime drought303

monitors and other forecasting systems beyond the regional scale.304
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Blagotić, A., . . . others (2017). Soilgrids250m: Global gridded soil information390

based on machine learning. PLoS one, 12 (2).391
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Schrön, M., Zacharias, S., Köhli, M., Weimar, J., & Dietrich, P. (2016). Moni-479

toring environmental water with ground albedo neutrons from cosmic rays.480

In The 34th international cosmic ray conference (Vol. 236, p. 231). doi:481

10.22323/1.236.0231482
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S4 Data (raw and processed) for the train journey from Garmisch-Partenkirchen to

Munich to Leipzig (Manuscript section 3.3). Also attached is the Copernicus SWE geotiff

data downloaded from the Copernicus database.

1. S1. The barometric factor for neutron radiation

Cosmic radiation originates in space, producing high-energy neutrons and protons in

the upper atmosphere which propagate down to the Earth’s surface. The attenuation of

these particles by air mass can be expressed by the barometric factor:

b = eβ (P (z)−P (0)), (1)

which equals the standard pressure correction approach for neutrons (Zreda et al., 2012).

Here, β = (135 hPa)−1 is the atmospheric attenuation coefficient of neutrons (Hendrick &

Edge, 1966; Desilets et al., 2006) and air pressure P is particularly sensitive to changes

in altitude z following the barometric formula:

P (z) ≈ P (0) · (1 − (0.0065 z)/(T + 0.0065 z + 273.15))5.257. (2)

Parameter P (0) = 1013.15 hPa is the standard air pressure at sea level and T = 20◦C is

the atmospheric temperature.
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