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Abstract

Accurate estimates of surface mass balance over the Greenland ice sheet (GrIS) would contribute to understanding the cause of

recent changes and would help to better estimate the future contribution of the GrIS to sea-level rise. Given the limitations of

in-situ measurement, modeling, and remote sensing, it is critical to explore the opportunity to merge the available data to better

characterize the spatial and temporal variation of the GrIS SMB. This work utilizes a particle batch smoother data assimilation

technique that yields SMB estimates that benefit from the snow/ice model Crocus and a 16-day albedo product derived from

satellite remote sensing data. Comparison of the results against in-situ SMB measurements from a transect located nearby the

town of Kangerlussuaq shows that the assimilation of the albedo product reduces the root mean square error (RMSE) of the

posterior estimates of SMB by 51% and reduces bias by 95%.
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Key Points:

• A data assimilation technique was used to generate a reanalysis
estimates of the surface mass balance of the Greenland ice sheet along
the K-transect stations

• A particle batch smoother technique was used to condition the
prior estimates of surface mass balance on 16-day MODIS albedo

• Results show that the assimilation of albedo reduces the RMSE of
the surface mass balance estimates by 51%

Abstract

Accurate estimates of surface mass balance over the Greenland ice sheet (GrIS)
would contribute to understanding the cause of recent changes and would help
to better estimate the future contribution of the GrIS to sea-level rise. Given the
limitations of in-situ measurement, modeling, and remote sensing, it is critical
to explore the opportunity to merge the available data to better characterize
the spatial and temporal variation of the GrIS SMB.

This work utilizes a particle batch smoother data assimilation technique that
yields SMB estimates that benefit from the snow model Crocus and a 16-day
albedo product derived from satellite remote sensing data. Comparison of the
results against in-situ SMB measurements shows that the assimilation of the
albedo product reduces the root mean square error (RMSE) of the posterior
estimates of SMB by 51% and reduces bias by 95%.
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Plain Language Summary

GrIS is losing mass through ice discharge from outlet glaciers and surface pro-
cesses (e.g., meltwater runoff, sublimation, and evaporation). Recent studies
suggest that meltwater runoff will be the dominant mass loss process over the
GrIS in the future as it will increase under climate warming. Accurate esti-
mates of the GrIS SMB are a critical objective, which, despite its importance,
continues to contain large uncertainties from significant errors in forcing data
as well as model errors. This work uses a data assimilation framework (which
has not been used in estimation of the GrIS SMB) and a satellite-derived 16-day
albedo product to produce a reanalysis estimates of SMB along the Kangerlus-
suaq transect (K-transect) stations in west Greenland. We used the K-transect
in-situ SMB measurements to validate our results over the 2000–2014 hydrologi-
cal year. The data assimilation technique (i.e., particle batch smoother) reduces
the spatial root-mean-square error of SMB over the K-transect stations by 51%
from 858 millimeter water equivalent (mmWE) to 423 mmWE and the bias in
the estimates by 95%, from -70 mmWE to 3.5 mmWE. It was shown that this
methodology has the potential to resolve the spatial variability of the surface
processes along the K-transect stations and in particular of the bare ice surface
albedo that is not resolved by the model at a resolution of 25 km (i.e., the model
uses a constant bare ice albedo). The results suggest that the methodology can
be applied over the entire GrIS using MODIS albedo observations to generate
an improved reanalysis of SMB estimates.

Introduction and background

The Greenland ice sheet (GrIS) has been the focus of climate studies due to its
considerable impact on sea-level rise via net mass gain or loss (mass balance;
MB). Surface mass balance (SMB) and ice dynamics are the two mechanisms
that control the overall MB. The former includes mass loss/gain through surface
processes, and the latter results from direct displacement of water by glacial ice
and basal melt. GrIS MB observations show that mass loss has been accelerating
over the last decade (e.g., Lenaerts et al., 2019, Mouginot et al., 2019). Van
Angelen et al. (2013) and Fettweis et al., (2013, 2017) highlighted that meltwater
runoff is the dominant mass loss process over the GrIS. Despite its importance,
estimates of SMB over the GrIS contain significant uncertainties (e.g., Rignot
et al., 2011; Vernon et al., 2013; Fettweis et al., 2020).

The focus of this study is to further evaluate the proposed methodology on
better constraining SMB through surface processes via additional (indirect) ob-
servations and a data assimilation framework. Numerical models offer a key tool
for quantifying the GrIS surface mass fluxes. However, modeling approaches are
generally limited by uncertainty in meteorological forcing data and model errors,
which directly propagate into the model results. In-situ measurements such as
the network of Kangerlussuaq transect (K-transect) stations in west Greenland
(Van de Wal et al., 2012; Smeets et al., 2018) offer valuable information about
SMB over the western ablation area. However, there is an extremely limited
number of in situ SMB data in the rest of GrIS.
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Using surface remote sensing data is a practical alternative to in-situ measure-
ments. Given the spatial coverage, remote sensing data can partially address
some of the issues related to the sparse in situ measurements. Unfortunately,
surface mass fluxes such as precipitation, evaporation, and runoff cannot be di-
rectly measured via remote sensing. This makes the possibility of quantitatively
characterizing the surface mass fluxes from remote sensing retrieval algorithms
difficult. Despite this challenge, indirect or implicit relationships do exist be-
tween surface remote sensing data/products and surface mass fluxes. Surface
remote sensing data such as albedo, contains valuable information about the
GrIS surface features, including fresh snow, impurities in the snowpack, the
presence of liquid water, the formation of supraglacial lakes, and the exposure
of bare ice, among other things. However, albedo alone fails to provide quanti-
tative information about the surface mass fluxes.

Given the limitation of different individual methodologies, we argue that using
a reanalysis–type approach that merges relevant data streams from satellite
observations with a physical model can significantly improve the spatially and
temporally continuous estimates of SMB over the GrIS. Margulis et al. (2016)
provided an example of a such approach to characterize thirty years of snow
water equivalent (SWE) over the Sierra Nevada (United States). We adopted
that methodology for a one-year proof of concept study (Navari et al. 2018) in
the K-transect region in west Greenland. This work is a continuation of our
previous work by extending the study period from 2000 to 2014 (this period
is based on the availability of the MAR v3.5 data; Fettweis et al., 2017). In
this study, we take advantage of the reanalysis approach to merge a 16-day
albedo product with near-surface meteorological forcing data and a snow model
knowing that albedo variability is highly correlated to the recent surface mass
balance decrease (Riihelä et al., 2019). The reanalysis approach uses a fully
Bayesian data assimilation framework to merge different data streams (Margulis
et al. 2015, 2016).

The primary difference between the previous studies and the one presented
herein include the fact that the previous studies focused primarily on estimating
SMB via remote sensing (e.g., Enderlin et al., 2014) or modeling tools (e.g.,
Fettweis et al., 2017; Noël et al., 2018; Sellevold et al., 2019) alone. Here, we
use a data assimilation approach that does not rely on in-situ data and integrates
satellite observations into a snow model. To-date, there have been very limited
studies that used data assimilation to predict the GrIS MB/SMB components
(e.g., Larour et al. 2014; Navari et al. 2016; 2018).

The methodology described below is for estimating the SMB along the K-
transect stations, but the methodology is general and can be applied to larger
domains where surface albedo measurements are available. The primary objec-
tive of this paper is to present the SMB reanalysis dataset, its validation, and
an illustration of its utility in the context of quantifying the current GrIS SMB.
Methods and data are presented in section 2. The results are presented in sec-
tion 3. Discussion, conclusions, and implications for future work extending to
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the entire GrIS are presented in section 4.

Methods and data

Application domain
The selected area is located near the city of Kangerlussuaq, in west Greenland
along an east-west transect (K-transect) close to the 67° N latitude. The transect
has been equipped with different observation instruments including automatic
weather stations and SMB stakes at different elevations. Seven SMB measure-
ment stations (S4, S5, SHR, S6, S7, S8, and S9) are located in the ablation zone,
and the last station (S10) is located in the percolation zone (Van de Wal et al.,
2012). The station IDs and their spatial distribution within the MAR/Crocus
25 km2 computational grid cells are shown in Figure 1b.

Reanalysis methodology
The reanalysis method applied in this study consists of a particle batch smoother
(PBS) data assimilation approach developed and validated in Margulis et al.
(2015, 2016) for seasonal snowpack over the Sierra Nevada, and Navari et al.
(2018) for a single year SMB along the K-transect. The snowpack model Crocus
(Brun et al., 1992) is used to generate uncertain prior estimates of SMB and
snow albedo over the study area. An effective way to significantly reduce model
and observational errors and produce superior estimates of SMB fluxes is to
constrain the snowpack model predictions with satellite observations through
data assimilation methods. The PBS ingests prior estimates from the snow
model Crocus and remotely sensed 16-day albedo observations. The approach
generates an ensemble posterior SMB estimate over the study domain. The
data assimilation step consists of using the 16-day albedo misfit and the 16-day
albedo measurement error covariance to derive the posterior ensemble estimate
via a likelihood function. The PBS updates the states in a single step using all
measurements in the assimilation window. The PBS approach characterizes the
mean, median, variance and interquartile range of SMB. For a more detailed
discussion about the methodology, see supporting document text S1.

Datasets used
a) Forcing data

The data assimilation framework in this study uses hourly near-surface mete-
orological forcing data (i.e., temperature, pressure, wind speed, longwave and
shortwave radiation, precipitation, humidity) and initial snow and ice profile
from the regional climate model Modèle Atmosphérique Régional (MAR; Gal-
lée and Schayes 1994; Gallée and Duynkerke 1997) to force the offline Crocus
model. The regional climate model MAR is fully coupled with the snow physi-
cal model Crocus. However, the integration of the MAR model in an ensemble
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mode would require significant computational resources. Instead, in the reanal-
ysis data assimilation system, we perturb MAR output meteorology (i.e., tem-
perature, longwave, shortwave, and precipitation) to generate an ensemble of
forcing that is passed to Crocus, which significantly reduces the computational
cost.

b) Remotely sensed albedo data

MODIS 16-day albedo (MCD43A, Version-6; Schaaf, C., Wang, Z. 2015) is a
high-quality combined product that uses both Terra and Aqua data to provide
500 m albedo. The product algorithm uses data from days 1 through to 16
to compute the albedo on day 9. We used the direct and diffuse fraction of
shortwave irradiance based on the algorithm by Allen et al., (2006) to linearly
combine black-sky albedo and white-sky albedo at local solar noon to obtain the
true blue-sky albedo that is most consistent with the model-generated albedo.
Note that we aggregated the raw albedo data to the model resolution of 25
km2 and performed the data assimilation in the model spatial resolution. The
quality of albedo products decreases where the solar zenith angle is higher than
70° (Stroeve et al. 2005, 2006). Therefore, all the observations corresponding
to solar zenith angles larger than 70° were removed from the data set.

Figures 1b-e show an illustration of the spatial and temporal evolution of albedo
on May 9, June 10, July 12, and August 13, 2010, around the K-transect sta-
tions. As seen most clearly in panels b and c, albedo gradually increases with
elevation. Albedo is low along the margins of the ice sheet, where the first three
K-transect stations (S4, S5, and SHR) are located and gradually increases east-
ward. The irregular variations (low albedo values) seen in panels d and e around
-49º longitude (known as the dark zone) are mainly driven by snow and ice im-
purities (e.g., Wientjes et al., 2011, Ryan et al., 2018). During May and June,
fresh snow has covered the impurities allowing for a smooth east-west transition
between high and low albedo. Temporal variations of albedo can also be seen,
most notably between May 9 and July 12. With the advancing melt season,
snow cover gradually disappears, and light-absorbing impurities significantly re-
duce the albedo. This GrIS dark zone increases the absorbed solar radiation
and consequently enhances the magnitude of snow/ice melt. Hence, obtaining
accurate estimates of snow/ice melt require incorporating this information into
model estimates.

c) Verification data

The data used for verification in this study are in situ SMB measurements
obtained from eight stations (SMB stakes) of differing elevations along the K-
transect. Since 1990, SMB measurements have been carried out at these loca-
tions in western Greenland (Van de Wal et al., 2012; Smeets et al., 2018). This
data set is the longest record of ground-based SMB measurements in Greenland.
The measurements and adjustment of the stakes were conducted in late August,
first days of September every year and all data have been quality controlled,
reconstructed, and adjusted as needed.
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d) A quantitative comparison of forward modeling approaches to
characterize spatial and temporal variation of the GrIS SMB

Forward modeling is a commonly used methodology for providing spatially and
temporally continuous estimates of SMB over the GrIS (e.g., Fettweis et al., 2017;
Noël et al., 2018; Sellevold et al., 2019). Such deterministic methodologies differ
from the work presented herein in several important ways.

Offline forward modeling methodologies are generally limited by uncertainty in
meteorological forcing data and subject to direct propagation of errors in those
forcings and model errors, both of which impact the estimates of SMB over the
GrIS (e.g., Vernon et al., 2013).

The novelty of the reanalysis dataset presented herein lies in the use of a fully
probabilistic Bayesian assimilation method and the use of information available
in the satellite-derived albedo data. The Bayesian PBS method leverages the in-
formation content of a meso-scale atmospheric model (i.e., MAR) and the albedo
to generate the best estimates of SMB, related fluxes, and their corresponding
uncertainty.

The application and characterization described in this research are meant to be
illustrative of potential future applications over the entire GrIS. The primary
focus of this study was to use the SMB reanalysis dataset to characterize the
15-year SMB in the K-transact in terms of its mean and interannual variability.
We will focus on comparing reanalysis results with the in-situ measurements to
explain basic changes in the SMB through space and time.

Results

The model setup and open-loop simulation are described in Navari et al. (2018).
For this simulation, we used MAR v3.5 (Fettweis et al., 2017) outputs for offline
model inputs and we also used a new set of albedo data (i.e., MCD43A, Version-
6). The data assimilation was performed over the 15 years between 2000 and
2014. To illustrate how the PBS data assimilation methodology works, we first
present results for a representative individual computational grid-cell and then
present time series of SMB for all computational grid cells.

The in-situ measurements sites are located within six MAR grid 25 km2 cells.
Two grid cells contain two stations, three grid cells contain one station and there
is no station in one grid cell (Figure 1b). A preliminary analysis of in-situ SMB
measurements (from 1990 to 2014) reveals that more than 60 percent of the
total mass loss along K-transect stations occurs within the first computational
grid cell from the edge of the ice sheet and more than 95% in the first two
grid cells (see Text S2 and Table S1 in the supporting information). Therefore,
for illustrative purposes, the focus will be on the first computational grid cell
(co-located with the S5 and SHR stations). S5 and SHR located at 6 km and
14 km from the ice sheet margin respectively.

Figure 2 illustrates the time series of the 16-day albedo data during each year
for the selected computational grid cell for the study period (see Figure S1-S4 in
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the supporting information for other grid-cells). Note that PBS applied to each
grid cell sequentially with an assimilation window of one year. The observations
consist of the MODIS-derived 16-day albedo which are used to condition the
prior Crocus estimates in order to produce the posterior estimates. The prior
and posterior estimates are the 16-day albedo data from the Crocus snow model
before and after the assimilation of satellite-derived albedo. The ensemble sta-
tistical information such as the interquartile range (IQR) and median are used
to evaluate the accuracy of the estimates.

In the selected grid cell, the fresh and dry snow accumulated over the bare ice
during the previous accumulation season shows a very high albedo where the
satellite-derived albedo remains around 0.75 until mid-April (Figure 2). During
the spring (April, May), the snowpack ages and starts to melt, causing a decrease
in albedo from 0.75 to around 0.40. During the summer (June-August), the
observed albedo remains almost constant at around 0.4. During this period,
incoming solar radiation contributes primarily to melting ice layers. The surface
albedo increases again when a new accumulation season starts in September.

As shown in Figure 2 (all panels), the prior albedo estimates (red dashed lines)
are higher than the satellite observations (green circles) over the entire simula-
tion period, in agreement with Alexander et al. 2014. These figures clearly show
that the model overestimates the (bare ice) albedo mainly due to inaccurate bare
ice albedo parameterization, and a lack of parameterization of impurities. The
generally higher albedo implies that the ice sheet surface reflects more incom-
ing solar radiation into the atmosphere and consequently underestimates the
snowmelt and ice melt. The ensemble spread of the prior estimates is very large
(the IQR ranges from around 0.4 to 0.85) mainly due to uncertain forcings. As
highlighted in Navari et al. (2018) the Crocus albedo module was updated as
follows: the site-specific snow aging term was removed from the visible snow
albedo formulation, the lower limit of snow albedo for all spectral ranges was
set to 0.65, and the MAR snow and ice albedo transition equations were used
to ensure a smooth transition between snow and ice albedo.

The PBS uses the misfit between the prior model estimates and observations
to generate the posterior estimates. As shown in Figure 2, by construct, as-
similation of satellite observation moves the posterior estimates (blue shaded
areas and blue lines) toward the observations, and most of the observations are
within the ensemble spread. The PBS accomplishes this by more heavily weight-
ing ensemble members that more closely match the observations through the
likelihood function embedded in the PBS formulation. The blue dashed lines in
Figure 2 are more in agreement with the observations than are the prior esti-
mates. The uncertainty of the posterior estimates is considerably smaller than
that of the prior estimates due to the fact that the PBS reduces the weights of
ensemble members that are far from the observations.

Figure 3 shows the SMB for all model grid cells along the K-transect. To
be able to compare the results with in-situ measurements at K-transect, we
convert the time series of SMB to annual cumulative SMB which starts from
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September 1st of each year until August 31 of the following year (see Text S2
and Table S1 in the supporting information). Positive SMB values indicate a
net increase in mass, and negative values indicate net mass loss within a given
year. The assimilation of 16-day albedo data results in an updated ensemble of
SMB estimates that are more consistent with the observed albedo. As shown in
Figure 3, the PBS generally improves the SMB: the posterior estimates move
toward the independent SMB observations. Averaging over all grid cells, the
PBS improves the SMB estimates by 51 percent for the simulation period of
2000 to 2014.

Although in many cases the posterior simulations appropriately match the K-
transect observations, in some instances, the PBS estimates are inaccurate. For
example, the posterior SMB values in Figure 3a are relatively smaller than ob-
servations (overestimating mass loss), and they are relatively larger than obser-
vations in Figure 3d (underestimating mass loss) (see table S1 in the supporting
information for quantitative values over the simulation period). By construct,
the PBS attempts to fit the model albedo to the observation (Figure 2); how-
ever, whether this results in an improvement in SMB estimates depends on
the accuracy of Crocus albedo module and how it is related to SMB and the
other energy fluxes. While the albedo module has been updated to use the
MAR albedo module, the prior simulation shows that there are considerable
differences between the model and observations, which may be due in part to
the inadequacy of the albedo module and the complex nonlinear relationship
between albedo and SMB. Scatterplot of predicted albedo (prior and posterior)
and MODIS 16-day albedo (see Figure S5 in the supporting information) shows
that assimilation of MODIS albedo reduces bias by shifting the median toward
the observations and reduces the uncertainty as shown by the error bar. The
scatter plots suggest that PBS significantly improves the albedo estimates in
the grid cells with dominant melt processes. Estimated SMB (both prior and
posterior) and measured SMB in the grid cell co-located with the S10 station
are close to each other. Therefore, it is difficult to draw any conclusion about
the performance of the PBS in this grid cell.

In the first computational grid cell, which is co-located with stations S5 and
SHR, the PBS improves the posterior estimates of SMB by an average of 18.4
percent (Figure 3a) over the simulation period (2000 to 2014). Although the
PBS significantly improved model albedo in this grid cell and posterior esti-
mates of albedo are in good agreement with the observations (Figure 2h-j), it
overestimates the SMB in several years, for example year 2008-2010 (Figure
3a). It is likely an indication that the nonlinear relationship between the albedo
and SMB is biased toward overestimating of SMB when bare ice is exposed. In
the grid cell co-located with stations S6 and S7 the PBS improves the SMB by
64 percent relative to the mean of independent in situ measurements (Figure
3b). In the grid cell co-located with stations S8 and S9. The PBS improves the
posterior SMB of these two grid cells by 61 and 60 percent respectively (Figure
3c and d). In the grid cell co-located with station S10 (in the percolation zone)
the prior SMB simulation is very close to the in-situ observations (Figure 3e).
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The posterior simulation therefore shows similar result as the prior. Note that
the temporal variation of albedo in this station during the melt period is very
small (Figure 1b and c) and the difference between the observed albedo and the
model estimated albedo (Figure S4 in the supporting information) are signifi-
cantly smaller over this snow-dominated grid cell than it is over grid cells with
mixed snow and bare ice exposure. Therefore, there is limited information to
be exploited by the PBS toward improving the SMB.

Discussion and Conclusion

The PBS data assimilation (reanalysis) method for estimating SMB using 15
years of MODIS albedo data was applied over the several MAR computational
grid cells along K-transect stations. The main outcomes of this study are as
follows:

The PBS considerably improves the posterior estimates of SMB over the prior es-
timates. While the prior simulations overestimate the albedo and consequently
underestimate the surface mass balance, the posterior simulations result in
albedo that closely match the satellite-derived albedo and provides posterior
SMB estimates that are in good agreement with the in-situ SMB measurements.
Indeed, the PBS reduces the RMSE of the SMB estimates by 51% and reduces
bias by 95%. This is an encouraging result because the grid cells are distributed
across different mass balance zones with different melt and accumulation pro-
cesses.

Ensemble size and measurement error are two key inputs to the data assimilation
methodology. A sensitivity analysis (see Text S3 in the supporting information)
showed that by increasing the number of ensembles from 50 to 300 (computa-
tional cost increases by 600%) the RMSE of the SMB estimates improves by 8%.
These results support the argument that an ensemble size of N=100 replicates
seems sufficient for SMB reanalysis in this study.

The measurement error indicates the degree of trust in the observation relative
to the prior estimates. The sensitivity analysis on measurement error (see Text
S4, Table S2, Figure S6-S7 in the supporting information) showed that the
posterior ensemble collapses when using small measurement error. This means
one ensemble member (the best fit) gets weight 1 and the rest of the weights are
very close to zero. Based on results from the sensitivity analysis a measurement
error standard deviation of 0.2 provides the best results. Considering the fact
that the dynamic range of albedo is between 0.8 for fresh snow to around 0.3
for bare ice, a measurement error of 0.2 is not unrealistic.

A close examination of the primary results shows that some ensemble members
in the grid cells close to the ice sheet margin do not experience the exposure of
bare ice during the summer. Therefore, time series of summertime albedo show
bimodal distributions wherein the ensemble members experiencing bare ice ex-
posure cluster around a model-defined ice albedo and other ensemble members
cluster around a typical snow albedo value. These bimodal distributions result
in the PBS failing to find a robust fit. To mitigate this issue and smooth tran-
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sition between the replicates, each ensemble member uses a different, randomly
assigned ice albedo between 0.35 and 0.65 instead of a constant ice albedo. This
strategy results in intermediate albedo values when grid cells contain a combi-
nation of snow and ice during the summertime. A combination of a continuous
transition between the ensemble members and higher measurement error help
to prevent ensemble collapse and provides a robust fit to observations (Figure
2).

Results presented in this work are obtained by comparing the SMB of the grid
cells with the in-situ SMB measurements at K-transect stations. As described
above, there are two SMB stations in each of the first two model grid cells from
the edge of the ice sheet along the K-transect and above 95% of the SMB along
the K-transect happens in these two grid cells. Therefore, using observations
from two in-situ stations over relatively flat topography with moderate slope
can significantly reduce the error of evaluation (i.e., point scale verses grid cell
scale). However, we acknowledge that in-situ point scale measurements may not
be adequate for comparison against model grid cells of 25 km2.

Results from the proof-of-concept study (Navari et al., 2018) and results pre-
sented in this work suggest that using the PBS framework is an alternative
solution for improving estimates of SMB over the traditional deterministic mod-
eling solutions or pure remote sensing solutions. The results also suggest that
the methodology can be applied over the entire GrIS using MODIS albedo obser-
vations (improving in particular the bare ice albedo value used by the model) to
generate an improved reanalysis of SMB estimates. It should also be highlighted
that the reanalysis framework presented in this work is a general framework and
could, therefore, be utilized over other domains such as the Antarctica ice sheet
or mountainous glaciers. Finally, it is also important to note, that in view of
the sensitivity of the model-based SMB estimations to the used bare ice albedo,
a mean MODIS based bare ice albedo is notably used in RACMO in the aim of
improving its SMB estimation (Noël et al., 2016).

Data Availability Statement

The MODIS datasets were downloaded from https :// lpdaac .usgs .go
v/dataset_discovery/modis/modis_products_tab le. All prepro-
cessing and data assimilation codes and evaluation data are available at
http://www.hydroshare.org/resource/a8c5e72010064d3cb52522463fb42a9b.
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Figure 1: The 2010 16-day albedo map for (a) May 9 and a detailed
map showing the location of K-transect stations, day of year (b) May
9, (c) June 10, (d) July 12, and (e) August 13. The black circles show
the location of the K-transect stations S4, S5, SHR, S6, S7, S8, S9,
and S10 respectively. The dark blue areas near S6-S8 in d-e represent
the Greenland dark zone. The MAR/Crocus computational grid cell
are shown in red in panel b.
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Figure 2: Time series of albedo (-) for the grid cell co-located with
stations S5 and SHR for 2001 to 2014. The red and blue shaded
areas represent the prior and the posterior uncertainty band (IQR)
and the red and blue dash lines represent the median of the prior
and posterior, respectively. The green circles represent the satellite-
derived 16-day albedo.
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Figure 3: time series of the SMB for grid-cell co-located with the a) S5
and SHR, b) S6 and S7, c) S8, d) S9, and e) S10 stations along the K-
transect. Values indicate year-over-year losses or gains in millimeter
water equivalent (mmWE). The prior and posterior estimates are
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shown in red and blue, and SMB estimates along the K-transect are
shown with green diamond.
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