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Abstract

A new augmented Ensemble of Data Assimilations (EDA) technique to estimate background error covariances (B-matrix) has

been developed for the Copernicus European Regional Re-Analysis (CERRA). The B-matrix is modelled on a bi-Fourier limited

area model. Background errors are assumed isotropic, homogeneous and non-separable. Linearised geostrophic and hydrostatic

balances are incorporated as multivariate relationships, coupling vorticity and geopotential extended to mass-wind and specific

humidity fields via the f-plane approximation. The B-matrix is estimated by a new 10-member CERRA-EDA system, temporally

tethered to real-time meteorological situations. The EDA forecast differences comprise two main pools: seasonal and daily.

The seasonal component is pre-prepared at reanalysis-resolution (5.5km). The new augmentation governs real-time mixture

of winter and summer differences. The daily component is an 11km moving 2.5 day average. B-matrix re-estimation occurs

every 2 days, with a fixed split of 80-20\% seasonal-daily. We consider a case study to illustrate the potential of CERRA-EDA

to estimate weather regime change. The most influential factors are temporal evolution of spatial observation coverage, and

varying the seasonal-daily split. Background error statistics, improvements in analysis and forecast skill scores and overall

assimilation system performance are shown and discussed.
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Key Points:8
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Abstract15

A new augmented Ensemble of Data Assimilations (EDA) technique to estimate back-16

ground error covariances (B-matrix) has been developed for the Copernicus European17

Regional Re-Analysis (CERRA). The B-matrix is modelled on a bi-Fourier limited area18

model. Background errors are assumed isotropic, homogeneous and non-separable. Lin-19

earised geostrophic and hydrostatic balances are incorporated as multivariate relation-20

ships, coupling vorticity and geopotential extended to mass-wind and specific humidity21

fields via the f-plane approximation.22

The B-matrix is estimated by a new 10-member CERRA-EDA system, temporally23

tethered to real-time meteorological situations. The EDA forecast differences comprise24

two main pools: seasonal and daily. The seasonal component is pre-prepared at reanalysis-25

resolution (5.5km). The new augmentation governs real-time mixture of winter and sum-26

mer differences. The daily component is an 11km moving 2.5 day average. B-matrix re-27

estimation occurs every 2 days, with a fixed split of 80-20% seasonal-daily.28

We consider a case study to illustrate the potential of CERRA-EDA to estimate29

weather regime change. The most influential factors are temporal evolution of spatial30

observation coverage, and varying the seasonal-daily split. Background error statistics,31

improvements in analysis and forecast skill scores and overall assimilation system per-32

formance are shown and discussed.33

Plain Language Summary34

The Copernicus European Regional Re-Analysis (CERRA) is a new retrospective35

analysis currently in production between 1984-2021. It is produced by a statistical anal-36

ysis package that assimilates data from state-of-the-art observation systems into a re-37

gional weather model as well as a land-surface model. This is a cycling process, taking38

place every 3 hours.39

The quality of the retrospective analysis hinges on correctly specifying observation40

and model background errors. Background error covariances are too numerous to explic-41

itly compute and store in memory. We model the prevalent features of the errors and42

estimate them. The background errors are modeled to reasonably represent meteorolog-43

ical balances with respect to the Earth’s rotation and vertical motion, and assume its44

distribution in 3D space is equal in all directions. The background errors are estimated45

by an Ensemble of Data Assimilations (EDA) performed cyclicly.46

We demonstrate the capability of our augmented system to capture changes in weather47

regime. We illustrate this through a case study on two periods with different weather48

regimes. Improvements background error statistics are shown. Dependencies on the ob-49

servation network and the mixture of different parts of the EDA are the main factors.50

We also show our EDA system was optimal for our intended use.51

1 Introduction52

A new Copernicus European Regional Re-Analysis (CERRA) provided by the Swedish53

Meteorological and Hydrological Institute (SMHI), Météo-France and Met Norway has54

been developed. CERRA uses Hirlam Aladin Research Mesoscale Operational Nwp In55

Europe (HARMONIE), a full NWP system, with the Aire Limitée Adaptation dynamique56

Développement InterNational (ALADIN) model for physics and dynamics. The reanal-57

ysis period spans 1984-2021 and the domain is Europe and North Africa. HARMONIE58

is currently in operational use by the HI-Res Limited Area Modelling (HIRLAM) con-59

sortium across 26 countries in Europe and northern Africa for short-range mesoscale NWP.60
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Retrospective analyses (re-analyses) provide temporally continuous and spatially61

coherent descriptions of atmospheric model states over a long time-frame. In effect, it62

is a re-writing of meteorological and climatological history, with better systems and an-63

other retrospective examination of the data. This atmospheric synopsis is achieved by64

combining a regional weather model with ever-improving observations in statistical op-65

timality using data assimilation. Reanalysis practice is now commonplace for large weather66

centres since their advent 40 years ago for the First Global atmospheric research pro-67

gram Global Experiment (FGGE), (Bengtsson et al., 1982). The temporal span of global68

reanalysis ranges between 10 years (ERA-15 for example) to nearly 120 years (ERA20C,69

(Poli et al., 2016)). Reanalyses from world leading weather centres; Europe (CERA and70

ERA series), US (NCEP/NCARNCEP-DoE, CFSRR, MERRA), Japan (JRA55) and71

recently the Chinese Meteorological Administration (CRAI) demonstrate the increas-72

ing utility and routine production of reanalyses. It is also a valuable global-scale peer-73

validation exercise involving the most advanced weather centres in the world. The re-74

search community’s use of reanalyses continues to grow worldwide. At the time of writ-75

ing this paper Google scholar quotes in excess of 30,000 citations for NCEP/NCAR’s 40-76

year reanalysis, (Bromwich & Wang, 2005), and 19,000 for ECMWF’s outgoing ERA-77

Interim, (Dee et al., 2011).78

Reanalyses for specialist purposes and more spatially confined domains come with79

the added benefit of increasing clarity for their intended context. It adds clarity to re-80

gions of varying orographies or specialist applications requiring different physics, with81

scope to trade smaller domains for higher resolution. For example there is; the Arctic82

Reanalysis System using NCAR’s WRF-DA, (Bromwich et al., 2016), DWD’s COSMO83

reanalysis of Europe, (Bollmeyer et al., 2015), a North American Regional Reanalysis84

(NARR), (Mesinger et al., 2006), and an Indian subcontinent reanalysis (IMDAA), (Mahmood85

et al., 2018). Upcoming specialist and regional reanalyses in Europe provided under the86

Copernicus Climate Change Services (C3S) framework include Copernicus Arctic Re-87

gional Reanalysis (CARRA) and CERRA-Land. Regional reanalyses benefit from higher88

model spatial resolutions and more observations per unit area. Regional or specialist re-89

analysis are also coupled with their global-counterparts via the use of global Lateral Bound-90

ary Conditions (LBCs). Most of the reanalysis efforts aforementioned use variational tech-91

niques for their DA systems with a variety of B-matrix estimation techniques. NCEP92

and NCAR, Europe (ECMWF ERA series) and Japan (JRA) mostly subscribe to vari-93

ational methods for fulfilling their respective reanalyses with some minor exceptions (NOAA’s94

20C reanalysis, for example, uses the Kalman filter). These reason for these exceptions95

are usually a combination of; application context, computational resources and time-frame.96

The choices for B-matrix estimation vary more widely, for example, JRA55 estimated97

B using the NMC-method, while DWD’s reanalysis, using their COSMO model, employs98

an ensemble nudging DA method with 21 members and a cycled Kalman filter analy-99

sis scheme.100

The background error covariance matrix is, undeniably, a vital component of any101

DA system. It has a direct influence on the quality of the analysis, because it spreads102

information presented by the observations over the analysis increment. It has been il-103

lustrated that on a global scale, for any one analysis increment, the influence of infor-104

mation coming from; assimilated observations, and background, is split 15%, 85% respec-105

tively, (Cardinali et al., 2004). Two issues of practicality known about the B-matrix are:106

it is ill-conditioned and it is too large to represent explicitly. Ill-conditioning increases107

the number of iterations for convergence, if convergence even remains a possibility, and108

can seriously degrade analysis quality, (El-Said, 2015). The B-matrix is also too large109

to store even on the most advanced memory-abundant HPCs in the world since the size110

of the model state vector is of the order O1012 for most large-scale operational weather111

models. These two problems are simultaneously and conveniently dealt with by a change112

of variable, known as the control variable (or vector) transform (CVT). CVT allows im-113

plicit B-matrix specification, avoiding B inversion, explicit memory storage. A surrogate114
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control vector is thus introduced, which conveniently preconditions, de-correlates and115

greatly reduces it to a more manageable size.116

Specification of a surrogate control vector requires knowledge of its structure (mod-117

elling B), and commensurate estimation of the parameters governing its structure (es-118

timating B). The large body of research behind modelling the structure of B in the last119

two decades strongly suggests that B is; anisotropic, heterogeneous, multivariate and flow-120

dependent, (Bannister, 2008). The HARMONIE NWP system represents the meteoro-121

logical fields as spherical harmonics with triangular spectral truncation, inline with the122

ALADIN spectral model. The spatial correlation structure follows a spectral convolu-123

tion which renders spatial structures as isotropic and homogeneous. Spectral convolu-124

tions are also vertically non-separable, meaning that broad horizontal correlations are125

deep, and less expansive horizontal correlations are isometrically shallow in 3D space.126

Non-separability facilitates correct, and necessary, specification of mass-wind correlations,127

(Bartello & Mitchell, 1992; Phillips, 1986). Balance is incorporated by imposing locally128

linearised geostrophic and hydrostatic balances. Vorticity and geopotential are related129

via the f-plane assumption, which is appropriate for the ALADIN domain. The Corio-130

lis and Laplacian operator ratio in the f-plane equation is estimated by linear regression,131

(Berre, 2000). Multiple linear regressions are then used to estimate divergence, temper-132

ature and surface pressure, and specific humidity. This entire procedure comprises the133

balance operator. The extension to specific humidity was added to ALADIN, after adapt-134

ing the original NCEP method, (Parrish et al., 1997; Derber & Bouttier, 1999). Further135

augmentations were also successfully implemented for the balance operator. Introduc-136

ing a non-linear balance equation with the non-linear terms linearised around the back-137

ground, and a quasi-geostrophic omega equation to aid in the enforcement of balance in138

regions with strong acceleration of curvature. Finally, modelling the structure of B is de-139

pendent on the context of DA system. For example, there exists a diffusion operator more140

suited to ocean modelling, (Mirouze & Weaver, 2010). For atmospheric data assimila-141

tion recursive filters allowed for inhomogeneous and anistropic background error struc-142

tures in 2D space for 3DVAR initially, (Purser et al., 2003). The wavelet formulation also143

addressed heterogeneity and anisotropy allowing for better modelling of dynamical flow-144

dependent features such as the actual location of the tropopause for 3DVAR and 4DVAR,145

(Fisher, 2003).146

As important as modelling B is, its quality depends on a commensurate estima-147

tion technique. Three popular methods for estimating the B-matrix are: the observation-148

background disentanglement technique, (Hollingsworth & Lönnberg, 1986), the NMC method,149

(Parrish & Derber, 1992), and statistics obtained from forecast differences originating150

from an Ensemble of Data Assimilation (EDA) analyses, (Fisher, 2003). The latter method151

enables time-varying background error if updated with sufficient temporal frequency. The-152

oretical grounding for EDA systems to represent background errors is demonstrated in153

(Zagar et al., 2005). The authors show that if a general forecast system is assumed to154

be weakly non-linear, doubling its covariance results in a doubling of the covariance of155

a ‘true’ unperturbed forecast produced using unperturbed initial conditions. EDAs can156

also provide insight into model uncertainties, (Palmer, 2001). The EDA technique per-157

forms several analyses, usually at lower resolution, where each member is obtained by158

perturbing observations and SST fields according to a Gaussian distribution with zero159

mean and a prescribed observation covariance matrix. This is what distinguishes each160

member in the ensemble. These analyses are then used to produce short forecasts and161

differences between these forecasts are computed to subsequently provide the statisti-162

cal material needed for the B-matrix; the empirical data for the multivariate balance re-163

lationships and variances and length-scales required for the modelled covariance struc-164

ture functions aforementioned.165

The literature uses the term ‘flow-dependence’ to mean different things. So for the166

sake of clarity, it is important to distinguish between ‘temporal flow-dependence’ and167
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‘dynamical flow-dependence’. They are not mutually exclusive but the literature has re-168

ferred to both interchangeably as ‘flow-dependence’. For example, temporal flow-dependence169

is what was meant in (Brousseau et al., 2012a, 2012b) and dynamical flow-dependence170

was the emphasis in (Bonavita et al., 2012) while (Isaksen et al., 2007) utilised both the171

temporal and dynamical while only referring to it as flow dependent. ‘Flow-dependence’172

has also been used when referring to the ability of 4DVAR to propagate in the time di-173

mension, and even when referring to non-linear balances, (Dee et al. (2011), section 2.1.3).174

Temporal flow-dependence, as we’ve termed it in this paper, simply means allowing for175

a degree of real-time tethering to meteorological situations as they arise. This is achieved176

via a ‘live’ or continuously cycling EDA running along side the assimilation system. Dy-177

namical flow is the ability of the B-matrix to model dynamical features such as the tropopause178

position. An advantage of incorporating temporal flow-dependence is alleviating the need179

to re-configure the B-matrix during re-analysis production. Temporal flow-dependence180

is a relevant consideration for reanalyses, because of the time-span involved. Allowing181

background errors to vary in time provides much needed freedom in constraining either182

more or less-strongly to the observations. This tethering has been shown to provide con-183

siderable improvement in the ECMWF IFS, albeit with dynamical flow-dependence in-184

cluded, (Isaksen et al., 2007), and more relevantly to our context in the analogous Meteo-185

France AROME system, (Brousseau et al., 2012a). ALADIN and AROME are essentially186

the same package, with slightly different physics for increasingly higher-resolutions avail-187

able in AROME.188

Another reanalysis consideration is observation network coverage, which are sus-189

ceptible to a plethora of significant changes over decadal time frames. Spatio-temporal190

correlations of observed quantities related to modelled prognostic variables change sig-191

nificantly, as does spatio-temporal observation density and distribution. If a static B-192

matrix was used, re-configuring the B-matrix during the re-analysis would become in-193

creasingly necessary. Real-time EDA systems enable synergy of temporal flow-dependent194

meteorological information, alleviating the need for B-matrix re-tuning (a daunting task195

in operational NWP), while also increasing analysis quality. The EDA-Interim report196

attests to the absence of the design consideration of changing observation networks, which197

they stated is needed in a reanalysis context, (Dee et al., 2011), for example. So having198

a real-time EDA which incorporates temporal flow to account for, observation networks,199

seasonal and daily variations, and meteorological phenomena is necessary in a reanal-200

ysis context. While this is all good news, one cannot over-look increased ‘moving parts’201

introduced by an EDA system, increasing overall system run-time fragility. The EDA202

itself is not a complex, however, ensuring timely and seamless integration of all its mov-203

ing parts with its partner DA system can be challenging.204

A trade-off in overall system complexity and implementation is inevitable. Further205

design considerations include, computing parallelisation resource allocation, job queue-206

ing and timing, data retrieval and storage for forecast difference synthesis, all while main-207

taining close human-guided attentiveness to the smooth running of reanalysis produc-208

tion. EDA-specific considerations would therefore be; DA scheme, number of members,209

resolution, B-matrix update frequency, number of differences used for each update and210

the ratio of ‘online’ and ‘offline’ differences used. We have opted to use 3DVAR coupled211

with a fixed ratio of 80-20% seasonal-daily mixture of forecast differences to compute the212

B-matrix every 2 days. Further details of B-matrix design follows in section 3.213

In this paper we investigate the effect of various combinations of EDA forecast dif-214

ference mixing to compute the B-matrix. We do this in the context of a reanalysis sys-215

tem designed for a domain over Europe and North Africa with a total time-span of ap-216

proximately 40 years. We then view the potential variability in: observation networks217

over time, resolution, temporal frequencies; seasonal and daily, and finally times of year218

where climate and weather phenomena are susceptible to different scales of meteorolog-219

ical variability, characterised by weather regimes. The first 4 potential variabilities have220
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been investigated in non-reanalysis contexts and have been shown to produce sufficient221

variation to warrant B-matrix design consideration, (Brousseau et al., 2012a). In this222

paper we sufficiently demonstrate that capturing weather regime variability is a real pos-223

sibility.224

In section 2 we detail the HARMONIE-ALADIN system used to produce CERRA,225

with details on the observations in 2.2, and the data assimilation technique and its min-226

imisation in section 2.1. Section 3 details the structure of the B-matrix, the EDA used227

to estimate it in section 3.1. The potential of background error statistical variability rel-228

evant to our regional reanalysis application is shown in 3.2, and the new forecast differ-229

ence selection mechanisms introduced to address the change in weather regime, is dis-230

cussed in section 3.3. Section 4 details our line of enquiry and briefly explains the weather231

regime paradigm. This sets the scene for the experiment design to demonstrate sufficient232

weather regime variability capture, which follows in section 4.1. The highlights of our233

investigation and illustrative examples are discussed in 4.2. Finally, we conclude our main234

findings in section 5.235

2 The CERRA system236

CERRA consists of 2 streams. The principal stream, which we call CERRA-DET,237

has 5.5km resolution and 4-minute time-step. It is accompanied by the second 10-member238

EDA stream, CERRA-EDA, running at 11km resolution and 10-minute time-step. The239

CERRA project uses the HARMONIE NWP system (code cycle version: cy40h1), with240

ALADIN physics, a 3DVAR system for the upper atmosphere, and Optimal Interpola-241

tion (OI) for the surface. The model has 106 vertical levels for both streams. The lat-242

eral boundary conditions (LBCs) come from ERA5. The ERA5 reanalysis has 31km res-243

olution, 20-minute time-step, and an accompanying 63km 10-member EDA system with244

a 12-minute time-step, (Hersbach et al., 2020). Each of these streams were split into sev-245

eral temporally segmented streams taking advantage of the ECMWFs parallel HPC ar-246

chitecture. CERRA-DET’s domain covers Europe, Northern Africa and South-Eastern247

parts of Greenland (The full domain can be seen pictorially (Wang & Randriamampianina,248

2021), Figure 1). LBC forcing for CERRA-DET comes from ERA5 (31km). CERRA-249

EDA is forced by LBCs from ERA5’s EDA stream, which has a resolution of at 63km250

at the equator.251

ALADIN is coupled to the MESCAN-SURFEX surface analysis system, similar to252

the one used the predecessor project to CERRA, Uncertainties in Ensembles of Regional253

ReAnalyses (UERRA). It computes surface prognostic variables (surface and radiative254

temperatures, roughness length, albedo and emissivity) and fluxes (evaporation, sensi-255

ble and latent heat fluxes and wind stress), while accounting for the proportion of dif-256

ferent surface types (land, ocean, lakes and towns) that are projected in each model grid-257

box, (Masson et al., 2013). The MESCAN-SURFEX system, adopts it name from ‘SUR-258

Face EXternalisée’ (SURFEX) and the merger between SMHI’s ‘MEsoscale Surface anal-259

ysis’ (MESan), (Häggmark et al., 2000), and Metéo-France’s ‘Code d’Analyse Necessaire260

à ARPEGE pour ses Rejets et son Initialisation’ (CANARI) systems. MESCAN uses co-261

variance matrices to characterise surface correlation structures as a function of 2-metre262

temperature and relative humidity, along with distance functions between each grid-point,263

both vertically and horizontally.264

2.1 Minimisation265

The 3DVAR cost-function is solved using an algorithm based on a known quasi-266

Newton limited-memory technique, (Nocedal, 1980), called M1Q3. M1QN3 is known to267

be inherently more forgiving of non-strictly quadratic cost-functions compared to the conjugate-268

gradient alternative CONGRAD. M1QN3 minimises the cost-function by calculating an269

inner-product of the cost-function gradient and approximated Hessian, without storing270
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Table 1. Mean number of observations (in thousands) for Marcha in each respective year as

used in CERRA-DET.

Year 1985 1991 1998 2003 2012 2018

Total 11.9 12.4 14.5 34.2 79.1 78.9
Satellite 1.0 0.8 0.7 10.6 40.6 38.3

aWhole month.

either. Instead, a pair of vectors are stored which can reconstruct the Hessian or gra-271

dient as necessary. The Hessian approximation is obtained by an inverse BFGS algorithm,272

and the step-size computed from a line-search procedure. The number of minimisation273

iterates of M1QN3 is fixed at 50 with no other iterative halting criterion. Each analy-274

sis is performed every 3 hours in a continuous assimilation cycle. The fields analysed are275

vorticity, divergence, temperature and surface pressure and specific humidity. Other prog-276

nostic variables are simply copied from the background.277

2.2 Observations278

This section details all observations used for CERRA-DET and CERRA-EDA. Most279

of the observations are stored and retrieved from two main sources; the Meteorological280

Archival and Retrieval System (MARS) and European Centre File Storage system (ECFS)281

at the ECMWF. These observations include the so-called conventional observations, like282

data from SYNOP stations, ships, drifting buoys, radiosonde and aircraft (AIREP, ACAR,283

AMDAR), satellite radiance from different instruments such as Advanced Microwave Sound-284

ing Units (AMSU-A and AMSU-B), Microwave Humidity Sounder (MHS) and Infrared285

Atmospheric Sounding Inferometer (IASI), and satellite based atmospheric motion vec-286

tor (AMV) wind data. Further, ground-based observations of zenith total delay (ZTD)287

from the Global Navigation Satellite System (ground-based GNSS) are also used. The288

ground-based observations from GNSS are part of a network of reprocessed ZTD’s pro-289

vided by the European Reference Permanent Network (EUREF-EPN, Bruyninx et al.290

(2019)). Furthermore, GNSS-RO (Radio Occultation) observations provided by the Global291

Navigation satellite system receiver for Atmospheric Sounding, from EUMETSAT’s large292

network of Satellite Application Facilities (GRAS-SAF) are also reprocessed to increase293

the signal to noise ratio. Finally, scatterometer observations are fetched directly from294

the EUMETSAT dissemination centre EUMETCAST. In addition, we have excluded data295

from NOAA’s older Microwave Sounding Unit (MSU) data, which had temporal cover-296

age from 1978 to 2005, due to unresolved technical issues.297

The bulk of the observations both prior and post-processing, are increasingly dom-298

inated by satellite radiance observations as the years progress up to 2018 as can be seen299

in Table 1. ATOVS and IASI data are quite dominant in 2018 having the potential to300

make up 90% of the total observations at a single assimilation time. The number of ob-301

servations used prior to any processing or thinning can be of the order 107, which are302

then reduced down to an order of 104. Further details of the observation specifics are303

covered in Wang and Randriamampianina (2021). It is important to keep in mind the304

temporal evolution of observation densities in the context of reanalysis production be-305

cause of its potential impact on analysis quality in general, but particularly background306

error covariances, and therefore the quality of the reanalysis, (Brousseau et al., 2012a).307
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Cqu =




h1

. . .

hL


(1)


v1v1 v1v2 ... v1vL

v2v1 v2v2
...

...
. . .

vLv1 vLv2 ... vLvL


(1)

. . .
. . . 

h1

. . .

hL


(N)


v1v1 v1v2 ... v1vL

v2v1 v2v2
...

...
. . .

vLv1 vLv2 ... vLvL


(N)


(2)

3 B-matrix design308

The B-matrix is not stored explicitly. However, we can elucidate each of its con-
stituents to gain insight into its role in CERRA’s 3DVAR. The spatial correlation ma-
trix, containing one block for each total wave-number of the spectral model, for the cor-
relations between the 4 prognostic variables: wind (vorticity (ξ), divergence (η)), the mass
field (temperature (T ) and surface pressure (Ps)) and specific humidity (q) is such that:

C =


Cξ

Cηu

C(T,Ps)u

Cqu

 . (1)

Each block contains vertical and horizontal correlations, for all total wave-numbers n =309

1, ..., N and for all model levels l = 1, ..., L, L = 106. Therefore, C ∈ R4NL×4NL. Note310

that vorticity is considered balanced.311

The structure of one of these blocks, for specific humidity for example, has the form

shown in (2), where Cqu = Diag
(
hqu(1)V

q
(1), ...,h

qu
(N)V

q
(N)

)
, for h(n),V(n) ∈ RL×L, and

Cqu ∈ RNL×NL. The subscripts (n) denote the wave-number and the super-scripted
values inside each constituent block, hl, vl, denote the horizontal and vertical correla-
tion values at level l, respectively. The balance operator contains the multivariate bal-
ance relationships as originally devised by Derber and Bouttier (1999) and later applied
to ALADIN in Berre (2000), such that:

L =


I

MH I
NH P I
QH R S I

 . (3)

This L component accounts for the mass-wind and specific humidity balances, separate
from the correlations dealt with in C. The theoretical idea is that the constituents of
L, address the hydrostatic and geostrophic balances in the vertical and horizontal. The
vertical balances, for mass-wind are taken into account by M, N and P and these are
related to specific humidity via Q, R and S. The horizontal balances are applied with
the horizontal balance operator H, which is a diagonal matrix taking spectral vorticity
coefficients and obtaining balanced geopotential by multiplication of the assumed lin-
ear regression coefficients. Balanced geopotential is the balanced part of the linearised
mass variable deduced from (T, Ps) via the linearised hydrostatic relationship (Parrish
et al., 1997). Finally, Σ is a diagonal matrix of σb along the diagonal, representing the
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background error for the respective wave-number, level and variable in spectral space.
The B-matrix can therefore be written as sparse matrices:

B = LTΣTCΣL, (4)

which is identical in its formulation to (Berre, 2000).312

The regression coefficients and standard deviations are updated every time the fore-313

cast differences are harvested from the EDA, which we now describe.314

3.1 B-matrix estimation: CERRA-EDA315

CERRA-EDA is used to estimate the B-matrix and for uncertainty quantification316

for CERRA-DET. CERRA-EDA is a 10-member ensemble where each member has its317

observations perturbed using a diagonal observation error covariance matrix. The ob-318

servation error covariance matrix is assumed to have zero-mean and follow a Gaussian319

distribution. Once each observation is perturbed a 3DVAR assimilation is performed and320

an analysis follows. This assimilation of 3DVAR is performed continuously, cycled ev-321

ery 6 hours. The analysis is then used to produce a 6-hour forecast for each ensemble322

member. These forecasts are forced by perturbed LBCs from ERA5-EDA, which have323

63km resolution at the equator. This EDA implementation permits the consideration324

of observation error and background error, including LBC error, in the data assimila-325

tion process. Model error is not taken into account and thus none of the conventional326

techniques such as Stochastic Perturbation of Physical Tendencies (SPPT) Stochastic327

Kinetic Energy Backscatter (SKEB) has beeb included.328

Each forecast is 6-hours long. The differences of these 6-hour forecasts are com-
puted between each adjacent ensemble member. The forecast differences are computed
such that

d
(i)
i,i+1 = xfi − xfi+1, (5)

for i = 0, ..., 8 and the difference between last and first member d
(10)
9,0 = x9−x0. These329

differences are then used to compute the correlations and balance relationships that com-330

prise the B-matrix.331

There are two distinct EDAs performed in this way by CERRA-EDA to estimate332

the B-matrix used in CERRA-DET. A high-resolution 5.5km EDA performed just once,333

and a lower-resolution 11km EDA following CERRA-DET in parallel. The purpose of334

the high-resolution EDA is mainly to capture seasonal variability, and to estimate back-335

ground error covariances for CERRA-DET’s high-resolution horizontal scales from 11km336

to 5.5km. The purpose of the lower-resolution EDA is to have live tethering to the cur-337

rent meteorological situation, as is realised on a daily basis, but only for horizontal scales338

higher than 11km. The daily forecast differences are used to update the B-matrix in CERRA-339

DET every 2 days.340

The choice of 3DVAR, 10-members, 11km resolution and 10-minute time-step for341

the EDA were a sufficient compromise to meet constraints on computational expense and342

implementation. Reducing the resolution from 5.5 to 11km yields half the number of grid343

points in both directions of the bi-harmonics, and allows for an increase in time-step. So344

this is why CERRA-DET has a 4-minute time-step in comparison to CERRA-EDA’s 10-345

minute time-step. The numerical cost of the 10-member 11km EDA is twice the cost of346

CERRA-DET.347

We have chosen this route of using an EDA with 3DVAR mainly as an optimal com-348

promise of operational deadline and resource constraints such as running cost, complex-349

ity (maintenance), and running time (speed). Another reason is that in the context of350

the reanalysis, the reasonable measure of uncertainties that can be obtained from an EDA351
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is an attractive prospect. Finally, the potential of the EDA to alleviate the need for B-352

matrix re-tuning served as another good reason to have an EDA-estimated flow-dependent353

B-matrix.354

3.2 Potential statistical variability355

Prior to development of CERRA-EDA, a preliminary system was created and suc-356

cessfully tested on Metéo-France’s VORTEX/OLIVE-ALADIN system. This acted as357

the blueprint for the ensuing HARMONIE-ALADIN CERRA-EDA system. It is this pre-358

liminary system that was used to identify potential variabilities requiring consideration359

and decisions with regards to developing CERRA-EDA. This section discusses plots pro-360

duced using this preliminary system. The OLIVE-ALADIN EDA system had a 5.5km361

resolution, 5-members and forced by 42km LBCs from AEARP (Metéo-France’s global362

EDA system for ARPEGE), cycled 6 hourly with differences taken from 6-hour forecasts.363

The only differences between this preliminary system and the CERRA-EDA system are;364

the number of members and the resolution of the LBC’s. The two periods used for the365

results shown in this section were 1st− 18th July 2017 and 1st− 18th December 2018.366

The potential areas of statistical variability relevant to our study here are: the model367

and its spatial resolution, time-scales (daily, weekly, monthly and seasonal), observation368

systems over decadal time-scales and weather regimes. These areas of variability have369

also been echoed in (Brousseau et al., 2012a). Weather regime change, if occurring on370

time-scales of a few days or weeks say, could potentially be categorised under daily or371

weekly variability. An illustration of the potential variability that can be exhibited day-372

to-day is shown in Figures 1 and 2.373

Figures 1 and 2 both simultaneously show potential seasonal and daily variabili-374

ties. Figure 1 shows total σb values in the vertical, where between 1000hPa and 800hPa375

there is potential of a 50% change in the base σb value for specific humidity from sum-376

mer to winter for example. Similarly, larger potential variability can be seen in the hor-377

izontal scales, where nearly an entire order of magnitude of change in specific humidity378

(top-left plot, Figure 2), is possible, for the largest scales (∼103) and the smaller scales379

(>102).380

In Figure 3(a) the total σPsb value over time has potential to change significantly381

from the base value that would otherwise be predicted by a seasonally static set of statis-382

tics arising from a climatological B-matrix (dotted-lines).383

An important parameter that we derive from the general theme exhibited by Fig-384

ure 3, more specifically Figure 3(d) for vorticity, is that the steepest gradient in σb oc-385

curred from days 10 to 12 1
2 (approximately). This illustrates that the maximum change386

shown in this preliminary experiment for a prognostic variable is 2 1
2 days. This contributed387

to our choice of using an EDA moving average of 2 1
2 days, for CERRA-EDA and updat-388

ing the B-matrix every 2 days in CERRA-DET.389

3.3 Forecast difference mixing390

There are 2 pools of forecast differences used to produce the B matrix. The high-391

resolution (5.5km) climatological part, D(t)Hclim is a mixture of summer and winter dif-392

ferences, DH
e and DH

h respectively, where superscript ‘H’ denotes high-resolution and the393

subscripts denote e, (ete - summer) and h, (hiver - winter) respectively. The forecast dif-394

ferences for DH
e come from 1st-10th July-2017. The forecast differences for DH

h come from395

1st-10th January-2018. The forecast differences for these periods have been done previ-396

ously (offline) and are stored. A time-dependent function, which governs the proportion397

of summer and winter differences used based on the time of year, then synergises an ap-398

propriate number of forecast differences from each season to make up the D(t)Hclim com-399

ponent. Figure 4 shows the weather regimes of each respective period. The second part400
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Figure 1. Vertical daily and seasonal variabilities using OLIVE-ALADIN 5-member EDA

system. Vertical profiles of horizontally averaged σb vs pressure (hPa) for; specific humidity

(top-left), temperature (top-right), vorticity (bottom-left) and divergence (bottom-right). Each

profile represents σb for one assimilation time; summer is represented by the period 01-07-2017

(red-lines) winter is represented by the period 01-01-2018 (blue-lines).

Figure 2. Horizontal daily and seasonal variability using OLIVE-ALADIN 5-member EDA

system. Horizontal values of σb (vertically averaged) vs length-scale (km) for; specific humidity

(top-left), temperature (top-right), vorticity (bottom-left) and divergence (bottom-right). Each

profile represents σb for one assimilation time; summer is represented by the period 01-07-2017

(red-lines) winter is represented by the period 01-01-2018 (blue-lines).
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Figure 3. Potential daily variability over 1 month using OLIVE-ALADIN 5-member EDA

system. Total σb value for (a) surface pressure, (b) temperature, (c) specific humidity and (d)

vorticity. Each line represents the total σb value for each day in the respective month; first 18

days of December-2018 (blue-line) and first 18 days of July-2017 (red-line). The dotted lines

are climatological σb value taken from static climatological B-matrix; summer seasonal average

(red-dotted line) winter seasonal average (blue-dotted line).
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Figure 4. Weather regimes of periods used for D(t)Hclim climatological differences. The sum-

mer period represented by the chosen days in July-2017 is dominated by a zonal regime, whereas

the winter period represented by January-2018 shows a near-half between NAO+/NAO- followed

by a less-imposing winter blocking regime. Regimes: Bloc. été/hiver - summer/winter blocking,

Dor. Atl. - Atlantic Ridge, Min. Atl. - Atlantic Minimum

comprises low-resolution (11km) daily differences, DL
jour, coming from the ‘online’ CERRA-401

EDA running in parallel to CERRA-DET.402

The function governing the proportion of forecast differences mixed is such that:

D = [DH
e (1− t(d)) +DH

h t(d)]︸ ︷︷ ︸
DH

c

α+ (1− α)DL
j , (6)

where D is the total pool of forecast differences used to create the B matrix, α is the fore-
cast differencing mix ratio and:

r(d) =

{
−d mod h for d < h
d mod h for d > h

,

t(d) =
r(d)

h
,

(7)

is the seasonal linear weighting function. h is half the number of days in the year and403

d ∈ [1, 364] is the day within the current year. As an illustrative if that time of year404

is 1st January, then t(d) would dictate that all of the differences would come from DH
h405

and none from DH
e . Preliminary studies for choice of α indicated that α = 0.8 for CERRA-406

DET is an optimal compromise. This allowed us to achieve the most desirable analysis,407

as illustrated in the following sections. The forecast differences, DL
j , constitute a 2 1

2 day408

moving average from CERRA-EDA. This is to account for the maximum gradient shown409

to occur within a ∼ 2 1
2 -day period, as discussed in our preliminary experiment in sec-410

tion 3.2. This would also allow for abrupt changes arising for example from a weather411

regime change, which may be instigated by sub-grid-scale processes.412

4 Case study: Can the EDA capture a change in weather regime?413

Identifying a sudden change in large-scale weather phenomena such as a weather414

regime would improve the analysis, since the ensuing state estimate would be more ac-415

curate at any given time. Subsequent improvement of forecast quality should also en-416

sue, however this is isn’t a given. So we begin by asking the question: Can a flow-dependent417

B-matrix be dynamic enough to detect a sudden change in weather regime? If so are there418

any caveats? And what impact does this have on analysis and forecast quality? Before419

answering these questions we briefly explain how a weather regime is characterised.420

While there are numerous methods which are used to identify weather regimes, the421

data we use utilises the methodology detailed in (Vautard, 1990). The way the authors422

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 5. The correlation of the actual weather regimes exhibited in periods; March-2003 (top

plot) and March-2018 (bottom plot). Region: France. Plot and data courtesy of Météo-France:

http://seasonal.meteo.fr/content/suivi-clim-regimes-quot.

compute the weather regime is by using 24-hour centered finite difference of vectors con-423

taining principal components of ‘large-scale tendencies’ to compute ‘instantaneous ten-424

dencies’. These large-scale tendencies depend on: themselves, small-scale components425

and other factors. A composite tendency function, which gives a weighted-average of,426

small-scale, ‘other factors’ and large-scale tendencies, is minimised using a least-squares427

approach, The solution of this least-squares function becomes the large-scale tendency,428

or weather regime. In this way, 4 weather regimes categorically emerge: a European block-429

ing dipole, enhanced zonal flow, a positive anomaly over Greenland and a ridge over the430

eastern Atlantic Ocean. Weather regimes in Europe are generally identified by quasi-stationary431

centres of pressure ratios at ∼500hPa roughly over the Azores Islands, west Portugal and432

Iceland. The weather regime paradigm is used to characterise large-scale circulation pat-433

terns over regional domains. It is also used as a proxy to predict significant short-to-mid-434

term changes in the statistical probability of hot and cold extremes and precipitation oc-435

currences across Europe. We will term categorisations of weather regimes in Europe, as436

mentioned previously, as: North-Atlantic Oscillation (NAO +/−), Atlantic Ridge, block-437

ing and ‘zonal’.438

For the purpose of being able to clearly identify if the B-matrix is capable of de-439

tecting a change in weather regime, we deliberated in selecting two periods where the440

winter regimes differ: March-2003 and March-2018, as shown in Figure 5.441

4.1 Experiment design442

The B-matrix used for CERRA-EDA itself is a pre-populated 5.5km static clima-443

tological B-matrix, not to be confused with the temporally updated CERRA-DET B-444

matrix computed from CERRA-EDA. This same static climatological B-matrix acts as445

the referential comparator in the experiments that follow. This static climatological B446

is composed of differences from D(t)Hclim, as described earlier in section 3.3.447

We seek to establish whether the ability of the B-matrix to recognise a change in448

weather regime is contingent on:449

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 6. Total numbers of observations (left plot) and satellite observations (right plot), by

day in March (x-axis), for: March-2003 (orange line), March-2018 simulating March-2003 obser-

vations and March-2018 with default settings (black line). The observation data was averaged

using a 4th degree polynomial.

1. Varying climatology and daily forecast difference influence via α.450

2. The observation network used in both respective periods.451

To investigate varying the influence of climatology and daily differences, we compute the452

following B-matrices:453

BS Climatology only. No daily. α = 1. t(d) = 0.5 fixed.454

B8020 Climatology-dominant with daily. α = 0.8. t(d) varying.455

B5050 Climatology and daily equal. α = 0.5. t(d) varying.456

B2080 Daily-dominant with climatology. α = 0.2. t(d) varying.457

And to investigate the contribution of the observation network to the statistics we run458

use the B-matrices above to produce analyses for the following periods:459

(i) March-2018 with default observation settings. (M18)460

(ii) March-2018 with observations settings closely mimicking March-2003. (M18sM03)461

(iii) March-2003 with default observation settings. (M03)462

The abbreviations are what we used to refer to each period later in the plots in this sec-463

tion. M18sM03 allows us to isolate general contribution of the observation network to464

the ensuing results. To allow the observation network of M18 to mimic M03 as closely465

as possible (M18sM03), we removed the following observations: SATOB (polar and geostrophic),466

Atmospheric Motion Vectors (AMV), Aircraft observations (AMDAR, AIREP, ACARS),467

and IASI. Figure 6 shows the total and satellite observation numbers for (i,ii,iii). An ex-468

ample of the aircraft observation coverage is shown in Figure 7. Figure 7 in 2018 shows469

significant aircraft coverage of regions close to pressure centres and flow-corridors to de-470

tect weather regime change. For changes in weather regime to be detected this is sig-471

nificant. It is important to note that these aircraft observations were removed for M18sM03.472

Finally, it was shown in Wang and Randriamampianina (2021) that the aircraft obser-473
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Figure 7. Aircraft observation coverage at all vertical levels.
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vations had the most impact on CERRA analyses, which is relevant to us here since these474

form a part of the observations we removed for M18sM03.475

4.2 Results476

In this section, we describe our results in three parts; the temporal evolution of the477

computed σb value, the horizontal and vertical background error variance spectra, and478

their impact on the quality of the analysis and forecast.479

4.2.1 Temporal evolution of σb480

The time series of σqb indicates two interesting aspects. The first aspect is the con-481

trasting range of σb values for both periods. The mean range of M18 (red-line) is approx-482

imately σb = 5, showing a strong tendency to remain near the static σb value, except483

in times of WR change (days 21-28 for M18, Figure 5). M03 has a very wide σb range484

of nearly σb = 4, remaining virtually flat even in times of WR change, keeping in mind485

that the M03 WR change is between days 6-11. Since M18sM03 also has a wide range486

of σb values, it is fair to say that the large σb range is attributed to the difference in ob-487

servation network principally, since M18 would naturally have the improved observation488

network.489

The second aspect is the flexibility of σb. M18 with its original observation network490

is the only period showing any significant change at times of WR change. This is con-491

nected to α because we only see these changes for α = 0.2, 0.5. M18 σb values exhibit492

more readiness to change, for example between days 7-9, while remaining close to the493

static value, σb = 4.8. Another strong fluctuation of σb between days 23-27 further il-494

lustrates the potential for rapid change, given a more weighty influence on the daily EDA495

statistics, ie. for α = 0.2. This is mimicked in a more dilute sense for α = 0.5. M03496

and even M18sM03 show near-to-no change in comparison to M18, except between days497

26-28, and even then it is very small.498

It is therefore fair to conclude from Figure 5, that the coverage of the improved ob-499

servations of M18 over M03, (Table 1) aid in; the flexibility of σb at WR change time (days500

21-28), and the range of the σb values of each respective period. Aiding this conclusion501

is both M03 and M18sM03 have nearly identical σb value-ranges and σb temporal sta-502

sis. This is due to having almost identical observation networks. In the experiment with503

the most improved observation network (relatively), the α value facilitates the breadth504

of change σb can exhibit. This illustrates both the ability of the EDA to adjust to sud-505

den changes in the meteorological situation, and the need to estimate α correctly.506

4.2.2 Variance spectra and profiles507

The horizontal spectra in Figure 10 illustrates the primacy of having an updated508

and denser observation network. Comparing M18 (blue-lines) with M18sM03 (green-lines),509

the blue line consistently has a higher variance profile across all wavelengths above 11km.510

This is explained both; by interpolated daily forecast differences constituting half of the511

differences (α = 0.5), which are interpolated from the EDA resolution of 11km to the512

reanalysis production resolution of 5.5km. M18sM03 otherwise behaves almost identi-513

cally to the bulk of the M03 spectra (red-lines), where the few spectra lines where M03514

has increased variance in the lower wavelength range vorticity and divergence, is due to515

the different weather regimes present. M03 is mainly blocking (Figure 4), where the 3516

red profiles that are visibly higher (bottom two plots of Figure 10), almost reaching the517

same values as M18 (blue lines), represent the 1 day where there is a slight increase in518

geopotential. M18 is mainly NAO-, with higher geopotential values, with better obser-519

vations, which explains the consistently higher vorticity and divergence profiles in the520

bottom two plots of Figure 10.521
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Figure 8. Total σb value for specific humidity at ∼800hPa from 3rd-29th March. Periods:

M18 (red-lines), M03 (blue-lines) and M18sM03 (purple-lines). The B-matrices are as follows: BS

(yellow-dotted-line), B8020 α = 0.8 (crosses), B5050 α = 0.5 (dots), B2080 α = 0.2. The vertical

black lines show points of weather regime change from both periods seen in Figure 5.
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Figure 9. Same as Figure 8 but for the Temperature variable.

The vertical profiles in Figure 11 clearly show that increasing α, namely increas-522

ing daily forecast difference, increases all of the standard deviation values for temper-523

ature throughout the vertical, regardless of period. Conversely, having the minimum value524

of α = 0.2 as seen in Figure 11, the standard deviation of temperature is reduced by525

up to 1/3 of its original value.526

Finally, comparing M18 to M18sM03 (left-most and middle plots, Figure 11), we527

observe that the range of potential values of temperature standard deviation is much wider528

for M18. This is mainly due to the improved general observation coverage of M18 over529

M03 (Figure 6). This is most visible for example for α = 0.2, where for M18M03 (Fig-530

ure 11, middle plot, red-lines) , σTb does not exceed ∼ 0.4, whereas for M18 σTb can reach531

0.75, similar to the static B-matrix standard deviation, which has no daily influence. This532

illustrates the dynamic potential of the B-matrix with more daily-EDA influence than533

climatological, which also shows in the total σb value, Figure 8.534

4.2.3 Analysis impact535

In this section, we discuss results obtained by using B-matrices mentioned in sec-536

tion 4.1 in the same system used for CERRA. We contrast the results from Table 2 with537

Figure 8 for specific humidity and Figure 9 for Temperature. The behaviour of the wind538

variable is identical to temperature (Figure 9), and is therefore not shown. Anytime σb539

is mentioned, Figures 8, 9 are being referred to for brevity. Diagnostics of relative dif-540

ference of analysis and background departure RMS’s normalised by BS values are shown541

in Table 2. These are for spatio-temporally regularised observations: aircraft measure-542

ments of temperature and wind, and ground-based GNSS for specific humidity. Rela-543

tive differences of RMS’s for background and analysis departures are referred to as RDRMS(O-544

B) and RDRMS(O-A) respectively.545
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Figure 10. Horizontal variance spectra at 1000hPa of; specific humidity (top-left), temper-

ature (top-right), vorticity (bottom-left) and divergence (bottom-right) of forecast errors for

B-matrix B5050 during periods; M03 (red-lines), M18sM03 (teal-lines), M18 (blue-lines).

Figure 11. Vertical standard deviation profiles of Temperature for periods (left to right);

M18, M18sM03 and M03. Standard deviations of; BS (green-dotted-line), B8020 α = 0.8 (purple

lines), B5050 α = 0.5 (blue-lines) and B2080 α = 0.2 (red-lines).

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

In short, RDRMS(O-B) for B8020 for example, measures how far the background-546

state produced by B8020 actually is from the observations, in comparison to the BS-equivalent,547

averaged over the period indicated. The same is analogously true for analysis departures,548

RDRMS(O-A). Positive values show how much the respective dynamic matrix has caused549

the analysis to move away from the observations in comparison to static.550

σb of temperature (and wind) is smaller for all dynamic matrices implying more551

trust in the background compared to BS. This causes the positive RDRMS(O-A) val-552

ues of temperature and wind (first column of Wind and Temperature, Table 2), indicat-553

ing an analysis farther from the observations. Conversely, for specific humidity, σb val-554

ues are less than BS equivalent, which show that the dynamic matrices are causing less555

trust in the background. As a result the analysis fits the observations more closely (first556

column of Specific Humidity, Table 2).557

Examining the (O-A) values, on average for Mar-18, σb for temperature (Figure 9)558

and wind (not shown) are lower in the dynamic matrices compared to BStatic. It fol-559

lows that the background is more trusted during the 3DVAR minimisation resulting in560

higher RMS(O-A) values, (as showed by positive RDRMS(O-A) values in Table 2). Con-561

versely, specific humidity σb values are higher for the dynamic B-matrices compared to562

BStatic. It follows that the background is less trusted during the 3DVAR minimisation563

and RMS(O-A) is smaller.564

The O-B values show that changes seen in wind and specific humidity benefit the565

subsequent background in the assimilation cycle. Therefore RMS(O-B) values are slightly566

reduced (the lowest reduction being -0.3% for specific humidity in B8020 and the high-567

est being 0.7% for wind in B5050). However, these RDRMS(O-B) values are statistically568

significant. The opposite is true for temperature where the RMS(O-B) values increase569

slightly, but the changes are not statistically significant.570

The period of WR-change shows the most significant change of σb values for the571

dynamic B-matrices compared to BS (Figure 9). These changes are seen in the reduc-572

tion of RMS(O-B) values (second columns and second rows for wind and specific humid-573

ity, Table 2) with a maximum reduction of 2.4% (highlighted in red) for Ground-based574

GNSS observations in B5050. This significant change between these two periods is not575

true for B2080 however. B2080 shows RMS values for (O-A) and (O-B) for wind and spe-576

cific humidity variables (second row of B8020 and second row of B8020, Table) that are577

close to B2080 values. This indicates that increasing the proportion of daily information578

from the EDA has no added benefit in this case. A plausible reason for this is the dis-579

parity between the resolutions of the daily (11km) and seasonal (5.5km) forecast differ-580

ences. The additional information from the daily differences is only relevant for model581

scales above 11km.582

We have shown that the use of dynamical B-matrices has the potential to improve583

the general behaviour of the data assimilation system.584

The impact of dynamic B-matrix changes on the quality of the forecast during the585

data assimilation cycle are further evaluated using precipitation skill scores shown in Fig-586

ure 12. The 24-hour accumulated precipitation is simulated by the sum of eight 3-hour587

forecasts from the data assimilation cycle between 6 UTC and 6 UTC the following day,588

and compared to rain-gauge measurements. There are approximately 4850 rain-gauge589

measurements available each day. Figure 12 shows the relative difference of Hiedke Skill590

Score (HSS) for measured precipitation thresholds every 24 hours (0.2, 2, 5 and 10 mm/24h)591

for B8020, B5050 and B2080 experiments compared to BS. Positive values indicate that592

the dynamic B-matrix experiment is closer to the observations than BS. Circles on the593

curves indicate that the differences are statistically significant.594

B8020 exhibits slightly better HSS values than BS (positive values, HSS is higher595

in B8020 than BS) for all the thresholds around the 1% relative difference region. How-596
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Table 2. Relative differences of Root Mean Square (RMS) values of Observation-Analysis

(O-A) and Observation-Background (O-B) in the observation space for aircraft measurements of

wind, temperature and ground-based GNSS observations. Each row shows B-matrices: B8020,

B5050 and B2080 compared to and normalised by BS during two distinct periods: 1-31st March-

2018, and 26-31st March-2018. Positive values in rows for each period indicate that the RMS

for the respective B-matrix is larger than BS. Bold number indicates statistically significant

differences using a student’s t-test with 95% confidence interval.

B-matrix Period
Wind1 Temperature1 Specific Humidity2

O-A O-B O-A O-B O-A O-B

B8020
1-31st 4.1 -0.5 3.6 0.3 -8.9 -0.3
26-31st 6.0 -1.2 5.0 0.2 -10.0 -1.5

B5050
1-31st 6.2 -0.7 6.1 0.5 -2.8 -0.5
26-31st 12.0 -2.1 11.0 0.1 -1.1 -2.4

B2080
1-31st 7.0 -0.3 7.2 0.3 0.2 0.2
26-31st 7.1 -0.2 6.8 0.2 -10.1 -1.7

1Aircraft observations.
2Ground-based GNSS.

ever, this improvement is significant only for 0.2mm and 10mm thresholds. B5050 only597

shows a significant improvement for the 5mm threshold, while B2080 is significantly bet-598

ter for 0.2, 2 and 5mm thresholds. For other thresholds the HSS differences are not sig-599

nificant.600

The diagnostics drawn from Table 2 and Figure 12 confirmed our choice of B8020601

B-matrix for CERRA-EDA and consequentially, CERRA production, providing us with602

the best compromise in cyclic analysis and background-state quality for the entirety of603

the reanalysis. This configuration also permits dynamic adjustment of covariances aris-604

ing from horizontal scales above and below 11km, albeit homogeneously and isotropi-605

cally. Increased weighting on forecast differences from the 5.5km EDA ensures the re-606

duction of polluting numerical noise that could potentially arise from the 11km EDA.607

It is clear that B2080 allows for this, to the detriment of the cyclic quality of the back-608

ground and analyses states, as well as the skill scores.609

While one of the main purposes of a reanalysis system is to provide optimal esti-610

mation of the atmosphere state at a given time, the system can also be used to initial-611

ize longer-range forecasts for operational NWP. To examine this potential and the ap-612

titude of the system to provide input data for longer range forecasts, Figures 13 and 14613

show normalised RMSE of the analysis, 12-hour and 24-hour forecasts (F00, F12 and F24,614

respectively) all valid at 00H00 and 12H00 UTC, using radiosonde measurements. Each615

of these forecasts arise from using the dynamic B-matrices against forecasts using BS as616

our benchmark comparator. So positive values (to the right of the 0 in the figures) in-617

dicate improved forecast quality of the respective dynamic B-matrix over BS. As pre-618

viously discussed, the smaller σb values of dynamic B-matrices for temperature and wind619

compared to BS result in subsequent analyses which fit the observations less, ie. the back-620

ground is more trusted. As Table 2 generally shows larger increments to RDRMS(O-A),621

which explain the subsequent apparently degradation in analysis, F12 and F24 forecasts622

are not significantly worse. March-2003 shows differences between the dynamic B-matrices623

and BS which aren’t significantly different from zero. Conversely, during March-2018 these624

forecast ranges exhibit statistically significant improvements (positive normalised RMSE625

differences) for the 600-300hPa layer, indicating that the changes in the data assimila-626
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Figure 12. Relative differences of Hiedke Skill Scores (HSS) for 24h accumulated precipitation

measurement thresholds (mm). HSS is compared to the chance score. The differences for each

threshold are between measurements by rain-gauges (4850 on the geographical domain) and the

sum of the 3-hour range forecasts from the data assimilation cycle (background) between 06UTC

and 06UTC the next day. This is for the period from 01 to 31 March 2018. Each line shows the

respective B-matrices; B8020 (solid red-line), B5050 (dashed blue-line) and B2080 (dash-dot

green-line). Each experiment is compared to and normalised by BS for 0.2, 2, 5 and 10mm/24h

thresholds. Circles on lines indicate statistically significant differences using a Boot-strap test

with 95% confidence interval.
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Figure 13. Difference in the mean of the root mean square error (RMSE), normalised by the

mean scores for; the analysis (F00), 12-hour (F12) and 24-hour (F24) forecasts of geopotential

field against radiosonde observations. Each line represents differences between forecasts with BS

and forecasts with: B8020 (red line) and B5050 (blue line). Each line represents the average of

forecast differences starting at both 00 UTC and 12 UTC during March-2003. Positive values, to

the right side of the vertical line at 0, represent an improvement over BS.

tion system are of benefit to the forecast quality once again. Dynamic B-matrix σb val-627

ues have the potential to increase over BS, providing analyses closer to observations and628

also better subsequent forecast as a consequence. B8020 exhibits better results in the629

lower atmospheric levels, at F24 below 850hPa for example, than B5050 or B2080.630

5 Conclusions631

In this paper we focused on detailing our new temporally flow-dependent augmented632

EDA system. The CERRA-EDA system was designed specifically for use in a regional633

5.5km ∼40-year reanalysis. The system comprises a time-varying selection of seasonal634

differences at higher-resolution (80%), and a lower-resolution continuously cycled 6-hourly635

EDA (20%), averaged over 2.5 days. The B-matrix used in CERRA-DET is updated ev-636

ery 2 days.637

Our line of scientific enquiry began with investigating if it was possible to capture638

weather regime change and if so, what caveats does it entail. We also wanted to know639

what impact this would have on the analysis and forecast. In conclusion it is possible640

to estimate and statistically realise weather regime change. It depends mainly on the ob-641

servations, but it also depends on α, ie. the proportion of seasonal-daily forecast differ-642

ences used for the EDA system. α can greatly impact the amplitude of σb change at times643

of WR change.644

Our case study showed that the statistics of the B-matrix; the time evolution of645

σb, and horizontal and vertical variance spectra for our prognostic variables, do indeed646

capture the changes instigated by weather regime changes from NAO- during March-2018.647

It is clear from our penultimate experiment, simulating March-2003 observations in March-648
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Figure 14. Same as Figure 13 but for March-2018. The additional B-matrix B2080 is repre-

sented by the green-dotted-line.

2018, that the observations are the reason. To further support our hypothesis, we illus-649

trated the coverage differences between March-2003 and March-2018 (Figure 7). It was650

clear that March-2018 had far better aircraft observation coverage of the pressure cen-651

tres characterising the advent of any weather regime. In addition, March-2018 had just652

over double the total observations and roughly 3 times as much satellite observations.653

We also discussed the impact of varying α. It sufficiently increases the range of po-654

tential values that σb can take. This does not necessarily translate to better forecast skill655

scores, as can be seen for example in section 4.2.3, Figure 14. However, the range of σb656

values, while having some form of governance attributed to α, also depends on obser-657

vation coverage as shown in section 4.2.1, Figure 8. It is shown that α = 0.2, 0.5 cap-658

tures WR far better than the rest, while also performing worse than BS. α = 0.8 shows659

minor σb adjustments at times of WR change while having optimal forecast skill perfor-660

mance. The apparent analysis degradation for α = 0.8 is due to the assimilation sys-661

tem placing less trust in the background, Table 2, and more in the observations. This662

provides better performance overall, when viewed in light of the cyclic nature of the as-663

similation system.664

So while varying α is a useful tuning tool we found that it is intrinsically linked665

to observation coverage. This is known and can be understood analytically by viewing666

the analysis update equation, which shows the B-matrix acting to ‘spread’ information667

depending on the availability of observations at a discrete point in space. It is clear that668

the additional information, if taken into account without too much weighting beyond 20%669

in our case, that it the impact is positive overall. Cases where the weighting on the daily670

component of the EDA was 50-80% allowed for additional noisy information from the671

11km scales to pollute the 5.5km scales. This is clearly something to be avoided.672

In the context of our reanalysis the overall significance can only be seen in the years673

over improved observations, approximately 5 years out of the /sim40 year reanalysis time-674

frame. In the general context of EDA B-matrix estimation for DA in NWP however, it675

is a positive finding. It shows that it is possible for B-matrices to quickly adapt in the676
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face of large-scale and small-scale phenomena if correctly tuned. It is also important to677

note, that the EDA in a reanalysis context also has the utility of uncertainty quantifi-678

cation. So while a modest improvement in forecast skill is welcomed, we cannot forget679

the added benefit of uncertainty quantification as tool to improve our efforts in the next680

reanalysis iteration.681

Further improvements to our system would involve the following. Increasing the682

number of EDA members to reduce sampling error would be a great first step, but this683

is contingent on computing capability. Partitioning the scales where the EDAs can in-684

fluence the B-matrix, for example, not allowing the daily 11km EDA to have any input685

on the 5.5km scales. This would ensure that no irrelevant information is used. This could686

perhaps be achieved by a scale-dependent function to allow 100% weighting to the 5.5km687

scales coming from the seasonal component. Finally, EnVar techniques would probably688

provide scope for further improvement. However, this would require extensive testing689

in a reanalysis context, to ensure that an improvement over non-EnVar techniques which690

are currently used.691
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