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Abstract

Saltwater disposal has been identified as the dominant causal factor that contribute to induced seismicity. Physical models rely

on mechanistic understanding to infer causality where they evaluate various conditions for fault slips albeit with a high degree

of uncertainty due to sparse data and subsurface heterogeneity. Given these uncertainties, statistical analysis is designed to

measure statistical associations in the observed data with parametric regression models and interpret the significance of specific

coefficient as evidence of causation. However, it is often difficult to interrogate the coefficients between different statistical

models as the coefficients hold different implications. We propose a causal inference framework with the potential outcomes

perspective to explicitly define what we meant by causal effect and declare necessary assumptions to ensure consistency between

models for model comparison. The proposed workflow is applied to the Fort-Worth Basin of North Central Texas with the area

of interest is discretized into non-overlapping grid blocks. Two statistical methods are employed to test the significance of the

causal effect between the presence or absence of saltwater disposals and the number of the earthquakes and to estimate the

magnitude of the average causal effect. In addition, our analysis is repeated for different grid configurations to directly assess

the sensitivity of statistical results. We have identified a stable and statistically significant causal relationship between the

presence of saltwater disposals and the number of earthquakes and have estimated there are, on average, 13 more earthquakes

occurring in grids with saltwater disposals.
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Abstract17

Saltwater disposal has been identified as the dominant causal factor that contribute to18

induced seismicity. Physical models rely on mechanistic understanding to infer causal-19

ity where they evaluate various conditions for fault slips albeit with a high degree of un-20

certainty due to sparse data and subsurface heterogeneity. Given these uncertainties, sta-21

tistical analysis is designed to measure statistical associations in the observed data with22

parametric regression models and interpret the significance of specific coefficient as ev-23

idence of causation. However, it is often difficult to interrogate the coefficients between24

different statistical models as the coefficients hold different implications. We propose a25

causal inference framework with the potential outcomes perspective to explicitly define26

what we meant by causal effect and declare necessary assumptions to ensure consistency27

between models for model comparison. The proposed workflow is applied to the Fort-28

Worth Basin of North Central Texas with the area of interest is discretized into non-overlapping29

grid blocks. Two statistical methods are employed to test the significance of the causal30

effect between the presence or absence of saltwater disposals and the number of the earth-31

quakes and to estimate the magnitude of the average causal effect. In addition, our anal-32

ysis is repeated for different grid configurations to directly assess the sensitivity of sta-33

tistical results. We have identified a stable and statistically significant causal relation-34

ship between the presence of saltwater disposals and the number of earthquakes and have35

estimated there are, on average, 13 more earthquakes occurring in grids with saltwater36

disposals.37

Plain Language Summary38

Causal inference, a sub-field of statistics, has gained popularity across other quan-39

titative fields of medicine, epidemiology, and social sciences to provide evidence of causal-40

ity but has not been previously explored in geoscience. We apply a causal framework with41

the potential outcomes perspective, the outcomes we would observe under a counterfac-42

tual scenario, to analyze the effect of saltwater disposal on earthquakes. We found there43

is a statistically significant causal relationship between saltwater disposal and the num-44

ber of earthquakes and estimated, on average, there are 13 more earthquakes occurring45

in grid with saltwater disposal. We performed sensitivity analysis on the effect of grid46

configuration on statistical results that is unique in raster-based spatial analysis.47

1 Introduction48

1.1 Background49

Saltwater disposal (SWDs) has been linked to the recent increase of earthquakes50

in various regions of the United States (Ellsworth, 2013; Frohlich et al., 2016a; Grigo-51

ratos et al., 2020b; Hennings et al., 2019; Justinic et al., 2013; Keranen et al., 2013; Lan-52

genbruch & Zoback, 2017; McClure et al., 2017; Walsh & Zoback, 2015; Weingarten et53

al., 2015). In Texas, the development of shale hosted hydrocarbon resources in the Per-54

mian Basin, Eagle Ford Basin and Barnett Basin has resulted in a rapid expansion in55

both the number of SWDs and the cumulative injection volume, along with an abrupt56

increase in the number of earthquakes in respective basins (Hennings et al., 2019; Horn-57

bach et al., 2015; Ogwari et al., 2018; L. Quinones et al., 2019; Scales et al., 2017; Zhai58

& Shirzaei, 2018). Of particular importance is the Fort-Worth Basin which hosts Bar-59

nett Shale in the North Texas that include most of the Dallas-Fort Worth (DFW) metropoli-60

tan area. Although the rate of earthquake activity in the DFW region has decreased since61

its peak in 2015, the potential linkages to oil and gas activity continuous to be a con-62

cern and put the social license of developing oil and gas resources in Texas at stake.63

In response to this concern, the TexNet Seismological Observatory and the Cen-64

ter for Integrated Seismicity Research (CISR) at The University of Texas at Austin were65
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established to monitor potentially induced seismicity and to better understand the earth-66

quake activities across the State of Texas (Hennings et al., 2019; Savvaidis et al., 2019).67

One of the overarching goals of TexNet-CISR is to improve causative understanding of68

the relationship between SWDs and onset earthquakes and the quantification of any iden-69

tified causal relationship.70

Advanced physics-based modeling has indicated the significant increases in pore71

pressure from large-scale SWD activities, which reduces frictional resistance of critically72

stressed faults, can induce fault slips (Fan et al., 2019; Zhai & Shirzaei, 2018; Keranen73

et al., 2014; Lund Snee & Zoback, 2016). However, the physical models do not provide74

direct evidence of whether an instance of earthquake is coincidental or whether there ex-75

ist a clear causal relationship between larger number of earthquake and large number76

of SWDs (Hornbach et al., 2016; Fan et al., 2019; Langenbruch & Zoback, 2016; McClure77

et al., 2017).78

To complement deterministic physical models, statistical analyses can provide ad-79

ditional evidence of the causal relationship between SWD activity and earthquakes which80

has practical and policy related to SWD regulation. In particular, causal inference, a sub-81

field of statistics, has gained popularity across other quantitative fields of medicine, epi-82

demiology, and social sciences to provide evidence of causality but has not been previ-83

ously explored in geoscience (C. M. Zigler & Dominici, 2014; C. M. Zigler et al., 2018;84

Dominici & Zigler, 2017; Papadogeorgou et al., 2019; C. M. Zigler & Papadogeorgou, 2021;85

Reich et al., 2020; Imbens & Rubin, 2015; Hahn et al., 2020). An integral component86

of causal inference is the notion of potential outcomes where we conceive of different out-87

comes for a unit (e.g., a particular location in the study region) under different treat-88

ment options, noting that only one outcome can be ultimately observed for that unit (Imbens89

& Rubin, 2015). Using the notion of potential outcomes, causal inference methodology90

allows practitioner to explicitly define the causal effect at the unit-level as the difference91

between the potential outcomes (Imbens & Rubin, 2015). More specifically, the causal92

effect of interest in this work, formalized with potential outcomes, is the difference be-93

tween what earthquake activity would potentially be at a location if SWDs were present94

and what earthquake activity would potentially be at the same location absent SWDs.95

The “fundamental problem of causal inference”, where only one outcome can be observed96

at a given location, motivates the use of average comparison across multiple locations97

within the area of interest where SWDs are and are not present to compute the aver-98

age causal effect (Holland, 1986). Importantly, the assumption of strong ignorability that99

there are unmeasured confounding features is essential in causal inference (Imbens & Ru-100

bin, 2015). The strong ignorability assumption, in this context, clarifies that the con-101

founding factors would be unmeasured variables that jointly dictate SWD activity and102

earthquakes.103

Although an existing body of work has used parametric regression models to es-104

tablish spatiotemporal correlations between SWD fluid injection and earthquakes and105

has interpreted the statistical significance of specific coefficients as evidence of causation,106

the caveat here is “correlation does not imply causation” (Hornbach et al., 2015; Fasola107

et al., 2019; McClure et al., 2017; Grigoratos et al., 2020a; Aldrich, 1995; Langenbruch108

& Zoback, 2016). More specifically, we argue the causal validity from statistical anal-109

ysis is not completely determined by statistical model specification, but rather related110

to explicit or implicit assumptions about the study design (C. M. Zigler & Dominici, 2014;111

Dominici & Zigler, 2017). For example, McClure et al. (2017) first describe their model112

specifications with modeling assumptions (i.e., assume the number of earthquakes is gen-113

erated from a Poisson distribution) and then discuss the causal assumptions, strong ig-114

norability assumption, to ensure the associations can be formally interpreted as demon-115

strating causality within their longitudinal study design (McClure et al., 2017).116

We expand the workflow in McClure et al. (2017) and propose a new spatial causal117

inference workflow that integrates the notion of potential outcomes and relevant assump-118
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tions for the assessment of causality for induced seismicity. We apply two statistical meth-119

ods for two specific aspects of the average causal effect of interest. First, we offer a randomization-120

based test of the null hypothesis of no causal effect of SWD placement on earthquakes,121

tailoring the null distribution of the test to the specifics of the study design. Second, we122

estimate the average causal effect and its uncertainty of SWDs on earthquakes with the123

average difference between the potential outcomes across multiple grids within the area124

of interest. Our focus on the effects of presence or absence of SWDs versus, for exam-125

ple, other work’s focus on the effects of distributed SWD volume, is meant to simplify126

the problem and focus on key features of the causal framework. With new developments127

in spatial causal inference, exposure models that link the influence of particular SWD128

to earthquakes through distributed volume will be incorporated in future analysis (C. Zigler129

et al., 2020).130

In addition to explicit causal considerations, we also offer an assessment of sensi-131

tivity of the statistical results to decisions about how to process the spatial data into a132

raster layer for analysis, specifically, the size and offset of spatial grids. Studies typically133

select a single grid configuration, chosen based on underlying knowledge or convenience,134

and then condition all inference on the chosen configuration (McClure et al., 2017; Grig-135

oratos et al., 2020a). Lack of a universally accepted grid configuration, even for the same136

study area, invites an assessment of how sensitive a given study’s results are to a cho-137

sen configuration to determine the possibility of analysis artifacts that are attributable138

to different grid configurations. Rather than condition inference on a single configura-139

tion, we conduct statistical analyses and summarise the statistical results under a va-140

riety of configurations to gauge sensitivity to the grid size and placement of the raster141

layer. Results point towards the potential for sensitivity to grid configuration that war-142

rants careful consideration in raster-based spatial analysis.143

In Section 2, we expound our design decisions and describe the specifics of two des-144

ignated statistical methods. More specifically, we detail the implications of two causal145

conditions and highlight how formulating the problem with potential outcomces forces146

deliberate considerations on the placement of SWDs to approximate an randomized ex-147

periment (Section 2.2 and Section 2.3). We argue more emphasis should be placed on148

the proper construction of the null distribution for hypothesis testing and demonstrate149

how our approach arrives at proper null distribution for our study and for previous stud-150

ies (Section 2.4.2 and Appendix Appendix E). We further differentiate between the marginal151

interpretation and the conditional interpretation in raster-based spatial problems (Sec-152

tion 2.4.3). Lastly, we perform sensitivity analysis to directly assess the impacts of grid153

configuration on the statistical results (Section 2.6). We discuss our results in Section154

3 and motivate future researches in Section 4.155

2 Methods156

2.1 Data Assembly and Parameterization157

Our study area is the Dallas Fort-Worth (DFW) Basin in North-Central Texas. Nu-158

merous studies have documented the evolution of earthquake sequences, collected exten-159

sive compilations of mapped faults, and conducted numerical simulations of hydrolog-160

ical modeling and fault activation in the area of interest (Hennings et al., 2019; Frohlich161

et al., 2016a, 2020; Fan et al., 2019; Hornbach et al., 2016; Scales et al., 2017; L. A. Quinones162

et al., 2018; Lund Snee & Zoback, 2016; Gao et al., 2019). We refer to above references163

for complete background information for the study area.164

We use the North Texas Earthquake Study (NTXES) catalog (2008-2018), collected165

at the South Methodist University (SMU), in this study (L. Quinones et al., 2019; DeShon166

et al., 2019). We have not screened the earthquake catalog because there are significantly167

less earthquakes that have magnitudes above 2.0 compared to those in Oklahoma. There168
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are only about 103 earthquakes after declustering assuming the magnitude of complete-169

ness is 2. We are aware that the SMU had few earthquake monitoring stations back in170

2008 and the temporary stations have mostly captured the aftershocks, not the main shocks.171

We aim the demonstrate the merits of our statistical framework and avoid being ham-172

pered by data-related issues. We use the operator reported SWDs injection volume data173

in DFW area from 2000s to 2017. It is available to download from Texas Railroad Com-174

mission website. The study area is within 32.07 degree to 33.68 degree latitude and −98.38175

degree to −96.74 degree longitude. A specific coordinate reference system is used to con-176

vert from latitude and longitude coordinates to Cartesian coordinates. The perimeter177

of the study area is selected to best encompass all available SWDs and earthquakes while178

constraining the total area.179

2.2 Causal Quantities of Interest180

We discretize the study area into non-overlapping grid blocks, each block represent-181

ing an observational unit of analysis. Each grid block is indexed i, taking on values 1, ..., N .182

The presence or absence of SWDs in grid block i is denoted as Wi, taking on value 0 if183

grid i does not have SWDs and 1 if the grid i does have SWDs. Hence W indicates the184

presence or absence of SWDs across all grids within the area of interest and it is a rep-185

resentation of the spatial placement of SWDs in the study area. Let Yi(0) denote the po-186

tential outcome, that is, the number of earthquakes that would occur at grid i if there187

were no SWDs. Define Yi(1) analogously to be the potential outcome for grid i if there188

were SWDs present in that grid block. The individual-level causal effect of the presence189

of SWDs on the number of earthquakes in block i is defined as Yi(1)−Yi(0). The av-190

erage causal effect over the study area is defined as Ȳ (1)− Ȳ (0), which is the average191

over the sample of the individual-level effects. The above potential outcomes notation192

implicitly assumes that there is “no interference” between grids, where the presence or193

the absence of SWDs in one grid block does not impact the number of earthquakes in194

other grid blocks and vice versa. This assumption is also employed in McClure et al. (2017)195

and Grigoratos et al. (2020a) where injection volume in one grid is assumed to not im-196

pact the modeled outcome of the number of earthquakes in other grids. The validity of197

this assumption may warrant more careful consideration in studies of induced seismic-198

ity, a point to which we return in Section 4.199

With the above definition of causal effect, we can explicitly state a sharp null hy-200

pothesis of no causal effect of the presence of SWDs on earthquakes in any grid block201

as Yi(1) = Yi(0) for all i, corresponding to the hypothesis that the presence of SWDs202

does not causally affect the number of earthquakes in any grid of the study area. We de-203

velop an appropriate null distribution and test for this null hypothesis using a random-204

ization distribution that considers all plausible values of W . In addition to a statistical205

test of the sharp null hypothesis of no causal effect, we also estimate the magnitude of206

the average causal effect across the study area, Ȳ (1)−Ȳ (0). Ideally, if SWDs were ran-207

domly allocated in the area of interest, then testing the null hypothesis and estimating208

the average causal effect would be trivial (Imbens & Rubin, 2015; McClure et al., 2017).209

In reality, using observations across a study area where some locations have SWDs re-210

quires careful considerations of why SWDs are placed in their observed locations (Imbens211

& Rubin, 2015), so one can judge the extent to which this placement could be reason-212

ably assumed to be random with respect to earthquakes. This judgment will be dictated213

in large part by a) assumption about the mechanism determining the placement of the214

SWDs, which we elaborate as the strong ignorability assumption in Section 2.3; and b)215

assumption about the spatial distribution of SWD placement, which will dictate the con-216

struction of an appropriate null distribution for a hypothesis test of no causal effect in217

Section 2.4.218
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2.3 Strong Ignorability and the “Assignment” of SWDs219

The main assumption dictating the extent to which the study can reasonably ap-220

proximate the design of a randomized experiment is that of strongly ignorable treatment221

assignment, or strong ignorability (Imbens & Rubin, 2015). This assumption states that,222

whatever the mechanism dictating the presence or absence of SWDs across the study area,223

it can be regarded as “random” in the sense that it is unrelated to the potential outcomes224

of the number of earthquakes for any grid. Formally, this assumption specifies conditional225

independence between Wi and Yi(0), Yi(1), conditional on other grid features. In other226

words, there are no unobserved confounding factors, such as human attribution or ge-227

ologic factors, that dictate both the placement of SWDs and the occurrence of earthquakes(McClure228

et al., 2017). One potential threat to the validity of this assumption is confounding due229

to the location of geologic faults. It is reasonable to suggest that locating SWDs closer230

to or farther from geologic faults might make it more or less likely their fluid injection231

triggers fault slips (McClure et al., 2017; Keranen et al., 2013; Hincks et al., 2018; Gao232

et al., 2019). Intentional placement of SWDs in relation to fault locations would violate233

the ignorability assumption and indicate poor approximation of a controlled experiment234

that randomly place SWDs. We expect this threat in our analysis to be minimal, since235

operators typically did not have complete information on fault locations, which are typ-236

ically mapped after the occurrence of earthquakes (Hennings et al., 2019; Horne et al.,237

2020), which themselves may be induced at long time lags following the initiation of SWD238

(McClure et al., 2017; Fasola et al., 2019; Schoenball & Ellsworth, 2017).239

2.4 Randomization-Based Hypothesis Test240

Beyond the assumption of ignorability, the notion of approximating a randomized241

experiment also points towards consideration of alternative values of W that might have242

arisen from a similar design to serve as the basis of a null distribution for the test of the243

sharp null hypothesis. In our proposed workflow, the plausible W correspond to plau-244

sible arrangement of SWDs in the study area, which should correspond to the unique245

spatial characteristics evident in the observed placement of SWDs. The key idea of a randomization-246

based test of the null hypothesis is to compare the observed relationship between the pres-247

ence of SWDs and earthquakes against what would be observed under the observed dis-248

tribution of earthquakes but under various probabilistically-generated alternative val-249

ues of W corresponding to alternative random assignments in a randomized experiment.250

To construct such a null distribution of plausible alternative values of W, we need to model251

the mechanism that simulate the randomization of W which matches with the unique252

spatial characteristics in the observed placement of SWDs. In particular, the random-253

ization of W grants every grid (i.e., even those grids without observed SWDs or observed254

earthquakes) to be eligible for having SWDs and constructs just one null distribution255

corresponding to plausible SWD placement across the entire study area.256

To reflect the spatial structure inherent to the observed placement of SWDs, we257

select the Log-Gaussian Cox Process, (LGCP), to reproduce different SWD point pat-258

terns that assemble the observed SWD point pattern, Figure 1, where the number of SWDs259

is fixed for every reproduction. The comparison between the set of first- and second-order260

spatial summary functions of the observed SWD point pattern and those of the fitted261

LGCP model are displayed in the right columns of Figure 2 and Figure 3, respectively.262

We observe all empirical summary functions (i.e., black lines) are within the confidence263

intervals of the fitted LGCP model (i.e., shaded grey regions) and are near the expec-264

tations of the fitted LGCP model (i.e., red dotted lines). For illustrations, eight simu-265

lated SWD point patterns are shown in Figure 4, where some are indistinguishable from266

the observed SWD point pattern (i.e., Figure 1) in terms of inter-distances and spatial267

correlations. In short, while one might envision a controlled experiment where each grid268

is randomly assigned to either have or have not an SWD or where a fixed number of SWDs269

are placed in a manner that reflects complete spatial randomness, we advocate instead270
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for the approximation of an experiment where a fixed number of SWDs are placed across271

the entire study region in a manner that reflects basic spatial features of the observed272

SWD distribution.273

Figure 1. The observed SWD point pattern is shown where the black bounding box is the

perimeter of the study region.

Figure 2. The first-order empirical summary functions (i.e., the cumulative nearest-neighbor

distances, the G function, and the cumulative empty-space distances, the F function), shown in

black line, are compared to that of the Complete Spatial Random (CSR) (left column) and the

LGCP (right column), respectively. The grey intervals are the confidence intervals constructed

from 3000 Monte Carlo simulations and the red dotted lines are the expectations with respect to

each point process models (Baddeley et al., 2015; Illian et al., 2008). It is obvious the empirical

summary functions run outside the confidence intervals of CSR, indicating the observed SWD

point pattern is not of CSR origin. In comparison, the empirical summary functions nearly match

the expectation of the summary functions of the fitted LGCP model, indicating the LGCP model

fits well with the observed SWD point pattern in term of inter-distances.

To test the sharp null hypothesis of no causal effect, we repeat the generation of274

W with the LGCP model 1000 times and calculate 1000 average causal effects under dif-275

ferent realized W to constitute a reliable null distribution for hypothesis testing. To test276

the null hypothesis, we calculate the test statistics described below for each randomly-277
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Figure 3. The second-order empirical summary functions (i.e., the L-function and the Pair

Correlation Function (PCF)) are compared to that of the CSR (left column) and the LGCP

(right column), respectively. Again, the left column shows the empirical summary functions run

outside the confidence intervals of CSR, indicating the observed SWD point pattern is not of

CSR origin. In comparison, the empirical summary functions nearly match the expectations of

the summary functions of the LGCP, indicating the LGCP fits well with the observed SWD point

pattern in term of correlations.

Figure 4. Eight simulated SWD point patterns are compared to the observed SWD point

pattern in Figure 1. Some are very similar to the observed SWD point pattern in terms of inter-

distance and spatial correlation.

generated value of W, calculating a p-value to describe the observed value of the test278

statistic relative to the distribution of simulated values under the assumed sharp null hy-279

pothesis. A large p-value indicates an observed relationship between SWD placement280

and earthquakes that is consistent with no causal effect and ignorable SWD placement;281
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a low p-value indicates evidence to reject the sharp null and is interpreted as evidence282

of a causal effect.283

2.4.1 Rank Transformation284

A unique feature in raster-based spatial analysis is there might be excessive zeros.285

For example, consider a 30 by 30 discretization scheme where there are 900 grid blocks286

but only less than 80 grid blocks have non-zero counts of earthquakes. Consequently, a287

standard t-statistic may not be appropriate because of the excessive zero counts; in any288

particular discretization, the vast majority of grids do not have earthquakes. To address289

this, we implement a ranked T statistic to directly minimize the impacts of the zero-counts290

(Imbens & Rubin, 2015).291

2.4.2 The Proper Null Distribution for Hypothesis Testing292

Following above, we highlight it is the explicit definition of the causal effect and293

the transparent characterization of the sharp null hypothesis prompt us to utilize the294

LGCP model to approximate a randomized experiment and to construct proper null dis-295

tribution that best reflect the intended null hypothesis. Furthermore, we naturally cal-296

culate one p-value for the entire area of interest following the study design and the causal297

assumptions instead of for every grid. We now distinguish our approach with the pre-298

vious studies where we focus on the construction of the null distribution and the impli-299

cations of the marginal interpretation and the conditional interpretation.300

Approximating a randomized experiment where the SWDs are assigned across the301

study area clarifies two points that distinguish with previous work. First, the null dis-302

tribution is constructed with respect to the entire study region instead of specific to each303

grid (McClure et al., 2017; Grigoratos et al., 2020a). Second, the inclusion of all grid cells304

within the area of interest focuses on marginal interpretation instead of conditional in-305

terpretation (McClure et al., 2017; Grigoratos et al., 2020a). McClure et al. (2017) pro-306

pose to use the resampling method to construct null distribution for hypothesis testing307

specific to each grid. The resampling method requires the identically and independently308

distributed (iid) assumption to guarantee the resampling is done in a way that reflects309

the intended null hypothesis (Carsey & Harden, 2013; Hall & Wilson, 1991; McClure et310

al., 2017). However, the sampled distributed volumes for each grid are not iid because311

they are spatially correlated which produce narrower null distribution and lead to overly-312

optimistic p-value for each grid. In Appendix Appendix E, we further illustrate that our313

approach even constructs proper null distribution with distributed volumes which is di-314

rectly applicable to previous studies (McClure et al., 2017; Grigoratos et al., 2020a).315

2.4.3 The Inclusion of Zero-Counts316

Both McClure et al. (2017) and Grigoratos et al. (2020a) have only analyzed grids317

that had hosted at least one earthquake and have made an implicit statistical condition318

that grids with zero observed earthquakes are implausible to have nonzero predicted earth-319

quakes. In fact, knowing locations with low predicted earthquakes that actually have zero320

earthquakes would provide very useful information on the causal relationship we want321

to investigate, as would knowing locations with zero observed earthquakes but have pre-322

dicted to have many (Panzeri et al., 2008). Our general causal formulation of the prob-323

lem with the potential outcomes perspective focus considerations on the randomization324

of W. For every randomization, we allow the SWDs to be allocate to any locations within325

the area of interest as long as they match the spatial characteristics of the observed SWD326

point pattern. Our definition of the causal effect and the hypothesis testing procedure327

would be ill-conceived if the SWDs are only allowed to be allocate in the grids with ob-328

served earthquakes. We underline that the selection of the study area should be made329

before any statistical analysis and not dictated by the statistical analysis to avoid selec-330
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tion biases where the latter does not provide population-level summary (i.e., conditional331

interpretation vs. marginal interpretations).332

2.5 Estimating the Average Causal Effect333

Testing the causal effect between the presence or absence of SWDs and the num-334

ber of earthquakes is the first step towards understanding causality, quantifying such causal335

effect is the second step. Given the explicit definition of the causal effect with the po-336

tential outcomes perspective, we are interested to know what would the average num-337

ber of earthquakes be if all grids were to have SWDs, Ȳ (1) in notation format. Similarly,338

we ask what would the average number of earthquakes be if all grids were to have no SWDs,339

Ȳ (0) in notation format. More importantly, what is the difference between the average340

potential outcomes? We define such difference between the average potential outcomes341

as the average causal effect and denote it as τfs where:342

τfs = Ȳ (1)− Ȳ (0) =

N∑
i=1

(Yi(1)− Yi(0))/N (1)343

We interpret τfs as the average increase in the number of earthquakes for any grid344

in the area of interest with SWDs compared to without SWDs and it serves as an ap-345

proximation to the average causal effect (Imbens & Rubin, 2015). Provided with the causal346

assumptions, we employ the LGCP model in a similar fashion to compute the average347

causal effects for every randomization of W. We further derive the expectation and vari-348

ance of the average causal effect. Stepping away from hypothesis testing marks an im-349

portant milestone to deepen our understanding of the causal relationship between SWDs350

and the number of earthquakes. It is often trivial to prove, in terms of statistically sig-351

nificant p-values, that the onset earthquakes are linked to SWDs. Perhaps, it is more352

consequential to quantify the effects of SWDs on the number of earthquakes. The spec-353

ifications of the method are provided in Appendix D.354

2.6 Assessing the Sensitivity of Grid Configuration355

In previous studies, McClure et al. (2017) divided the State of California and Ok-356

lahoma into uniform grid blocks of 0.2 latitude and 0.2 longitude (roughly 22,5 km by357

18 km) and performed one grid offset which found no significant difference in results. Grigoratos358

et al. (2020a) calculated p-values in 20 km grid blocks and took the median value from359

the sixteen 20 km grid blocks as the p-value for a 5 km grid block. The above approaches360

either somewhat disregard the impacts of grid sizes and grid offsets or failed to properly361

capture the variations resulting in erratic behaviors of p-values (McClure et al., 2017;362

Grigoratos et al., 2020a). Consider a study area in a 4 by 4 discretization scheme (left363

of Figure 5), where the pivot, defined as the bottom left corner, is allowed to move within364

in a grid block of the same size as the grid blocks in the study area and the center of that365

grid block coincides with the original pivot. The pivot is randomly shifted 100 times (right366

of Figure 5) to generate 100 slightly different raster layers. For every unique raster layer,367

we repeat the statistical analyses. In addition, we calculate the average across the 100368

raster layers and repeat the statistical analyses. This process is repeated for a range of369

grid sizes where the statistical analyses are repeated 101 times for every grid size. Al-370

though grid configurations have been partially informed by domain expertise in previ-371

ous studies, they are still arbitrary and provoke instability in statistical results. Sensi-372

tivity analysis of grid configuration is therefore critical because different areas of inter-373

est with different data availability might require different grid sizes. For example, the374

State of Oklahoma has hosted thousands of M ≥ 3 earthquakes where DFW has hosted375

significantly less. The average number of earthquakes in 5 km grid blocks could vary dras-376

tically depending on the residing States. To our knowledge, there has not been compre-377

hensive sensitivity analysis on grid configuration and we aim to bridge this gap in the378
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literature. We repeat our analyses described in Section 2.4 and Section 2.5 for 3,131 times379

(i.e., 101 grid offsets for every grid size with total 31 different grid sizes), respectively,380

and summarize the results across all grid offsets for every grid size to gauge sensitivity381

of the analysis about grid configuration.382

Figure 5. Illustration of Grid Offsets

3 Results and Discussion383

3.1 Results from the Randomization-Based Hypothesis Test384

Figure 6 displays the p-values from the sharp null hypothesis test where the y-axis385

shows the p-values transformed into log-scale to help better examining clusters near zero386

and the x-axis shows all the grid sizes implemented in the study. Every p-value repre-387

sents a unique combination of grid size and grid offset. Each green point is a statistically388

significant p-value calculated from performing the hypothesis test on one grid offset for389

a particular grid size and the blue point is the p-value calculated from performing the390

hypothesis test on the average data values of 100 raster layers from grid offsets. Because391

only the statistically significant p-values are marked with dots, the overall distribution392

of the p-values for every grid size is rendered with a violin plot. Our results should be393

differentiated from Grigoratos et al. (2020a), where they summarized median p-values394

from the 20 km grids for the 5 km grids and did not perform independent hypothesis395

test on the 5 km grids (Grigoratos et al., 2020a).396

Overall, Figure 6 indicates there is a stable and statistically significant causal re-397

lationship between the presence of SWDs and the number of earthquakes over the en-398

tire study area across a range of grid sizes. There is a trend from larger grid sizes to smaller399

grid sizes where there are less extremely small p-values that are below 0.0010. This is400

potentially caused by the reduction in the ratio of non-zero counts and zero-counts as401

the grid size diminishes, when there are many grids and the overwhelming majority are402

without earthquakes.403

To recognize the impacts of grid offset, we focus on grid size 10.2 km by 12.3 km.404

This grid size has a wider and a more uniform distribution of p-values as displayed in405

the violin plot, which indicates grid offsets can have a large impact on the p-values for406

this specific grid size. The wide distribution of p-values suggests small shifts in the seg-407

mentation of the study area might separate critical clusters differently and result in a408

divergence of statistical results.409

Following above, there is another observed trend where larger grid sizes have flat-410

ter distribution of p-values and smaller grid sizes have more concentrated distribution411

of p-values. Because the pivot is allowed to move within a grid block of the same size412

as the grid blocks in the study area, larger grid blocks are more likely to experience more413

distinct placements of the raster layer due to different initial grid offsets and have more414
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divergent results. In comparison, smaller grid blocks are more constrained to obtain di-415

vergent results.416

Through the compelling visualization, we conclude there is a stable and statisti-417

cally significant causal relationship between the presence of SWDs and the number of418

earthquakes for the entire study area. In addition, we argue comprehensive sensitivity419

analysis of grid configuration is necessary in raster-based spatial analysis to demonstrate420

the stability of statistical results and to arrive at objective conclusions.421

Figure 6. The p-values from hypothesis test are displayed. Only the statistically significant

p-values are marked with green dots and the p-value computed from the average of 100 raster

layers is marked with blue dot.

3.2 Results from Estimating the Average Causal Effect422

Figure 7 shows the average causal effects in boxplot for different grid configurations.423

The solid bar is the median of the average causal effects summarised over all grid off-424

sets for every grid size. There are two noteworthy observations. First, there is a decreas-425

ing trend in the average causal effect as the grid size diminishes. This is an unique ar-426

tifact for raster-based spatial problems and it is expected since both the SWDs and earth-427

quakes are measured at points, so increasingly finer grids will eventually separate each428

earthquake and each SWD into its own grid cell, resulting in a null effect estimate. Sec-429

ond, there is a general trend that larger grid sizes exhibit greater variations in the av-430

erage causal effect from grid offsets. Larger grid sizes experience more distinctive dis-431

cretization schemes from grid offsets where they have more ways to divide critical clus-432

ters and undoubtedly result in more diverse statistical results.433

Table 1 shows the average height of the confidence intervals of the average causal434

effects and the ratio of the 90% confidence intervals that overlap zero. Because we gen-435

erate a pair of the average causal effect and the corresponding confidence interval for ev-436

–12–



manuscript submitted to JGR: Solid Earth

ery grid offset, it is hard to visualize all the confidence intervals for every grid size. Al-437

ternatively, we calculate the height of every confidence interval (i.e., subtracting the lower438

bound from the upper bound) and summarize the average height over all grid offsets for439

every grid size. The average confidence interval height is providing some sense of the typ-440

ical uncertainty around a point estimate for a given grid size.441

Table 1 illustrates yet another unique artifact to raster-based spatial problems where442

the uncertainty around the point estimates goes down with decreasing grid size, primar-443

ily because of the increasing number of observations. The rightmost column in Table 1444

shows the ratio of the 90% confidence intervals that overlaps 0 for every grid size. If a445

confidence interval overlaps 0, it serves as evidence that it is not significantly different446

from 0. For the largest grid size, 50% of the confidence intervals include zero. This per-447

centage is increasing for smaller grid sizes where the confidence intervals overlap 0 for448

all grid offsets for grid sizes smaller than 10.7 km by 12.9 km. Furthermore, all 95% con-449

fidence intervals overlap 0 for all grid offsets for every grid size thus they are not shown.450

We conclude using the average difference between the potential outcomes across451

grids as an approximation to the average causal effect is very sensitive to grid configu-452

rations. Unless there are specific grid sizes of interest, it is difficult to make any inter-453

pretation. We select 19.6 km by 23.6 km and 18.1 km by 21.8 km as the closet grid sizes454

to the grid size used in McClure et al. (2017) (i.e., 18 km by 22.5 km) where we find the455

expectation of the average causal effects for the two grid sizes to be 13. In other words,456

we expect there are, on average, 13 more earthquakes occurring in any grid with SWDs457

versus without SWDs within the area of interest provided the selected grid size is sound458

from domain expertise (McClure et al., 2017). Importantly, we note the choice of grid459

size(s) of interest should be made based on physical understanding of the problem, and460

then sensitivity to grid offsets within those relevant grid sizes should be gauged. We pro-461

vide the wide range of grid sizes for illustration only - some grid sizes could presumably462

be ruled out as irrelevant for our analysis, and we underline the choice of grid size should463

not be based on the convenience of statistical methods.464

Figure 7. The boxplot displays the average causal effects across all grid offsets for every grid

size. The average over the grid offsets is indicated by the solid horizontal bar.
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Table 1. Summary of the Average Magnitude of the Average Causal Effect and the Ratio of

the Confidence Intervals (CI) that Overlaps Zero

Gridsize Average90CI Average95CI Ratio of 90%CIs that Overlaps Zero

23.5 km to 28.4 km 30.28 34.54 0.50
21.4 km to 25.8 km 28.92 33.21 0.50
19.6 km to 23.6 km 25.89 29.52 0.56
18.1 km to 21.8 km 23.36 26.30 0.72
16.8 km to 20.3 km 22.92 26.08 0.66
15.6 km to 18.9 km 17.13 18.68 0.92
14.7 km to 17.7 km 16.04 17.76 0.92
13.8 km to 16.7 km 13.81 15.37 0.94
13.1 km to 15.8 km 14.15 15.71 0.82
12.4 km to 14.9 km 9.78 11.10 0.98
11.7 km to 14.2 km 11.32 12.80 0.88
11.2 km to 13.5 km 9.61 11.04 0.94
10.7 km to 12.9 km 8.67 10.13 1.00
10.2 km to 12.3 km 7.13 8.36 1.00
9.8 km to 11.8 km 7.53 8.70 1.00
9.4 km to 11.4 km 6.05 7.36 1.00
9.0 km to 10.9 km 5.04 6.38 1.00
8.7 km to 10.5 km 3.28 4.64 1.00
8.4 km to 10.1 km 4.21 5.61 1.00
8.1 km to 9.8 km 3.24 4.63 1.00
7.8 km to 9.4 km 2.51 3.90 1.00
7.6 km to 9.1 km 3.26 4.75 1.00
7.3 km to 8.8 km 2.77 4.25 1.00
7.1 km to 8.6 km 3.12 4.57 1.00
6.9 km to 8.3 km 2.13 3.63 1.00
6.7 km to 8.1 km 2.46 3.98 1.00
6.5 km to 7.9 km 1.93 3.48 1.00
6.3 km to 7.7 km 2.20 3.74 1.00
6.2 km to 7.5 km 1.79 3.37 1.00
6.0 km to 7.3 km 1.40 2.98 1.00
5.9 km to 7.1 km 1.58 3.19 1.00

4 Conclusion and Future Work465

Improvements in the understanding of the causal relationship between SWD and466

induced seismicity, more importantly, the quantification of such relationship, require ad-467

vancement in statistical analysis that bypass certain limitations in deterministic approaches.468

Traditional parametric regression models presume the specified regression models accu-469

rately reflect the true relationship between the variables of interest which, when coupled470

with the (often implicit) assumption of strong ignorability, can provide evidence of cau-471

sation. In contrast, we propose a general causal formulation of the spatial problem where472

we explicitly define the casual estimand with the potential outcomes perspective and im-473

plement appropriate statistical methods for subsequent testing and estimation. The causal474

conditions are deliberately separated from the statistical conditions so that the causal475

estimand is purposefully chosen rather than inherited from the specified parametric mod-476

els with the expectation that the chosen estimand is more directly relevant to address477

the scientific question. Note that this perspective does not preclude the usefulness of re-478
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gression modeling strategies, it only serves to separate key determinations of causal va-479

lidity from the specification of such models.480

Using the potential outcomes perspective, we explicitly define what is meant by a481

causal effect, and then use the framing relative to the approximate design of a random-482

ized experiment as a benchmark to guide the analysis and interpretation of threats to483

validity. In particular, this led to different choices about grid configuration to include484

in the analysis and the construction of an appropriate null distribution. We perform in-485

ferences on two specific aspects of the average causal effect. First, we perform a sharp486

null hypothesis to test the statistical significance of the causal effect between the pres-487

ence of SWDs and the number of earthquakes. We find a stable and statistically signif-488

icant causal relationship between the presence or absence of SWDs and the number of489

earthquakes for the entire study area across a range of grid sizes. This result is consis-490

tent with the results from other studies which found strong evidence of wastewater-induced491

seismicity in the DFW region of North-Central Texas. Second, we estimate the average492

causal effect and observe there are, on average, 13 more earthquakes for any grid with493

SWDs versus without SWDs for grid sizes 19.6 km by 23.6 km and 18.1 km by 21.8 km.494

We emphasize grid configuration has a material consequence on the statistical results.495

Grid configuration should be studied empirically because different areas of interest have496

different data availability and acquire different grid configurations. Domain knowledge497

should guide the choice of grid configuration but it can not replace empirical experimen-498

tation.499

We highlight the statistical analyses that adopt causal inference framework with500

causal inference terminology are not superior by default (C. M. Zigler & Dominici, 2014).501

For example, the work from McClure et al. (2017) demonstrates causality under the strong502

ignorability assumption in a longitudinal design. The causal inference methodology only503

provides a formal structure to frame the question, whether our analysis demonstrates504

causality depend on how much we believe the LGCP model accurately reproduce the ob-505

served placement of SWDs conditional on all potential confounding variables - namely,506

the exclusion of geologic faults. We view the abovementioned two approaches are more507

different in styles and less different in substances. Observational studies face confound-508

ing problems that are difficult to fully account for: oversimplification of the complexity509

of the problem (e.g. adding the strong ignorability assumption and no interference as-510

sumption) can potentially invalidate the causal portion of the analysis (Carone et al.,511

2020). Nevertheless, we argue a more general causal formulation of the problem with the512

potential outcomes perspective could continuously reflect the complexity of the problem513

and improve the clarity and transparency regarding the most important tenets for dis-514

cerning whether empirical statistical analyses provide evidence of causality between SWD515

and seismicity (Imbens & Rubin, 2015; Carone et al., 2020).516

Causal inference methodology has become popular and led to important contribu-517

tions in a variety of other disciplines including education, psychology, economics, epi-518

demiology, medicine, sociology (Friedrich & Friede, 2020; Glass et al., 2013; Imbens &519

Rubin, 2015). It has been mostly unexplored in the areas of geoscience and engineering520

where the objective is to infer causality between spatial variables. Spatial causal infer-521

ence is a fast-growing field and has contributed to air pollution epidemiology that sup-522

port important regulatory policies. A major obstacle of applying spatial causal inference523

in raster-based spatial problems is the assumption of no interference. For example, it is524

reasonable to suggest that the presence or absence of SWDs in some neighboring grids525

could all contribute to the occurrence of earthquakes for a grid. There is an inherent many-526

to-one and one-to-many relationship where many SWDs reside in different grids all con-527

tribute to the occurrence of earthquakes for a grid and one SWD might affect the oc-528

currence of earthquakes in many different grids. Similarly, it is logical to postulate that529

distributed volume in some neighboring grids affect the occurrence of earthquakes for530

a reference grid. Difficulties arise when extending the causal inference framework to ac-531
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knowledge the interference that would arise when earthquakes at a given location might532

depend on the distributed volume at the location from multiple SWDs. These are sub-533

ject to future works with a recently developed bipartite interference network in spatial534

causal inference where the target is to investigate the causal effect while relaxing the in-535

dependence assumption between grids (C. M. Zigler & Papadogeorgou, 2021; C. Zigler536

et al., 2020; Giffin et al., 2020; Marrett et al., 2018).537

Appendix A A Brief Introduction to Causal Inference538

As Rubin (1974) points out, the problem of causal inference is a missing data prob-539

lem: given any treatment assigned to an individual unit, the potential outcome associ-540

ated with any alternate treatment is missing (Rubin, 1974; Imbens & Rubin, 2015). The541

assignment mechanism, therefore, plays a key role and answers questions such as: how542

is it determined which units get which treatments or, equivalently, which potential out-543

comes are realized and which are not.544

We will now allude necessary notations in a general case. Let us index units in a545

population of size N by i, taking on values 1, ..., N , and denote Wi as the treatment in-546

dicator for unit i, taking on values 0 (control treatment) and 1 (active treatment). Let547

Yi(0) and Yi(1) denote the potential outcomes of unit i for the control and active treat-548

ments, respectively. Recall only one of the potential outcomes will ultimately be real-549

ized and therefore possibly observed. Let Y obs
i denotes this realized and possibly observed550

outcome:551

Y obs
i = Yi(Wi) =

{
Yi(0) if Wi = 0,

Yi(1) if Wi = 1.
(A1)

Analogously, let Y mis
i denotes the missing potential outcome:

Y mis
i = Yi(1−Wi) =

{
Yi(1) if Wi = 0,

Yi(0) if Wi = 1.
(A2)

By the same token, Yobs and Ymis are the corresponding N -vectors. Usually we
want to characterize the potential outcomes in terms of the observed and missing out-
comes therefore we invert these notations:

Yi(0) =

{
Y mis
i if Wi = 1,

Y obs
i if Wi = 0.

and Yi(1) =

{
Y mis
i if Wi = 0,

Y obs
i if Wi = 1.

(A3)

We define the assignment mechanism to be the function that assigns probabilities
to all 2N possible values for the N -vector of assignments W, given the N -vectors of po-
tential outcomes Y(0) and Y(1) (Imbens & Rubin, 2015). The assignment mechanism
is then a row-exchangeable function Pr(W|Y(0),Y(1)), taking on values in [0, 1], sat-
isfying ∑

W∈[0,1]N

Pr(W|Y(0),Y(1)) = 1 (A4)

for all Y(0) and Y(1).552

A1 The Stable Unit Treatment Value Assumption (SUTVA)553

Besides potential outcomes and assignment mechanism, additional assumptions are554

needed for causal validity under RCM. Here, we only touch one component of the Sta-555

ble Unit Treatment Value Assumption (SUTVA), the No Interference assumption, which556

will be sufficient for our purposes. The No Interference assumption states the treatments557
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applied to one unit do not affect the outcome for another unit(Imbens & Rubin, 2015).558

Put simply, the potential outcomes and assigned treatments for any unit do not vary with559

the treatments assigned to other units.560

Appendix B Log-Gaussian Cox Point Process561

The LGCP is chosen because it scored lowest Akaike information criterion (AIC)562

and Bayesian information criterion (BIC) values compared to other alternatives, shown563

in Table B1 (Baddeley et al., 2015; Illian et al., 2008).564

Table B1. Comparison of AIC and BIC Values Between Some Point Process Models

LGCP Thomas MatClust Cauchy

AIC 45500.29 45604.65 45601.63 45630.82
BIC 45601.97 45607.34 45604.32 45633.50

Appendix C Fisher’s Exact Test with Sharp Null Hypothesis565

Given data from a completely randomized experiments with SUTVA, Fisher’s Ex-566

act Test (FET) is assessing the sharp null hypothesis of no effect of the treatment ver-567

sus no treatment, that is, the null hypothesis under which, for each unit in the exper-568

iment, both values of the potential outcomes are identical (Mehta & Patel, 1983; Imbens569

& Rubin, 2015). Consider any test statistic T : a function of the stochastic assignment570

vector, W; the observed outcomes, Yobs. The sharp null hypothesis allows us to deter-571

mine the distribution of T , generated by the complete randomization of units across treat-572

ments. The test statistic is stochastic solely through the stochastic nature of the assign-573

ment. We refer to the distribution of the statistic determined by the randomization as574

the randomization distribution of the test statistic T . Using this distribution, we can com-575

pare the actually observed value of the test statistic, T obs, against the distribution of T576

under the null hypothesis. An observed value that is “very unlikely”, given the null hy-577

pothesis will be taken as evidence against the null hypothesis using p-value (Imbens &578

Rubin, 2015). Hence, the FET approach entails the two steps: (i) the choice of a sharp579

null hypothesis, and (ii) the choice of test statistic.580

C1 Ranked Statistics581

Ranked Statistic is an important class of test statistics involves transforming the582

data to ranks before calculating the test statistics. Such a transformation is attractive583

when the data have a distribution with a substantial number of outliers (Imbens & Ru-584

bin, 2015). We consider the large-portion of zero-counts as outliers and use normalized585

rank to reduce the impacts of zero-counts in the test statistics. The definition for the586

normalized rank with ties is:587

Ri = Ri(Y
obs
1 , ..., Y obs

N ) =

N∑
j=1

1Y obs
j <Y obs

i
+

1

2

(
1 +

N∑
j=1

1Y obs
j =Y obs

i
− N + 1

2

)
(C1)588

Given the N ranks Ri, i = 1, ..., N , an obvious test statistic is the absolute value589

of the difference in average ranks for the treated and control units:590

T rank = |R̄t − R̄c| =
∣∣∣∑i:Wi=1Ri

Nt
−
∑

i:Wi=0Ri

Nc

∣∣∣ (C2)
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where we denote R̄t to be the ranked statistic in the active treatment group (Imbens &591

Rubin, 2015).592

Figure C1 shows the improvements in the statistical results after the rank trans-593

formation. The p-value under the regular T-statistic distribution (right) is drastically594

reduced by an order of magnitude after taking normalized rank transformation (left),595

minimizing the impacts of zero-counts.596

Figure C1. Comparison Between Ranked T-Statistics and Regular T-Statistics

Appendix D Neyman’s Repeated Sampling597

The Fisher’s Exact Test provides limited information besides establishing the causal598

link between earthquakes and the presence of SWDs which is trivial to most researchers599

and policy makers (Grigoratos et al., 2020a; McClure et al., 2017; Frohlich et al., 2016b;600

Fan et al., 2019; Hennings et al., 2019). To broaden the scope of interpretation, Neyman’s601

Repeated Sampling is employed to find the average causal effects of the presence of SWDs602

on the number of earthquake in any grid over the entire study area. Neyman’s two ba-603

sic questions are: (1) what would the average outcome be if all units were exposed to604

the treatment, Ȳ (1)? (2) How did that compare to the average outcome if all units were605

exposed to the control treatment, Ȳ (0)? Most importantly, what is the difference between606

these averages ? Neyman’s approach was to develop an estimator of the average causal607

effect and derive its expectation and variance under repeated sampling.608

D1 Unbiased Estimation of the Average Causal Effect609

The population average causal effect τfs has the form:610

τfs = Ȳ (1)− Ȳ (0) =

N∑
i=1

(Yi(1)− Yi(0))/N (D1)611

where Ȳ (0) and Ȳ (1) are the averages of the potential control and treated outcomes, re-612

spectively:613

Ȳ (0) =
1

N

N∑
i=1

Yi(0) (D2)614
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Ȳ (1) =
1

N

N∑
i=1

Yi(1) (D3)615

The LGCP enables generating thousands of random assignment vectors while pre-616

serving spatial correlation, where Nt =
∑N

i=1Wi are the number of grid blocks have617

SWDs and the remaining Nc =
∑N

i=1(1 − Wi) are the number of grid blocks absent618

SWDs. Because of the randomization, a natural estimator for the average causal effect619

is the difference in the average outcomes between those assigned to treatment and those620

assigned to control:621

τ̂dif = Ȳ obs
t − Ȳ obs

c (D4)622

where:623

Ȳ obs
c =

1

Nc

∑
i:Wi=0

Y obs
i (D5)624

Ȳ obs
t =

1

Nt

∑
i:Wi=1

Y obs
i (D6)625

To prove our estimator τ̂dif is unbiased for τfs, we use the fact that Y obs
i = Yi(1)626

if Wi = 1, and Y obs
i = Yi(0) if Wi = 0, to rewrite the estimator τ̂dif as:627

τ̂dif =
1

N

N∑
i=1

(Wi · Yi(1)

Nt/N
− (1−Wi) · Yi(0)

Nc/N

)
(D7)628

The potential outcomes are treated as fixed, the only component in this statistic629

that is random are the treatment assignments obtained from our simulated realizations630

that preserve spatial correlation (Imbens & Rubin, 2015). Thus, Pr(Wi = 1|Y(0),Y(1)) =631

EW [Wi|Y(0),Y(1)] = Nt/N and τ̂dif is unbiased for the average causal effect τfs:632

EW

[
τ̂dif

∣∣∣Y(0),Y(1)
]

=
1

N

N∑
i=1

(EW [Wi] · Yi(1)

Nt/N
− EW [1−Wi] · Yi(0)

Nc/N

)
=

1

N

N∑
i=1

(
Yi(1)− Yi(0)

)
= τfs

(D8)633

D2 The Sampling Variance of the Neyman Estimator634

We develop an estimator for the sampling variance and appeal to a central limit635

argument for the large sample normality of τ̂ over its randomization distribution and use636

its estimated sampling variance to create a large-sample confidence interval for the av-637

erage causal effect τfs.638

VW (τ̂dif ) =
S2
c

Nc
+
S2
t

Nt
− S2

ct

N
(D9)639

where640

S2
c =

1

Nc − 1

∑
i:Wi=0

(
Y obs
i − Ȳ obs

c

)2
(D10)641
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and642

S2
t =

1

Nt − 1

∑
i:Wi=0

(
Y obs
i − Ȳ obs

t

)2
(D11)643

The third term, S2
ct, is the population variance of the unit-level treatment effects644

and is generally impossible to estimate empirically. Recall potential outcomes Yi(1) and645

Yi(0) cannot be both observed. Assuming the treatment effects are constant and addi-646

tive (Yi(1)−Yi(0)−τfs for all units), then the third term is equal to zero and we have647

the reduced version of an unbiased estimator for the sampling variance:648

V̂neyman =
S2
c

Nc
+
S2
t

Nt
(D12)649

This estimators is widely used for two reasons. First, by implicitly setting the third650

term equal to zero, the expected value of the V̂neyman is at least s large as the true sam-651

pling variance equal of Ȳ obs
t − Ȳ obs

c , irrespective of the heterogeneity in the treatment652

effect, because the third term is non-negative. Hence, the confidence interval generated653

using this estimator in large sample would be greater or equal to the nominal coverage654

and is statistically conservative. Second, using V̂neyman as an estimator for the sampling655

variance of Ȳ obs
t − Ȳ obs

c is that it is always unbiased for the sampling variance of τ̂dif656

as an estimator of the infinite super-population average causal effect. From above de-657

rived estimator for sampling variance, we construct 90% and 95% confidence intervals658

below, respectively (Imbens & Rubin, 2015).659

CI0.90(τfs) =
(
τ̂dif − 1.645 ·

√
V̂, τ̂dif + 1.645 ·

√
V̂
)

(D13)660

CI0.95(τfs) =
(
τ̂dif − 1.96 ·

√
V̂, τ̂dif + 1.96 ·

√
V̂
)

(D14)661

Appendix E Extending to Studies of Distributed Volume662

We highlight that the spatial point process model can be applied to previous stud-663

ies to construct proper null distribution specific to each grid. More specifically, we gen-664

erate a permutation of the distributed volume over the entire area of interest for every665

reproduction of the SWD point pattern. In particular, the permutation of the distributed666

volume is governed by a deterministic equation where the cumulative injection volume667

for all SWDs are sampled from the empirical histogram of the cumulative injection vol-668

ume, shown in Figure E1. Given enough repetitions, there is an empirical distribution669

of distributed volume specific to each grid. We argue the resulting empirical distribu-670

tion, specific to each grid, is a more appropriate null distribution than the one obtained671

from resampling for the following reasons:672

1. Every permutation of distributed volume is simulated using the same determin-673

istic physical model under realistic SWD allocation scheme where the cumulative674

injection volume for every SWD is drawn from the empirical distribution. Every675

permutation of distributed volume is realistic, more specifically, the distributed676

volume specific to each grid is realistic.677

2. The null distribution of distributed volume for a particular grid block is consti-678

tuted from different permutations of the distributed volume of the same grid. Be-679

cause every permutation of the distributed volume is independent, every permu-680

tation of distributed volume of that grid is independent. This conforms with the681

iid sampling assumption.682

3. Given enough permutation of distributed volume, those iid samples of distributed683

volume construct non-spatial and unbiased null distribution for every grid block.684
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4. The null distributions for all grids are converging under the Law of Large Num-685

bers (LLN) with enough permutations (Casella & Berger, 2001). This is crucial686

if p-value comparisons are needed between grid blocks, since p-values are not com-687

parable across different null distributions. Because the resampling method does688

not guarantee iid samples, it is less straightforward to apply LLN for convergence.689

Figure E1. The empirical histogram of cumulative injection volume

Figure E2 shows the entire workflow from a random placement of SWDs to a per-690

mutation of distributed volume. We use inverse-distance method to calculate distributed691

volume for the DFW region. Grigoratos et al. (2020a) implemented a more appropriate692

physics-based diffusion model that includes time to calculate distributed volume across693

12 years period. We are precluding time in our current analysis, thus the inverse-distance694

method is sufficient to produce modest distributed volume across some time period695
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