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Abstract

The ocean plays a critical role in modulating climate change by sequestering CO2 from the atmosphere. Quantifying the CO2

flux across the air-sea interface requires time-dependent maps of surface ocean partial pressure of CO2 (pCO2), which can be

estimated using global ocean biogeochemical models (GOBMs) and observational-based data products. GOBMs are internally

consistent, mechanistic representations of the ocean circulation and carbon cycle, and have long been the standard for making

spatio-temporally resolved estimates of air-sea CO2 fluxes. However, there are concerns about the fidelity of GOBM flux

estimates. Observation-based products have the strength of being data-based, but the underlying data are sparse and require

significant extrapolation to create global full-coverage flux estimates. The Lamont Doherty Earth Observatory-Hybrid Physics

Data (LDEO-HPD) pCO2 product is a new approach to estimating the temporal evolution of surface ocean pCO2 and air-sea

CO2 exchange. LDEO-HPD uses machine learning to merge high-quality observations with state-of-the-art GOBMs. We train

an eXtreme Gradient Boosting (XGB) algorithm to learn a non-linear relationship between model-data mismatch and observed

predictors. GOBM fields are then corrected with the predicted model-data misfit to estimate real-world pCO2 for 1982-2018.

A benefit of this approach is that model-data misfit has reduced temporal skewness compared to the observed pCO2 that is

the target variable for other machine-learning based reconstructions. This supports a robust reconstruction by LDEO-HPD

that is in better agreement with independent observations than other estimates. LDEO-HPD global ocean uptake of CO2 is in

agreement with other products and the Global Carbon Budget 2020.
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Abstract16

The ocean plays a critical role in modulating climate change by sequestering CO2 from17

the atmosphere. Quantifying the CO2 flux across the air-sea interface requires time-dependent18

maps of surface ocean partial pressure of CO2 (pCO2), which can be estimated using global19

ocean biogeochemical models (GOBMs) and observational-based data products. GOBMs20

are internally consistent, mechanistic representations of the ocean circulation and car-21

bon cycle, and have long been the standard for making spatio-temporally resolved es-22

timates of air-sea CO2 fluxes. However, there are concerns about the fidelity of GOBM23

flux estimates. Observation-based products have the strength of being data-based, but24

the underlying data are sparse and require significant extrapolation to create global full-25

coverage flux estimates. The Lamont Doherty Earth Observatory-Hybrid Physics Data26

(LDEO-HPD) pCO2 product is a new approach to estimating the temporal evolution27

of surface ocean pCO2 and air-sea CO2 exchange. LDEO-HPD uses machine learning28

to merge high-quality observations with state-of-the-art GOBMs. We train an eXtreme29

Gradient Boosting (XGB) algorithm to learn a non-linear relationship between model-30

data mismatch and observed predictors. GOBM fields are then corrected with the pre-31

dicted model-data misfit to estimate real-world pCO2 for 1982-2018. A benefit of this32

approach is that model-data misfit has reduced temporal skewness compared to the ob-33

served pCO2 that is the target variable for other machine-learning based reconstructions.34

This supports a robust reconstruction by LDEO-HPD that is in better agreement with35

independent observations than other estimates. LDEO-HPD global ocean uptake of CO236

is in agreement with other products and the Global Carbon Budget 2020.37

Plain Language Summary38

The ocean absorbs carbon from the atmosphere, which slows climate change. In39

order to estimate how much carbon the ocean absorbs, we need to know how much is40

exchanged from the atmosphere into the ocean at each location over time. The direct41

observations required to do this are very sparse and in some regions of the ocean, ob-42

servations have never been made. One approach to fill in the gaps is to use machine-learning,43

which are algorithms that build a relationship for ocean carbon based on related satel-44

lite observations with global coverage. Another approach is to use computer simulations,45

which use mathematical equations to represent ocean processes. Here, we merge these46

two innovations by blending model output with machine-learning to create a hybrid prod-47

uct: the Lamont Doherty Earth Observatory-Hybrid Physics Data (LDEO-HPD). Par-48

ticularly for the most recent decade, LDEO-HPD agrees slightly better with indepen-49

dent observations than other products, indicating the promise of this approach.50

1 Introduction51

The ocean’s net uptake of CO2 is a key component of the global carbon cycle. Quan-52

tifying how anthropogenic emissions are distributed between atmosphere, land biosphere,53

and ocean reservoirs with as low uncertainty as possible is needed to support interna-54

tional climate policy (Peters et al., 2017). The Global Carbon Budget 2020 (Friedlingstein55

et al., 2020) finds that for 2009-2018, the ocean sink for anthropogenic carbon was -2.556

± 0.6 PgC/yr (negative flux into the ocean), based on global ocean biogeochemical mod-57

els (GOBMs). However, four observation-based products suggest a sink that is 0.4 PgC/yr58

larger for this period. Do the relatively-new observation-based estimates indicate a se-59

rious problem with the long-used GOBMs? Do they require fundamental change in un-60

derstanding of how carbon sinks in the ocean and on land are evolving?61

Estimating the global ocean CO2 sink requires knowledge of ocean partial pressure62

of CO2 (pCO2). The Surface Ocean CO2 ATlas (SOCAT) is an annually compiled database63

of surface ocean fugacity of CO2 (fCO2) with over 28.2 million observations for 1957-201964

in the SOCATv2020 release (Bakker et al., 2016), mainly from volunteer observing ships.65
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fCO2 is nearly equivalent to pCO2, different by a 0.3% non-ideality correction; we make66

this adjustment in our analysis to derive pCO2 (Section 2.1). Due to limited number of67

ships, routes, and the high cost of maintenance, the data retrieved from this observation68

system remains sparse in space and time. Data are concentrated in the Northern Hemi-69

sphere (Figure 1A,B,C). Using these data alone, pCO2 cannot be quantified at all times70

and all locations, and thus statistical extrapolations have been performed to create observation-71

based data products (Rödenbeck et al., 2015). The carbon cycle community uses these72

products along with global ocean biogeochemical models (GOBMs) (Friedlingstein et al.,73

2020) to independently estimate CO2 fluxes and, through their analysis and compari-74

son, to improve knowledge of the global ocean carbon cycle. We propose an explicit merg-75

ing of the strengths of both approaches in the form of a hybrid observation-based data76

product that uses pCO2 estimates from multiple GOBMs as a prior.77

A GOBM is a knowledge-based model that parameterizes the physical, chemical,78

and biological processes influencing surface ocean pCO2 using a system of coupled dif-79

ferential equations. GOBMs have long been taken as the best estimate of the anthro-80

pogenic air-sea CO2 flux, and have always been the basis for quantification of the ocean81

carbon sink in the annual Global Carbon Budget published by the Global Carbon Project82

since 2009 (Le Quéré et al., 2009; Friedlingstein et al., 2020). Nine GOBMs were used83

as the basis for the Global Carbon Budget in 2019 and 2020 (Friedlingstein et al., 2019,84

2020). These models are certainly imperfect, with substantial differences among them85

and potentially an underestimation of CO2 flux variability, particularly in the Southern86

Ocean (Gruber, Landschützer, & Lovenduski, 2019; Hauck et al., 2020; Gloege et al., 2021).87

However, based on a long history of their application to understanding and quantifica-88

tion of air-sea CO2 fluxes, it is a sensible to use GOBMs as a prior estimate upon which89

data-based improvements can be made.90

Most observation-based products find a relationship between a suite of datasets and91

the target variable (ocean pCO2) using machine learning algorithms. The statistical re-92

lationships of the algorithm are dependent on the quantity and quality of SOCAT pCO293

data, driver data, and the skill of the reconstruction algorithm. A recent assessment of94

the SOM-FFN (Landschützer et al., 2014) reconstruction indicates high fidelity for the95

mean and seasonality of pCO2-based CO2 flux estimates. However, pCO2 data sparsity96

(Figure 1A,B,C) limits the ability to reconstruct interannual to decadal timescale vari-97

ations (Gloege et al., 2021). Though the spread across the full suite of recently-published98

products is smaller than the spread across the current generation of models (McKinley99

et al., 2020), there remain substantial differences in the timing and amplitude of inter-100

annual variability (Friedlingstein et al., 2020). In a comprehensive evaluation of multi-101

ple products, Gregor et al. (2019) find comparable skill with respect to independent data102

in the current generation of products, and suggest that we have reached a skill limit for103

these products that is fundamentally due to data sparsity.104

Both GOBMs (Friedlingstein et al., 2020; Hauck et al., 2020) and observation-based105

products (Rödenbeck et al., 2015) provide approximately global estimates of ocean pCO2106

and CO2 flux. The two approaches differ significantly in the way they estimate ocean107

pCO2. GOBMs compute the evolution of physical and biogeochemical processes based108

on complex systems of coupled differential equations that can only be solved numerically.109

Observation-based products do not explicitly incorporate known physics, but instead es-110

timate a non-linear relationship between a handful of driver datasets and ocean pCO2111

where these are co-located. Global full-coverage driver datasets are then processed through112

these relationships to estimate global full-coverage pCO2. GOBMs and observation-based113

data products generally agree on the large-scale patterns and long-term increase in ocean114

pCO2 (Tjiputra et al., 2014; Landschützer et al., 2014; McKinley et al., 2016, 2020). For115

aggregated comparisons over large regions, GOBMs have comparable root mean square116

errors against SOCAT pCO2 to those in the observation-based products, indicating com-117

parable skill (Gregor et al., 2019; Hauck et al., 2020). However, GOBMs are biased high118
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when sub-sampled at SOCAT observation locations (Figure 1D). In some models, this119

global bias is at least partially attributable to the exclusion of the well-established wa-120

ter vapor correction (Dickson et al., 2007) in the calculation of atmospheric pCO2 (McKinley121

et al., 2020).122

As noted above, the pCO2 data required to train machine learning algorithms are123

spatially sparse (Figure 1A,B,C). Data availability also changes over time (Figure 2A,B).124

This trend in data availability, combined with the long-term positive trend in ocean pCO2125

(∼33 µatm increase from 1980s to 2010s) has the potential to impact the ability of al-126

gorithms to represent the data. Machine learning, or any statistical fit, performs best127

when target variables distributions have the same shape as the driver variables (Goodfellow128

et al., 2016). With ocean pCO2 as the target variable, the algorithm is being asked to129

predict a broad and right-skewed distribution (Figure 1A) that is unlike the drier vari-130

ables that do not have a significant temporal shift. In contrast, the difference between131

observed and GOBM-estimated pCO2 has only a modest long-term trend (∼9 µatm from132

1980s to 2010s, Figure 2C,D). Thus, if we use the difference between SOCAT observa-133

tions and the GOBMs as a basis for algorithm development, we largely address the afore-134

mentioned concern. In other words, with model-data misfit as our target variable, the135

skewness of the target variable is substantially reduced (Figure 2C).136

In this study, we leverage the nine GOBMs used in the Global Carbon Budget 2020137

(Friedlingstein et al., 2020) and combine them with a supervised machine learning al-138

gorithm to create the LDEO-Hybrid Physics Data ocean pCO2 observation-based prod-139

uct (LDEO-HPD). Instead of using ocean pCO2 as the target variable, as do other data140

products (Landschützer et al., 2014; Rödenbeck et al., 2015; Gregor et al., 2019; Denvil-141

Sommer et al., 2019), the target variable for our eXtreme Gradient Boosting (XGB) al-142

gorithm is the misfit between SOCAT observed pCO2 and each model where SOCAT143

observations exist in space and time (pCO2,SOCAT−pCO2,GOBM). Our driver data144

are the same suite of in situ and satellite observations used by other approaches. To make145

final estimates of actual ocean pCO2, the XGB algorithm first uses full-field observed146

driver data to predict model misfit at all locations for each GOBM. These misfit fields147

are then added back to each GOBM to make the final estimate. Each GOBM is processed148

using a unique algorithm, and the final LDEO-HPD output is the average of the nine149

merged data-model estimates. See Figure 3 for a schematic. Our approach of combin-150

ing data-based machine learning with the physics embodied in dynamical models follows151

on recent innovations in physics-guided machine learning (Karpatne et al., 2017; Reich-152

stein et al., 2019) and the use of machine learning to correct dynamical models (Watt-153

Meyer et al., 2021) for earth science applications.154

A potential additional application of the approach we develop here is to use model-155

data misfit fields to visualize and quantify errors in GOBM carbon cycle simulations at156

broader temporal and spatial scales than is currently possible with actual SOCAT data157

(Hauck et al., 2020). Spatio-temporal misfit mapped by the algorithm is a direct esti-158

mate of GOBM skill for locations where in situ data do not exist. We briefly explore this159

application in Section 3.1.160

2 Methods161

GOBM output is incorporated into a supervised machine learning algorithm to cre-162

ate a hybrid data product for 1982-2018. We use gradient boosting as implemented in163

the eXtreme Gradient Boosting (XGB) library (Chen & Guestrin, 2016). XGB learns164

a non-linear relationship between a suite of features and the misfit between the GOBM165

and direct SOCAT observations. We use this approach to upscale SOCAT pCO2 obser-166

vations and create a nearly global, temporally complete data product. The upscaled pCO2167

product is statistically evaluated against independent observations and other published168

data products. A schematic of HPD is shown in Figure 3. From pCO2 estimated with169
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HPD, we estimate CO2 flux using the standard bulk parameterization that relates the170

flux to wind speed (Wanninkhof, 1992, 2014; Fay et al., 2021).171

2.1 Pre-processing SOCAT observations172

We use surface ocean pCO2 calculated from the SOCAT v2019 monthly gridded173

fCO2 product. SOCAT v2019 is a quality-controlled dataset that contains observations174

of surface ocean fCO2, which is converted to pCO2 with equation 1,175

pCO2 = fCO2 · exp

(
P surf

atm ·
B + 2δ

R · T

)−1

(1)

where P surfatm is the atmospheric surface pressure from ERA5, T is the sea surface tem-176

perature (SST) in Kelvin from National Oceanic and Atmospheric Administration (NOAA)177

daily optimally interpolated SST version 2 (dOISSTv2), B and δ are virial coefficients178

from (Weiss, 1974), R is the gas constant (Dickson et al., 2007).179

2.2 Global Ocean Biogeochemical Models180

As a first guess for ocean pCO2, we use output from nine GOBMs (Table 1) which181

participated in the Global Carbon Budget 2020 (Friedlingstein et al., 2020), with the fi-182

nal year being 2018. Meteorological reanalysis and atmospheric CO2 are used to force183

each model (Hauck et al., 2020). Each GOBM parameterizes the physical, chemical, and184

biological processes influencing surface ocean pCO2 using a system of coupled differen-185

tial equations. The surface pCO2 from each GOBM is bi-linearly interpolated from the186

native model grid to a 1◦x1◦ monthly resolution to be consistent with SOCAT gridded187

observations (Sabine et al., 2013).188

Table 1. Global Ocean Biogeochemical Models

Reference for GOBMs used in the Global Carbon Budget 2020 (Friedlingstein et al., 2020).

Global ocean biogeochemical models (GOBMs) Reference

NEMO-PlankTOM5 Buitenhuis et al. (2013)
MICOM-HAMOCC (NorESM1-OCv1.2) Schwinger et al. (2016)
MPIOM-HAMOCC6 (MPI) Paulsen et al. (2017)
NEMO3.6-PISCESv2-gas (CNRM) Berthet et al. (2019)
CISRO Law et al. (2017)
FESCOM-1.4-REcoM2 Hauck et al. (2020)
MOM6-COBALT (princeton) Adcroft et al. (2019)
CESCM-ETHZ Doney et al. (2009)
NEMO-PISCES (IPSL) Aumont et al. (2015)

2.3 Machine learning method and the LDEO-HPD product189

Extreme Gradient Boosting (XGB) (Chen & Guestrin, 2016) is a supervised ma-190

chine learning algorithm where multiple features, X, are used to predict a target vari-191

able y. The XGB algorithm can then be used to estimate a function, f(X), such that:192

y ≈ f(X). The algorithm begins with an initial guess for y, a choice to which the al-193

gorithm is not sensitive. As illustrated in Figure 3B, a decision tree is used to learn the194

difference between the training data and the initial guess. This new tree is added to the195
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initial guess. This process of adding trees to correct the errors made in the summation196

of previous trees is repeated until either a predefined number of trees has been made,197

or when adding an additional tree results in no further improvement. The final predic-198

tion is the sum of all trees such that the closest fit of input data and algorithm output199

is achieved. A mean-squared-error (MSE) loss function is minimized using gradient de-200

scent.201

Gradient boosting algorithm, as implemented in the eXtreme Gradient Boosting202

(XGB) library version 0.9 with the scikit-learn wrapper (Chen & Guestrin, 2016), is used203

to find a non-linear relationship between a suite of input features and the misfit between204

each GOBM and SOCAT pCO2: (pCO2,SOCAT−pCO2,GOBM). This algorithm was205

chosen because it leads to a better fit to input data than the other options considered,206

neural network or random forest (Stamell et al., 2020). To estimate pCO2 at each spa-207

tial location, the algorithm relies on datasets with full, or approximately full, global cov-208

erage (Table 2): Sea Surface Temperature (SST) and Surface Chlorophyll-a (Chl-a) from209

satellite; Sea Surface Salinity (SSS) from a compilation of in-situ data sources; Mixed210

layer depth (MLD) climatology from ARGO floats; and atmospheric CO2 mixing ratio211

(xCO2) from station sites. These variables serve as proxies for known processes affect-212

ing pCO2. Solubility is set by SSS and SST. Biological uptake of dissolved inorganic car-213

bon (DIC) is indicated by Chl-a. Biological productivity and entrainment of DIC are in-214

fluenced by MLDs. The long-term growth of ocean pCO2 is driven by atmospheric xCO2.215

Additional annual mean anomaly features are derived for SST and Chl-a by subtract-216

ing the annual mean from each year. These features help the algorithm learn more com-217

plex relationships and capture intra-annual variability. N-vector transformation (Gade,218

2010; Sasse et al., 2013; Gregor et al., 2017) of latitude and longitude is included to help219

the algorithm learn spatial relationships. Time transformation of the day of year con-220

strains seasonality (Gregor et al., 2017).221

The features and associated pCO2 misfit are split into three sets: validation, train-222

ing, and testing. The validation is used to optimize the algorithms hyperparameters, which223

defines the architecture of decision trees used in the model. The training set is used to224

construct the decision trees. The withheld test set is used to evaluate performance on225

a completely independent dataset, individual years are withheld for the test set to re-226

tain individual ship tracks and increase the independence of test data from training and227

validation data (Gregor et al., 2019).228

Our XGB algorithm uses 1500 decision trees each with a max depth of 9 levels or229

until no further splits to the samples in that node are possible. Each new tree uses 95%230

of the features and a random subsample of observations with replacement. The weight231

of each sequential tree is reduced by 5%. Light L1 regularization was applied to control232

overfitting and loss is measured using mean-squared error (MSE).233

XGB is used to estimate spatio-temporal estimates of the misfit for each of nine234

GOBMs. Misfit estimates at all locations in space and time are added back to the orig-235

inal GOBM to correct the GOBM toward the data. This process is repeated for each of236

the nine GOBMs. The final result is then the average of all nine predictions. A schematic237

of HPD is shown in Figure 3.238
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Table 2. Feature and target datasets

Summary of the products, variables, and data processing steps used for feature and target

variables. Data processing is described in the text. Symbol next to each product identifies the

source.

Group: product Variable Abbreviation Processing

SOCATv2019∗ Partial pressure of ocean CO2 pCO2 See section 2.1

NOAA:OISSTv2† Sea Surface Temperature SST -
SST seasonal anomaly SST′ SST - annual average
Sea Ice Fraction ICE -

Met Office:EN4‡ Sea Surface Salinity SSS -

NOAA:GLOBALVIEW§ Atmospheric CO2 mixing ratio xCO2 -

DeBoyer:Mixed Layer Depth| Mixed Layer Depth MLD log10(MLD)

ESA:GlobColour¶ Chlorophyll-a Chl a log10(Chla)
Chl a seasonal anomaly Chl a′ chl a - annual average

- Day of year J1 sin
(
j∗2π
365

)
J2 cos

(
j∗2π
365

)
- n-vector A sin (λ)

B sin (µ) cos (λ)
C − cos (µ) cos (λ)

∗ Source: https://www.socat.info/

† Source: https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html

‡ Source: https://www.metoffice.gov.uk/hadobs/en4/

§ Source: https://www.esrl.noaa.gov/gmd/ccgg/globalview/co2/co2 intro.html

| Source: http://www.ifremer.fr/cerweb/deboyer/mld/home.php

¶ Source: http://www.globcolour.info/

Table 3. Validation datasets

Accuracy of pCO2 and total number of 1◦ x1◦ grid points is shown for each dataset.

Dataset Accuracy (µatm) Grid points Reference

LDEO database version 2018∗ ±2.5 µatm 16161 Takahashi et al. (2019)

GLODAPv2† > 12 µatm at 400 µatm 5976 Gregor et al. (2019)

BATS† 4 µatm at 400 µatm 246 Bates (2007)

HOT† < 7.6 µatm at 400 µatm 214 Dore et al. (2009)

∗ pCO2 measured with pCO2 equilibrator

† pCO2 estimated from DIC and TA
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2.4 Independent datasets239

Observations not included in the SOCAT database are used to validate the method240

(Table 3). These datasets include the Lamont-Doherty Earth Observatory (LDEO) database,241

with SOCAT data removed; and GLobal Ocean Data Analysis Project version 2 (GLO-242

DAPv2). Two time series sites are also used for validation: Bermuda Atlantic Time-series243

Study (BATS) and Hawaii Ocean Time-series (HOT). In these datasets, pCO2 is either244

directly measured or inferred from observations using carbonate system calculations with245

inputs of Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA). The cbsyst pack-246

age (Hain et al., 2015) is used for carbonate system calculations. For decadal compar-247

isons, timeframes are 1990s (1990-1999), 2000s (2000-2009) and 2010s (2010-2018).248

The uncertainty in derived pCO2 is dependent on the accuracy of the input mea-249

surements. For the modern ocean, cbsyst calculations are consistent with the constants250

of (Lueker et al., 2000), and result in a 1.9% standard deviation in pCO2 when DIC and251

TA uncertainties are 2.0 and 4.0 mol kg-1, respectively. For GLODAP, Bockmon and252

Dickson (2015) suggests an uncertainty of 5µmolkg for DIC and TA, thus suggesting an253

uncertainty greater than 1.9%. Gregor et al. (2019) estimate the uncertainty of GLO-254

DAP pCO2 to be >12 µatm at 400 µatm. Although the measurements have high un-255

certainty, given the sparsity of the SOCAT database, including GLODAP as a valida-256

tion dataset outweighs its omission, consistent with previous studies (Gregor et al., 2019;257

Gregor & Gruber, 2021). At BATS the uncertainty is about 4 µatm (Bates, 2007) while258

at HOT it is <7.6 µatm (Dore et al., 2009). LDEO pCO2 has uncertainty of 2.5 µatm259

(Takahashi et al., 2019).260

2.5 Regression metrics261

A suite of regression metrics are used to compare the predictions (P ) to the ob-262

servations (O) (Stow et al., 2009). Metrics considered include correlation (r), bias, and263

root mean squared error (RMSE). Multiple metrics are considered in order to provide264

a thorough appraisal of each method. Metrics are displayed in a Taylor diagram (Taylor,265

2001).266

Pearson correlation coefficient (r) measures the tendency of the predicted and ob-267

servations to vary together, bounded between ,−1 < r < 1, with values near 1 indi-268

cating that they vary together and -1 indicating an inverse relationship. Correlation is269

also a measure of how well the phase is captured. Values near 1 and -1 indicate that the270

predictions and observations are perfectly in or out of phase, respectively. Intermediate271

values indicate a phase shift between the two signals, with values closer to zero indicat-272

ing a larger phase shift between signals. The squared correlation r2, or coefficient of de-273

termination, represents the variance explained by the regression. Correlation is defined274

as the covariance between predictions and observations divided by the product of their275

standard deviations, r = cov(P,O)
σPσO

, σP and σO represent the standard deviation of the276

predictions and observations, respectively.277

Bias, average absolute error (AAE), and RMSE each measure the size of discrep-278

ancies, with values near zero indicating a close match between predictions and observa-279

tions. However, each metric has strengths and weaknesses. Bias is simply calculated as280

the long-term mean difference between predictions and observations (bias = P − O),281

where overbars represent the temporal mean. Positive and negative bias values indicate282

predictions that are generally overestimated and underestimated respectively. Thus, bias283

provides a measure of the direction of discrepancy. However, bias values falling close to284

zero can be misleading with significant positive offsets at one point in space or time can-285

celing out significant negative offsets elsewhere. RMSE =

√
(P −O)2 measures of the286

magnitude of discrepancy, but squaring the misfit makes RMSE sensitive to outliers. Al-287

ternatively, AAE =|P −O| treats each misfit equally, but is a less commonly used met-288
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ric. We report bias, AAE and RMSE since each one provides a different insight into the289

goodness-of-fit.290

2.6 Area coverage291

The LDEO-HPD product covers 89.6% of the total ocean area, leaving out the Arc-292

tic and coastal zones. Before estimating the net carbon flux from observation-based prod-293

ucts, we use the method of (Fay et al., 2021) to fill spatial gaps in the pCO2 product with294

climatology (Landschützer, Laruelle, et al., 2020) plus the global-mean trend. This fills295

in the 10.4% to create a global gap-free product. Climatological filling lowers global mean296

pCO2 from 356 µatm to 352 µatm in the final product. This climatological filling tech-297

nique (Fay et al., 2021) was also applied to each observational data product to which we298

compare our results (Table 5).299

2.7 Air-sea CO2 flux300

The air-sea CO2 exchange was calculated using a bulk parameterization (equation301

2 ):302

FCO2
= kwSCO2

(1− fice)(pCOatm−moist2 − pCOocean2 ) (2)

which parameterizes the air-sea CO2 flux (FCO2
) as a function of the gas transfer veloc-303

ity (kw), CO2 solubility (SCO2), ice fraction (fice), and partial pressure of CO2 in moist304

air (pCOatm−moist2 ) and surface ocean (pCOocean2 ). Solubility is calculated following Weiss305

(1974) and partial pressure of moist air (pCOatm−moist2 ) is calculated following equation306

3,307

pCOatm−moist2 = xCO2(Patm − pH2O) (3)

where xCO2 is the dry air mixing ratio of atmospheric CO2, Patm is the total atmospheric308

pressure, and pH20 is the saturation vapor pressure (Dickson et al., 2007). We use the309

Wanninkhof (1992) formulation for the gas transfer velocity (equation 4):310

kw = kw,scaledu
2

(
Sc

660

)−0.5

(4)

which paramterizes kw as a function of wind speed squared (u2) and the Schmidt num-311

ber (Sc). kw is scaled by a factor of kw,scaled for each wind product to match the inva-312

sion of bomb 14C (Fay et al., 2021). Three wind products were used (Table 4). Flux was313

calculated separately for each wind product and then averaged to create the final best314

estimate.315

pCO2 measured in situ and compiled in the SOCAT database is set by the com-316

bination of the anthropogenic and natural background carbon cycles. Thus, the calcu-317

lated flux is the net, or contemporary, flux (FNET ).318

Table 4. Wind speed products used to calculate CO2 flux

Wind speed product Reference

CCMPv2.0∗ Mears et al. (2019)
ERA5† Hersbach et al. (2020)
JRA-55‡ Harada et al. (2016)

∗ Source: http://www.remss.com/measurements/ccmp/

† Source: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

‡ Source: https://jra.kishou.go.jp/JRA-55/
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2.8 Estimating anthropogenic carbon flux from the net flux319

The net CO2 flux is the sum of an anthropogenic and a natural component (FNET320

= FNAT + FANT ). Surface ocean pCO2 quantifies FNET , while interior ocean data quan-321

tify FANT . Closure terms are required to compare these independent quantifications of322

the ocean carbon sink.323

The dominant net air-sea flux due to the natural carbon cycle is the outgassing of324

riverine carbon fluxed into the ocean and then slowly outgassed by the ocean (Aumont325

et al., 2001). The community’s estimate of the net riverine-induced carbon outgassing326

(FRIV ) is still evolving. Here we use an average of three estimates representing the spread327

of the available approaches: a geochemical budgeting perspective (+0.45 ± 0.18 PgC/yr;328

Jacobson et al. (2007)), a meridional heat constraint approach (+0.78 ± 0.41 PgC/yr;329

Resplandy et al. (2018)), and a process-based ocean model (+0.23 PgC/yr; Lacroix et330

al. (2020)). Since no uncertainty is presented for the Lacroix et al. (2020) estimate, we331

assume a 50% 1σ uncertainty, which is consistent with the relative magnitude of uncer-332

tainty for the other two estimates. Combining these three estimates, we derive an esti-333

mate of carbon efflux due to river inpus to the ocean in the observation-based product334

flux estimates of +0.49 ± 0.26 PgC/yr. This FRIV ≈ FNAT will be removed from FNET335

estimates from HPD and other products to arrive at FANT .336

Watson et al. (2020) propose significant adjustments to SOCAT data to account337

for a cool and salty near-surface ocean; this adjustment would drive a large increase in338

FNET . This remains controversial and requires more study. We do not include this ad-339

justment.340

Anthropogenic carbon accumulation can be estimated from interior ocean obser-341

vations, for which a global survey is completed approximately once per decade, and thus342

this component is estimated over a defined time period. Gruber, Clement, et al. (2019)343

find FANT at -2.6 ± 0.3 PgC/yr for 1994-2007. A changing ocean circulation may have344

modified FNAT over 1994-2007 through a non-steady state outgassing flux of natural car-345

bon. Thus, a natural non-steady state flux (FNAT,NS) has been proposed (Gruber, Clement,346

et al., 2019), i.e. FNAT = FNAT,NS + FRIV . Applying the transient steady state assump-347

tion to FNET from one observation-based product (Landschützer et al., 2016), Gruber,348

Clement, et al. (2019) find FNAT,NS =+0.38 PgC/yr. However, the transient steady state349

assumption is known to hold when atmospheric carbon accumulation is exponential, and350

this has not been the case in recent decades (Raupach et al., 2014; Ridge & McKinley,351

2020). This estimate of FNAT,NS is likely an upper bound. Nevertheless, we follow Gruber,352

Clement, et al. (2019) and adjust their FANT estimate by this amount.353

Adjusting the FANT estimate of Gruber, Clement, et al. (2019) leads to FANT +354

FNAT,NS = -2.2 ± 0.3 PgC/yr for 1994-2007. Earlier, for the IPCC AR4, Denman et355

al. (2007) synthesized multiple estimates from ocean and atmosphere tracer studies to356

estimate FANT = -2.2 ± 0.4 PgC/yr for 1990-1999, and without any adjustment for FNAT,NS .357

We compare estimate of FNET - FRIV from LDEO-HPD and other products (Table 5)358

to these estimates.359

2.9 Observational-based products360

We compare the pCO2 error statistics and CO2 flux estimates to four products that361

extrapolate from SOCAT data to global coverage using machine learning or other sta-362

tistical modeling techniques (Table 5).363
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Table 5. Observational data products for comparison to these results

Observation-based pCO2 product Reference

MPI-SOMFFN Landschützer et al. (2014); Landschützer, Gruber, and Bakker (2020)
JENA-MLS Rödenbeck et al. (2014)
CMEMS Denvil-Sommer et al. (2019)
CSIR Gregor et al. (2019)

3 Results364

With LDEO-HPD, an XGB algorithm estimates time-varying maps of model-data365

misfit, and these misfits are then used to adjust model fields to arrive at an estimate of366

the real-world pCO2, from which CO2 flux is then calculated. By identifying large-scale367

patterns of model mismatch with observations (section 3.1), LDEO-HPD approach re-368

constructs real-world pCO2 with greater fidelity than other recently-published approaches369

(section 3.2). After correcting for riverine outgassing, air-sea CO2 flux estimates from370

LDEO-HPD are consistent with independent observations for both 1990-1999 and 1994-371

2007 (section 3.3).372

3.1 Model-data misfit373

The 9-model, global-mean bias of 10 µatm in ocean pCO2 (Figure 1D) can partially374

be attributed to neglecting to account for the water vapor correction when calculating375

the atmospheric pCO2 that forces the model (Dickson et al., 2007). If the molar con-376

centration of CO2 is measured in dry air then, by standard protocol (Orr et al., 2017),377

the atmospheric partial pressure of CO2 must be reduced by the vapor pressure of wa-378

ter (equation 5):379

pCO2,atm = xCO2(P − V PH20)) (5)

where pCO2,atm is the partial pressure of CO2 in atmosphere, xCO2 the molar concen-380

tration of CO2 in dry air, P is atmospheric pressure in wet air, and V PH20 is vapor pres-381

sure of water. This is typically a small percentage correction, but still a change in the382

pressure field of only 3% changes the partial pressure of CO2 by about 10 µatm. Thus,383

if the water vapor correction is ignored, the partial pressure of CO2 in the atmosphere384

that the ocean model experiences will be too high and ocean pCO2 will also be high. Of385

the nine models, three do not account for this correction, and the other six do (Friedlingstein386

et al., 2020). Hauck et al. (2020) illustrate through comparison to SOCAT data that these387

models have a significant high bias in pCO2. In addition, they show that several mod-388

els that do include the water vapor correction also have a high pCO2 bias, but do not389

identify the source of this error. The mean pCO2 bias of +10 µatm that we find (Fig-390

ure 1D) is thus partially, but not fully, attributable to several models not applying the391

water vapor correction.392

The model corrections solved for by the XGB algorithm has significant spatial struc-393

ture, and thus is doing far more than just addressing a global-mean bias in the GOBM394

priors. This is illustrated for two of the nine models in Figure 4. There are distinct pat-395

terns and consistent seasonality in the required corrections. For the MPI model, in the396

Southern Ocean and North Pacific, pCO2 is far too high in winter (JJA) and far to low397

in summer (DJF), thus the XGB algorithm imposes strong negative and positive cor-398

rections, respectively. In the North Atlantic, however, winter is too low and summer is399

too high, requiring the opposite sign of corrections. In the subtropics, MPI requires a400

strong negative correction. For CNRM, these patterns are different, with the whole of401

the winter hemisphere generally being slightly too low in pCO2 and the majority of the402

summer hemisphere being too high in pCO2, requiring modest positive and negative cor-403
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rection, respectively. Both models require a positive correction in the equatorial Pacific.404

Zonal-average misfits (Figure 4B) indicate that both of these model require the same sign405

and comparable magnitude seasonal correction in the extratropical Northern Hemisphere,406

while MPI requires much larger corrections in the Southern Ocean.407

The seasonality of model-data misfits (Figure 4) indicate that the LDEO-HPD is408

correcting for errors in model representation of seasonal physical and biogeochemical pro-409

cesses, such as mixed layer deepening and biological processes. These machine-learning410

derived maps of model-data misfit could be applied as a diagnostic of model performance411

to offer a larger-scale perspective that complements direct comparison to in situ data (Hauck412

et al., 2020). Model development could be supported with this approach to model-data413

comparison.414

3.2 Evaluation of LDEO-HPD against independent datasets415

At the ocean timeseries sites at Bermuda (BATS) and Hawaii (HOT), LDEO-HPD416

compares quite favorably to the observations. The amplitude of seasonal and interan-417

nual variablity in LDEO-HPD is as observed at HOT (Figure 5B, 6A) and slightly un-418

derestimated at BATS (Figure 5C, 6B), and the trends at both timeseries are well-represented.419

Compared to existing pCO2 gap-filling methods, LDEO-HPD performs slightly better420

at BATS and HOT, with the lowest unbiased-RMSE relative to SOMFFN, MLS, and421

CMEMS (Figure 6A,B). Correlations are high at HOT and BATS because of the pro-422

nounced subtropical seasonality captured in the datasets. All these products are reliably423

able to capture subtropical seasonality (Rödenbeck et al., 2015; Gloege et al., 2021; Stamell424

et al., 2020).425

LDEO and GLODAP are global observation datasets from intermittent ship tran-426

sects. In these data, seasonality is less well-resolved, a fact that helps to explain the lower427

correlations of all products to the data. All the products show similar performance on428

LDEO observations, with all the products underestimating the variability (Figure 6C).429

For comparison to GLODAP, LDEO-HPD has a smaller unbiased-RMSE relative to other430

products (Figure 6D). LDEO-HPD and MLS capture the amplitude of variability in GLO-431

DAP equally well, and slightly better than SOMFFN and CMEMS.432

Over time, the skill of LDEO-HPD against independent observations of LDEO and433

GLODAP increases relative to the other methods. In the 1990s, the skill of all methods434

are indistinguishable (Figure 7, left). In the 2000s, comparison to GLODAP indicates435

that LDEO-HPD is slightly better than the others, though there is no distinction across436

the methonds for LDEO (Figure 7, center). In the 2010s, LDEO-HPD clearly does the437

best job at capturing GLODAP, and is slightly improved against LDEO (Figure 7, right).438

Thus, we attribute long-term finding of a better fit to independent observations (Fig-439

ure 6) is attributable to the better fit of LDEO-HPD in the later decades (Figure 7).440

3.3 CO2 fluxes: 1982-2018441

Mean pCO2 and CO2 flux from LDEO-HPD algorithm for 1982-2018 show well known442

features. Elevated pCO2 is observed at the equator (Figure 8A), especially in the east-443

equatorial Pacific. This elevated pCO2 is the result of upwelling of cold, carbon laden444

waters. The surface pCO2 in this region is greater than the atmosphere, resulting in net445

CO2 flux from the ocean to the atmosphere (Figure 8B).446

Over time, the net global CO2 flux has become increasingly negative (Table 6), i.e.447

the ocean has become a greater net carbon sink over the recent decades as atmospheric448

pCO2 has risen. Coastal filling (Section 2.6) increases uptake by nearly 0.1 to 0.2 PgC/yr,449

consistent with past estimates of globally integrated coastal uptake (Roobaert et al., 2019).450
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Table 6. Decadal net CO2 flux (FNET ) (PgC/yr)

CO2 flux from LDEO-HPD across decades without coastal filling (”unfilled”) and filled with the

climatology (section 2.6).

Unfilled Filled

1982-1990 -1.38 -1.53
1990-2000 -1.48 -1.65
2000-2010 -1.49 -1.69
2010-2018 -1.96 -2.23

Applying the same to the calculation of air-sea CO2 fluxes for all products (Sec-451

tion 2.7), and applying the FRIV correction, we find that fluxes estimated by LDEO-HPD452

are within the range of the other products for Fant (Figure 9A). Independent flux esti-453

mates based on interior data or atmospheric constraints also indicate consistency. Com-454

pared to FANT for 1990-1999 (Denman et al., 2007) and FANT +FNAT,NS 1994-2007455

(Gruber, Clement, et al., 2019), all products are within the uncertainty bounds (Figure456

9B).457

Improved comparison to independent data in LDEO-HPD is consistent with the458

reduced skewness of the target variable distribution (Figure 2). Reduced skewness should459

particularly improve predictions at the tails of the distribution, which in this case are460

the decades of the 1980s and 2010s. We do not have sufficient independent data to make461

comparisons in the 1980s, but HPD performs best of all methods in the 2010s (Figure462

7, Table 7).463

Table 7. RMSE at independent datasets across decades

RMSE in each product against GLODAP and LDEO datasets across three decades: 1990s, 2000s,

and 2010s. Bold values indicate the product with the lowest RMSE. LDEO values are shown in

parenthesis.

1990s 2000s 2010s

LDEO-HPD 22.0 (27.6) 13.8 (19.0) 15.4 (23.4)
SOMFFN 23.3 (28.2) 15.4 (19.9) 16.9 (26.0)
MLS 22.2 (32.7) 16.1 (25.5) 17.7 (31.6)
CMEMS 21.9 (25.8) 16.2 (18.6) 15.9 (24.8)
CSIR 20.8 (28.4) 15.6 (21.2) 15.7 (27.9)

4 Discussion464

We show that incorporating physical models into machine learning algorithms re-465

sults in some improvement in predictions of surface ocean pCO2. Using output from GOBMs466

as a prior guess allows us to reduce the skewness of the target variable distribution (Fig-467

ure 2). Though GOBMs are imperfect representations of the real ocean (Hauck et al.,468

2020), this work illustrates that they can provide useful prior estimates of pCO2 upon469

which data can improve using machine learning algorithms. By merging models and data,470
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LDEO-HPD reduces error in estimates of pCO2 (Figure 6), with the recent decades be-471

ing the most improved (Figure 7, Table 7).472

The LDEO-HPD approach of correcting GOBMs additionally estimates the mis-473

fit between model output and observed pCO2 at all points in space and time (Figure 3).474

These misfit fields offer potential to facilitate model development by highlighting and475

visualizing the times and regions where the model performs poorly.476

LDEO-HPD indicates an ocean carbon sink that is on the upper end of the suite477

of products for 1990-1999, but at the lower end of the suite of products for 2009-2018478

(Figure 9). This finding is consistent with the reduced skewness in the target variable479

in our approach. pCO2 data the 1980s are extremely sparse, but in the 1990s they are480

almost as numerous as in the subsequent decades. The 1980s and 1990s are both skewed481

low with respect to the overall pCO2 distribution due to the long-term increase of sur-482

face ocean pCO2 in response to atmospheric pCO2 growth. The whole pCO2 distribu-483

tion is centered somewhere between the decades the 1990s and 2000s (Figure 2A,B). Thus,484

pCO2 predictions in since the 2000s in other machine learning approaches are potentially485

skewed slightly low, i.e. toward the mean of the overall distribution. A negative bias in486

ocean pCO2 would increase the air-sea pCO2 difference and drive a greater flux into the487

ocean (Equation 2). The opposite direction of skew may be occurring in the 1990s, with488

pCO2 skewed slightly high and fluxes skewed low. Machine learning algorithms are based489

on the assumption that the training and testing data are independent and identically490

distributed and thus drawn from the same data generating distribution (Goodfellow et491

al., 2016). A tighter distribution is easier for a statistical algorithm to fit. By LDEO-492

HPD fitting model-data misfit, the skewness of the target variable distribution is largely493

eliminated (Figure 2C,D). In comparison to other products, the reduction of skewness494

in LDEO-HPD (Figure 2A,B) is consistent with both the improved fit to independent495

observations (Figure 7, Table 7), and the slightly larger ocean carbon sink LDEO-HPD496

in the 1990s and the slightly smaller sink since 2009 (Figure 9).497

The combination of data-based machine learning with specific physical constraints498

or with the physics embodied in dynamical models is an emerging concept for earth sci-499

ence applications (Karpatne et al., 2017; Reichstein et al., 2019). As in other efforts that500

have corrected dynamical models using observations (Watt-Meyer et al., 2021), we use501

GOBMs as a prior estimate of the surface ocean pCO2 field, and then correct these fields502

with data. The fact that the distribution of the target variable is substantially tightened503

(Figure 2A,C) illustrates that GOBMs bring valuable prior physical information to sup-504

port a robust reconstruction. For example, where pCO2 is high, such as in the equato-505

rial Pacific, it is also high in the model; and thus model-data misfits are constrained in506

magnitude (Figure 2C). If the GOBMs did not provide a useful prior, i.e. had little re-507

lationship to the observations, the spread of model-data misfit would be expected to be508

larger than of pCO2 alone. Tightening the distribution of the target variable supports509

our improved machine learning based predictions (Figure 6, 7).510

Gregor et al. (2019) suggest we may have ”hit a wall” in our ability to extrapolate511

sparse pCO2 data to global coverage. Here, we illustrate that incorporating model out-512

put and addressing skewness of the target variable distribution allows some additional513

improvement in prediction skill. In addition, LDEO-HPD employs an XGB algorithm,514

which is also found to be promising by Gregor et al. (2019). Stamell et al. (2020) showed515

the XGB algorithm performs slightly better in pCO2 extrapolation than neural network516

or random forest algorithms. XGB’s strength is its self-correcting nature in which each517

additional tree improves upon errors made in the previous.518

For 2009-2018, the Global Carbon Budget 2020 (Friedlingstein et al., 2020) indi-519

cates an ocean anthropogenic sink (FANT ) of -2.5 ± 0.6 PgC/yr (Figure 9). LDEO-HPD520

indicates a similar flux, -2.6 ± 0.28 PgC/yr (FANT = FNET - FRIV ). The standard de-521

viation across the nine error-corrected GOBMs (0.1 PgC/yr) and the uncertainty asso-522
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ciated with FRIV (0.26 PgC/yr) are added in quadrature to produce the total uncertainty523

of LDEO-HPD. The other four products discussed here (Table 5) have mean uptake of524

-2.6 ± 0.26 to -2.8 ± 0.26 PgC/yr, using FRIV = +0.49 ± 0.26 PgC/yr to calculate FANT525

from FNET for all. Thus, all products are consistent with the GCB2020. It is important526

to note that our updated estimate of FRIV is lower than that used by the Global Car-527

bon Budget 2020 (+0.61 PgC/yr), and by Hauck et al. (2020) (+0.78 PgC/yr), thus re-528

ducing the apparent model to observation product discrepancy that has been previously529

discussed (Friedlingstein et al., 2020). In addition, the harmonized flux calculation ap-530

proach used here slightly reduces ocean uptake for some products (Fay et al., 2021). In531

summary, for 2009-2018, we find that all products fall within the uncertainties of the GCB2020532

for FANT , with LDEO-HPD on the lower end of the range and slightly closer to the GCB2020533

mean.534

5 Conclusions535

To reconstruct the real ocean’s surface ocean pCO2, LDEO-HPD rectifies output536

of nine global ocean biogeochemical models (GOBMs) by learning the misfit from ob-537

served pCO2 using an XGB algorithm and observed driver fields. LDEO-HPD improves538

prediction accuracy compared to other state-of-the-art pCO2 data products, as indicated539

by improved fit to independent data. This suggests that GOBM output adds useful prior540

information to machine learning for this application. The globally and temporally com-541

plete misfits learned by the algorithm additionally have promise as a new diagnostic and542

visualization tool with which GOBM performance can be assessed. Adding physical in-543

formation, here by using GOBMs as a prior, and addressing temporal skewness in sur-544

face ocean pCO2 distribution offer promising directions for continued improvement in545

the fidelity of machine-learning based reconstructions of the ocean carbon sink. The LDEO-546

HPD suggests a global ocean sink for anthropogenic carbon that is within the range of547

the suite of existing pCO2 observation-based products, and that is in agreement with548

the Global Carbon Budget 2020 (Friedlingstein et al., 2020).549
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Figure 1. A) Total number of months over 1982-2018 with observations. B) Number of

unique months with observations. C) Long-term mean pCO2 at each 1°x1° pixel. D) Bias be-

tween SOCAT and mean of nine GOBMs.
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Figure 2. A) Histogram of SOCAT pCO2 observations in 1980s, 1990s, 2000s and 2010s

shown by different shades of gray. Dotted line indicates mean pCO2. B) boxplot of observations

for each decade. Whisker indicates 1.5*IQR, observations outside the whisker have been omitted.

White line indicates the mean and the number inside in the box indicates the number of observa-

tions within that decade. C) Histogram of the difference between CESM model and SOCAT and

D) is the corresponding boxplot. Due to different internal model structures, the long-term trend

from 1980s to 2010s varies from -7 µatm to +9 µatm.
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Figure 3. A) Schematic of LDEO-HPD method. A relationship between a suite of auxiliary

features and the model data misfit is learned via the XGB algorithm. Spatio-temporal errors are

then added back to the model’s pCO2 field to create the final product. B) outlines the XGB algo-

rithm, where decision trees are sequentially added to improve the mistakes of the previous trees.

Each additional tree reduces the loss and improves the overall performance of the algorithm. C)

The final estimate of pCO2 is the model-data misfit estimated at all global points plus the origi-

nal model. This process is done independently for each of the 9 GOBMs and the final estimate is

the average pCO2.
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Figure 4. A) Average pCO2 misfit in the MPI and CNRM model for all years, December,

January, and February (DJF); March, April and May (MAM); June, July, and August (JJA);

and September October and November (SON). B) Zonally average pCO2 misfit in the MPI and

CNRM models for DJF, JJA, MAM, and SON.

–19–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 5. A) Locations of independent datasets. BATS and HOT are timeseries, while the

GLODAP and LDEO are spatially varying. B) comparison of HOT with LDEO-HPD output. C)

comparison between BATS and LDEO-HPD output
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Figure 6. Taylor diagrams display the performance of published gap-filling techniques and

LDEO-HPD product. Performance is evaluated at two timeseries: A) HOT and B) BATS; and

two global datasets: C) LDEO and D) GLODAP. Red star indicates standard deviation of each

dataset.
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Figure 7. Taylor diagrams display the performance of published gap-filling techniques and

LDEO-HPD product. Performance is evaluated at two global datasets, LDEO and GLODAP,

using data in the from 1990-1999 (1990s), 2000-2009 (2000s), and 2010-2018 (2010s).Red star

indicates standard deviation of each dataset.

Figure 8. Mean A) pCO2 and B) net CO2 flux over 1982-2018 estimated from LDEO-HPD. A

spatially complete map of CO2 flux is achieved by filling in gaps with a trend plus climatology.
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Figure 9. A) Anthropogenic air-sea CO2 exchange (FANT ) for 1985-2018 from LDEO-HPD

and four other products: SOMFFN, MLS, CMEMS, CSIR-ML6. Positive is to the atmosphere.

Gray dash is the mean of the 9 GOBM priors, which are also the basis for the ocean sink esti-

mate of the Global Carbon Budget 2020 (Friedlingstein et al., 2020). B) Anthropogenic CO2

flux for 1990-99, 1994-2007, and 2009-2018. Light gray bar indicates IPCC AR4 or interior

observation-based estimates with uncertainty. Dark gray bar is the mean of the nine GOBMs.

Colored bars indicate observation-based estimates. The white line separates FNET from the

products and FRIV , estimated as the average of three estimates (0.49 PgC/yr), see section 2.8
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