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Abstract

Many processes throughout the heliosphere such as flares, CMEs, storms and substorms have abrupt onsets. The waiting time

between these onsets provides key insights as to the underlying dynamical processes. We explore the tail of these waiting

time distributions in the context of random processes driven by the solar magnetic activity cycle, which we approximate by a

sinusoidal driver. Analytically, we find that the distribution of large waiting times of such a process approaches a power law slope

of -2.5 at large enough waiting time, and we find that this power law is primarily controlled by the conditions when the driving

is minimum. We find that the asymptotic behavior of the waiting time distributions of solar flares, coronal mass ejections,

geomagnetic storms, and substorms exhibit power laws are in reasonable agreement with a sinusoidally driven nonstationary

Poisson process.
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Key Points:6

• Many heliospheric waiting time distributions are consistent with sinusoidal driv-7

ing of a random process.8

• Minima in the driving process determine the tail of the waiting time distribution.9

• The power law of the waiting time distribution is asymptotic to -2.5 for sinusoidal10

driving.11
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Abstract12

Many processes throughout the heliosphere such as flares, CMEs, storms and substorms13

have abrupt onsets. The waiting time between these onsets provides key insights as to14

the underlying dynamical processes. We explore the tail of these waiting time distribu-15

tions in the context of random processes driven by the solar magnetic activity cycle, which16

we approximate by a sinusoidal driver. Analytically, we find that the distribution of large17

waiting times of such a process approaches a power law slope of -2.5 at large enough wait-18

ing time, and we find that this power law is primarily controlled by the conditions when19

the driving is minimum. We find that the asymptotic behavior of waiting time distri-20

butions of solar flares, coronal mass ejections, geomagnetic storms, and substorms ex-21

hibit power laws are in reasonable agreement with a sinusoidally driven nonstationary22

Poisson process.23

Plain Language Summary24

Many events in the solar system are driven by the magnetic activity cycle of the25

sun. In this paper we show that for cyclical driving of a Poisson process that the prob-26

ability of the time between events satisfies a power law of -2.5 when the time between27

events is large. We show that this power law reasonably describes the distribution of wait-28

ing times for flares, CMEs, storms, and substorms at long waiting time. Additionally,29

we show that the distribution of long waiting times is primarily determined by the min-30

imum of the driving process.31

1 Introduction32

The solar cycle follows an 11-year cycle, characterized by fluctuations in the num-33

bers and surface area of sunspots, and impacts processes at the sun and throughout the34

heliosphere (Hathaway, 2010). Many processes that occur during the solar cycle can be35

identified as “events” because they are either localized in time or have a well defined on-36

set. Solar flares, coronal mass ejections (CMEs), geomagnetic storms, and geomagnetic37

substorms are among this class of processes.38

It is well known that the dynamics of systems can be well described and reconstructed39

by considering the distribution of the set of time intervals of the system, (∆1,∆2,∆,...,∆N )40

known as waiting times (Snelling et al., 2020; Aschwanden & McTiernan, 2010; Wheat-41
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land, 2000; Wheatland & Litvinenko, 2002; Wheatland, 2003; Consolini & Michelis, 2002).The42

waiting time distributions (WTDs) that are observed throughout the heliosphere may43

be governed by a combination of internal system dynamics and external driving by the44

magnetic activity cycle of the sun. If the events occur randomly, the process can be de-45

scribed as a Poisson process characterized by its rate. However, because many events through-46

out the heliosphere respond directly to the magnetic activity cycle, the activity cycle may47

modulate the rate of the events. As long as the response is random in nature, such pro-48

cesses can be described in terms of a nonstationary or time dependent Poisson process.49

In general, the waiting time for solar flares, CMEs, storms, and substorms can be50

described by a nonstationary Poisson distribution, especially at large waiting times. Us-51

ing Tsallis statistical mechanics, Balasis, Daglis, Anastasiadis, et al. (2011) suggested52

that the driving physical mechanisms of solar flares and storms have the same charac-53

teristics. Recently, Snelling et al. (2020) used information theory to show that while there54

is a short-term memory in the solar flare sequence, the distribution cannot be distinguished55

from a nonstationary Poisson distribution for longer waiting times. The WTD of CMEs56

have also been understood to follow a nonstationary Poisson process (Wheatland, 2003).57

CMEs, along with corotating interaction regions (CIRs), are the main drivers of storms.58

The CME-driven storms have a random occurrence pattern consistent with a nonstation-59

ary Poisson distribution. In contrast, CIR-driven storms have a periodicity of ∼ 27 days.60

CIR-driven storms usually have a weaker intensity than CME-driven storms and hap-61

pen during the declining phase of solar maximum (Tsubouchi & Omura, 2007; Borovsky62

& Denton, 2006). On average, the WTD of storms follows a nonstationary Poisson pro-63

cess (Tsubouchi & Omura, 2007). The WTD of substorms have two components: a non-64

random component which may correspond to spontaneous substorms with characteris-65

tic waiting time of ∼2.5 hours and a random component which is fit by a Poisson dis-66

tribution and generally occurs at waiting times longer than 5 hours (Borovsky et al., 1993).67

The WTDs of these processes exhibit a power law for longer waiting times (heavy68

tail). For the WTD of solar flares at long waiting times, Boffetta et al. (1999) found a69

power law slope of −2.4±0.1. Wheatland (2000), restricting for flares of class C1 and70

above, found a power law slope of −2.16±0.05. Aschwanden and McTiernan (2010) found71

a power law in the tail of the WTD of solar flares with slope of ∼ −2. Wheatland (2003)72

found that the distribution of waiting times of CMEs in the Large Angle and Spectro-73

metric Coronagraph (LASCO) CME catalog for the years 1996-2001 exhibit a power law74
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tail of −2.36 ± 0.11 for (∆t > 10 hours). Using Dst index from World Data Center75

for Geomagnetism, Kyoto University, Japan, Tsubouchi and Omura (2007) fitted the tail76

of the WTD for geomagnetic storms (Dst < −100 nT and ∆ > 48 hours) for ∆t >77

1000 hours with a power law of −2.2± 0.1.78

Some have proposed different driver mechanisms of the nonstationary Poisson dis-79

tribution of the WTD of solar flares and explored their consequence to the behavior of80

the power law slope. Wheatland (2003) proposed that the flaring rate of solar flares fol-81

lows an exponential distribution and showed analytically that the WTDs of such non-82

stationary Poisson processes follow a power law of -3. Aschwanden and McTiernan (2010)83

further studied several different drivers and the power law resulted shown in Figure 2.84

Wheatland and Litvinenko (2002) showed that the power law slope of WTDs varies85

with the solar cycle. Since the solar cycle is approximately sinusoidal, we propose that86

the flaring rate of solar flares follows the sinusoidal distribution to the first order. Here,87

we will show analytically how the observed power law behavior originates from the si-88

nusoidal rate and specifically the minima.89

2 Waiting time statistics90

From Aschwanden and McTiernan (2010), the waiting time probability distribu-

tion for a nonstationary Poisson process with continuous flaring rate λ(t) is approximately

given by the equation

P (∆) =

∫ T
0
λ(t)2e−λ(t)∆dt∫ T

0
λ(t)dt

. (1)

Suppose we choose a sinusoidal dependence of the flaring rate

λ(t) = λ0(1 + cosωt) (2)

for which

λ0 =
1

T

∫ T

0

λ(t)dt. (3)

is the average rate. Because this is a periodic signal, the statistics can all be obtained

considering the process only over the interval [0 T] where T = 2π/ω. Then

P (∆) =
λ0e
−λ0∆

T

∫ T

0

(1 + cos(ωt))2e−λ0 cos(ωt)∆dt. (4)

Changing variables of integration θ = ωt with dθ = ωdt, we have

P (∆) =
λ0e
−λ0∆

ωT

∫ 2π

0

(1 + cos(θ))2e−λ0 cos(θ)∆dθ. (5)
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The integral can be performed using the Bessel function identity (Abramowitz and Ste-

gun (1972) - 9.6.34)

ez cos θ =

∞∑
n=−∞

In(z)einθ (6)

so that

e−λ0∆ cos θ =

∞∑
n=−∞

In(−λ0∆)einθ =

∞∑
n=−∞

(−1)nIn(λ0∆)einθ (7)

where

In(−z) = (−1)nIn(z)(Abramowitz and Stegun (1972) - 9.6.30). (8)

Then

P (∆) = λ0e
−λ0∆

∞∑
n=−∞

(−1)nIn(λ0∆)
1

2π

∫ 2π

0

einθ
(

1 +
eiθ + e−iθ

2

)2

dθ (9)

= λ0e
−λ0∆

∞∑
n=−∞

(−1)nIn(λ0∆)

[
1

2π

∫ 2π

0

einθ
(

1 + eiθ + e−iθ +
e2iθ + 2 + e−2iθ

4

)
dθ

]
(10)

= λ0e
−λ0∆

∞∑
n=−∞

(−1)nIn(λ0∆)

[
3

2
δn,0 + δn,−1 + δn,1 +

1

4
(δn,−2 + δn,2)

]
(11)

= λ0e
−λ0∆

[
3

2
I0(λ0∆)− I−1(λ0∆)− I1(λ0∆) +

1

4
(I−2(λ0∆) + I2(λ0∆))

]
(12)

and making use of the property

I−n(z) = In(z), (Abramowitz and Stegun (1972) - 9.6.6), (13)

we find the analytic solution

P (∆) = λ0e
−λ0∆

[
3

2
I0(λ0∆)− 2I1(λ0∆) +

1

2
I2(λ0∆)

]
. (14)

Now we perform the asymptotic analysis. For large ∆ we have

In(z) ∼ ez√
2πz

[
1− µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
− (µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ ...

]
(15)

where µ = 4n2. And so

I0(z)e−z ∼ 1√
2πz

[
1 +

1

8z
+

9

128z2
+ ...

]
(16)

I1(z)e−z ∼ 1√
2πz

[
1− 3

8z
− 15

128z2
+ ...

]
(17)

I2(z)e−z ∼ 1√
2πz

[
1− 15

8z
+

105

128z2
+ ...

]
. (18)
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Therefore,

P (∆) ∼ λ0
1√

2πλ0∆

[
3

4(λ0∆)2
+ ...

]
∼ λ0

3

8

√
2

π
(λ0∆)−2.5. (19)

So, in this case the power law is −2.5. In the next section we will show how the power91

law can be derived from the minima of the rate function, a more general case.92

We confirm our findings by numerically integrating Eq. (5). We then plot the nu-93

merical and analytic solutions in Figure 1. The third plot is the “local” power slope cal-94

culated by numerically differentiating P (∆)/λ0. It can be seen that the power law slope95

approaches -2.5 asymptotically from below.96

3 Role of the Minima97

The WTD at large waiting times is mainly governed by the minima of the driver.

As such, we will show how the minima affects the WTD at large waiting times. As be-

fore, from Aschwanden and McTiernan (2010), for the nonstationary Poisson process with

continuous λ(t) we have approximately

P (∆) =

∫ T
0
λ(t)2e−λ(t)∆dt∫ T

0
λ(t)dt

.

Let λ be normalized to λ0:

λ = λ0 · g(t). (20)

Then

P (∆) = λ0

∫ T

0

g(t)2e−λ0∆g(t)dt. (21)

Suppose g(t) has a minimum at t = t0:

g(t) ≈ g(t0) +
g′′(t0)

2!
(t− t0)2 + .... (22)

Then,

P (∆) = λ0

∫ T

0

[g(t0) +
g′′(t0)

2!
(t− t0)2 + ...]2e−λ0∆[g(t0)+

g′′(t0)
2! (t−t0)2]+...dt. (23)

Let α = t− t0 and g0 = g(t0). As long as t0 is in the interval,

P (∆) ∼ λ0

∫ ∞
−∞

[g0 +
g′′0
2
α2]2e−λ0∆[g0+

g′′0
2 α2]dα (24)

∼ λ0e
−λ0∆g(0)

∫ ∞
−∞

[g0 +
g′′0
2
α2]2e

−λ0∆g′′0
2 α2

dα. (25)
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Let µ0 = λ0∆
2 ,

P (∆) ∼ λ0e
−2µ0g0

∫ ∞
−∞

[g2
0 + g0g

′′
0α

2 +
g′′20

4
α4]e−µ0g

′′
0 α

2

dα (26)

∼ λ0e
−2µ0g0 [g2

0

√
π

g′′0
µ−1

0 +
g0

2

√
π

g′′0
µ−1.5
o +

3

16

√
π

g′′0
µ−2.5

0 ] (27)

∼ λ0e
−2µ0g0

√
π

g′′0
[g2

0µ
−1
0 +

g0

2
µ−1.5
o +

3

16
µ−2.5

0 ] (28)

It can be seen that when the rate vanishes at the minimum (g0 = 0), the power law will98

be −2.5. When the rate at the minimum is small there will be a range where the µ−2.5
99

term dominates. In this range, we expect (∆� 1/λ0) and the WTD will have a −2.5100

power law; otherwise, other power laws may be more applicable. In some processes, the101

sinusoidal rate minima might be elevated (nonzero). We derive the analytic solution for102

an sinusoidal rate function with an elevated minima in the Appendix A.103

4 Data Analysis104

We present analyses of the waiting time distributions of four different processes:105

solar flares, CMEs, storms, and substorms. We calculate the waiting time probability106

distribution using logarithmic binning and plot them alongside the power law fit from107

equation (14) (see Figure 3).108

4.1 Solar Flares109

The solar flare data was obtained from the Geostationary Operational Environmen-110

tal Satellite (GOES) catalog of flares from 1975-2017, available from https://www.ngdc111

.noaa.gov/stp/solar/solarflares.html. In keeping with previous studies by Snelling112

et al. (2020), we used flares with a minimum peak flux greater than 1.4×10−6, namely113

flares of C1 class and above. Event times were set to be the time of the maximum flux.114

From this sequence consisting of 71,595 flares, we construct a sequence of waiting times.115

This solar flares waiting time series was the same series analyzed by Snelling et al. (2020).116

4.2 CME117

The Coronal Mass Ejection (CME) list was obtained from the Center for Solar Physics118

and Space Weather/Naval Research Laboratory (SOHO/LASCO) CME catalog https://119

cdaw.gsfc.nasa.gov/CME list/ from 1996 to 2020. We construct a sequence of wait-120

ing times from a sequence of 30,321 events.121

–7–
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4.3 Storms122

The Dst record was obtained from the GSFC/SPDF OMNIWeb interface at https://123

omniweb.gsfc.nasa.gov. Using the hourly Dst index between 1963 and 2020, we de-124

fine the onset of a storm event to be when the index goes below -50 nT and the end of125

a storm event to be when the index surpasses -20 nT. The choice of the minimum Dst126

index is to choose at least moderate storms events (-100 nT < Dst < -50 nT) as char-127

acterized in previous study by Balasis, Daglis, Papadimitriou, et al. (2011). Watari and128

Watanabe (1998) also chose Dst < −50 nT as a treshold for stroms event. Event times129

were set to be the onset of the storm. From this sequence of 1276 storm events, we con-130

struct a sequence of waiting times.131

4.4 Substorms132

The substorms list was obtained from the SuperMAG substorms list at http://133

supermag.jhuapl.edu/mag/. We created our waiting time sequence from the substorms134

event times list between 1975 and 2019, which was composed of 68,878 events.135

α ∆min(hours) ∆max (hours) χ2 p

Solar Flares Data −2.74± 0.06 20 103 0.42 � 0.001

Analytic Solution −2.65± 0.05 20 103 0.038 � 0.001

CMEs Data −2.98± 0.05 20 189 1.03 � 0.001

Analytic Solution −2.68± 0.05 20 189 0.098 � 0.001

Storms Data −2.49± 0.15 566 4496 0.38 � 0.001

Analytic Solution −2.60± 0.2 566 4496 0.053 � 0.001

Substorms Data −2.40± 0.06 25 99 1.1 � 0.001

Analytic Solution −2.61± 0.13 25 99 0.0048 � 0.001

Table 1: Linear least squares fit for the WTDs of data and analytic solution, eq. 14,

where the fitted power law is for ∆min < ∆ < ∆max.

–8–
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5 Results and Discussions136

Figure 3 plots waiting time distribution for solar flares, CMEs, storms, and sub-137

storms. The figure shows the existence of power laws for ∆min < ∆ < ∆max region138

as described in Table 1. The power law distribution does not fit the actual WTD for the139

entire tail domain of the datasets perhaps due to some underlying dynamics that com-140

pete with the cyclical behavior. For the solar flares, it seems that the WTD at long wait-141

ing times may have a shallower slope. It may be the case that during solar minima, there142

are impulsive events which have been associated with shallower power law slope (Aschwanden143

& McTiernan, 2010). The power law slope of the CMEs is somewhat steeper than the144

WTD derived from the sinusoidal rate. Steeper slopes can be found when the minima145

of the sinusoidal rate is elevated (See Appendix A). If analyzed segment by segment, Wheatland146

(2003) found a power law α ∼ −2.36 ± 0.11 for CMEs between 1996-2001, the period147

of lowest CMEs activity but found a power law α ∼ −2.98±0.20 for the years of 1999-148

2001, a period of higher activity where the minima of the rate function is elevated. These149

power laws are reasonably similar to the analytic distribution. However, there is a small150

difference, suggesting that additional processes should be considered beyond simple si-151

nusoidal driving. For the substorms, the internal magnetospheric dynamics likely affects152

the distribution at shorter waiting times, thus the power law only matches at long wait-153

ing time. The sudden steepness of the slope for ∆ > 100 hrs may be attributed to the154

elevated minima of the rate function (see Appendix A). The power law distribution for155

the storms fits much better than for the substorms, indicating that the cyclical behav-156

ior of the external driver is generally more important. In other words, there is less in-157

ternal dynamics involved than for substorms.158

Although this paper focuses mostly on events impacted by the periodicity of the159

solar activity, the waiting time distribution of any nonstationary Poisson process that160

has a sinusoidal rate with a minimum near zero will have a power law of −2.5 at large161

waiting times. Even more generally, for any nonstationary Poisson processes that has162

a continuous rate with a minimum close to zero, the WTD will have a power law of −2.5163

at large waiting times as long as the minimum rate is small, although natural processes164

might not reach that asymptotic point due to the rarity of the events at large waiting165

time and/or data gaps. Also, for processes with an elevated minima, the slope at large166

waiting times may steepen dramatically and drop off exponentially. It may be inferred167

that, for longer waiting times, the internal dynamics may be a lot less important than168

–9–
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what is driving the system. In this case, it is the characteristics of the driver at its min-169

imum.170

The power laws of WTDs are often thought to result from SOC processes or tur-171

bulent interactions. While SOC models predict a Poisson distribution, variable driving172

of SOC models results in a nonstationary Poisson distribution characterized by a power173

law at long waiting times (Aschwanden, 2019). In this work we have shown that sim-174

ple periodic driving of a system with a random response can produce a power law of -175

2.5. Because the solar magnetic activity cycle is a primary driver of dynamics through-176

out the solar system, it is not surprising that such power laws are seen in solar flares,177

CME, storm and substorm datasets. It is also to be noted that because long waiting times178

primarily occur when the rate is minimum, that the tail of power laws provide informa-179

tion about conditions at the minima in activity cycles, and may provide insight as to the180

underlying dynamics at solar minima and the overlap between cycles (McIntosh et al.,181

2020).182
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Figure 1: (a) is a plot of numerical and analytic solutions to eq. (5). The asymptotic

solution is P (∆)/λ0 ∼ (λ0∆)−2.5. Plot (b) is the “local” power law estimation.

250
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Figure 2: Figure from Aschwanden and McTiernan (2010). The rate functions, λ(t), are

shown on the left side, and the corresponding waiting time distributions are shown on the

right hand side. Power law fits are indicated with a dotted line where p is the power law

slope.
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Figure 3: Waiting time probability distribution and rate over the years of the solar,

CMEs, Storms and Substorm data. The power law estimate α is over a range as described

in table 1 –15–
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Appendix A Sinusoidal Rate Function with Elevated Minimum, λmin >251

0252

For the nonstationary Poisson process we have approximately:253

P (∆) =

∫ T
0
λ(t)2e−λ(t)∆dt∫ T

0
λ(t)dt

. (A1)

Suppose we choose a sinusoidal dependence and consider a period (it will be the same

result for multiple periods):

λ(t) = λ0

(
1 +

β

2
cosωt

)
(A2)

where

δλ = λmax − λmin = βλ0 (A3)

For which ∫ T

0

λ(t)dt = λ0T (A4)

when integrated over a period. Then we have

P (∆) =
λ0e
−λ0∆

T

∫ T

0

(1 +
β

2
cosωt)2e−

βλ0∆
2 cos(ωt)dt. (A5)

Changing variables of integration:

θ = ωt

with

dθ = ωdt

P (∆) =
λ0e
−λ0∆

ωT

∫ ωT

0

(1 +
β

2
cos(θ))2e−b cos(θ)∆dθ

where b = λ0β∆
2 . Because this is a periodic signal, the statistics can all be obtained by

considering one period. Let us consider P (∆) determined over a period ωT = 2π. Then

P (∆) =
λ0e
−λ0∆

2π

∫ 2π

0

(1 +
β

2
cos θ)2e−b cos θdθ. (A6)

The integral can be performed using the Bessel function identity ((Abramowitz & Ste-

gun, 1972) - 9.6.34)

ez cos θ =
∞∑

n=−∞
In(z)einθ (A7)

–16–
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so that

e−b cos θ =

∞∑
n=−∞

In(−b)einθ =

∞∑
n=−∞

(−1)nIn(b)einθ (A8)

where

In(−z) = (−1)nIn(z)((Abramowitz & Stegun, 1972) - 9.6.30). (A9)

Then

P (∆) = λ0e
−λ0∆

∞∑
n=−∞

In(b)
1

2π

∫ 2π

0

einθ
(

1 +
β

2

(
eiθ + e−iθ

2

))2

dθ (A10)

= λ0e
−λ0∆

∞∑
n=−∞

(−1)nIn(b)

[
1

2π

∫ 2π

0

einθ
(

1 +
β

2

(
eiθ + e−iθ

)
+
β2

4

(
e2iθ + 2 + e−2iθ

4

))
dθ

]
(A11)

= λ0e
−λ0∆

∞∑
n=−∞

(−1)nIn(b)

[(
1 +

β2

8

)
δn,0 +

β

2
(δn,−1 + δn,1) +

β2

16
(δn,−2 + δn,2)

]
(A12)

= λ0e
−λ0∆

[(
1 +

β2

8

)
I0(b)− β

2
(I−1(b) + I1(b)) +

β2

16
(I−2(b) + I2(b))

]
(A13)

and making use of the property

I−n(z) = In(z), ((Abramowitz & Stegun, 1972) - 9.6.6), (A14)

we have

P (∆) = λ0e
−λ0∆

[(
1 +

β2

8

)
I0(b)− βI1(b) +

β2

8
I2(b)

]
(A15)

P (∆) = λ0e
−λ0∆(1− β2 )e−b

[(
1 +

β2

8

)
I0(b)− βI1(b) +

β2

8
I2(b)

]
(A16)

Now we perform the asymptotic analysis. For large ∆ we have

In(z) ∼ ez√
2πz

[
1− µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
− (µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ ...

]
(A17)

where µ = 4n2. And so

I0(z)e−z ∼ 1√
2πz

[
1 +

1

8z
+

9

128z2
+ ...

]
(A18)

I1(z)e−z ∼ 1√
2πz

[
1− 3

8z
− 15

128z2
+ ...

]
(A19)

I2(z)e−z ∼ 1√
2πz

[
1− 15

8z
+

105

128z2
+ ...

]
. (A20)

Therefore,

P (∆) ∼ λ0e
−λ0∆(1− β2 ) 1√

2πb

[(
1− β

2

)2

+

(
1 +

7β

2

)(
1− β

2

)(
1

8b

)
+

57β2 + 60β + 36

512b2
+ ...

]
(A21)
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The power law depends on the choice of β. In the case that β = 2 we recover P ∼ b−2.5,254

otherwise it drops off exponentially. In Fig. A1 we plot the WTDs and corresponding255

”local” power law estimation for various values of β.256

257

–18–
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Figure A1: The left panels are the waiting time distributions with numerical and analytic

solutions to eq. (A6) corresponding to various β values. The right panels are the ”local”

power law estimation. –19–


