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Abstract

Terrestrial ecosystems of Canada store a large amount of organic carbon (C) in soils, peats and plant materials, yet little is

known about the C stock size and distributions, both spatially and in various C pools. As temperature rises, C is becoming

available for disturbance, decomposition and eventual release into the atmosphere, which makes the quantification of C stocks

in terrestrial ecosystems of Canada of high interest for the assessment of climate change impacts and conservation efforts. Here,

we use multisource satellite, climate and topographic data and a machine-learning algorithm to produce the first wall-to-wall

estimate of C stocks in plants and soils of Canada at 250 m spatial resolution. Our findings show that above and belowground

live biomass and detritus store a total of 21.1 Pg C. Whereas the Canadian soils store 313 Pg organic C in the top 1 m, 83 Pg

C of which are stored in peatlands, confirming that soil organic C dominates terrestrial carbon stocks. We also find previously

under-reported large soil organic C stock in forested peatlands on the boreal shields of Canada. Given that Canada is warming

twice the global average rate and Canadian soils store approximately 20% of world soil C stocks in top 1 m, initiatives to

understand their vulnerabilities to climate change and disturbance are indispensable not only for Canada but also for the global

C budget and cycle.
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Key Points: 9 

 Our findings indicate Canada’s soils store 313 Pg organic carbon in the top 1 m, which is 10 

20% of the global soil carbon storage. 11 

 Peatlands, covering ~12% of Canada, store 26.5% of the total amount of the soil organic 12 

carbon storage of the nation.  13 

 We find previously unreported large organic carbon stock in forested boreal peatlands of 14 

Canada.  15 
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Abstract 16 

Terrestrial ecosystems of Canada store a large amount of organic carbon (C) in soils, peats and 17 

plant materials, yet little is known about the C stock size and distributions, both spatially and in 18 

various C pools. As temperature rises, C is becoming available for disturbance, decomposition 19 

and eventual release into the atmosphere, which makes the quantification of C stocks in 20 

terrestrial ecosystems of Canada of high interest for the assessment of climate change impacts 21 

and conservation efforts. Here, we use multisource satellite, climate and topographic data and a 22 

machine-learning algorithm to produce the first wall-to-wall estimate of C stocks in plants and 23 

soils of Canada at 250 m spatial resolution. Our findings show that above and belowground live 24 

biomass and detritus store a total of 21.1 Pg C. Whereas the Canadian soils store 313 Pg organic 25 

C in the top 1 m, 83 Pg C of which are stored in peatlands, confirming that soil organic C 26 

dominates terrestrial carbon stocks. We also find previously under-reported large soil organic C 27 

stock in forested peatlands on the boreal shields of Canada. Given that Canada is warming twice 28 

the global average rate and Canadian soils store approximately 20% of world soil C stocks in top 29 

1 m, initiatives to understand their vulnerabilities to climate change and disturbance are 30 

indispensable not only for Canada but also for the global C budget and cycle. 31 

Keywords: Carbon stock mapping; Peatlands; Soil; Satellite data; Machine learning. 32 

1 Introduction 33 

Terrestrial ecosystems store large quantities of carbon (C) in plants and soils, playing an 34 

important role in determining the state of the global climate system undergoing rapid human-35 

induced changes (Heimann and Reichstein, 2008; Xu et al., 2018; Harris et al., 2021). 36 

Temperatures are increasing faster at mid- to high latitudes and over the continental landmasses 37 

as Canada (Bush and Flato, 2019), where terrestrial ecosystems net primary productivity (NPP) 38 

is estimated as 1.27 petagram of carbon (Pg C) annually, of which forests alone contribute 1.02 39 

Pg C (Gonsamo et al., 2013). With increasing scientific and political interest in regional aspects 40 

of the global C cycle, there is a strong impetus to better understand the net C storage of terrestrial 41 

ecosystems of Canada, which comprise about 9% of world’s forests and more than one third of 42 

the world's peatlands, characterized by areas with large soil organic carbon (SOC) stock 43 

(Minasny et al., 2019).  44 

Plants store about 80% of the live biomass on Earth, with an estimated pool of 450 Pg C 45 

(Bar-On et al., 2018). Of those, approximately 70% is stored in aboveground biomass (AGB) of 46 

forest areas, with estimates varying from about 290 Pg C (FAO et al., 2020a, Spawn et al., 2020) 47 

to 320 Pg C (Bar-On et al., 2018). AGB includes all vegetation above the ground (i.e. stems, 48 

branches, barks, seeds, flowers, and foliage of live plants) and is one of the most visible and 49 

dynamic terrestrial ecosystem C reservoirs (Kumar and Mutanga, 2017). It differs from SOC 50 

pools which are not as readily oxidized (Davidson and Janssens, 2006) as AGB is in a 51 

continuous state of flux due to impacts such as fire, logging, storms, land-use changes, and thus 52 

their contribution to atmospheric C fluxes is more immediate. In fact, projected increases in the 53 

frequency, extent and severity of high-latitude disturbance in North America boreal forests may 54 

limit the potential of these ecosystems to serve as a terrestrial C sink (Wang et al., 2021). 55 

Estimating C stock is therefore a critical step to monitor C dynamic responses and vulnerabilities 56 

to global change. 57 
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The existing national inventory estimates only report C stock in AGB and belowground 58 

biomass (BGB) in managed forests of Canada, which comprise 65% of the country’s forests 59 

(FAO et al., 2020b). AGB estimates at national level were also provided by Beaudoin et al. 60 

(2014) who correlated National Forest Inventory (NFI) data with satellite reflectance data and 61 

climatic and topographic variables to quantify and produce AGB maps for 12 Canadian 62 

ecozones. Later, Matasci et al. (2018a) correlated AGB samples estimated from airborne light 63 

detection and ranging (LiDAR) with satellite reflectance and topographic data to map and 64 

quantify AGB in 8 Canadian ecozones located in the boreal forest area. Matasci et al. (2018b) 65 

included Landsat historical data and expanded predictions to transition between boreal and 66 

temperate forest areas. Through such AGB mapping approaches, it is possible to estimate the C 67 

stock in live plants, but there is still a lack of information regarding the spatial distribution of C 68 

stock in BGB, dead plants, and vegetation of non-forest areas. Besides that, although these 69 

studies used LiDAR as a way to increase the number of field samples, none of them used such 70 

data to extract and include forest structural variables as AGB predictors, which is imperative 71 

considering that optical data can saturate at low AGB levels (Rodríguez-Veiga et al., 2017). 72 

LiDAR data usually show the highest correlation with AGB due to their ability to penetrate the 73 

forest canopy and detect the forest vertical structure (Goetz and Dubayah, 2011). The use of 74 

LiDAR to map biomass was first limited to terrestrial or airborne platforms at plot and local 75 

scales but has been recently expanded to continental and global scales with the launch of LiDAR 76 

sensors onboard satellites, such as the Ice, Clouds, and Land Elevation Satellite (ICESat) and, 77 

more recently, ICESat-2 and Global Ecosystem Dynamics Investigation (GEDI) missions 78 

(Narine et al., 2019; Qi et al., 2019; Duncanson et al., 2020). In this sense, the inclusion of 79 

canopy structural information derived from LiDAR, could provide improved estimates of C 80 

stock in Canadian forests.  81 

Global soils store more C than vegetation and the atmospheric reservoirs combined, with 82 

an average of 1,500 Pg C in the top meter alone (Scharlemann et al., 2014), although with 83 

considerable spatial variability. Peat soils comprise about one-third of the global SOC stock 84 

estimated for the first meter (Scharlemann et al., 2014). Canada, with an estimated 1.1 million 85 

km² of peatlands (Tarnocai et al., 2011), likely has the second largest SOC stock of the world 86 

(FAO, 2018). Soils that hold larger C stocks such as Canadian peatlands can significantly impact 87 

global climate via positive and negative feedbacks associated with changes in C dynamics 88 

(Packalen et al., 2014). Paleoecological studies suggest that northern peat soils have been a net C 89 

sink, cooling the climate over the Holocene (Gallego-Sala et al., 2018) but may become a C 90 

source in this century due to climate warming and drying, coupled with permafrost thaw 91 

(McLaughlin et al., 2018; Hugelius et al., 2020; Loisel et al., 2021). As temperature rises, the 92 

anaerobic decomposition of perennially frozen peatlands can be accelerated, producing CH4 93 

(Tarnocai, 2009), a gas that is 25 times more effective as a greenhouse gas than CO2 (IPCC, 94 

2007). With warming temperature, aerobic decomposition is expected to increase in unfrozen 95 

peatlands (Christensen, 1991) and peat fires are increasing due to peat drying (Thompson et al., 96 

2019), both leading to increased release of peat SOC that has been accumulating for millennia 97 

(Hengeveld, 2000; Turetsky, 2015; Loisel et al., 2021).  98 

Global SOC maps, such as SoilGrid initiatives (Hengl et al., 2014; 2017), GSOCmap 99 

(FAO, 2018), Harmonized World Soil Database (HWSD and HWSDa) (FAO et al., 2012; Köchy 100 

et al., 2015; Batjes et al., 2016) were built without an adequate amount of ground measurements 101 

in Canadian peatlands and only report SOC stock for the first 30 cm or top 1 m, which is 102 

insufficient to account the potential C stored in northern peatlands that has an estimated average 103 
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depth of approximately 2.5 m (Hugelius et al., 2020). Previous studies suggest that peatlands in 104 

Canada contain approximately 147 Pg C (Tarnocai, 2006), and the Hudson Bay lowland, one of 105 

the largest peatland complexes in the world (Yu, 2012), has an average of 100 kg m
-2

 of 106 

permafrost C (Hugelius et al., 2014) and stores 30 Pg C (Packalen et al., 2014, Gonsamo et al., 107 

2017). Despite the large storage of C in Canadian terrestrial ecosystems, the country still lacks 108 

spatially detailed information of C stocks in various pools, particularly in deep soils that properly 109 

represent peatlands. While recent progress has been made (Webster et al., 2018; Minasny et al., 110 

2018; Mahdianpari et al., 2020), high resolution maps of Canadian peatlands remain incomplete, 111 

particularly in “unmanaged” regions. The spatial distribution of C stocks in Canadian peatlands 112 

is also incompletely mapped with insufficient field data from many regions and from some 113 

peatland types including forested peatlands (Bona et al., 2020). Peat depth is a critical variable in 114 

the stock estimates and is an important data gap (Hugelius et al., 2020). Thus, improved 115 

estimates of the size and spatial distribution of C stocks at the national level for Canada are 116 

urgently needed. Such estimates allow for the incorporation of landscape-specific features, 117 

reducing the uncertainties produced in global-scale estimates.  118 

Here, for the first time, wall-to-wall estimates of C stock in various pools of terrestrial 119 

ecosystems of Canada are provided in one single study. The C stocks are estimated for plants and 120 

soil, including AGB of forest, BGB of forest, non-treed vegetation, dead plant materials, and 121 

SOC stock in the top 1- and 2-meter depths for entire Canada. For this, we used ground data 122 

records and a rich database mainly composed of long-term satellite data, topographic and climate 123 

variables associated with a machine learning algorithm, providing C stock maps at 250 m spatial 124 

resolution. The uncertainties related to C stock estimates in soil and AGB were also provided in 125 

this study. 126 

2 Materials and Methods 127 

2.1 Reference forest inventory data 128 

Samples for the C stock of plants in forested areas were compiled from the AGB 129 

measurements from four Canadian provinces (Fig. S1a). The AGB samples in Mg ha
-1

 from New 130 

Brunswick, Quebec and Saskatchewan were acquired from the NFI (nfi.nfis.org) archive, 131 

totaling 216 plots with AGB and dead plant materials information, collected in 2006. For British 132 

Columbia, samples were acquired from provincial data (catalogue.data.gov.bc.ca), which 133 

contains a large dataset of forest attributes, including AGB, collected for many years. We 134 

selected 47,751 forest plots corresponding to the years 2015 to 2019 in order to match with the 135 

date of most remote sensing data. 136 

2.2 Reference soil carbon content data 137 

The soil ground measurements were acquired from the World Soil Information Service 138 

(WoSIS) (https://www.isric.org/) (Fig. S1b). This service provides a standardized compilation of 139 

soil data of the entire world (Ribeiro et al., 2015; Batjes et al., 2017). In Canada, the WoSIS 140 

database contains SOC data (in g C kg
-1

) in 6,490 locations for 39,323 soil vertical profiles. The 141 

soil samples account for organic matter (i.e. O and LFH horizons) (Pennock et al., 2015). 142 

Additional samples from peatlands were acquired from the Lehigh University Peatlands 143 

Database (Loisel et al., 2014) for 43 sites and 298 soil profiles.  144 
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2.3 Explanatory environmental data 145 

We selected 78 covariates to model forest AGB, such as spectral bands in the red, red-146 

edge, near infrared (NIR) and short-wave infrared (SWIR) regions, seasonal spectral indices 147 

computed from Landsat-8, Sentinel-2 or MODIS data, terrain parameters such as digital 148 

elevation model (DEM), slope and topographic indices, structural parameters (e.g., Synthetic 149 

Aperture Radar (SAR) data, clumping index, canopy height percentiles, the latter generated from 150 

satellite LiDAR observations), soil type map and radiation flux data, the latter to account the 151 

latitudinal gradient of the country (Table S1). Most of these covariates were averaged over 5 152 

years (2015 to 2019) of data collection depending on data availability.  153 

In order to incorporate canopy height information into the AGB model, we created wall-154 

to-wall height metrics (maximum height, heights at 85th and 95th percentiles) using ATL08 155 

LiDAR products (Neuenschwander and Pitts, 2019) from ICESat-2 satellite. The data were 156 

download for one-year period (October 2018 to October 2019). After filtering solar background 157 

noise and atmospheric scattering, 49,959 points distributed over all of Canada were associated 158 

with 10 ancillary variables. primarily corresponding to structural information derived from 159 

Sentinel-1, ALOS-2/PALSAR-2 and clumping index. Afterwards, a random forest (RF) 160 

algorithm was used for spatially continuous prediction of height information for all of Canada 161 

(Fig. S2).  162 

Forty covariates were included as SOC forming factors, such as long-term average annual 163 

precipitation, average annual and bimonthly temperature, spectral bands of Landsat-8, SAR data, 164 

annual and seasonal vegetation indices from Landsat-8 and MODIS, terrain parameters, soil type 165 

map and soil depth (Table S2). Most of these variables represent the average of 20 years of data 166 

collection (2000 to 2019 according to the data availability) to provide a better indication of soil 167 

characteristics by portraying the cumulative influence of living organisms on soil formation 168 

(Hengl et al., 2017). 169 

Finally, all SOC and forest AGB covariates were resampled (downscaled or upscaled) to 170 

250m spatial resolution in preparation for C stock mapping. 171 

2.4 Plant carbon stock estimation  172 

First, we predicted the AGB of forest areas, in which the AGB ground measurements 173 

(predictor variable) were overlaid with the AGB covariates (response variables) to compose the 174 

regression matrix. Different models were trained using a recursive feature elimination, random 175 

forest (RFE-RF) (Breiman, 2001) scheme and a 5-fold cross-validation assessment. The model 176 

with higher R² and lowest root mean square error (RMSE) was used for spatial prediction of 177 

AGB in forest areas. 178 

After generating the forest AGB map, the root biomass (or BGB) of forest areas was 179 

estimated using relationships between AGB and BGB developed per plant functional type (i.e. 180 

deciduous, needleleaf and mixed forest) from ground measurements (Li et al., 2003). The dead 181 

plant materials of forest areas were computed by a linear relationship developed between dead 182 

plants and AGB from the NFI data archive. The AGB in non-forest areas was estimated using the 183 

relationship between non-forest AGB and normalized difference vegetation index (NDVI) of 184 

Landsat-8 satellite provided by Zhang et al. (2020). Considering that 50% of biomass is 185 

composed of C (IPCC, 2006), we multiplied the biomass of forest and non-forest areas, as well 186 
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as dead plant materials and root biomass by 0.5 to provide the total C stock in Pg, and maps in kg 187 

C m
-2

. 188 

2.5 Soil organic carbon (SOC) stock estimation 189 

For SOC estimation, the soil ground measurements (predictor variable) containing x and 190 

y coordinates, and depth, were overlaid with the SOC covariates (response variables). Following 191 

the approach proposed by Hengl and MacMillan (2019), depth values were specified as the mid-192 

points of horizons thinner than 15 cm. For thicker horizons, upper- and lower-bound depths were 193 

assigned, i.e. the values of target variables are copied twice so that the model recognizes at 194 

which depths values of properties change, allowing for 3D modelling. Using this method and 195 

including the depth as a covariate, a single model could be used to predict SOC at any arbitrary 196 

depth, reducing the need for making complex assumptions about the downcore trends in SOC, 197 

and maximizing the use of collected data (Sanderman et al., 2018).  198 

Using a similar approach as was done for AGB estimates, different models were trained 199 

for SOC estimation using an RFE-RF scheme and a 5-fold cross-validation assessment. The best 200 

model was used for spatial prediction of SOC over Canada at intermediate depths between 0 and 201 

2m. Afterwards, the SOC content map of each horizon was converted to SOC stock (kg C m
-
²) 202 

using the approach provided by Nelson and Sommers (1982). For this, it was necessary to 203 

include coarse fragment information, acquired from the Canadian National Soil Database 204 

(NSDB, 2011), and bulk density (BD), estimated using a pedo-transfer function that addresses 205 

both organic and mineral soils (Hossain et al., 2015) (Equation 1). The function was chosen 206 

because it showed the highest correlation with the SOC content of the ground measurements. 207 

 208 

𝐵𝐷(𝑔 𝑐𝑚−3) = 0.71 + 1.322exp (−0.071 ×  𝑆𝑂𝐶%) (1) 209 

 210 

The horizons were added to complete each of the two depth intervals used (i.e., 0-1m, 0-211 

2m), and each one was multiplied by the root depth fraction (NSDB, 2011) to discount shallow 212 

soils. We removed ice/snow and water areas based on the Land Cover of Canada Map 213 

(Government of Canada, 2019) because these do not accumulate soils. Finally, SOC stock 214 

estimates were multiplied by the 250×250m grid area to provide the total SOC in Pg C. We also 215 

computed the total SOC stock of peat soils in Canada defined as areas with more than 30% 216 

probability of peat occurrence (Tarnocai et al., 2011; Xu et al., 2018), resulting in ~1.13 million 217 

km² of peatlands, which is similar to other national estimates (Minasny et al., 2019). 218 

2.6 Uncertainty estimation 219 

To build the uncertainty maps, we used the quantile regression forest proposed by 220 

Meinshausen (2006). This method can quantify the confidence or certainty in the prediction 221 

using prediction intervals. A prediction interval is an estimate of an interval into which the future 222 

observations will fall with a given probability. For instance, instead of recording the mean value 223 

of response variables in each tree leaf in the forest, the quantile regression records all observed 224 

responses in the leaf. The prediction can then return not just the mean of the response variables, 225 

but the full conditional distribution of response values for every pixel (Meinshausen, 2006). 226 

Using the distribution, it is possible to create prediction intervals for new instances by using the 227 

proper percentiles of the distribution. 228 
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In this study, we computed the upper (Q90) and lower (Q10) percentiles of SOC and 229 

AGB predictions for each pixel. The uncertainty was estimated as the difference between the 230 

90th (Q90) and the 10th (Q10) percentiles SOC and AGB predictions. 231 

3 Results 232 

3.1 Carbon stock estimation accuracy 233 

Among the 78 explanatory variables, a RF model with 58 covariates reached the best 234 

performance for estimating AGB in forest areas, with R² of 0.52 and RMSE of 52.6 ± 0.4 Mg ha
-

235 
1
 (Fig. 1a). The ranking with variables importance (Fig. S3a) showed that the canopy height 236 

metrics estimated from satellite LiDAR were the most important features to predict AGB, 237 

followed by SAR data from ALOS-2/PALSAR-2, Landsat-8 spectral bands and vegetation 238 

indices. For SOC estimation, a RF model with 25 covariates reached the best accuracy, 239 

explaining 83% of variability in SOC content across the country (Fig. 1b), with RMSE of 58.6 ± 240 

0.4 g kg
-1

. Depth was the most important covariate for predicting SOC (Fig. S3b), followed by 241 

DEM, climate features (long-term mean temperature and precipitation), and finally vegetation 242 

indices.  243 

 244 

 245 

Figure 1. Relationship between the measured and estimated carbon (C) stocks using a 5-fold 246 

cross-validation assessment and a random forest algorithm. Point density is indicated with a blue 247 

(low-density regions) to red (high-density regions) colour gradient. The black line represents a 248 

linear fit line. (a) The aboveground biomass (AGB) estimates for forest areas using 58 covariates 249 

and 47,967 ground measurements. (b) The soil organic C (SOC) estimation using 25 covariates 250 

and 39,621 ground measurements distributed in 0 – 4m soil depth and 6,533 locations.  251 

3.2 The size and distribution of organic carbon stocks in terrestrial ecosystems of Canada 252 

Our results indicate that trees in forested ecosystems store a total of 14 Pg C with an 253 

average stock of 4.4 kg C m
-
² in AGB (Fig. 2a, Table 1) and 4.3 Pg C with average of 1.3 kg C 254 

m-² in tree roots (Fig. 2b). We also found 2.6 Pg C storage with average of 0.8 kg C m
-
² in dead 255 

plant materials of the forested ecosystems (Fig. 2c). Plants of non-forest areas store a total of 0.2 256 

Pg C with average of 0.04 kg C m
-
² (Fig. 2d). The total C stock in plants including AGB, plant 257 
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roots, dead plant materials and non-forest ecosystems was estimated to be 21.1 Pg C for 2015 – 258 

2019 (Fig. 3a). It should be noted that forest disturbances and regrowth that may have occurred 259 

during this period are not accounted for and may affect the accuracy of our estimates. In forest 260 

ecosystems, the spatial distribution of C stock follows a clear latitudinal gradient, decreasing 261 

with increasing latitude (Fig. 3a). Montane and Pacific ecosystems of western Canada 262 

characterized by mild climate store the largest plant C on average (>5.5 kg C m
-
²) followed by 263 

forests in typical boreal ecosystems (>5 kg C m
-
²) (Fig. S4). 264 

 265 
Figure 2. C stock distribution in dead and live plant components in kg C m

-2
 at 250 m spatial 266 

resolution for years 2015 – 2019. (a) C stock in live plants of forest ecosystems generated by the 267 

random forest model and 58 covariates. (b) C stock in plant roots of forest ecosystems generated 268 

using relationships between aboveground and root biomass for different forest types (Li et al., 269 

2003). (c) C stock in dead plants of forest ecosystems generated by a linear relationship between 270 

aboveground biomass and dead plant materials. (d) C stock in plants of non-forest areas 271 

generated using Landsat-8 satellite reflectance observations (Zhang et al., 2020). 272 

The SOC stock estimated in Canada in the top one meter is 313 Pg C (37 kg m
-
²), while 273 

additional 203 Pg C is stored between the first- and second-meter depth (Table 1). Canadian 274 

peatlands store 83 Pg C and 142 Pg C at depth intervals 0-1 m and 0-2 m, respectively. The 275 

Hudson Plain ecozone, with an area of 349,000 km², alone stores 28 Pg C in the first meter depth 276 

(an average of 82 kg m
-
²) and 52 Pg C at 0-2 m depth. Besides the Hudson Plain, our map also 277 

shows a previously under-reported SOC pool located in eastern Manitoba (Fig. 3b). That 278 
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particular region belongs to the Boreal Shield ecozone and reaches an average of 135 kg C m
-
² in 279 

the first meter, even higher than the average observed in the Hudson Plain ecozone, suggesting 280 

the need for more field studies of forested peatlands including peat depths and soil C densities in 281 

eastern Manitoba.  282 

 283 

 284 

Table 1. Mean (± standard deviation, sd) and total organic C stocks estimated for plant 285 

components and two soil depths and peatlands in Canada. 286 

Organic C stock Mean ±sd (kg m
-
²) Total (Pg C) 

AGB (forest) 4.13±1.80 14 

Plant roots (forest) 1.28±0.36 4.3 

Dead plants (forest) 0.78±0.02 2.6 

 AGB (non-forest) 0.04±.01 0.2 

Soil 0–1 m depth 37.1±26 313 

Soil 0–2 m depth 61.2±47 516 

Peat soils 0-1 m depth 63.3±38 82.8 

Peat soils 0-2 m depth 109±76 142 

 287 

The uncertainty maps (Fig. 3c and 3d) were obtained based on upper and lower quantiles 288 

of AGB and SOC prediction, the latter for the top 1 m depth using the quantile regression forest 289 

method. It is observed that greater uncertainty is located in regions with higher AGB or SOC 290 

values. For soil, those regions correspond to the Hudson Plain and portions of the Boreal Shield 291 

and Southern Arctic ecozones while for AGB, the higher uncertainty is located in the Pacific 292 

Maritime ecozone. 293 
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 294 

Figure 3. The spatial distribution of organic C stocks in kg C m-2 at 250 m spatial resolution. (a) 295 

Total C stock of plants in forest and non-forest areas for 2015 – 2019. (b) Total soil organic C 296 

stock in 1 m depth. (c) Modelling uncertainty of the plant C stock prediction in forest ecosystems 297 

generated with the random forest quantile regression approach. (d) Modelling uncertainty in the 298 

soil organic C spatial prediction for 1 m depth generated with the random forest quantile 299 

regression approach. Note: water and ice/snow areas were included in the class ‘no data’. 300 

 301 

4 Discussion 302 

4.1 Organic carbon stocks of Canada relative to global estimates 303 

We found that forests store approximately 18.3 Pg C in live plants, including their roots, 304 

while plants in non-forested ecosystems store 0.2 Pg C. The former value represents around 305 

6.2% of the total C in forest ecosystems globally according to recent reports of FAO (2020a), 306 

highlighting the magnitude of Canada’s forests in the global scale. Canada is among the six 307 

largest forested countries that account for 60% of the net flux of Greenhouse Gas (GHG) (Harris 308 

et al., 2021) while its forested ecosystems were estimated to be responsible for a net increase of 309 

2.7 Pg C stored in biomass over a 30-year period (Wulder et al., 2020). Previous estimates of C 310 

stock in AGB and BGB in forested areas of Canada (Kurz and Apps, 1999) reported 11.5 Pg C 311 

and 3 Pg C, respectively, which are lower than the values reported by our study, i.e. 14 in AGB 312 

and 4.3 Pg C in BGB. Nevertheless, our findings agree with recent estimates of C stock in AGB 313 
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compiled from the NFI data that report 14.8 Pg C in ‘forest land’ of 12 ecozones (NFI, 2016), 314 

and 13.6 Pg C and 14.5 Pg C reported for forest areas of 10 and 12 ecozones by Matasci et al. 315 

(2018b) and Beaudoin et al. (2014), respectively. The latest estimates of FAO (2020b) suggest 316 

12.7 Pg C is stored in AGB and BGB of managed forest areas in Canada (~2.3 million km²), 317 

which is also in line with our study that reports 10 Pg C in AGB and 3 Pg C in BGB when 318 

estimates are restricted to managed forests. At a global scale, Spawn et al. (2020) provided 319 

spatial estimates of C stock in AGB and BGB. When restricting their estimates to forested areas 320 

of Canada, we observed that the C stock values are similar to those reported in this study, 321 

approximately 13 Pg C in AGB and 5 Pg C in BGB. Regarding the spatial distribution, the C 322 

stock maps of these previous studies (Beaudoin et al., 2014; Matasci et al., 2018b; Spawn et al., 323 

2020) pointed the greatest amount of AGB in the Montane Cordillera and Pacific Maritime 324 

ecozones, which agrees with our findings (Fig. 3a and Fig. S4). These ecozones belong to the 325 

hemi-boreal zone, a transition between temperate zone and boreal zones and characterized by 326 

high canopy height values (approximately 40 m) and large and old trees. Among the forested 327 

ecozones, Taiga Cordillera presented the lowest C stock in plants, which was also observed by 328 

Matasci et al. (2018b), who reported that the alpine and mountainous conditions of this ecozone 329 

are responsible for its low forest cover.  330 

Although Canada has large forest ecosystems that store a significant amount of C, in a 331 

global context, Canada stands out even more when it comes to SOC stocks. Canada stores 12% 332 

of the global SOC stock in the top 30 cm depth, only behind Russia according to FAO (2018). 333 

Nevertheless, FAO (2018) reported a SOC stock of 80.2 Pg C in Canada whereas if we limit our 334 

maps to the top 30 cm depth, we report 133 Pg C, very close to the amount that FAO reported for 335 

Russia (147 Pg C). Besides different covariates and methods, other explanations for the observed 336 

discrepancies include the fact that the FAO estimates are based on less than half the number of 337 

samples compared to our study, lack samples in peatlands, and the FAO model is based on global 338 

relationship between the explanatory variables and SOC that could bias towards C poor mineral 339 

soils, underestimating the SOC stock.  340 

When comparing global SOC maps, Tifafi et al. (2017) showed that the differences in 341 

SOC estimation were much greater in the boreal regions and suggested the need for production 342 

of country-specific maps to explain this high discrepancy in current global SOC estimates. 343 

Indeed, the spatial distribution of SOC stock in some of the existing global maps does not fully 344 

corroborate what was observed in our maps (see SoilGrid250m 2.0, https://soilgrids.org/; last 345 

access: January 30, 2021). For instance, the SoilGrid250m map indicates that the highest SOC 346 

stocks are in the Province of Quebec and in the Pacific Coast region, rather than in the Hudson 347 

Plain. Although SoilGrids250m was made using an approach similar to ours, i.e. incorporating 348 

soil ground measurements provided by WoSIS and a large number of remote sensing covariates 349 

associated with machine learning methods, the model was trained using global data. To address 350 

these gaps, we included additional samples from peatlands, trained the model specifically for 351 

Canada, and used different covariates to specifically capture soil formation, e.g., those provided 352 

by Daymet, Landsat-8 temperature, and a national soil type map (Table S2). In addition, we used 353 

bulk density, coarse fragment and root depth information specific for Canada to correct the final 354 

SOC stock estimates. This study provides improved SOC stock estimates compared to those 355 

made on global scales, such as FAO (2018) and SoilGrid250m (Hengl et al., 2017) because the 356 

specificities of Canada were considered. Moreover, our estimates are not restricted to the top 30 357 

cm soil depth. 358 

https://soilgrids.org/
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In fact, we report even larger SOC stocks in deeper soils. Our study indicates 313 Pg C of 359 

SOC stock in the top meter, a value almost 4 times higher than the 80.2 Pg C reported by FAO 360 

(2018) for the top 30 cm. Between the 1–2 m depth, we found an increase of 40% (+203 Pg C) 361 

relative to the top 1 m. This means that current global estimates that only consider the first 30 cm 362 

of soil are not accounting for a massive amount of C in deeper soils, which is particularly 363 

important in peatlands and permafrost regions that are prevalent in Canada (Tarnocai et al., 2009; 364 

Hugelius et al., 2014; Loisel et al., 2014). Almost half of the country is covered by permafrost, in 365 

which frozen conditions prevent C from being released into the atmosphere. Further, peatlands 366 

cover approximately 12% of Canada (Tarnocai et al., 2011) and their predominantly wet 367 

conditions greatly reduce C decomposition rates (Freeman et al., 2001),which explains the high 368 

SOC stock in these areas. The Group Global Peatland Database (Joosten, 2009) suggests that the 369 

entire area of global peatlands (3.8 million km²) stores 447 Pg C in their total depth, an estimate 370 

considered conservative according to Köchy et al. (2015) because of incomplete data coverage in 371 

many regions. Later, Jackson et al. (2017) reported a total of 543 Pg C stored in global peatlands, 372 

while Hugelius et al. (2020) reported 415 ± 150 Pg C only in northern peatlands, which they 373 

estimated to have an extension of 3.7 million km² and an average of ~2.5 m depth. According to 374 

our estimates, Canadian peatlands store 142 Pg C in the top 2-meter depth, which is in line with 375 

values reported by Tarnocai (2006), who estimated 147 Pg C for the total peat depth. Our results 376 

showed that C stored in Canadian peatlands account for 34% of the amount described by 377 

Hugelius et al. (2020) and more than the SOC stock estimated for all tropical peatlands, i.e. ~110 378 

Pg C (Page et al., 2011; Dargie et al., 2017).  379 

The results of this study support the recent findings of Beaulne et al. (2021), who 380 

reported that peat layers, with an average between 22.6–66.0 kg m
-2

, store much more C than 381 

AGB and BGB of boreal forests in Canada (2.8-5.7 kg m
-2

). Our results are particularly striking 382 

for the Hudson Plain ecozone, where SOC stocks are ~150 kg C m
-
² for the top 2-meter depth. 383 

When studying C fluxes in an eco-district of Hudson Plain, McLaughlin et al. (2018) reported an 384 

average of 101 kg C m
-
² and emphasized vulnerabilities of this C pool with increasing 385 

temperatures. In fact, our study shows that the greatest amount of SOC stock is found in the 386 

Hudson Plain, a region predominantly composed of peatlands. For this ecozone, we report 52 Pg 387 

C in the top 2-meter depth, 22 Pg C more than that previously reported by Packalen et al. (2014), 388 

although those estimates were developed using a set of peat core sampling points and were not 389 

tied to a specific depth. Nevertheless, our study found large uncertainties when mapping the SOC 390 

stock in the Hudson Plain ecozone, which we can attribute to scarcity of ground training data, in 391 

addition to uncertainties in peatland depth and coarse fragment information. In addition to the 392 

Hudson Plain, forested ecozones, such as Boreal Shield and Pacific Maritime, also show higher 393 

SOC stock values (Fig. S4) which can be explained not only by the presence of peatlands and 394 

wetlands in general (Tarnocai et al., 2011; Lacourse et al., 2019) but also by the larger biomass 395 

production in forested peatlands and associated high C densities of woody peat.  396 

Considering the potential C stock in deep soils of Canada, we also estimated SOC stock 397 

between 2–4 m depths, and we observed an increase of about +1,000 Pg C. However, due the 398 

fewer samples and the lack of information of rooting depth and coarse fragment in deeper soils, 399 

we opted to exclude this depth interval from further analysis. Still, few studies estimated SOC 400 

stock in deeper soils and most have reported high SOC stock values. Jobbagy and Jackson (2000) 401 

reported 56% more C between 1–3 m than in the top 1 m in a global scale. Batjes (2016) reported 402 

a global SOC stock of 1,408 Pg C for the top meter and 2,060 Pg C at 0-2 m depth, highlighting 403 

the large C stocks located in the Northern Circumpolar region (411 ± 65 Pg C in 0-1 m) that 404 

https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/shorte.web&search1=R=213529;211269
https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/shorte.web&search1=R=213529;211269
https://www.nature.com/articles/35051650
https://www.nature.com/articles/35051650
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involves 40% of Canada’s territory. In this region, Tarnocai et al. (2009) estimated 1,024 Pg C 405 

between 0-3 m depth, while the first 30 cm only account for ~18% of this value. According to 406 

Hossain et al. (2007), the SOC stock in deeper soils is high in northern regions because of strong 407 

alternate freeze-thaw actions. 408 

4.2 Implication of Canada’s national carbon stock mapping 409 

In this study, we quantified and mapped the C stock size and distribution in terrestrial 410 

ecosystems of Canada using a machine learning approach and several covariates mainly 411 

composed by long-term satellite data. Unlike previous estimates, we quantified C stock of all 412 

plant components, and it was the first time that canopy height information derived from satellite 413 

LiDAR was included as covariates to estimate AGB for Canada. We also provided the first 414 

national map of SOC stock, including estimates in deep soils and peatlands, and uncertainty 415 

maps for both C stocks in forest AGB and soil.  416 

The results indicated that Canada contains even more SOC than what was reported in 417 

global estimates, ranging from 313 Pg C in the top 1 m, to 516 Pg C in the top 2 m depth. This 418 

confirms that SOC stock estimates that are limited to the top 30 cm and exclude peatlands 419 

seriously underestimate C stocks. Our study confirms the very large SOC pool in the Hudson 420 

Plain ecozone, and also shows very large SOC pools in deep soils in the Boreal Shield region 421 

between the provinces of Ontario and Manitoba. This region is characterized by forested 422 

peatlands and studies in Quebec confirm the importance these ecosystems have to SOC stocks 423 

(Beaulne et al., 2021), yet they remain under-sampled in terms of peat depths and soil carbon 424 

densities.  425 

This study fills some major gaps and uncertainties in the C stock estimation in terrestrial 426 

ecosystems of Canada. The estimated size and spatial distribution of the total C stocks in Canada 427 

suggest the important role of the country in the global organic C storage. This knowledge is a 428 

key step to plan and implement the stored C stock vulnerability assessment and climate change 429 

mitigation strategies. This is particularly relevant for boreal forests, where the rate of C 430 

accumulation is decreasing by fire and harvest (Wang et al., 2021), and for peatlands, where the 431 

fate of the stored large soil C stock under projected climate change, soil and permafrost thaw, 432 

fire and disturbance regimes is unknown. Peat fires are becoming increasingly common in 433 

Canada (Thompson et al., 2019). In future studies, the maps provided by this study can be used 434 

to understand the vulnerability of C stocks to human actions or climate change, such as C 435 

removal by decomposition, fires, harvesting, and other disturbances. They can also be employed 436 

as input in ecosystem or Earth system models to assess the sensitivity and feedback of C stock to 437 

future climate change, for instance, in models already being used to quantify C emissions in 438 

Canada, such as the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) (Kurz et 439 

al., 2009), the Canadian Land Surface Scheme Including biogeochemical Cycles (CLASSIC) 440 

(Melton et al., 2020), and the Canadian model for peatlands (CaMP) (Bona et al., 2020). Because 441 

of the large magnitude and uncertainties found in the estimated C stock in peat soils, future 442 

studies should collect more ground samples in these areas to build a new C stock map 443 

specifically for Canadian peatlands, in addition to allowing for independent validation of the 444 

current map.  445 
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engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR) 454 

 ESA Sentinel 2 Surface Reflectance (https://developers.google.com/earth-455 

engine/datasets/catalog/COPERNICUS_S2_SR) 456 

 Landsat 8 Collection 1 Tier 1 32-Day NDWI Composite 457 

(https://developers.google.com/earth-458 

engine/datasets/catalog/LANDSAT_LC08_C01_T1_32DAY_NDWI) 459 

 MODIS Terra Vegetation Indices 16-Day Global 250m (NDVI and EVI)  460 

(https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1) 461 

 MCD43A3.006 MODIS White Sky Albedo (WSA) Daily 500m 462 

(https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD43A3) 463 

 MODIS Global Terrestrial Evapotranspiration 8-Day Global 1km 464 

(https://developers.google.com/earth-465 

engine/datasets/catalog/MODIS_NTSG_MOD16A2_105) 466 

 MODIS Terra Land Surface Temperature and Emissivity Daily Global 1km 467 

(https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A1) 468 

 MODIS Long-term Land Surface Temperature daytime monthly standard deviation 469 

(https://doi.org/10.5281/zenodo.1420114) 470 

 ALOS DSM: Global 30m (https://developers.google.com/earth-471 

engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2) 472 

 Global ALOS PALSAR-2/PALSAR Yearly Mosaic 473 

(https://developers.google.com/earth-474 

engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR) 475 

 Global Foliage Clumping Index data derived from MODIS BRDF 476 

(https://daac.ornl.gov/VEGETATION/guides/Global_Clumping_Index.html) 477 

 Sentinel-1 SAR GRD (https://developers.google.com/earth-478 

engine/datasets/catalog/COPERNICUS_S1_GRD) 479 

 Soil types (https://sis.agr.gc.ca/cansis/nsdb/slc/index.html) 480 

 Daymet data (https://developers.google.com/earth-481 

engine/datasets/catalog/NASA_ORNL_DAYMET_V4) 482 

https://www.isric.org/
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https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2
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 Spatial distribution of maximum canopy height and heights percentiles 483 

(https://doi.org/10.4121/14573079.v1) 484 

 Forest carbon stock and uncertainty maps (https://doi.org/10.4121/14572929.v1) 485 

 Soil carbon stock and uncertainty maps (https://doi.org/10.4121/14573526.v1) 486 

 487 
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