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Abstract

The future Surface Water and Ocean Topography (SWOT) mission will soon provide Sea Surface Height (SSH) measurements

resolving scales of a few tens of kilometers. Over a large fraction of the globe, the SSH signal at these scales is essentially

a superposition of a component due to balanced motions (BM) and another component due to internal tides (IT). Several

oceanographic applications require the separation of these components and their mapping on regular grids. For that purpose,

the paper introduces an alternating minimization algorithm that iteratively implements two data assimilation techniques, each

specific to the mapping of one component: a quasi-geostrophic model with Back-and-Forth Nudging for BM, and a linear

shallow-water model with 4-Dimensional Variational (4DVar) assimilation for IT. The algorithm is tested with Observation

System Simulation Experiments (OSSE) where the truth is provided by a primitive-equation ocean model in an idealized

configuration simulating a turbulent jet and a mode-one IT. The algorithm reconstructs almost 80\% of the variance of BM

and IT, the remaining 20\% being mostly due to dynamics that cannot be described by the simple models used. Importantly,

in addition to the reconstruction of stationary IT, the amplitude and phase of nonstationary IT are reconstructed. Although

idealized, this study represents a step forward towards the disentanglement of BM and IT signals from real SWOT data.
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Key Points:10

• We present a dynamical method that estimates and separates balanced motions (BM)11

and internal tides (IT) from sea surface height data.12

• The method uses iteratively two data assimilation techniques, each specific to the es-13

timation of one component (BM or IT).14

• Although idealized, this study shows encouraging results for the disentanglement of BM15

and IT signature on future SWOT data.16
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Abstract17

The future Surface Water and Ocean Topography (SWOT) mission will soon provide Sea18

Surface Height (SSH) measurements resolving scales of a few tens of kilometers. Over a large19

fraction of the globe, the SSH signal at these scales is essentially a superposition of a com-20

ponent due to balanced motions (BM) and another component due to internal tides (IT). Sev-21

eral oceanographic applications require the separation of these components and their mapping22

on regular grids. For that purpose, the paper introduces an alternating minimization algorithm23

that iteratively implements two data assimilation techniques, each specific to the mapping of24

one component: a quasi-geostrophic model with Back-and-Forth Nudging for BM, and a lin-25

ear shallow-water model with 4-Dimensional Variational (4DVar) assimilation for IT. The al-26

gorithm is tested with Observation System Simulation Experiments (OSSE) where the truth27

is provided by a primitive-equation ocean model in an idealized configuration simulating a tur-28

bulent jet and a mode-one IT. The algorithm reconstructs almost 80% of the variance of BM29

and IT, the remaining 20% being mostly due to dynamics that cannot be described by the sim-30

ple models used. Importantly, in addition to the reconstruction of stationary IT, the amplitude31

and phase of nonstationary IT are reconstructed. Although idealized, this study represents a32

step forward towards the disentanglement of BM and IT signals from real SWOT data.33

Plain Language Summary34

The future Surface Water and Ocean Topography (SWOT) mission will soon provide Sea35

Surface Height (SSH) images with pixels of 2 km, informing about ocean motions at scales36

of a few tens of kilometers. At these scales, SSH variations are essentially due to the super-37

position of slow, balanced motions primarily driven by Earth rotation, and fast, propagating38

motions due to internal waves mainly generated by interactions between bathymetry and tidal39

water displacements. Several oceanographic applications require the separation of these two40

SSH components and their mapping on regular grids. This paper presents an original method41

to achieve this separation, based on data assimilation approaches and simple dynamical mod-42

els. Experiments with synthetic SWOT observations, simulated from an ocean circulation model43

with detailed physics, show the efficiency of the method.44

1 Introduction45

For more than 25 years, altimetry has allowed the study of near-global sea surface height46

(SSH) at scales longer than 150 km and drastically transformed our understanding of mesoscale47

processes in the oceans. In particular, altimetry has given access to the upper-ocean circula-48

tion dynamics through geostrophy and revealed that most kinetic energy in the world ocean49

is contained in mesoscale eddies with wavelengths between 100 km and 300 km (Wunsch &50

Ferrari, 2004). But the scales resolved by nadir (along-track) altimetry are limited by the 100-51

300 km spacing between satellite ground tracks. Even by merging several nadir measurements52

(Taburet et al., 2019), the space time resolution of the resulting 2D SSH maps does not allow53

to conveniently characterize and study small mesoscale (<150km) motions (Ballarotta et al.,54

2019; Amores et al., 2018).55

With wide-swath radar interferometry, the future SWOT mission (Morrow et al., 2019)56

will provide SSH observations over a 120km-wide swath with a near-global coverage, resolv-57

ing spatial scales down to 15-30km depending on the sea state (Fu & Ubelmann, 2014). Re-58

cent studies, based on numerical models, have highlighted the impacts of short-mesoscale and59

submesoscale processes on ocean dynamics. Submesoscale motions have been found to trig-60

ger a large part of vertical motions (McWilliams, 2016; Klein & Lapeyre, 2009) that drive the61

exchanges of heat, carbon and nutrients between the ocean surface and subsurface. Small mesoscale62

processes also provide kinetic energy to larger scales through an inverse cascade (Ajayi et al.,63

2019; Capet et al., 2016), hence impacting the mesoscale dynamics. The SWOT mission rep-64
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resents a unique opportunity to validate our present-day understanding of submesoscale mo-65

tions and their role in the oceanic processes in a broad sense.66

At the scales measured by SWOT, some SSH variations due to internal tide (IT) may67

become comparable to those due to the short mesoscale balanced motions (BM; Qiu et al., 2018).68

IT, producing high frequency sea level fluctuations at scales around 200 km and below, are69

internal gravity waves generated when the barotropic tidal flow encounters variations of to-70

pography (Garrett & Kunze, 2007). Although the generation processes of IT are well under-71

stood, the dissipation processes (that greatly influence the ocean’s energy budget) remain barely72

known. Recent studies emphasize that IT and BM interact in a complex way (Kelly & Ler-73

musiaux, 2016), with BM scattering and refracting IT (Dunphy et al., 2017). These complex74

interactions are thought to strongly modify local mixing but need to be validated with obser-75

vations. SWOT capacity to observe even a part of IT SSH signal will help to better understand76

these interactions and the processes related to ocean mixing and dissipation.77

The accurate characterization of both IT and BM from SWOT, in the small mesoscale78

spectrum where their signatures overlap, will require scientific and technological developments79

for the processing of observations. The first challenge concerns the design of gridded prod-80

ucts. For BM, the main objective is to increase the space-time resolution of the present-day81

SSH maps using SWOT. The mismatch between the (high) spatial and (low) temporal sam-82

pling of SWOT fosters the development of innovative inversion techniques, which typically in-83

clude dynamical constraints (Ubelmann et al., 2015). For IT, the main objective is to map the84

incoherent part of the signal, i.e. the part due to waves which characteristics have been altered85

by interactions with BM and stratification variations. This is further developed in the next para-86

graph. The second challenge consists in the separation of IT and BM components from SWOT87

to make the differentiated gridded products possible. Both components are driven by differ-88

ent dynamics, and separation is needed to properly estimate quantities associated to each (e.g.89

surface currents for tracer advection, or energy dissipation due to waves). Separation is also90

made difficult by geographical and seasonal variations in the spatial scales and the relative strength91

of IT and BM (Qiu et al., 2018).92

Disentangling the contribution of BM and IT on SSH is still an unsolved challenge. Due93

to its partial sampling in space and time, altimetry does not capture the fast SSH pulsation due94

to IT. Stationary IT (which are phase-locked to the astronomical forcing) can be mapped by95

harmonic analysis of long time series (>10 years) of conventional nadir altimetry data (Ray96

& Zaron, 2015). IT become non stationary when interacting with BM (Dunphy et al., 2017;97

Ponte & Klein, 2015) and/or being modulated by the stratification (Ray & Zaron, 2011). The98

phase and amplitude modulations of the IT field can evolve on time scales between 5 and 2099

days, what make their predictability nearly impossible with conventional satellite altimetry (Nash100

et al., 2012; Haren et al., 2004). Recent studies (Zaron, 2017; Nelson et al., 2019) suggest that101

nonstationarity represents half of the total IT variance on average. SWOT will considerably102

increase the SSH measurement density and open the way to predicting nonstationary IT. In the103

context of SWOT development, the BM-IT separation problem has been addressed with var-104

ious approaches. Torres et al. (2019) make use of a spatial scale threshold above which BM105

dominate and below which IT dominate. This spectral technique is less effective when the com-106

mon spatial scale interval extends too much, what is particularly the case in winter due to the107

emergence of small vortices (< 50 km) associated with mixed layer instabilities (Ajayi et al.,108

2020). Ponte et al. (2017) and Gonzalez-Haro et al. (2019) explore multi-sensor approaches109

with altimetry and sea surface temperature observations, motivated by the fact that BM and110

IT have distinct footprints on both fields.111

In this paper, we propose to simultaneously and dynamically map and separate SSH com-112

ponents of BM and IT from 2D altimetric observations, distributed in time, as SWOT data will113

be. The proposed approach, illustrated on Figure 1, implements an alternating minimization114

algorithm that iteratively calls two mapping techniques, each one specific to the estimation of115

a component (BM or IT). At each iteration, the observations used to map one component is116

made of the difference between the full observation and the previous estimation of the other117
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Figure 1. The joint estimation algorithm alternates BM estimations and IT estimations with observations
recursively corrected from the other component. The algorithm is formalized and described in Section 4.

component. Both mapping techniques are based on data assimilation. BM are reconstructed118

with a Quasi-Geostrophic (QG) model assimilating observations with a Back-and-Forth Nudg-119

ing (BFN) technique (Auroux & Blum, 2008). The algorithm is called BFN-QG hereafter. IT120

are reconstructed with a Shallow-Water model (SW) assimilating observations with a 4DVar121

technique (DIMET & TALAGRAND, 1986). The algorithm is called 4DVar-SW hereafter. The122

joint estimation algorithm is tested with observing system simulation experiments (OSSE). The123

true state of the ocean (illustrated on Figure 2) is provided by a primitive-equation regional124

model, ROMS, in an idealized configuration that simulates the propagation of a mode-one IT125

through a turbulent mesoscale zonal jet (Ponte et al., 2017; Dunphy et al., 2017).126

The papers is structured as follows: Sections 2 and 3 present the data assimilation al-127

gorithms reconstructing BM and IT, respectively; Section 4 formalizes and describes the gen-128

eral joint estimation approach that implements both assimilation algorithms; The experimen-129

tal set-up is presented in Section 5 and the results are discussed in Section 6; Conclusions and130

perspectives are drawn in section 7.131

2 Mapping the balanced motions: BFN-QG algorithm.132

The mapping technique for BM is presented in detail in Guillou et al. (2021). It is based133

on a quasigeostrophic (QG) model and a data assimilation method called the Back and Forth134

Nudging (Auroux & Blum, 2008), and referred to as BFN-QG. The dynamical model is a 1.5-135

layer QG model (Ubelmann et al., 2015). Forcing and mixing terms are omitted, resulting in136

the simplified QG equations:137

∂q
∂t
+ J(ψ,q) = 0 (1)
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Figure 2. SSH snapshot of the simulated true state of the ocean (left), its BM component (middle) and
its IT component (right). The black square represents the study domain in which the reconstructions are
performed.

where J is the Jacobian operator and the streamfunction ψ is proportional to SSH η:138

ψ =
g

f
η (2)

with g the gravity constant, and f the Coriolis parameter. The PV is linked to the streamfunc-139

tion by the elliptical equation:140

q = ∇2ψ−
1

L2
R
ψ (3)

where ∇2 is the Laplace operator and LR is the first baroclinic Rossby radius of deformation.141

Propagating SSH from time ti to time ti+1 is a succession of elementary steps: (i) compute142

qi from ηi with equations 2 and 3, (ii) propagate qi with equation 1 to obtain qi+1, (iii) invert143

equation 3 to retrieve ψi+1, then ηi+1.144

The BFN technique is based on the Nudging method (Anthes, 1974), which consists of145

adding an extra term to the model prognostic equation (equation 1) to pull the model variable146

towards the observations. This term is proportional to the difference between the observations147

and the model variable. Here, the model variable is PV q and the observations are 2D SSH148

ηobs. Thanks to equations 2 and 3, a corresponding PV observation qobs can be derived from149

ηobs and used to nudge Eq. 1 as:150

∂q
∂t
+ J(ψ,q)−K(qobs− q) = 0 (4)

where K is a tunable coefficient controlling the strength of nudging. As explained in (Guillou151

et al., 2021), K must exhibit smooth variations in time to avoid the emergence of numerical152

instabilities and enhance the constraint of the observations on the model dynamics. A Gaus-153

sian kernel is used for K:154
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K[t] =
∑
tobs

K0e−(
t−tobs

τ )2 (5)

where K0 and τ are the nudging parameters and tobs are the observation times.155

Nudging is also performed backward in time, by adding a feedback term with a sign op-156

posite to that of the forward nudging. Note that the backward integration of the model is pos-157

sible because the model equation 1 is reversible in time.158

The BFN is the combination of the forward nudging and the backward nudging over a159

sliding time window of length TBFN. Over a specific time window [ti, ti+TBFN], the algorithm160

works as follows. The model state at time ti is prescribed from the previous time window. The161

forward nudging is first computed from ti to ti+TBFN. The final state at ti+TBFN is then used162

as initial condition to run the backward nudging back to ti . The result initializes the forward163

nudging, and so on until convergence. In a few iterations, the model converges towards a tra-164

jectory that both fits the observations and complies with the QG dynamics. The process can165

then be carried out in the next time window.166

3 Mapping the internal tide signal: 4Dvar-SW algorithm.167

3.1 Dynamical model168

The dynamical model used to simulate the surface propagation of IT motions is a lin-169

ear shallow water (SW) model. This model represents the first baroclinic mode dynamics as-170

sumed to capture the largest part of the IT signal (Ray & Zaron, 2016). The equations are (Gill,171

1982):172

∂u
∂t
− f v = −g

∂η

∂x
, (6a)

∂v

∂t
+ f u = −g

∂η

∂y
, (6b)

∂η

∂t
= −He

(
∂u
∂x
+
∂v

∂y

)
, (6c)

where (u,v) are the velocity components, η is the SSH, f is the Coriolis frequency, and He173

the equivalent depth that determines the baroclinic deformation radius (through the relation174

Rd =
√
gHe/ f ). Equations 6 are discretized on a C-grid and a leap-frog time-stepping scheme175

(Sadourny, 1975). The domain is a square, land-free domain with a flat bottom and open bound-176

aries. IT enter through the boundaries and are not generated within the domain.177

After entering the domain, IT can be made incoherent by time variations of the equiv-178

alent depth, since He modulates the phase speed of the waves, given by uphase =

√
f 2

k2 + (gHe)
2179

where k is the wavenumber. Space variations of He (along with the spatial variation of f ) changes180

the wave propagation direction and its wavelength (Rainville & Pinkel, 2006).181

Boundary conditions are designed to introduce and let out waves. They are of the ra-182

diative type (Blayo & Debreu, 2005). The amplitudes and directions of incoming waves are183

prescribed with a Flather condition (Flather, 1987) as:184

vn ±

√
g

He
η = vnext ±

√
g

He
ηext (7)

where vn is the normal component of the wave velocity at the boundary. Parameters vnext and185

ηext must be prescribed. The signs in the above equation vary with the boundary (− for south-186

ern and western boundaries, + for the others).187
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Incoming waves are superpositions of progressive monochromatic waves with frequency188

ω and absolute wavenumber k. The frequency is a tidal frequency (details are given in Sec-189

tion 5) and k is deduced from ω using the dispersion relation:190

ω2 = gHek2+ f 2 (8)

The superposing, monochromatic waves differ by their amplitudes and their propagation191

directions. Denoting vnθ and ηθ the amplitudes of velocity and SSH of the wave entering the192

domain with an angle θ with the inward boundary normal direction, and denoting κθ the unit193

vector of the propagation direction, the expressions of parameters vnext and ηext at boundary194

grid point r = (x, y) and time t are:195

ηext [t, x, y] =
∑
θ

Re

(
ηθ [t, x, y]ei(ωt−kκθ ·r)

)
, (9a)

vnext [t, x, y] =
∑
θ

Re

(
vnθ [t, x, y]e

i(ωt−kκθ ·r)
)

(9b)

where i is the imaginary unit and . is the complex notation.196

Parameters vnθ and ηθ are linked together by the polarisation relations (obtained from Equa-197

tions 6). Thus, prescribing boundary conditions with Eq. 7 implies setting only ηθ at each bound-198

ary and for each angle θ. A limited number of angles are predefined. The prescription of the199

boundary conditions involves 2NθNbNt values, with Nθ the number of prescribed wave direc-200

tions, Nb the number of grid points at the boundary, and Nt the number of model time steps.201

In the following, we denote all these external values to be prescribed by ηext .202

3.2 4DVar cost function203

The forward problem described in Section 3.1 is here formulated shortly as:204

(u,v, η)t,x,y = M(φ) (10)

where φ= (He, ηext )t,x,y are the input parameters, M is the non linear operator solving the prog-205

nostic equations (6) associated with the OBCs (7) over a fixed time interval [t0, t1]. In Eq. 10,206

we neglect the initial condition in the function arguments. Given the high speed of the waves207

crossing the domain, we consider that the initial condition is quickly "forgotten" by the model,208

and the sea state simulated over a long enough time window essentially depends on bound-209

ary conditions.210

The associated inverse problem consists in seeking the set of parameters φopt = (Hopt
e , η

opt
ext )211

that produces a model state trajectory that best fits the observations ηobs in the time window212

[t0, t1]. We formulate this problem as the minimization of the 4DVar cost function:213

J(φ) = (φ−φb)T B−1(φ−φb)+ (ηobs−H ·M(φ))T R−1(ηobs−H ·M(φ)) (11)

where φb = (Hb
e, η

b
ext ) is the background control vector, H is the linear operator that projects214

the model state in the observation space, B and R denote the background and observation er-215

ror covariance matrices, respectively. In this work, these matrices are set diagonal.216

The minimum of J is found using a descent method that requires the calculation of the217

gradient ∇J with respect to φ:218

–7–
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Figure 3. Illustration of the reduced-order basis for ηext at the western border for θ = −π/4: (a) the spatial
decomposition with σ = 150km (in red the spatial gaussian centered around yi); (b) the temporal decomposi-
tion with τ = 5days (in red the temporal gaussian centered around tk ); (c,d,e) SSH snapshots produced by one
element G(k,i) of the basis around the space-time coordinate (yi, tk ) at three distinct times (represented by the
green circles in (b)).

∇J(φ) = 2B−1(φ−φb)−2M∗ ·HT · R−1(ηobs−H ·M(φ)) (12)

This gradient is computed with an adjoint method that makes use of the adjoint model M∗.219

Since the model M is non linear, an incremental 4Dvar algorithm (Courtier et al., 1994) is im-220

plemented to find the optimal set of parameters φopt that cancels ∇J.221

3.3 Reduced-order 4Dvar222

Order reduction is a standard practice in geophysical data assimilation or inversion, to223

overcome the issues of ill-posedness and numerical complexity (Blayo et al., 1998; Robert et224

al., 2005, e.g., for 4DVar). Control variables are projected into a low-dimensional basis of vec-225

tors (EOFs - Empirical Orthogonal Functions - are a usual choice, relevant to many inverse226

problems) and the cost function minimization is performed in this low-dimensional space to227

make it possible or faster.228

In this work, we propose to express the control vector (i.e. the model parameters φ) in229

a reduced basis G made of space-time gaussian functions. This choice has been motivated by230

the fact that we know He and ηext should vary "weakly" in space and time. Depth He inher-231

its its time variation scales from the balanced flow, and the tidal forcing is quasi-stationary in232

comparison with the generated internal tides. Mathematically, we call G(k,i) one basis func-233

tion centered at the point (tk,ri) (tk is a timestamp and ri is a spatial coordinate), expressed234

as:235

G(k,i)(t,r) = e−(
(t−tk )

2

2τ2 )e−(
| |r−ri | |

2

2σ2 ) (13)

where τ (respectively σ) is the time (respectively space) characteristic scale. For He, r and236

ri both refer to 2D coordinates (x, y) while for ηext they refer to a 1D coordinate (along the237
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domain boundary). Thus, G(k,i) is a 3D function for He and a 2D function for ηext . As an il-238

lustration, we represent in Figure 3 the space-time distribution of the basis functions for ηext239

at the western boundary and the wavy SSH produced by one element of the basis. Two suc-240

cessive basis functions are separated by tk+1− tk = τ in time and | |ri+1− ri | | = σ in space.241

In this basis, φ writes as:242

φ = G ·w =
∑
k

∑
i

wkiG(k,i) (14)

where w = (wik) are the coordinates of φ in the basis G, and the new control variables of the243

4DVar. The cost function J and its gradient ∇J are then obtained by replacing H by H ·G in244

equations 11 and 12.245

For the order reduction to be efficient, the characteristic scales τ and σ of the gaussian246

basis functions has to be carefully chosen. They should be short enough to explain a maxi-247

mum of the variability of He and ηext and long enough to reduce significantly the dimension248

of the control space. In the experiments presented in Section 5, the dimension of the control249

space is reduced by a factor of 104.250

In addition to reducing the size of the control vector, the reduced order basis justifies251

the choice of a diagonal matrix for B, assuming that the basis element are independent from252

each other.253

4 Joint estimation approach254

As stated literally in the introduction, our goal is to map and separate BM and IT based255

on SWOT observations that contains both components, and our approach is based on data as-256

similation. Let us represent by ηBM the SSH field related to BM, ηIT the SSH field related to257

IT, and ηobs the observation informing about ηBM+ηIT. The reconstruction problem is formu-258

lated as finding:259

arg min
ηBM,ηIT

| |ηBM+ηIT−ηobs | |
2 (15)

where the norm typically considered here is the L2 norm based on the space-time integral. The260

resolution of the minimization problem is addressed using a classical alternating minimiza-261

tion procedure (Tseng, 1990). The use of an alternating minimization algorithm is based on262

the strong assumption of the decoupling between the dynamics driving BM and IT. In real-263

ity, BM impact the propagation of IT. Here, the BM effect on IT propagation is introduced through264

the equivalent depth He only. Iterations are performed, alternating the two minimization sub-265

problems:266

η̂BMk = arg min
ηBM

| |ηBM+ηITk-1−ηobs | |
2, (16a)

η̂ITk = arg min
ηIT

| |ηBMk +η
IT−ηobs | |

2 (16b)

In these equations, k is an iteration index. η̂BMk and η̂ITk are BM and IT estimations, respec-267

tively, at iteration k.268

Both minimization subproblems in Eq. 16a and 16b can be solved with methods stan-269

dard in geophysical data assimilation (4DVar, 3DVar, Kalman filters, etc). In what follows, Eq.270

16a is solved with BFN-QG (see section 2) assimilating the corrected observation ηobs−ηITk-1.271
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Equation 16b is solved with 4DVar-SW (see section 3) assimilating the corrected observation272

ηobs − η
BM
k . The joint estimation pseudo-code is presented in Algorithm 1 and illustrated in273

Figure 1.274

Algorithm 1: The joint estimation algorithm. Variables η̂BM and η̂IT are BM and IT
estimations, respectively. K is a convergence criterion.

Result: η̂BM and η̂IT
Initialize ηBMobs = ηobs;
K = True;
while K do

1. Compute η̂BM from ηBMobs solving 16a ;
2. Do ηITobs = ηobs− η̂BM ;
3. Compute η̂IT from ηITobs solving 16b ;
4. Do ηBMobs = ηobs− η̂IT ;
5. Update K

end

5 Experiment setup275

The joint estimation algorithm is tested with OSSEs (Observing System Simulation Ex-276

periments): a simulation provides reference surface data containing both BM and IT motions;277

SSH observations are extracted from this simulation and are assimilated; the estimated fields278

are then compared to the reference fields.279

5.1 Reference simulation280

The test flow consists of a turbulent zonal jet and a mode-1 internal tide propagating sig-281

nal described in Ponte et al. (2017) and Dunphy et al. (2017). This simulation is carried out282

with the Coastal and Regional Ocean COmmunity (CROCO, https://www.croco-ocean.org) model.283

The horizontal resolution is 4 km and the domain size is 1024 km x 2880 km. The mode-one284

internal tide is generated by a zonally uniform tide excitation in the southern part of the do-285

main. The time period of the tide is T = 12 hours. The plane wave produced is propagating286

northward and is encountering the meridional jet located at the center of the domain (Figure287

2).288

The reference SSH, called ηtruth, is decomposed into BM and IT (Dunphy et al., 2017).289

The reference BM field ηBMtruth is obtained by low pass filtering ηtruth:290

ηBMtruth(t) =
1
W

∫ t+2T

t−2T
ηtruth(t) e−(

t i−t
T )

2
dti

where W =
∫ t+2T
t−2T e−(

t i−t
T )

2
dti . The reference IT field ηITtruth, is obtained with an harmonic fit-291

ting:292

ηITtruth(t) = ac(t) cos
(
2πt
T

)
+ as(t) sin

(
2πt
T

)
where:293
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ac(t) =
2
W

∫ t+2T

t−2T
ηtruth(ti) cos

(
2πti
T

)
e−(

t i−t
T )

2
dti

as(t) =
2
W

∫ t+2T

t−2T
ηtruth(ti) sin

(
2πti
T

)
e−(

t i−t
T )

2
dti

Figure 2 shows snapshots of the total field, BM, and IT flows. The IT surface signature294

on SSH is not exceeding 5 cm, while BM’s is around 50 cm. The IT wavelength is about 150295

km. South of the jet, the wave is rectilinear and aligned with the southern boundary, which296

reflects its stationarity. North of the jet, the wave is dispersed due to its interaction with tur-297

bulent BM, producing nonstationarity in the wave field (Dunphy et al., 2017).298

5.2 Observational scenarii299

Observations are drawn from the true SSH (ηtruth), containing both BM and IT compo-300

nents. They are free of error, complete in space, and regularly distributed in time. The obser-301

vation frequency is 75 h in the reference experiments discussed in Section 6.1.302

In order to help evaluation of the mapping performance of the joint estimation exper-303

iments (hereafter denoted as joint), two additional scenarii are considered. The first one, de-304

noted idealized, refers to the case where both components can be observed separately, and each305

observation is processed with the appropriate assimilation system. This means that BFN-QG306

(4Dvar-SW) is fed with observations extracted from ηBMtruth (ηITtruth, respectively) fields. This ideal307

scenario provides upper bounds for the mapping performance of the joint experiments. The308

second scenario, hereafter denoted as independent, implements each assimilation system in-309

dependently (without iteration) with observations of the full signal ηobs. This scenario provides310

a baseline to be outperformed by the joint experiments.311

This study also investigates the impact of the observational temporal sampling on the312

mapping performances. For that purpose, a sensitivity experiment is performed and discussed313

in section 6.2.314

5.3 Configuration of assimilation315

Assimilation is performed in an inner domain of the reference simulation, illustrated by316

the black squares in Figure 2, to avoid the effects of boundary conditions and forcing in the317

reference simulation. The horizontal resolution is degraded to 16 km to reduce computational318

complexity, and the experiments are run over 4 months.319

The BFN-QG (4Dvar-SW) parameters are listed in Table 1 (Table 2, respectively). For320

the joint scenario, the background values Hb
e and ηbext are updated at each iteration by the op-321

timal values found at the previous iteration. We consider two values for the observation er-322

ror covariance matrix R: 0.01 m for the joint and idealized scenarii, 0.1 m for the indepen-323

dent scenario. The value for the independent scenario is higher to reflect representativeness324

errors and allow convergence of the 4Dvar-SW even with the presence of BM in the obser-325

vations.326

5.4 Diagnostics327

For measuring the performance of the reconstruction, we use the time varying Root Mean328

Score Error (RMSE) and its associated score S, defined as follows:329
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Parameter Description Value

LR First Rossby radius of deformation 30 km
K0dt (adimentionalised) Nudging coefficient 0.1
τ Nudging time scale 2 days
TBFN BFN sliding time window length 15 days

Table 1. BFN-QG parameters

Parameter Description Value

θ Entry angles of incoming waves −π/2,0, π/2
σ Gaussian space scale 150 km
τ Gaussian time scale 20 days
Hb
e Background value for He 0.9 m

ηbext Background value for ηext 0 m
BHe Background error for He 0.2 m
Bηext Background error for ηext 0.001 m
R observational error 0.01 m or 0.1 m

Table 2. 4Dvar-SW parameters. As the covariance matrix (B and R) are diagonal, only standard deviations
are given.

RMSEBM(t) =

√√√
1
N

N∑
i=1

(
(η̂BM(t, i)−ηBMtruth(t, i))

)2
, (17a)

SBM = 1−
RMSEBM

RMS
(
ηBMtruth−η

BM
truth

) , (17b)

RMSE IT(t) =

√√√
1
N

N∑
i=1

(
(η̂IT(t, i)−ηITtruth(t, i))

)2
, (17c)

SIT = 1−
RMSE IT

RMS
(
ηITtruth

) (17d)

where N is the number of pixel in the study domain, X is the time-average of the variable X330

and RMS is the root mean square function. A score of 1 indicates a perfect reconstruction in331

terms of RMSE , while a score of 0 indicates that the time-averaged RMSE is as large as the332

RMS of the reference field. Note that for BM, the score is defined relative to the time anomaly333

of the reference field.334

6 Results335

6.1 Reconstruction performances336

Figure 4 illustrates the performances of the joint estimation algorithm over the iterations337

for a temporal sampling of 75 h (6.25 IT periods). The joint estimation algorithm converges338

after 10 iterations. The scores obtained with the idealized and independent scenarii are also339

shown. As the joint estimation is started by a BM reconstruction, the first iteration of the joint340

algorithm corresponds to the independent scenario for BM.341
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Figure 4. Performances of the estimation of BM (top) and IT (bottom). For each class of motion, snapshots
at the first, the second, and the tenth iteration are shown. The evolution of the scores for the joint (solid blue
curve), idealized (dash red curve) and independent (dash black curve) scenarii are plotted in function of the
iterations of the joint estimation algorithm.
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Figure 5. SSH snapshots of the IT field from the reference (top) and the reconstruction by the joint estima-
tion algorithm (bottom). The full IT signal (left) is decomposed in the stationary (middle) and nonstationary
(right) components.

Without the alternating minimization, the estimation scores for both BM and IT fall be-342

tween 60% (worst case, independent scenario) and 80% (best case, idealized scenario). The343

80% bound is likely due to the observation time sampling and to physical processes unresolved344

by the QG and SW models. These processes include the presence of higher baroclinic modes345

and ageostrophic dynamics for the QG model, higher tidal harmonics and neglected terms in346

the SW model. The lower 60% bound reflects the presence of the component that the system347

can not (or hardly) reconstruct (IT for the QG model, BM for the SW model). This compo-348

nent appears as noise in the observations.349

The joint estimation algorithm is able to disentangle BM and IT components of SSH.350

Throughout iterations, both components are progressively separated. This is particularly vis-351

ible in the η̂BM snapshots, where IT signature is clearly visible at the first iteration, and grad-352

ually filtered out throughout iterations. We attribute the strength of the joint estimation to the353

fact that each data assimilation sub-system (BFN-QG and 4DVar-SW) filters out the compo-354

nent it is not supposed to reconstruct. This is reflected in the relatively high (closer to 1 than355

0) scores reached in the independent scenarii.356
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Figure 6. Left: BM SSH reconstructed by BFN-QG in the joint estimation algorithm. Middle: reference
He computed from the 3D fields of the reference simulation. Right: He estimated by 4Dvar-SW in the joint
estimation algorithm.

The 4Dvar-SW technique can reconstruct a large part of the nonstationary part of IT, as357

illustrated on Figure 5. 87 % of the stationary and 44% of the nonstationary IT variances are358

recovered on average. For the nonstationary IT fields, 4Dvar-SW captures 54% of the variance359

in the northern part of the domain, but only 28% in the southern part. This poor performance360

is attributed to the weakness of the nonstationary signal in the southern part (Figure 5, right361

column). Besides, some physical processes, such as IT reflection on the turbulent jet, may not362

be captured by 4Dvar-SW.363

The spatial patterns of SSH η̂BM estimated by BFN-QG and the optimal equivalent depth364

Hopt
e obtained with 4Dvar-SW share similarities together and with the reference equivalent depth,365

as illustrated on Figure 6. A natural improvement of the method would be to use η̂BM to es-366

timate a background value Hb
e in the 4Dvar-SW to improve the IT reconstruction. This would367

require a climatology of the stratification to convert SSH to He. Reciprocally, 4DVar-SW could368

help refine the estimation of He and stratification.369

6.2 Sensitivity to the observation temporal sampling370

In this section we investigate the impact of the observation temporal sampling on the es-371

timation of IT and BM. 13 time intervals ∆tobs are tested, from 69 h to 75 h by increments372

of 30 min. The IT period being T=12 h, the 6 h-interval length corresponds to T/2 and the373

central 72 h step corresponds to a multiple of T . For each ∆tobs, we run an idealized, an in-374

dependent and an joint experiments. The results are shown on Figure 7.375

The IT estimation is strongly degraded near ∆tobs=72 h, what affects the reconstruction376

of BM in the joint estimation. At ∆tobs=72 h, IT estimation scores are even negative in the joint377

and independent scenarii. This particular time interval presents a singularity and leads to an378

aliasing issue, since it observes only one phase of the wave field and does not detect the wave379

propagation. The same occurs with multiples of T/2 (e.g. 66 h and 78 h, not shown here), when380

only two opposite phases of the wave field are observed. Since the IT component is not fil-381

tered out by 4DVar-SW, the estimation of BM by BFN-QG in the joint scenario is similar to382

the independent one.383
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Figure 7. Performances of the joint estimation algorithm in function of the observation temporal sampling.
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Using the joint estimation algorithm mitigates the poor IT reconstruction with time in-384

tervals near 72 h. The IT estimation scores with ∆tobs = 71 h or 73 h are negative in the in-385

dependent experiments, but exceed 0.6 in the joint experiments. This suggested robustness of386

the joint estimation algorithm is encouraging for the processing of the future SWOT data.387

7 Conclusions388

In this study, we have presented an alternating minimization algorithm to simultaneously389

and dynamically map and separate Internal Tide (IT) and Balanced Motions (BM) signals from390

2D altimetric observations. Two data assimilation techniques are used in an iterative process391

to estimate both signals: BM are reconstructed by the BFN-QG algorithm while IT are recon-392

structed by the 4Dvar-SW algorithm. At any given iteration, the assimilated observations used393

to map one signal are made of the difference between the full observation (containing both sig-394

nals) and the previous estimation of the other signal. The use of the 4Dvar-SW algorithm for395

IT reconstruction allows to map (i.e., estimate in magnitude and phase) both stationary and396

nonstationary IT signals which is not obvious with other conventional separation methods such397

as harmonic analyses.398

The joint estimation of BM and IT has been tested in an idealized context, with a true399

state of the ocean and artificial observations extracted from a numerical simulation that prop-400

agates a mode-one internal tide through a turbulent quasigeostrophic jet. This numerical ex-401

periment aims at illustrating the feasibility of this approach in a simplified context and should402

constitute a step closer to the processing of future SWOT data.403

The results show that the joint estimation allows to simultaneously separate and estimate404

78% and 75% of the BM and IT variance, respectively. The remaining variance is interpreted405

as being due to non resolved dynamics by the QG and SW models.406

A sensitivity study of the observational temporal sampling has also been performed and407

shows that an unfortunate temporal sampling of the observations can be detrimental to the joint408

estimation performances. In particular, the performances of the IT reconstruction are consid-409

erably reduced when the time step between two consecutive observations is a multiple of half410

the IT time period T/2. Fortunately, it turns out that this situation is singular for non sun-synchronous411

orbits, meaning that a slight shift from a multiple of T/2 in the observation time sampling en-412

sures good performances again.413

Although the results of the observational temporal sampling sensitivity study are encour-414

aging, future work should investigate the method applied to a realistic SWOT sampling. One415

of the major next steps will be to assess the potential of the method with spatially sparse ob-416

servations. An interesting avenue to improve the method in that context could be to use ad-417

ditional information, such as conventional nadir data or SWOT nadir data, to ensure the joint418

estimation method convergence hence improving the reconstructions.419

Another crucial step towards operational SSH mapping will be to experiment on a more420

realistic ocean simulation, with multiple tidal components and harmonics in constant interac-421

tion. To allow the 4Dvar-SW to efficiently extract IT signal from realistic SSH data, some tech-422

nical improvement may be needed. Source terms, that generate IT signal inside the study do-423

main, may have to be implemented and controlled by the assimilation to map IT signals around424

generation sites (located at ocean ridge and sea mounts for instance). One can also think of425

improving the resolved dynamics by including higher baroclinic modes. Another improvement426

would be to add interaction terms between BM and IT in the shallow water equations. For that427

last remark, one strategy would be to estimate a background term of He from the reconstruc-428

tion of BM.429

–17–



manuscript submitted to Enter journal name here

Acknowledgments430

This research was funded by ANR (project number ANR-17- CE01-0009-01) and CNES through431

the SWOT Science Team program. The numerical codes and the data used in this study can432

be accessed here: https://github.com/leguillf/MASSH433

References434

Ajayi, A., Le Sommer, J., Chassignet, E., Molines, J.-M., Xu, X., Albert, A., & Dewar, W.435

(2019). Diagnosing cross-scale kinetic energy exchanges from two submesoscale436

permitting ocean models. Earth and Space Science Open Archive, 26. Retrieved437

from https://www.essoar.org/doi/abs/10.1002/essoar.10501077.1 doi:438

10.1002/essoar.10501077.1439

Ajayi, A., Sommer, J. L., Chassignet, E., Molines, J.-M., Xu, X., Albert, A., & Cosme,440

E. (2020). Spatial and temporal variability of the north atlantic eddy field441

from two kilometric-resolution ocean models. Journal of Geophysical Re-442

search: Oceans, 125(5), e2019JC015827. Retrieved 2020-06-15, from https://443

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JC015827444

(_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JC015827)445

doi: 10.1029/2019JC015827446

Amores, A., JordÃă, G., Arsouze, T., & Le Sommer, J. (2018). Up to what extent can we447

characterize ocean eddies using present-day gridded altimetric products? Journal448

of Geophysical Research: Oceans, 123(10), 7220-7236. Retrieved from https://449

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JC014140 doi:450

https://doi.org/10.1029/2018JC014140451

Anthes, R. (1974). Data assimilation and initialization of hurricane prediction models. J. At-452

mos. Sci., 31, 701-719.453

Auroux, D., & Blum, J. (2008). A nudging-based data assimilation method: the back and454

forth nudging (BFN) algorithm. Nonlinear Process Geophys., 15(2), 305–319. (Place:455

Gottingen Publisher: Copernicus Gesellschaft Mbh WOS:000255511000007) doi: 10456

.5194/npg-15-305-2008457

Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., . . . Picot,458

N. (2019). On the resolutions of ocean altimetry maps. Ocean Sci., 15(4), 1091–1109.459

(Place: Gottingen Publisher: Copernicus Gesellschaft Mbh WOS:000481992900001)460

doi: 10.5194/os-15-1091-2019461

Blayo, E., Blum, J., & Verron", J. (1998). Assimilation variationnelle de donnÃľes en462

ocÃľanographie et rÃľduction de la dimension de lâĂŹespace de contrÃťle (variational463

data assimilation in oceanography and reduction of the control-space dimension).464

Blayo, E., & Debreu, L. (2005). Revisiting open boundary conditions from the point of view465

of characteristic variables. Ocean Modelling. Retrieved from https://hal.inria466

.fr/inria-00134856467

Capet, X., Roullet, G., Klein, P., & Maze, G. (2016, 11). Intensification of Upper-Ocean468

Submesoscale Turbulence through Charney Baroclinic Instability. Journal of Physi-469

cal Oceanography, 46(11), 3365-3384. Retrieved from https://doi.org/10.1175/470

JPO-D-16-0050.1 doi: 10.1175/JPO-D-16-0050.1471

Courtier, P., Thépaut, J., & Hollingsworth, A. (1994). A strategy for operational implementa-472

tion of 4dâĂŘvar, using an incremental approach. Quarterly Journal of the Royal Me-473

teorological Society, 120, 1367-1387.474

DIMET, F.-X. L., & TALAGRAND, O. (1986). Variational algorithms for analysis475

and assimilation of meteorological observations: theoretical aspects. Tellus A,476

38A(2), 97-110. Retrieved from https://onlinelibrary.wiley.com/doi/477

abs/10.1111/j.1600-0870.1986.tb00459.x doi: https://doi.org/10.1111/478

j.1600-0870.1986.tb00459.x479

Dunphy, M., Ponte, A., Klein, P., & Gentil, S. (2017, 01). Low-mode internal tide propaga-480

tion in a turbulent eddy field. Journal of Physical Oceanography, 47. doi: 10.1175/481

JPO-D-16-0099.1482

–18–



manuscript submitted to Enter journal name here

Flather, R. (1987). A tidal model of the northeast pacific. Atmosphere-Ocean, 25(1), 22–45.483

Retrieved from https://doi.org/10.1080/07055900.1987.9649262 (Publisher:484

Taylor & Francis) doi: 10.1080/07055900.1987.9649262485

Fu, L.-L., & Ubelmann, C. (2014). On the transition from profile altimeter to swath altimeter486

for observing global ocean surface topography. Journal of Atmospheric and Oceanic487

Technology, 31(2), 560 - 568. Retrieved from https://journals.ametsoc.org/488

view/journals/atot/31/2/jtech-d-13-00109_1.xml doi: 10.1175/JTECH-D489

-13-00109.1490

Garrett, C., & Kunze, E. (2007). Internal tide generation in the deep ocean. Annual Review491

of Fluid Mechanics, 39(1), 57-87. Retrieved from https://doi.org/10.1146/492

annurev.fluid.39.050905.110227 doi: 10.1146/annurev.fluid.39.050905493

.110227494

Gill, A. E. (1982). Atmosphere-ocean dynamics. Int. Geophys. Ser., 30, 662p.495

Gonzalez-Haro, C., Isern-Fontanet, J., Tandeo, P., & Autret, E. (2019, May). High-resolution496

currents from the synergy between Infrared SST and altimetry. LPS 2019 : Living497

Planet Symposium.498

Guillou, F. L., Metref, S., Cosme, E., Ubelmann, C., Ballarotta, M., Sommer, J. L., &499

Verron, J. (2021). Mapping altimetry in the forthcoming swot era by back-and-500

forth nudging a one-layer quasigeostrophic model. Journal of Atmospheric and501

Oceanic Technology, 38(4), 697 - 710. Retrieved from https://journals502

.ametsoc.org/view/journals/atot/38/4/JTECH-D-20-0104.1.xml doi:503

10.1175/JTECH-D-20-0104.1504

Haren, H. v., Laurent, L. S., & Marshall, D. (2004). Small and mesoscale processes505

and their impact on the large scale: an introduction. , 51(25), 2883–2887. Re-506

trieved from https://www.sciencedirect.com/science/article/pii/507

S0967064504002061 doi: https://doi.org/10.1016/j.dsr2.2004.09.010508

Kelly, S. M., & Lermusiaux, P. F. J. (2016). Internal-tide interactions with the gulf509

stream and middle atlantic bight shelfbreak front. Journal of Geophysical Research:510

Oceans, 121(8), 6271-6294. Retrieved from https://agupubs.onlinelibrary511

.wiley.com/doi/abs/10.1002/2016JC011639 doi: https://doi.org/10.1002/512

2016JC011639513

Klein, P., & Lapeyre, G. (2009, 01). The oceanic vertical pump induced by mesoscale and514

submesoscale turbulence. Annual review of marine science, 1, 351-75. doi: 10.1146/515

annurev.marine.010908.163704516

McWilliams, J. C. (2016). Submesoscale currents in the ocean. Proceedings of the Royal517

Society A: Mathematical, Physical and Engineering Sciences, 472(2189), 20160117.518

Retrieved from https://royalsocietypublishing.org/doi/abs/10.1098/519

rspa.2016.0117 doi: 10.1098/rspa.2016.0117520

Morrow, R., Fu, L.-L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., . . . Zaron, E. D.521

(2019). Global observations of fine-scale ocean surface topography with the sur-522

face water and ocean topography (swot) mission. Frontiers in Marine Science,523

6, 232. Retrieved from https://www.frontiersin.org/article/10.3389/524

fmars.2019.00232 doi: 10.3389/fmars.2019.00232525

Nash, J., Kelly, S., Shroyer, E., Moum, J., & Duda, T. (2012, 11). The unpredictable nature526

of internal tides on continental shelves. Journal of Physical Oceanography, 42, 1981-527

2000. doi: 10.1175/JPO-D-12-028.1528

Nelson, A. D., Arbic, B. K., Zaron, E. D., Savage, A. C., Richman, J. G., Buijsman, M. C.,529

& Shriver, J. F. (2019). Toward realistic nonstationarity of semidiurnal baroclinic530

tides in a hydrodynamic model. Journal of Geophysical Research: Oceans, 124(9),531

6632-6642. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/532

abs/10.1029/2018JC014737 doi: https://doi.org/10.1029/2018JC014737533

Ponte, A. L., & Klein, P. (2015, March). Incoherent signature of internal tides on sea level in534

idealized numerical simulations. Geophysical Research Letters, 42(5), 1520-1526. Re-535

trieved from https://hal.archives-ouvertes.fr/hal-01149664 doi: 10.1002/536

2014GL062583537

–19–



manuscript submitted to Enter journal name here

Ponte, A. L., Klein, P., Dunphy, M., & Le Gentil, S. (2017). Low-mode internal tides and538

balanced dynamics disentanglement in altimetric observations: Synergy with surface539

density observations. Journal of Geophysical Research: Oceans, 122(3), 2143-540

2155. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/541

10.1002/2016JC012214 doi: 10.1002/2016JC012214542

Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.-L., & Menemenlis, D. (2018, 01).543

Seasonality in transition scale from balanced to unbalanced motions in the world544

ocean. Journal of Physical Oceanography, 48. doi: 10.1175/JPO-D-17-0169.1545

Rainville, L., & Pinkel, R. (2006). Propagation of low-mode internal waves through the546

ocean. , 36(6), 1220 – 1236. Retrieved from https://journals.ametsoc.org/547

view/journals/phoc/36/6/jpo2889.1.xml (Place: Boston MA, USA Publisher:548

American Meteorological Society) doi: 10.1175/JPO2889.1549

Ray, R. D., & Zaron, E. D. (2011). Non-stationary internal tides observed with satellite al-550

timetry. Geophysical Research Letters, 38(17). Retrieved from https://agupubs551

.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL048617 doi: https://doi552

.org/10.1029/2011GL048617553

Ray, R. D., & Zaron, E. D. (2015, 12). M2 Internal Tides and Their Observed Wavenum-554

ber Spectra from Satellite Altimetry*. Journal of Physical Oceanography, 46(1), 3-22.555

Retrieved from https://doi.org/10.1175/JPO-D-15-0065.1 doi: 10.1175/JPO556

-D-15-0065.1557

Ray, R. D., & Zaron, E. D. (2016). M2 internal tides and their observed wavenumber spectra558

from satellite altimetry. , 46(1), 3 – 22. Retrieved from https://journals.ametsoc559

.org/view/journals/phoc/46/1/jpo-d-15-0065.1.xml (Place: Boston MA,560

USA Publisher: American Meteorological Society) doi: 10.1175/JPO-D-15-0065.1561

Robert, C., Durbiano, S., Blayo, E., Verron, J., Blum, J., & Le Dimet, F.-X. (2005, Aug). A562

reduced-order strategy for 4d-var data assimilation. Journal of Marine Systems, 57(1-563

2), 70âĂŞ82. Retrieved from http://dx.doi.org/10.1016/j.jmarsys.2005.04564

.003 doi: 10.1016/j.jmarsys.2005.04.003565

Sadourny, R. (1975). The dynamics of finite-difference models of the shallow-water equa-566

tions. , 32(4), 680 – 689. Retrieved from https://journals.ametsoc.org/view/567

journals/atsc/32/4/1520-0469_1975_032_0680_tdofdm_2_0_co_2.xml568

(Place: Boston MA, USA Publisher: American Meteorological Society) doi:569

10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2570

Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier,571

F., . . . Dibarboure, G. (2019). DUACS DT2018: 25 years of reprocessed sea572

level altimetry products. Ocean Science, 15(5), 1207–1224. Retrieved from573

https://www.ocean-sci.net/15/1207/2019/ (Publisher: Copernicus GmbH)574

doi: https://doi.org/10.5194/os-15-1207-2019575

Torres, H. S., Klein, P., Siegelman, L., Qiu, B., Chen, S., Ubelmann, C., . . . Fu, L.-576

L. (2019). Diagnosing ocean-wave-turbulence interactions from space. Geo-577

physical Research Letters, 46(15), 8933-8942. Retrieved from https://578

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083675 doi:579

10.1029/2019GL083675580

Tseng, P. (1990). Further applications of a splitting algorithm to decomposition in variational581

inequalities and convex programming. , 48(1), 249–263. Retrieved from https://doi582

.org/10.1007/BF01582258 doi: 10.1007/BF01582258583

Ubelmann, C., Klein, P., & Fu, L.-L. (2015). Dynamic interpolation of sea surface height584

and potential applications for future high-resolution altimetry mapping. J. Atmos.585

Ocean. Technol., 32(1), 177–184. (Place: Boston Publisher: Amer Meteorological Soc586

WOS:000348221100011) doi: 10.1175/JTECH-D-14-00152.1587

Wunsch, C., & Ferrari, R. (2004). VERTICAL MIXING, ENERGY, AND THE GEN-588

ERAL CIRCULATION OF THE OCEANS. , 36(1), 281–314. Retrieved 2021-03-29,589

from http://arjournals.annualreviews.org/doi/abs/10.1146%2Fannurev590

.fluid.36.050802.122121 doi: 10.1146/annurev.fluid.36.050802.122121591

Zaron, E. D. (2017). Mapping the nonstationary internal tide with satellite altimetry. Jour-592

–20–



manuscript submitted to Enter journal name here

nal of Geophysical Research: Oceans, 122(1), 539-554. Retrieved from https://593

agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JC012487 doi:594

10.1002/2016JC012487595

–21–



Figure 1.





Figure 2.





Figure 3.





Figure 4.





Figure 5.





Figure 6.





Figure 7.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7

