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Abstract

The Western European Alps display measurable surface deformation rates from levelling and GNSS data. Based on the time-

series analysis of 4 years of Sentinel-1 data, we propose for the first time an InSAR-based mapping of the uplift pattern affecting

the Western Alps on a ˜350x175- km-wide area. This approach provides a denser spatial distribution of vertical motion despite

the high noise level inherent to mountainous areas and the low expected deformation signal. Our results show consistency

with other geodetic measurements at the regional scale, and reveal smaller-scale spatial variations in the uplift pattern. Higher

uplift rates are found within the external crystalline massifs compared to surrounding areas, in agreement with the variations

expected from recent deglaciation and long-term exhumation data. This work brings the first InSAR-based geodetic clue of

differential uplift within the Alpine belt in response to the surface and deep processes affecting the belt.
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Key Points: 

● We use four years of Sentinel-1 radar acquisitions to derive interseismic line-of-sight 15 

velocities over the Western European Alps. 

● InSAR-derived velocities are consistent with other geodetic studies and provide increased 

spatial resolution of surface velocity patterns. 

● Short-wavelength spatial variations show locally higher velocities localized on crystalline 

massifs, interpreted as higher uplift rates. 20 
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Abstract 

The Western European Alps display measurable surface deformation rates from levelling 

and GNSS data. Based on the time-series analysis of 4 years of Sentinel-1 data, we propose for the 25 

first time an InSAR-based mapping of the uplift pattern affecting the Western Alps on a ~350x175-

km-wide area. This approach provides a denser spatial distribution of vertical motion despite the 

high noise level inherent to mountainous areas and the low expected deformation signal. Our 

results show consistency with other geodetic measurements at the regional scale, and reveal 

smaller-scale spatial variations in the uplift pattern. Higher uplift rates are found within the 30 

external crystalline massifs compared to surrounding areas, in agreement with the variations 

expected from recent deglaciation and long-term exhumation data. This work brings the first 

InSAR-based geodetic clue of differential uplift within the Alpine belt in response to the surface 

and deep processes affecting the belt. 

Plain Language Summary 35 

The surface of the Earth is constantly moving from about a few millimeters to a few 

centimeters per year in response to geological processes such as tectonic plate motions and 

gravitational re-equilibrium. In the Western European Alps, where the mountain-building phase 

of the belt is over, the processes at the origin of surface motions are under debate. Mapping surface 

displacements at the highest possible resolution is mandatory to better understand the evolution of 40 

the Alpine belt. Among other techniques, radar satellites can provide measurements of such 

displacements. Here, radar images from the recent Sentinel-1 satellite allow us to improve the 

spatial resolution of vertical surface displacements in the Western Alps compared to previous 

techniques. Thanks to the unmatched frequency of acquisitions from this satellite, we are able for 

the first time in our study area to measure small-scale spatial variations within the vertical motions. 45 

These variations appear correlated to distinct geological units. This brings new insights into the 

geological processes acting nowadays on the Western Alps. 

1 Introduction 

The European Alpine belt results from the complex continental collision phases between 

Africa and Eurasia (Schmid and Kissling, 2000; Coward and Dietrich, 1989). While convergence 50 

is still active and is attested by Adria indentation in the Eastern and Central Alps, it stopped in the 
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Western Alps, where the present-day kinematics are characterized by the anticlockwise rotation of 

Adria microplate with respect to Eurasia (e.g. Calais et al., 2002). Global Navigation Satellite 

System (GNSS) measurements highlight extensive and transcurrent horizontal strain rates in the 

western part of the belt, without any measured shortening across it (Calais et al., 2002; Serpelloni 55 

et al., 2016; 2018). The dynamic processes that have been suggested to affect the Western Alps 

involve intrinsic surficial (isostatic adjustments to deglaciation and erosion) and deep sources (slab 

pull or break-off and mantle upwelling), as well as far-field microplate kinematics, but their 

respective contributions to present-day crustal deformation are an ongoing debate (e.g. Sternai et 

al., 2019).  60 

GNSS and levelling measurements in the Western Alps indicate that vertical velocities of 

a few mm/yr are expected, which is an order of magnitude higher than the horizontal motions 

(Masson et al., 2019; Nocquet et al., 2016; Walpersdorf et al., 2018; Mathey et al., 2020). 

Increasing the spatial resolution of vertical motions is thus of primary importance to understand 

the processes at the origin of surface deformation within the belt. Despite the dense coverage of 65 

GNSS networks over the Alps, the velocity fields obtained after spatial interpolation of GNSS 

velocity data strongly depend on the method, and can be highly impacted by the inclusion of one 

or a few outlier velocities. Interferometric Synthetic Aperture Radar (InSAR) imagery constitutes 

a complement to GNSS measurements to assess the spatial extent of regional deformation since it 

provides continuous estimates of surface displacements and a high sensitivity to the vertical 70 

component. InSAR data have not been used, up to now, to map slow, large-scale deformation 

across the European Alps, but only for landslide monitoring (e.g. Aslan et al., 2020; Singh et al., 

2005), because of (1) the low expected long-term surface deformation signal compared to the 

atmospheric noise induced by high topographic gradients within the belt, and of (2) the temporal 

decorrelation related to vegetation and snow coverage changes over seasons. While several similar 75 

works already focused on mountainous areas worldwide (e.g. Daout et al., 2019; Grandin et al., 

2012; Hammond et al., 2012), they were all focusing on areas with higher  signal-to-noise ratios. 

The launching of the Sentinel-1 radar satellite in 2014 now enables us to derive InSAR 

estimates of tectonic surface velocities for the first time across the Western Alps.  Here we assess 

the spatial extent of the regional vertical signal based on the time-series analysis of more than 700 80 

interferograms computed over 4 years of radar acquisitions. 
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2 Sentinel-1 data processing 

We use Sentinel-1 acquisitions along ascending track A088 ranging from November 2014 

to December 2018. Sentinel-1 interferometric wide-swath mode acquires data on a swath width of 

about 250 km. We limited our analysis to the sub-swaths 1 and 2, covering our area of interest by 85 

175 km in range and 350 km in azimuth (Figure 1a). To extract the ground velocity signal, data 

were processed using the New Small BAseline Subset (NSBAS) chain developed by Doin et al. 

(2011). Single Look Complex (SLC) images were all coregistered on a reference date before 

computing differential interferograms. Interferograms have first been multi-looked by a factor 2 

in azimuth and 8 in range. Precise orbits from the Copernicus Precise Orbit Determination Service 90 

(Peter et al., 2017) and the SRTM digital elevation model (Farr et al., 2007) were used in order to 

correct the geometrical phase difference between acquisitions. The phase correction within each 

burst due to the backward-forward sweeping of the radar antenna was performed in two steps 

(Grandin, 2015): first, an azimuth adjustment quantified by image coregistration, and second, a 

multi-linear adjustment of the backward-forward interferograms obtained with the spectral 95 

diversity method in the burst-overlap areas (Scheiber & Moreira, 2000). Spectral diversity 

parameters are inverted into time series to avoid a drift due to cumulative noise. Then, the 

corresponding phase correction is directly applied on the interferograms. 

The European Alps are affected by large snow cover and by vegetation changes in forests 

and crop lands, which both reduce the interferometric coherence. The former affects mainly winter 100 

dates whereas the latter effect has the strongest impact in spring and early summer. As we are 

interested in large-scale deformation patterns, we must ascertain phase continuity across the Alps, 

mainly relying on valleys in winter and on summits in summer, with flanks often covered by 

forests. Therefore, optimizing the interferogram network has the utmost importance: we performed 

a systematic analysis of each interferogram coherence and of all interferograms with a given 105 

acquisition. This led us to discard a few dates because of their particularly large snow cover. 

Furthermore, the coherence analysis per date helped us to select image pairs with the longest 

temporal baselines. Acquisitions from September to November were generally found the most 

appropriate to combine with other dates. Interferograms crossing the snow period in particular 

were chosen with great care. Finally, 173 dates and 734 interferograms remain (Figure 1b) with 110 

temporal baselines ranging from 6 days to one year (Figure 1c). In spite of the selection of the best 
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interferograms in terms of coherence, interferogram unwrapping remained challenging, and 

required several preceding corrections detailed hereafter.  

The Atmospheric Phase Screen (APS) of interferograms due to pressure, temperature, and 

humidity changes in the atmosphere makes unwrapping particularly challenging in mountainous 115 

areas and limits the accuracy of InSAR measurements (Zebker et al., 1997; Hanssen, 2001; Elliott 

et al., 2008; Doin et al., 2009). Atmospheric changes produce both an elevation-dependent phase, 

called stratified atmospheric effect, and atmospheric patterns, mostly random in space and time. 

Steep slopes in the Alps, whose shortening in radar geometry is stronger for the radar facing flanks, 

produce narrow fringes. This effect, when added to the decorrelation due to forests, can lead fringes 120 

on the radar facing flanks to disappear and produce unwrapping ambiguities. To limit this effect, 

interferograms were corrected before unwrapping using ERA5 atmospheric model reanalysis 

(Hersbach et al., 2020) as described in Doin et al. (2009) and Jolivet et al. (2011). We validated 

this correction by comparing it to the empirical phase-versus-elevation ratio (Doin et al., 2009; 

2015; Grandin et al., 2012), and found that it successfully removed the seasonal evolution of the 125 

phase-elevation relationship and reduced its day-to-day variability. However, the smooth model 

elevation of ERA5 (Figure 1a) displays values of 1000 to 2000 m for the points closest to deeply 

incised valleys (e.g. Sion and Aosta Valleys, Figure 1a). As a result, the correction applied along 

these valleys, which is obtained by downward extrapolation, is less precise (see section 3). 

Once the interferograms were corrected from stratified atmospheric fringes, we replaced 130 

the amplitude of the interferogram by the colinearity measurement (Pinel-Puysségur et al., 2012). 

We then applied a second step of multilooking to 32x8 looks, in which pixels are weighted 

according to the colinearity, thus increasing the overall signal to noise ratio.. This process makes 

fringe continuity clearer in noisy areas (Daout et al., 2017). We then applied an adaptive Gaussian 

filter with a moving window. Phase unwrapping, performed in the spatial domain by region 135 

growing (Doin et al., 2015; Grandin et al., 2012), starts in the most coherent area and expands 

progressively to the lowest coherence areas. Here, we combine the coherence criterion to the 

topographic slope in radar geometry to prevent the phase-unwrapping path to cross the steepest 

slopes and those facing the radar. Remaining unwrapping errors were systematically checked for 

all the 734 interferograms and corrected by adjusting the erroneous number of phase cycles 140 

between patches. We then applied a “snow” mask on interferograms, based on a threshold on the 
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averaged coherence per date, for the two dates constituting the interferogram.  

Finally, unwrapped interferograms were corrected from orbital ramp residuals by adjusting 

a linear phase ramp of the form: 

ax + by +c  (1) 145 

where x is the range and y the azimuth directions and c a constant. 

The a and b parameters are then used to invert into time series a l and b l for each time step l.  The 

phase ramp is corrected from interferograms using reconstructed parameters, as shown in Biggs et 

al. (2007). 

Time series of cumulative surface displacements are obtained by the inversion of all 150 

interferograms (Doin et al., 2015). Inversion quality depends on the consistency of interferometric 

phase differences within the interferogram network (Lopez Quiroz et al., 2009). Remaining 

unwrapping errors can then be detected and corresponding interferogram patches are either 

corrected or, if not possible, masked. Finally, the Root Mean Square of the network phase 

misclosure (hereafter called misclosure RMS) is around 0.4 radians, indicating a high-quality 155 

unwrapping (Figure S1a). A threshold of 0.5 radians on the misclosure RMS map was used to 

mask the least coherent pixels. Another quality indicator lies in the average misclosure of short 

temporal baseline interferograms (called hereafter Misclosure of Low Duration Interferograms or 

MLDI), which can be either positive or negative. The corresponding maps are computed for 6, 12, 

or 18-days interferograms. They quantify the bias associated with seasonal vegetation growth, 160 

which is introduced by interferogram multi-looking nonlinearity, and which fades with 

interferogram duration (Ansari et al., 2020). Pixels with large positive or negative bias on the 18-

days MLDI map were masked (Figure S1b). Since MLDI is in fact a measure of the consistency 

between short and long temporal baseline interferograms, it cannot be estimated for pixels where 

only few long temporal baseline interferograms are available. Therefore, pixels with an average 165 

temporal baseline below 0.102 year were also masked (Figure S1c). 
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 170 

Figure 1. Study area and processed dataset. a) Color shaded map of the digital elevation model 

(Farr et al., 2007) overlaid by the Sentinel-1 footprint (track A088, black rectangle) and by circles 

showing ERA5 grid points color-coded according to the smooth ERA5 surface-elevation model. 

b) Processed interferogram pairs (blue lines) between radar acquisition dates (black dots) arranged 

by perpendicular baseline and time. The dotted line shows the starting date of Sentinel-1 B 175 

acquisitions. c) Proportion of interferogram durations corresponding to the interferometric 

network in b). 
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3 Ground velocity estimates from time-series inversion 180 

A preliminary line-of-sight (LOS) velocity map was obtained by linear regression of the 

inverted phase-delay time series (Figure S2a). This map showed numerous local instabilities 

affecting valley flanks, as for example in Aosta Valley, almost systematically compatible with 

downward along-slope displacements. These motions compared well with the geographical extent 

of the numerous field-based mapped Deep-seated Gravitational Slope Deformations (DSGSD) 185 

(Agliardi et al., 2001; Drouillas et al., 2020; Hippolyte et al., 2006, Blondeau et al., 2021), and 

with InSAR measurements of DSGSD in the southern part of our study area (Aslan et al., 2020). 

Here, we used the DSGSD inventory made by André (2020) extracted as follows: (1) high-pass 

filtered interferograms were inverted into time series to obtain a high-pass filtered velocity map; 

(2) a threshold was applied on velocity; (3) additional constraints were applied on size, slope 190 

amplitude and orientation with respect to radar viewing angle, and radar visibility. Pixels affected 

by DSGSD or possibly by other non-tectonic localized processes were then masked on the velocity 

map (Figure S1d). 

Although the amplitude of the residual APS is large compared to deformation, the data set 

contains N=173 independent acquisitions, thus reducing the uncertainty on the velocity estimate 195 

obtained by regression by !(𝑁 − 2). However, we must note that: (1) The APS amplitudes vary 

strongly with the acquisition date, as summer acquisitions are in general noisier than winter 

acquisitions, and (2) seasonal deformation or residual stratified atmospheric delays break the 

randomness assumption underlying the uncertainty analysis. We thus compared the velocity maps 

(Figure S2) obtained by (1) implementing or not one of the approaches used to reduce APS impact, 200 

and (2) including or not a seasonal term in the regression analysis.  

One approach to reduce the APS effect is to smooth the time series for each pixel by 

computing the median over a moving window of 10 subsequent radar acquisitions, thus avoiding 

the least-square regression to be sensitive to strong outliers. The degree of freedom is then reduced 

to (!
"
 - 2), although the velocity uncertainty decreases after median filtering (Figure S3). Another 205 

approach is to weight each acquisition by the inverse of the global APS amplitude averaged for 

each date. In the latter case, we cannot compute a velocity uncertainty on the regression analysis.  

We also include a seasonal term in the form of sine and cosine functions in the parameterization 
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(see details in the Supporting Information). We find that seasonal signals are large within the study 

area, possibly due to hydrological loading or to residual tropospheric delays not corrected by the 210 

ERA5 model. Phase delay maps for each acquisition were referenced by subtracting the averaged 

phase of all pixels having the best misclosure RMS values (see details in the Supporting 

Information) prior to the regression analysis.  

The reliability of the retrieved deformation patterns can be assessed by comparing the six 

different velocity maps in Figure S2. The location and sign of the main patterns are consistent for 215 

all maps. However, the amplitude of the LOS velocity anomalies that follow some valleys, such 

as Sion, Aosta, and Susa Valleys, depends upon the inclusion of a seasonal term and upon the 

approach used to decrease APS impact. Accordingly, the time series in these valleys contain a 

clear residual seasonal signal. Furthermore, these valleys display larger velocity uncertainties. 

Therefore, the velocity patterns along those three valleys can partly be explained by a poorer 220 

stratified atmospheric correction, which is based on ERA5 atmospheric variables extrapolated 

below the ERA5 model elevation (Doin et al., 2009). Figure 1a shows that the aforementioned 

valleys are the ones displaying the sharpest topographic gradients with respect to the surrounding 

summits, as well as the sharpest contrasts between valley floors and ERA5 grid node elevations. 

InSAR velocities shown in Figures 2a and 2c were finally referenced to published GNSS 225 

rates (Kreemer et al., 2020) by adjusting two ramps in azimuth and range and an offset (Supporting 

Information and Figure S4). Areas moving toward the satellite concern mainly the areas of high 

topography as well as the foothills of the Alpine chain, while the chain periphery and coastal areas 

are dominated by motions away from the satellite. The velocity map derived from the median-

filtered time series (Figure 2a) displays a higher amplitude range (±3 mm/yr in LOS) than the one 230 

retrieved from the APS-weighted time series (±2 mm/yr in LOS, Figure 2c). Velocities around the 

Po plain correspond to larger uncertainties, suggesting that they are not well modeled by the linear 

and seasonal parametric decomposition. This is not surprising, as this area is affected by strong 

and complex seasonal variations, with multi-annual variability. In the central and eastern Po plain, 

these variations are possibly due to local hydrology variations such as oscillations of the water 235 

table (Romagnoli et al., 2003) or hydrologic loading (Richter et al., 2004; Zerbini et al., 2007, 

2010, 2013). For the rest of the study, we focus on the velocity map obtained with the APS-

weighted time series (Figure 2c), for which we have a slightly better fit to GNSS data (Figure S4). 
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However, we use the 1-σ uncertainty map associated with the median-filtered time series (Figure 

2b). 240 

To better compare the long-wavelength patterns with those retrieved from other studies, 

we masked pixels with uncertainty values above 0.8 mm/yr according to Figure 2b and then 

implemented a spatial smoothing with a 20-km-wide Gaussian filter on the map shown in Figure 

2c. The smoothed velocity field (Figure 2d and Figure S5) is less affected by non-tectonic effects 

and is compared to the projected LOS velocities of two GNSS solutions, the one from Kreemer et 245 

al. (2020) and the vertical velocity field from Sternai et al. (2019), for which we adjusted the 

reference frame by adding an offset of +0.25 mm/yr. The InSAR LOS velocities reveal an overall 

consistency with the GNSS projected velocities derived over longer time series. InSAR and GNSS 

solutions deviate locally though, mainly in places where the two GNSS solutions also differ from 

one another (e.g., at OSTA station, Figure 2e). While a few GNSS sites may be affected by local 250 

processes or by shorter instrumentation time spans, InSAR rates may suffer from strong residual 

APS locally or may be affected by potential non-tectonic, e.g. hydrological, multi-annual trends. 

The consistency between InSAR and GNSS is emphasized by the three velocity profiles 

drawn perpendicularly to the strike of the Alpine belt (Figure 2e). They highlight that no systematic 

correlation is found between elevation and LOS velocities across the chain, even if the area of 255 

highest positive velocities correlates with the area of highest topography (Aiguilles Rouges (AR) 

and Mont-Blanc (MB) areas), in good agreement with GNSS measurements. These results 

demonstrate that the LOS velocity field derived from 4 years of InSAR data is well-comparable to 

the longer-term geodetic measurements and is thus representative of the tectonic deformation 

affecting the Western Alps. 260 
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Figure 2. LOS velocity maps and profiles. Black arrows west of the track show the 

satellite-viewing direction. The incidence angle varies from ~ 29° in near range to ~ 41° in far 265 

range. Positive/negative velocities represent motions toward/away from the satellite, respectively. 

a) Linear velocity estimated on the median-filtered time series. b) 1-σ uncertainty map derived 

from the error analysis of the time series from a). c) Linear velocity estimated on the APS-weighted 

time series. d) Comparison of the smoothed InSAR velocity field derived from the velocity map 

in c) with GNSS velocities projected in LOS (same scale as InSAR) from Sternai et al., 2019 270 

(circles) and from Kreemer et al., 2020 (triangles). Dashed lines represent the extent of the profiles 

in e). e) InSAR velocity profiles extracted from the median-filtered (green envelopes) and APS-

weighted (grey envelopes) time series. Solid curves represent the median of the projected InSAR 

velocities, solid black lines the topography, and triangles the LOS velocities and 1-σ uncertainties 

of the GNSS solutions from d). Acronyms refer to the geological features displayed in Figure 3c. 275 

4 Discussion: uplift localization 

We make here the first-order assumption that the LOS velocities unraveled by this study 

mostly represent vertical motions. This is due to (1) the low viewing angle of the satellite from the 

vertical, which is varying from 29.16° to the west to 41.85° to the east, (2) the very small amplitude 

of the horizontal deformation across the Western Alps (around 15 nanostrain/yr of extension, see 280 

Nocquet et al., 2016; Walpersdorf et al., 2018), and (3) the removal from the velocity map of the 

majority of DSGSD features, which contain significant horizontal motion. In the following, we 

will therefore display and discuss the velocity field converted to vertical using local incidence 

angles.  

Figure 3 displays a comparison of the corresponding vertical InSAR-derived velocity field 285 

with a set of features derived from previous Alpine studies. Figure 3a presents the ice extent 

corresponding to the Last Glacial Maximum (LGM, c.a. 18-20 ka) simplified from Ehlers and 

Gibbard (2004). As already pointed out by Sternai et al. (2019), the area of glacial extent matches 

at first order the region of uplift. Reciprocally, subsidence along the coast and in the Nice foreland 

would correspond to the foreland of LGM ice cover. Beside the first order agreement of geodetic 290 

uplift with LGM extent already observed in previous studies, we note that two uplifting massifs, 

the Pelvoux and the Argentera ones, are apparently not well colocated with the LGM ice extent. 
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Figure 2d reveals that no GNSS data are available in the inner Pelvoux massif, while GNSS 

stations indicate either low uplift or null motion in the Argentera massif. Some deglaciation models 

predict measurable uplift rates of the Pelvoux massif, such as Barletta’s (2006) models of uplift 295 

rates due to deglaciation following the Little Ice Age (LIA, 18th-19th c., Figure 3a) and due to 

present-day glacier shrinkage (Figure 3b). The rates predicted by these models remain very low 

(locally up to 0.3 and 0.2 mm/yr, respectively) compared to the rates derived from geodesy, and 

their magnitude is hardly constrained, especially for the LIA rebound model (Barletta et al., 2006). 

Nevertheless, the spatial variations they feature are more robust (Barletta et al., 2006) and highlight 300 

a differential uplift in the Pelvoux massif with respect to the surrounding areas. The LGM rebound 

can explain up to 10 to 30 % of uniformly distributed uplift rate in the Western Alps according to 

various models (Sternai et al., 2019; Stocchi et al., 2005, Barletta et al., 2006). On the contrary, 

uplift rates due to LIA and present-day glacier shrinkage are lower (~6 to 10 % and ~4% to 12% 

respectively of the maximum observed uplift rates, Barletta et al., 2006; Sternai et al., 2019), but 305 

their modeled spatial variations are in better agreement with those imaged here by InSAR. 

When the InSAR-derived velocities are compared to the main crystalline massifs of the 

Alps (Figure 3c), it becomes obvious that uplift is limited to the geological Alpine belt, affecting 

both its external and internal massifs (AA to P in Figure 3c).  Our results show a marked uplift 

pattern extending in the higher-elevation areas, especially along the Aar-Mont-Blanc-Belledonne 310 

axis, that was previously identified with geodetic measurements but at a lower resolution (Figure 

2d; Nocquet et al., 2016; Walpersdorf et al., 2018; Masson et al., 2019; Sanchez et al., 2019). Our 

InSAR velocity field moreover reveals other areas with sharp contours of relative uplift to the 

south of this axis, for which spatial correlation with geological features (Pelvoux and Argentera 

massifs) could not be previously established based on GNSS measurements. We further compare 315 

InSAR velocities to exhumation rates estimated from thermochronometric ages in the Western 

Alps (Figure 3d; Fox et al., 2015). The Pelvoux and the Argentera massifs display young Apatite 

fission track ages similar to those retrieved in the Aar, Mont-Blanc, Belledonne and Aiguilles-

Rouges massifs. The corresponding exhumation rates are above 1 mm/yr, which is 25% to 50% 

more than in the surroundings. Other studies show that these crystalline massifs are associated 320 

with important erosion rates. For instance, the postglacial erosion model derived from sediment 

distribution in Mey et al (2016) also displays higher erosion rates in the Argentera and Pelvoux 

massifs than in the surroundings. The observed coincidence of larger uplift rates, larger 
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exhumation rates and larger erosion rates in crystalline massifs points towards retroaction 

mechanisms that help focus the vertical crustal response to external solicitations (erosional, glacial 325 

or slab unloading) or to internal buoyancy forces, in the absence of dominant horizontal 

convergence. This coincidence suggests that focused uplift is aided by inherited crustal weak 

features, faults or shear zones, or rheological heterogeneities (e.g. Herwegh et al., 2020). 
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Figure 3. Comparison of the vertical-converted velocity map with: a) LGM extent (solid black 330 

line) from Ehlers and Gibbard (2004) and LIA-induced uplift rates (dashed isolines, mm/yr) 

modeled by Barletta et al. (2006); b) uplift rates induced by present-day glacier shrinkage (dashed 

isolines, mm/yr) modelled by Barletta et al. (2006); c) geological units (crystalline massifs) 

modified from Sue et al. (1999): AA=Aar, AG=Argentera, AR=Aiguilles-Rouges, 

BL=Belledonne, DM=Dora Maira, GP=Gran Paradiso, MB=Mont-Blanc, MR=Monte Rosa, 335 

P=Pelvoux, S=Sesia ; and d) Thermochonometric ages (colored circles) and corresponding 

exhumation rates (dashed isolines, mm/yr) shown in Fox et al. (2015). 

5 Conclusions 

This study provides the first velocity field derived by a multi-temporal InSAR analysis at 

the scale of the Western Alps. The retrieved regional patterns are in good agreement with GNSS 340 

measurements, displaying uplift at the center of the belt with a maximum localized on the higher-

elevation parts of the belt, associated with subsidence at the periphery. Moreover, we improved 

the spatial resolution of the global uplift pattern derived from interpolated GNSS data. We 

observed that the maximum of uplift is localized along the Aar-Mont-Blanc axis, and that short-

wavelength spatial variations of the uplift pattern appear correlated with geological crystalline 345 

massifs in the southern part of the Western Alps. Measured geodetic uplift rates are provided in 

the inner Pelvoux massif for the first time. These geodetic uplift patterns moreover mimic 

exhumation patterns derived on geological timescales (~5Ma, Fox et al., 2015). 

The relative uplift-rate contribution arising from each process affecting the belt today is a 

matter of debate (Sternai et al., 2019). It nevertheless appears that the spatial variability observed 350 

in the uplift pattern cannot be only induced by the LGM rebound, which acts on much larger 

wavelengths than the ones observed in this study (Barletta et al., 2006; Persaud & Pfiffner, 2004; 

Schlatter et al., 2005). It requires either additional processes acting at smaller wavelengths and/or 

differential localization mechanisms allowing large-scale processes to induce a more localized 

surficial response, in the presence of rheological or inherited lithospheric structural 355 

heterogeneities. Isostatic adjustment to LIA and present-day ice mass losses is likely to be included 

in these short-wavelength additional processes, as well as erosion and drainage. Larger-scale 

possible driving processes involve the crust buoyancy, the slab pull or detachment beneath the 
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chain associated with the end of the convergence between Africa and Eurasia in the Western Alps. 

Beyond this undoubted complexity, this study points out the importance of InSAR measurements 360 

in low-deforming areas. Such measurements allow enhancing the spatial resolution of the derived 

ground motions, thus providing important elements for further analyzing the complex interactions 

between driving forces and the heterogeneous response of the lithosphere. 
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Details on post-processing choices  

Quality measurement and masking steps. 
Several quality indices allow to mask pixels after the time series inversion 

procedure. We first use the root mean square (RMS) of the network misclosure 
residuals in the time series inversion. As unwrapping errors have been corrected or 
masked, the final RMS value depends mainly on the temporal coherence of pixels. 
The RMS thus increases for pixels affected by vegetation changes or unmasked 
seasonal snow coverage. Here, we choose to mask out pixels with RMS values above 
0.5 radians (Figure S1a). 

The second criterion is the “Misclosure of Low Duration Interferograms”, MLDI, 
which is defined as the average signed misclosure residual of all low duration 
interferograms in the time series inversion of the interferometric network. Indeed, in 
the inversion, two months to one year interferograms effectively counterbalance the 
potential biases introduced by short (< one month)  temporal baseline interferograms 
(De Zan et Gomba, 2018; Ansari et al., 2020). Negative MLDI values point toward pixels 
with potential negative biais, which can result in a velocity artificially indicating 
subsidence. Inversely, positive MLDI occurs where the biais could produce false uplift. 
Here, we use the average difference between reconstructed and input 18-days 
interferograms, with a 0.1 radians threshold, to symmetrically mask out potentially 
biased areas (Figure S1b). These masked areas appear in agricol plains (crops, as in 
the Po plain) for negative bias or in very limited forest areas (for positive bias, less 
important). In addition to this criterion, we also masked pixels which have been 
unwrapped mostly on short duration interferograms, for two reasons: (1) the MLDI 
criterium is less effective if less long-duration interferograms are present, (2) Relative 
to other pixels, these pixels present worse long-duration coherence (e.g., one year 
interferograms are not coherent), and are thus more likely to be affected by a bias. 
The criterion is defined as the averaged temporal baseline of interferograms 
unwrapped for a given pixel. The threshold is set at 0.102 year (Figure S1c). We also 
compared our inversion results to the results of inversions without 6 days 
interferograms to evaluate the difference in the estimated cumulative displacements, 
which appears negligible in unmasked areas. 

Last, we choose to mask pixels falling within polygons of identified 
gravitational slope deformation (Figure S1d). Rapid landslides are unlikely to appear 
in the velocity map since they produce a high temporal decorrelation and are not well 
unwrapped; however DSGSD reach velocities of the order of 15 mm/yr at the 
maximum in the Alps (Andre, 2020). If these features are related to much shorter 
wavelengths than the surface deformation investigated in this study, their inclusion 
in the velocity map could lead to erroneous velocity estimates when filtering the 
velocity map to get the smoothed velocity field. The velocity maps presented in the 
main paper as well as in the following sections are masked according to these four 
criteria. 
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Velocity estimates 
 

To compute the velocity, we estimate a linear term in the displacement time 
series. This linear term can be estimated as the only component of pixel displacement 
and retrieved through an Ordinary Least Square (OLS) regression, or it can be 
dissociated from a seasonal component through a multilinear regression. In this case, 
two additional functions, a sinusoidal and a cosinus, are used to separate seasonal 
and linear signals and the displacement y(t) of each pixel is described as the time 
function : 
 
y(t) = a*t+b+C1*cos(2pi*t)+C2*sin(2pi*t)                                 (1) 
 

Where t is time, a is the amplitude of the linear term, b is a constant and C1 
and C2 are the amplitudes of seasonal signals. The first two terms (in blue) are the 
only ones considered in the OLS case. In both cases, we invert for the amplitude of 
each basis function. 
 
The linear term can be computed either on the raw displacement time series, or once 
the time series have been corrected from outliers. The weight of outlier values can be 
reduced  using a sliding median on consecutive dates. Alternatively, the averaged 
amplitude of the residual APS for each time step can be computed by least square 
summing of the residual to the regression. This APS amplitude, which is statistically 
much higher in summer than in winter can be used to downweight dates with strong 
atmospheric perturbations. 

The corresponding estimated velocities, for each combination of the two 
possible regression procedures on the raw, APS weighted or median filtered time 
series, are displayed on Figure S2. At the individual pixel scale, the separation of linear 
and seasonal terms appears necessary to better describe the displacements through 
time, even if at the scale of the study area, the difference between linear estimation 
alone and linear with seasonal estimation appears really significant only on the Po 
plain and along some alpine valleys. Overall, the amplitudes vary slightly between 
each velocity map but the positive and negative patterns remain consistent, except 
along three main valleys (Sion, Susa and Aosta valleys) that are further analyzed in 
the main text. The velocity solution retained is the one resulting from APS residual 
weighting of time series (Figure S2d). Since the latter is not known a priori and results 
from an iterative inversion procedure, we estimated the uncertainties on the 
velocities as standard errors on the regression to the time series sliding median. 
While reducing the number of independent observations, the sliding window median 
computation leads to a significant decrease of the associated uncertainties compared 
to the ones estimated on the raw time series (Figure S3). 
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Comparison with GPS and ramp estimation 

InSAR velocity maps derived from the present analysis have no residual ramp 
in range and azimuth and have been on average set to zero in areas with low RMS 
values. In order to provide a common reference for the velocity maps and GNSS data, 
we adjusted three parameters, a constant aGPS, a coefficient in range bGPS, and a 
coefficient in azimuth cGPS to the difference between the InSAR LOS velocity map and 
GPS velocity projected along LOS: 

vGPS - vinsar = aGPS + bGPS*range + cGPS*azimuth                         (2) 

We choose to use the GNSS solution from Kreemer et al. (2020) and  InSAR 
velocity extracted from the filtered map shown in Figure 2d at GNSS locations. We 
first subtracted, from the GPS velocity field in the IGS14 reference frame, the mean 
horizontal velocity in our area of interest. GPS data with residual horizontal motions 
along East and North directions larger than 1.9 times their respective standard 
deviations (0.95 and 1.16 mm/yr, respectively) were discarded for the adjustment. 
Finally, 63 remaining common GPS and InSAR LOS velocity measurements, associated 
with GPS LOS uncertainties, were used to adjust aGPS, bGPS and cGPS. The InSAR 
velocity field set in a common reference frame with the GPS data is then obtained as: 

Vinsar ref = Vinsar + aGPS + bGPS*range + cGPS*azimuth   (3) 

Figure S4 displays the referenced InSAR velocities as a function of GPS 
velocities in LOS from Kreemer et al., 2020, together with a distribution of the velocity 
difference. The correlation coefficient is 0.63 and the standard deviation of velocity 
differences is as low as 0.8 mm/yr, showing a good agreement considering the 
uncertainties associated with both data sets. 

The vertical GNSS solution of Sternai et al. (2019), projected into LOS, then 
needed an adjustment of +0.25 mm/yr in order to fit this common reference frame. 
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Figure S1. Parameters used to mask the velocity map. a) Root Mean Square (RMS) 
misclosure. Red areas (lowest RMS values) represent the pixels used for the 
distributed referencing of the velocity map (velocities are expressed relatively to 
these pixels). Black areas (not numerous) represent pixels of highest RMS values. 
These pixels are characterized by high temporal decorrelation and are masked from 
the velocity map. White pixels correspond to areas that could not be unwrapped due 
to highest temporal decorrelation (glacier areas or highest summits). b) Averaged 
network Misclosure of Low Duration Interferograms (MLDI). Pixels of large MLDI (dark 
pixels) correspond to agricultural areas or to mountain foothills and were masked 
from the velocity map. c) Average of interferograms temporal baseline for each pixel. 
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Pixels with values lower than 0.102 year were masked out from the velocity map. d) 
Map of the Deep-Seated Gravitational Slope Deformation (DSGSD) landslides (red 
pixels) affecting the processed area (black polygon). These features were identified 
through a combined slope and velocity analysis by Andre (2020). The corresponding 
pixels are masked from the velocity map.  
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Seasonal 
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Figure S2. Post-processing of the time series to derive velocity maps. a), c), and e): 
Ordinary least square estimation of the velocity on the raw time series, on the APS 
weighted time series, and on the sliding median of the time series respectively. b), d), 
and f): Joint estimation of the velocity and of the seasonal signal on raw time series, 
APS weighted time series, and sliding median time series, respectively. The velocity 
maps shown here are not referenced to GNSS data yet. 
 

 

Figure S3. Error maps (mm/yr) on the velocity in line of sight derived from the 
standard error analysis of a) the raw times series (Figure 2b)) and of b) the sliding 
median filtered time series (Figure 2f)). In both cases, the seasonal signal is jointly 
estimated with the linear term. 
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Figure S4. Comparison of InSAR and GPS LOS velocities, after spatial smoothing of 
InSAR velocity solutions and after adding a ramp in range and azimuth on InSAR data 
to adjust GPS data from Kreemer et al., 2020. Scatter plots of (a) APS-weighted and (c) 
median-filtered InSAR solutions versus GNSS solutions, along with y=x line. The 
correlation coefficient between APS-weighted/median-filtered and Kreemer et al. GPS 
data is 0.64/0.53 respectively. b) and d) show histograms of the 63 common LOS 
InSAR-GPS measurement differences, with a standard deviation of 0.79 mm/yr and 
0.91 mm/yr, respectively.  

a 
b
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Figure S5. Quantitative comparison of the three velocity solutions obtained jointly 
with seasonal signal estimation (Fig S2 b), d), and f)), after referencing to the GNSS 
solution from Kreemer et al. (2020) and after spatial smoothing using a Gaussian 
kernel. a) “raw” solution (no weighting of outliers in the time series). b) “median-
filtered” solution. c) “APS-weighted” solution. d), e), f) density scatter plots of velocity 
solutions plotted against each other.  

Raw solution (mm/yr) Raw solution (mm/yr) APS-weighted solution (mm/yr) 
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