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Abstract

We propose two new methods to calibrate the parameters of the epidemic-type aftershock sequence (ETAS) model based on

expectation maximization (EM) while accounting for temporal variation of catalog completeness. The first method allows for

model calibration on earthquake catalogs with long history, featuring temporal variation of the magnitude of completeness,

mc. This extended calibration technique is beneficial for long-term probabilistic seismic hazard assessment (PSHA), which is

often based on a mixture of instrumental and historical catalogs. The second method jointly estimates ETAS parameters and

high-frequency detection incompleteness to address the potential biases in parameter calibration due to short-term aftershock

incompleteness. For this, we generalize the concept of completeness magnitude and consider a rate- and magnitude-dependent

detection probability – embracing incompleteness instead of avoiding it. Using synthetic tests, we show that both methods can

accurately invert the parameters of simulated catalogs. We then use them to estimate ETAS parameters for California using

the earthquake catalog since 1932. To explore how the newly gained information from the second method affects earthquakes’

predictability, we conduct pseudo-prospective forecasting experiments for California. Our proposed model significantly outper-

forms the base ETAS model, and we find that the ability to include small earthquakes for simulation of future scenarios is the

main driver of the improvement. Our results point towards a preference of earthquakes to trigger similarly sized aftershocks,

which has potentially major implications for our understanding of earthquake interaction mechanisms and for the future of

seismicity forecasting.
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Abstract12

We propose two new methods to calibrate the parameters of the epidemic-type aftershock13

sequence (ETAS) model based on expectation maximization (EM) while accounting for14

temporal variation of catalog completeness. The first method allows for model calibra-15

tion on earthquake catalogs with long history, featuring temporal variation of the mag-16

nitude of completeness, mc. This extended calibration technique is beneficial for long-17

term probabilistic seismic hazard assessment (PSHA), which is often based on a mix-18

ture of instrumental and historical catalogs. The second method jointly estimates ETAS19

parameters and high-frequency detection incompleteness to address the potential biases20

in parameter calibration due to short-term aftershock incompleteness. For this, we gen-21

eralize the concept of completeness magnitude and consider a rate- and magnitude-dependent22

detection probability – embracing incompleteness instead of avoiding it. Using synthetic23

tests, we show that both methods can accurately invert the parameters of simulated cat-24

alogs. We then use them to estimate ETAS parameters for California using the earth-25

quake catalog since 1932. To explore how the newly gained information from the sec-26

ond method affects earthquakes’ predictability, we conduct pseudo-prospective forecast-27

ing experiments for California. Our proposed model significantly outperforms the base28

ETAS model, and we find that the ability to include small earthquakes for simulation29

of future scenarios is the main driver of the improvement. Our results point towards a30

preference of earthquakes to trigger similarly sized aftershocks, which has potentially ma-31

jor implications for our understanding of earthquake interaction mechanisms and for the32

future of seismicity forecasting.33

Plain Language Summary34

Some earthquakes, especially smaller ones, are not detected by the instruments in-35

stalled to detect them. Our capability to detect earthquakes varies with time, on one hand36

because more and better instruments are being deployed over the years, leading to long-37

term changes of detection capability. On the other hand, earthquakes are more difficult38

to be detected during times when several earthquakes are shaking the ground simulta-39

neously. This manifests itself in short-term changes of detection capability. Incomplete40

detection can lead to different kinds of bias in seismicity models used for earthquake fore-41

casting. We propose two methods which allow us to calibrate these models while account-42

ing for long-term (first model) and short-term (second model) changes in detection ca-43

pability, which in turn allows us to use a larger and more representative fraction of the44

available data. We test both methods on synthetic data and then apply them to the Cal-45

ifornian earthquake catalog. Finally, we test how the second model can help us become46

better at forecasting. We find that being able to include small earthquakes in our sim-47

ulations leads to superior forecasts. Also, our results suggest that earthquakes may pref-48

erentially trigger aftershocks of similar size, which can have major implications for earth-49

quake forecasting.50

Keywords51

data incompleteness, model inversion, ETAS, earthquake forecasting52

1 Introduction53

Earthquakes trigger aftershocks, which can trigger their own aftershocks, and so54

on. Because of this, they cluster in space and time. The clustering behavior of earth-55

quakes is relevant in a variety of contexts, and in particular it is relevant for seismicity56

forecasting. Epidemic-type aftershock sequence (ETAS) models (see Ogata, 1998; Veen57

and Schoenberg, 2008; Nandan et al., 2017) intrinsically account for the spatio-temporal58
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clustering of earthquakes, and they have been shown to be among the best-performing59

earthquake forecasting models available today (Nandan et al., 2019c).60

1.1 Variation of mc61

A fundamental requirement for parameter estimation of the ETAS model is the com-62

pleteness of the training catalog above a magnitude threshold mc, the magnitude of com-63

pleteness. If the catalog were incomplete, aftershocks of undetected events could be wrongly64

interpreted as aftershocks of events in the catalog, which would distort our view on the65

triggering behaviour of earthquakes. Numerous approaches to estimate mc have been66

proposed (Wiemer and Wyss, 2000; Cao and Gao, 2002; Woessner and Wiemer, 2005;67

Amorese, 2007; Rydelek and Sacks, 1989; see Mignan and Woessner (2012) for an overview).68

While in many cases, a global value of mc is established for the entire catalog, it is well69

known that mc can vary with space. Several estimation techniques for spatial variations70

of mc exist (see e.g. Wiemer and Wyss (2000), or Mignan et al. (2011) with a Bayesian71

approach). In addition to varying in space, mc can vary with time for reasons such as72

gradual improvement of the seismic network, software upgrades, and so on (Woessner73

and Wiemer, 2005; Amato and Mele, 2008; Nanjo et al., 2010; Hutton et al., 2010; Mignan74

and Chouliaras, 2014). Schorlemmer and Woessner (2008) proposed a probabilistic method75

to calculate a space-time dependent mc based on station data. One of the few assump-76

tions they made is that data comes from a period of homogeneous recording, which ex-77

plicitly excludes periods of aftershock clustering.78

This raises another important cause of variations in time of mc: Short-term after-79

shock incompleteness (STAI). Because earthquakes strongly cluster in time, seismic net-80

works can only capture a subset of events during periods of high activity (Kagan, 2004).81

Hainzl (2016b) and Hainzl (2016a) modeled STAI based on the short-term rate of earth-82

quakes, bringing into relation true and apparent triggering laws. Stallone and Falcone83

(2020) have proposed a method to stochastically replenish catalogs suffering from STAI,84

to be used for better operational earthquake forecasting and hazard assessment, albeit85

without addressing effectiveness of the method in this regard. van der Elst (2021) recently86

described a robust b-value estimator which can be applied during incomplete aftershock87

sequences and provides an instantaneous estimate of time-varying mc. With mc usually88

being assumed constant in the ETAS parameter inversion, the crucial requirement of com-89

pleteness of the training catalog is not fulfilled during large aftershock sequences, which90

has been shown to cause a substantial bias of the estimated parameters (Seif et al., 2017).91

Approaching this issue, Omi et al. (2014) described a method to estimate parameters92

of the ETAS model from incompletely observed aftershock sequences, by statistically mod-93

elling detection deficiency. On a similar note, Zhuang et al. (2017) showed that estimat-94

ing ETAS parameters using a replenished catalog is more stable with respect to cutoff95

magnitude.96

1.2 The importance of earthquakes below mc97

Besides the incompleteness-induced bias of estimated ETAS parameters, a second,98

distinct biasing effect of incompleteness on ETAS models is the forced omission of af-99

tershocks triggered by unobserved events in the forecast. Although small earthquakes100

trigger fewer aftershocks than large ones do, Marsan (2005), as well as Helmstetter et101

al. (2005) found that small earthquakes, being more numerous, are as important as large102

ones for earthquake triggering. Helmstetter et al. (2006) thereafter proposed a forecast-103

ing model based on ETAS with a focus on the inclusion of aftershocks of small earth-104

quakes in their forecast. They modeled a time-varying mc(t) during aftershock sequences105

and inflated the triggering contribution of events above mc(t) to account for aftershocks106

triggered by those below mc(t). Helmstetter et al. (2007) used the analogous technique107

in the time-independent context and the resulting model was shown to outperform all108

other time-independent models participating in the prospective CSEP forecasting exper-109
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iment in California (Strader et al., 2017). The success of their high-resolution forecast110

can potentially be attributed to the inclusion of small earthquakes when forecasting large111

ones. On the other hand, Nandan et al. (2019a) found that earthquakes tend to pref-112

erentially trigger similarly sized aftershocks, which would reduce the contribution of small113

events in triggering larger ones. Besides their potential to cumulatively contribute to af-114

tershock triggering, the large number of earthquakes below mc can help highlighting the115

underlying fault structure.116

The idea that earthquakes below the threshold of (complete) detection are relevant117

for our understanding of earthquakes’ clustering behavior was thoroughly discussed by118

Sornette and Werner (2005a). They pointed out the important distinction between min-119

imum triggering magnitude m0 and magnitude of completeness, giving constraints for120

m0. More generally, Sornette and Werner (2005b) found that assuming m0 to be equal121

to mc leads to a biased view of the ongoing triggering. They predicted that the branch-122

ing ratio will be drastically underestimated, and the fraction of non-triggered events will123

be overestimated, if m0 is much smaller than mc.124

1.3 Method 1: ETAS calibration with time-varying mc125

Although short- and long-term variation of mc and the biasing effects on ETAS pa-126

rameter estimates caused by data incompleteness are known and discussed (Hainzl (2016b);127

Seif et al., 2017; Zhuang et al. (2017)), nearly all applications of the ETAS model assume128

for simplicity a global magnitude of completeness for the entirety of the training period.129

In order to be complete for the entire training period, the modeller is often forced to use130

very conservative estimates of mc, as a result completely ignoring abundant and high-131

quality data from more complete periods. Alternatively, to benefit from the abundance132

of smaller magnitude earthquakes in more complete periods in model training, the du-133

ration of the training period is often restricted. Parameters estimated in this way can134

however be dominated by one or two sequences and may not represent long-term behav-135

ior, making the use of ETAS models for long term probabilistic seismic hazard assess-136

ment (PSHA) non-ideal. This problem is further exacerbated due to a substantial re-137

duction in the size of catalog eligible for ETAS model calibration due to the assumption138

of conservatively constant mc. Instead, the modellers rely on smoothed seismicity ap-139

proaches based on declustered catalogs (see e.g. Gerstenberger et al., 2020; Petersen et140

al., 2018; Wiemer et al., 2009), which has been found to be a problematic approach due141

to the biasing effects of declustering on the size distribution of mainshocks, and thus on142

the estimated seismic hazard (Mizrahi et al., 2021). In this regard, Llenos and Michael143

(2020) proposed an approach to calculate regionally optimized background earthquake144

rates from ETAS to be used for the U.S. Geological Survey National Seismic Hazard Model145

(NSHM), stressing the need for methods to address catalog heterogeneities such as time-146

dependent incompleteness.147

Goal 1: In this article, we propose a modified ETAS parameter inversion method148

for training catalogs with time-varying completeness magnitude mc(t). This simultane-149

ously allows the the inclusion of historical data in the parameter inversion, as well as the150

inclusion of small magnitude events, which make up a large fraction of data and can en-151

able the ability to more clearly illuminate faults. ETAS models can hence be trained on152

a more representative and informative set of data, which in some areas facilitates a more153

correct approach to PSHA.154

1.4 Method 2: an approach to generalize the concept of mc155

The clustering behavior of earthquakes, which is at the heart of the success of ETAS156

models, is also the cause of STAI, an important source of data incompleteness and hence157

a source of bias in ETAS. With the second method proposed in this article, we want to158

utilize the knowledge about clustering derived using the ETAS model to quantitatively159
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estimate the level of completeness of a catalog at any given time, and then use this knowl-160

edge to minimize the incompleteness-induced bias in the ETAS model.161

We approach this issue by generalizing the notion of mc, moving from a binary com-
pleteness space (complete versus incomplete) to a continuous-valued completeness space
by means of a magnitude-dependent detection probability − embracing incompleteness
instead of avoiding it. Deriving inspiration from Hainzl (2016b) and Hainzl (2016a), we
model the probability of an earthquake to be detected, f(m,λ(t)), depending on its mag-
nitude m and on the current local earthquake rate λ(t). Besides a description of detec-
tion probability in terms of magnitude and current rate, any such model intrinsically re-
quires an ancillary model to describe the temporal evolution of rates. Conveniently, the
ETAS model provides a simple way of calculating such time-dependent event rates as

λ(t) = µ+
∑
i:ti<t

∫∫
R

g(mi, t− ti, x− xi, y − yi) dx dy. (1)

That is, the sum of background rate µ and the rate of all aftershocks of previous events
ei, throughout the region R. Note that for simplicity, by integrating over space this for-
mulation of λ is spatially invariant. Here, mi, ti and (xi, yi) denote the magnitude, time,
and epicentre of event ei. The aftershock triggering rate g(m,∆t,∆x,∆y) describes the
rate of aftershocks triggered by an event of magnitude m, at a time delay of ∆t and a
spatial distance (∆x,∆y) from the triggering event. We here use the definition

g(m,∆t,∆x,∆y) =
k0 · ea(m−mref )

(∆t+c)1+ω

e
−∆t
τ

·
(
(∆x2 + ∆y2) + d · eγ(m−mref )

)1+ρ , (2)

as in Nandan et al. (2017).162

The time-dependent event rate λ(t), and hence the temporal evolution of detec-163

tion probability, depends on the estimated ETAS parameters (E = (µ, k0, a, c, ω, τ, d, γ, ρ))164

which describe g(m,∆t,∆x,∆y). Forming a loop of subordination, the ETAS param-165

eter estimates in turn depend on the temporal evolution of detection probability, as knowl-166

edge about catalog incompleteness lets us correct for this incompleteness during param-167

eter inversion.168

Goal 2: In this article, we describe a method to estimate ETAS parameters (E)169

when time-varying probabilistic detection incompleteness of the training catalog is given,170

and vice-versa a method to estimate high-frequency probabilistic detection incomplete-171

ness (I) when ETAS parameters are known. An overarching algorithm leverages this cir-172

cular dependency and jointly estimates both I and E in a self-consistent manner.173

The first method described in this article allows mc(t) as an input to the ETAS pa-174

rameter calibration, which makes it powerful in a long-term context. This second method175

is complementary to the first one, addressing the additional challenge of estimating short-176

term variations of completeness.177

1.5 Paper outline178

The remainder of the paper is structured as follows. Section 2 describes the earth-179

quake catalog that was used in this analysis. The modified ETAS parameter inversion180

methods are presented in Section 3.1 for time-varying mc, and in Section 3.2 for time-181

varying probabilistic detection incompleteness. Sections 3.3 and 3.4 describe the formu-182

lation of probabilistic detection incompleteness and the algorithm for joint estimation183

of ETAS parameters and detection probability. Section 4 presents synthetic tests for both184

methods, and Section 5 presents applications of both methods to the Californian data.185

Section 6 describes pseudo-prospective forecasting experiments used to assess the im-186
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pact of the newly acquired information on the forecastability of earthquakes in Califor-187

nia. Finally, in Section 7, we present our conclusions.188

2 Data189

In this article, we use the ANSS Comprehensive Earthquake Catalog (ComCat) pro-190

vided by the U.S. Geological Survey. We adopt the preferred magnitudes as defined in191

ComCat, and use as study region the collection area around the state of California as192

proposed in the RELM testing center (Schorlemmer and Gerstenberger, 2007). We con-193

sider events of magnitude M ≥ 0.0, with magnitudes rounded into bins of size ∆M =194

0.1. For the major part of the study, the time frame used is January 1, 1970 until De-195

cember 31, 2019. For the analysis of long-term variations in mc, we extend the time frame196

to start on January 1, 1932, when instrumentation was introduced to the Californian seis-197

mic network (Felzer, 2007).198

Whenever ETAS parameters are inverted, we use the first fifteen years of data to199

serve as auxiliary data. Earthquakes in the auxiliary catalog may act as triggering earth-200

quakes in the ETAS model, but not as aftershocks. Thus, the start of the primary cat-201

alog is either January 1985, or January 1947.202

To estimate a constant magnitude of completeness of the catalog, we use the method203

described by Mizrahi et al. (2021) with an acceptance threshold value of p = 0.1, which204

yields mc = 3.1 for the time period between 1970 and 2019. This method is adapted205

from Clauset et al. (2009) and jointly estimates mc and the b-value of the Gutenberg-206

Richter law (Gutenberg and Richter, 1944) describing earthquake size distribution. It207

compares the Kolmogorov-Smirnov (KS) distance between the observed cumulative dis-208

tribution function (CDF) and the fitted GR law to KS distances obtained for magnitude209

samples simulated from said GR law. A value of mc is accepted if at least a fraction of210

p = 0.1 of KS distances is larger than the observed one.211

3 Model212

3.1 ETAS parameter inversion for time-varying mc213

Consider an earthquake catalog

C = {ei = (mi, ti, xi, yi), i ∈ {1, . . . , n}} (3)

consisting of events ei of magnitudes mi which occur at times ti and locations (xi, yi).214

Furthermore, consider a time-varying magnitude of completeness mc(t) defined for all215

ti. We say that the catalog is complete if mi ≥ mc(ti)∀i.216

To calibrate the ETAS model, the nine parameters to be optimized are the back-217

ground rate µ and the parameters k0, a, c, ω, τ, d, γ, ρ which parameterize the aftershock218

triggering rate g(m, t, x, y) given in Equation 2. We build on the expectation maximiza-219

tion (EM) algorithm to estimate the ETAS parameters (Veen and Schoenberg, 2008).220

In this algorithm, the expected number of background events n̂ and the expected num-221

ber of directly triggered aftershocks l̂i of each event ei are estimated in the expectation222

step (E step), along with the probabilities pij that event ej was triggered by event ei,223

and the probability pindj that event ej is independent. Following the E step, the nine pa-224

rameters are optimized to maximize the complete data log likelihood in the maximiza-225

tion step (M step). E and M step are repeated until convergence of the parameters. The226

usual formulation of the EM algorithm defines227
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pij =
gij

µ+
∑
k:tk<tj

gkj
, (4)

pindj =
µ

µ+
∑
k:tk<tj

gkj
, (5)

with gkj = g(mk, tj − tk, xj −xk, yj − yk) being the aftershock triggering rate of ek at228

location and time of event ej . For a given target event ej , Equations (4-5) define pij to229

be proportional to the aftershock occurrence rate gij , and pindj to be proportional to the230

background rate µ. As an event must be either independent or triggered by a previous231

event, the normalization factor Λj := µ+
∑
k:tk<tj

gkj in the denominator of (4-5) stip-232

ulates that pindj +
∑
k:tk<tj

pkj = 1. This relies on the assumption that all potential233

triggering earthquakes of ej were observed, that is, all events prior to tj above the ref-234

erence magnitude (minimum considered magnitude), mref were observed. To fulfill this235

requirement, most applications of the method define mref to be equal to the constant236

value of mc.237

For the case of time-varying mc(t), we define mref := mini{mc(ti)}, the minimum238

mc(ti) for times ti of events in the complete catalog. This implies that for the times when239

mc(t) > mref the requirement of complete recording of all potential triggers may be240

violated. Events whose magnitudes fall between mref and mc(t) are not part of the com-241

plete catalog and are considered to be unobserved (even though they may have been de-242

tected by the network). Hence, the normalization factor Λj (the denominator of Equa-243

tions 4-5) needs to be adapted to account for the possibility that ej was triggered by an244

unobserved event.245

Consider

ξ(t) =

∫mc(t)
mref

fGR(m) ·G(m) dm∫∞
mc(t)

fGR(m) ·G(m) dm
, (6)

the ratio between the expected number of events triggered by unobserved events and the
expected number of events triggered by observed events at time t. Here, fGR = β·e−β·(m−mref )

is the probability density function of magnitudes according to the GR law, and G(m) =∫∞
0

∫∫
R
g(m, t, x, y) dx dy dt is the total number of expected aftershocks larger than mref

of an event of magnitude m. Note that in the calculation of G(m) we make the simpli-
fying assumption that the considered region R extends infinitely in all directions, allow-
ing a facilitated, asymptotically unbiased estimation of ETAS parameters (Schoenberg,
2013). Analogously,

ζ(t) =

∫mc(t)
mref

fGR(m) dm∫∞
mc(t)

fGR(m) dm
(7)

is the ratio between the expected number of unobserved events and the expected num-
ber of observed event at time t. If β > a−ργ, both ξ(t) and ζ(t) are well-defined and
we have that

ξ(t) = e−(a−β−ργ)·∆m − 1, (8)

ζ(t) = eβ·∆m − 1, (9)

where ∆m = mc(t) − mref . The condition that β is larger than the productivity ex-
ponent α = a − ργ (see Text S1) is generally fulfilled in naturally observed catalogs
(Helmstetter, 2003). If this were not the case, earthquake triggering would be dominated
by large events and one would need to introduce a maximum possible magnitude for both
denominators to be finite. The normalization factor Λj consists of the sum of background
rate and aftershock rates of all events which happened prior to ej . In the case of time-
varying mc, besides the possibilities of being a background event or being triggered by
an observed event, the event ej can also be triggered by an unobserved event. We thus
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generalize Λj by adding to the rate of aftershocks gkj of each observed triggering event
ek the expected rate of aftershocks of unobserved triggering events at that time, gkj ·
ξ(tk). This yields Λj = µ+

∑
k:tk<tj

gkj ·(1+ξ(tk)) and thus the generalized definition

of pij and pindj is given by

pij =
gij

µ+
∑
k:tk<tj

gkj · (1 + ξ(tk))
, (10)

pindj =
µ

µ+
∑
k:tk<tj

gkj · (1 + ξ(tk))
. (11)

Note that the probability puj that event ej was triggered by an unobserved event
is given such that pindj + puj +

∑
k:tk<tj

pkj = 1. In the above equations, the special

case of mc(t) ≡ mref is accounted for when ξ(t) ≡ 0. In this special case, n̂ and l̂i are
obtained by summing independence probabilities (n̂ =

∑
j p

ind
j ) and triggering prob-

abilities (l̂i =
∑
j pij), respectively. In the generalized case however, n̂ and l̂i are the

estimated number of background events and aftershocks above mref , which includes un-
observed events. Similarly to inflating the triggering power, we hence inflate the observed
event numbers to account for unobserved events. Whenever an event is observed at time
tj , we expect that ζ(tj) events occurred under similar circumstances (with same inde-
pendence and triggering probabilities), but were not observed. This yields

n̂ =
∑
j

pindj · (1 + ζ(tj)), (12)

l̂i =
∑
j

pij · (1 + ζ(tj)). (13)

With these adapted definitions of pij , p
ind
j , n̂ and l̂i (Equations 10 - 13), ETAS param-246

eters can be inverted using the procedure described by Veen and Schoenberg (2008).247

3.2 ETAS parameter inversion for time-varying probabilistic detection248

To overcome the binary view of completeness which forces us to disregard earth-
quakes which were detected but happen to fall between mref and mc(t), we can take the
generalization of the EM algorithm for ETAS parameter inversion one step further by
introducing a time and magnitude-dependent probability of detection,

f : R≥mref × R −→ [0, 1]

(m, t) 7→ p.

To be able to account for such a probabilistic concept of catalog completeness in the ETAS
inversion algorithm, one needs to generalize ξ(t) and ζ(t) (equations 6 and 7). In con-
trast to before, the magnitude of an event does not determine whether or not the event
has been detected. We therefore adapt the bounds of integration in numerator and de-
nominator such that all events above magnitude mref are considered. To obtain the ex-
pected number of earthquakes triggered by observed and unobserved events, the inte-
grands are multiplied by the probability of the triggering events to be observed, f(m, t),
or unobserved, (1−f(m, t)), respectively. The generalized formulations of ξ(t) and ζ(t)
then read

ξ(t) =

∫∞
mref

(1− f(m, t)) · fGR(m) ·G(m) dm∫∞
mref

f(m, t) · fGR(m) ·G(m) dm
, (14)

and

ζ(t) =

∫∞
mref

(1− f(m, t)) · fGR(m) dm∫∞
mref

f(m, t) · fGR(m) dm
. (15)

–8–
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For compatible choices of f(m, t), fGR(m), G(m), we find that ξ(t) and ζ(t) are well-249

defined. Consider for instance the special case of binary detection, where f(m, t) is de-250

fined via the Heaviside step function H as fbin(m, t) = H(m −mc(t)), which is equal251

to 1 if m ≥ mc(t) and 0 otherwise. This is the case discussed in the previous section,252

for which we have well-definedness if β > a− ργ.253

The reference magnitude mref is a model constant. Smaller values of mref allow254

the modeller to use a larger fraction of the observed catalog, which can be especially use-255

ful in regions with less seismic activity.256

Note that both generalizations of the ETAS inversion algorithm (for time-varying257

completeness or for time-varying probabilistic detection) can without further modifica-258

tion be applied when mc or detection probability vary with space. The formulation is259

based on the assumption that the behaviour of observed events is locally representative260

(in space and/or time) of the behaviour of unobserved events.261

3.3 Rate-dependent probabilistic detection incompleteness262

In this section we present our approach to define f(m, t), where the temporal com-263

ponent is purely driven by the current rate of events λ(t). Note that this means we only264

capture changes in detection due to changes in short-term circumstances, and neglect265

long-term changes due to network updates. We make the following simplifying assump-266

tions.267

• Any earthquake will obstruct the entire seismic network from detecting smaller268

earthquakes for a duration of tR (recovery time of the network).269

• Magnitudes of events which are simultaneously blocking the network are distributed270

according to the time-invariant Gutenberg-Richter law which also describes the271

magnitude distribution of the full catalog (Gutenberg and Richter, 1944).272

De Arcangelis et al. (2018) found that short-term aftershock incompleteness can be well273

explained in terms of overlapping seismic records, while instrumental coverage of an area274

plays a subsidiary role. Nevertheless, assuming tR to be independent of the magnitude275

of the event, and independent of the spatial distance between the event and the locations276

of interest, is certainly a major simplification which could be refined in subsequent stud-277

ies.278

The probability f(m, t) of an earthquake to be detected is then given by the prob-
ability of it being the largest of all the earthquakes which are currently blocking the net-
work.

f(m, t) =
(

1− e−β·(m−mref )
)tR·λ(t)

. (16)

Here, tR ·λ(t) represents the expected number of events blocking the network at time279

t and 1 − e−β·(m−mref ) is the probability of any given earthquake’s magnitude falling280

between mref and m, where β = b · ln 10 is the exponent in the GR law with basis e.281

Thus, f(m, t) is the probability that in the set of tR·λ(t) events currently blocking the282

network, all of them have a magnitude of less than m, which is the condition for an event283

of magnitude m to be detected. Because the time-dependence of f(m, t) is solely con-284

trolled by the time-dependence of λ, we here use the terms f(m, t) and f(m,λ) inter-285

changeably.286

Setting κ := −a−ργβ , we obtain

ξ(t) =
1

(κ+ 1) · B(κ+ 1, tR · λ(t) + 1)
− 1, (17)

ζ(t) = tR · λ(t), (18)
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so long as β > a− ργ, where B is the Beta function. A positive background rate µ >287

0 ensures λ(t) > 0 ∀t. Expressions analogous to (17) and (18) hold when alternative288

exponents are chosen instead of tR · λ in the definition of f(m,λ) (Equation 16).289

The network recovery time tR and the current event rate λ(t) at the times ti of all290

earthquakes ei need to be estimated from the data.291

3.4 Estimating probabilistic epidemic-type aftershock incompleteness292

(PETAI)293

3.4.1 Estimation of (tR, β) when λi are known294

Text S2 and Figure S1 describe how tR and β can be jointly estimated using a max-295

imum likelihood approach for the case when current event rates λi = λ(ti) are known.296

In reality, λi have to be estimated themselves.297

3.4.2 Estimation of λi when ETAS parameters and (tR, β) are known298

They depend on one hand on the ETAS parameters (see Equation 1). On the other
hand, the sum of aftershocks of previous earthquakes in the definition of λ(t) (Equation
1) does not account for aftershocks of events that were not detected. As in the ETAS
parameter inversion, to account for aftershocks of undetected events in the calculation
of λ(t), we inflate the triggering power of each event ei by a factor of 1+ξ(ti) and de-
fine

λ(t) = µ+
∑
i:ti<t

(1 + ξ(ti)) ·
∫∫

R

g(mi, t− ti, x− xi, y − yi) dx dy. (19)

3.4.3 Estimation of λi and (tR, β) when ETAS parameters are known299

ξ(t) however requires knowledge of (tR, β). This implies that even when ETAS pa-300

rameters are fixed, an additional, lower-level circular dependency dictates the relation-301

ship between (λi)i=1,...,n and (tR, β).302

To fully estimate the high-frequency probabilistic detection incompleteness, given303

fixed ETAS parameters, we recursively re-estimate (λi)i=1,...,n and (tR, β), until (tR, β)304

converges, starting with an informed or random initial guess for (tR, β).305

3.5 PETAI inversion algorithm306

The overarching joint inversion of ETAS parameters (E) and high-frequency de-307

tection incompleteness (I = (λi, tR, β)) starts with estimating ETAS parameters in the308

usual way, i.e. using the algorithm described in Section 3.1, with a time-independent com-309

pleteness magnitude mc(= mref ) above which all events are detected. It then recursively310

re-estimates (I) and (E) until convergence of the ETAS parameters. The result is a prob-311

abilistic, epidemic-type aftershock incompleteness (PETAI) model. With all its compo-312

nents having now been described, Figure S2shows the flow diagram of the PETAI inver-313

sion algorithm. A simplified illustration of the inversion algorithm is shown in Figure314

1. Starting with the initial ETAS parameters obtained assuming constant mc, event rates315

can be calculated at each point in time as the sum of aftershock rates of all previous events,316

plus the background rate. Given these event rates, the detection probability function is317

calibrated, which then provides insight into the temporal evolution of catalog (in-)completeness.318

ETAS parameters can then be re-estimated, now also using data below mc, by account-319

ing for the estimated incompleteness. With this new set of ETAS parameters, event rates320

can be re-calculated, upon which detection probability is re-calibrated, and so on, un-321

til all convergence criteria are satisfied.322
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4 Synthetic tests323

4.1 Long-term variation of mc324

To test the ETAS parameter inversion for time-varying mc, we generate a complete325

synthetic catalog using ETAS and then artificially impose a given mc(t) on the catalog.326

Assuming mc(t) to be known, we use the method described in Section 3.1 to infer the327

parameters used in the simulation.328

We estimate mc(t) based on the Californian catalog described in Section 2 with a
time horizon from 1932 to 2019. Fixing the b-value we had estimated for the main cat-
alog (1970 - 2019, M ≥ 3.1, b = 1.01), we estimate mc for successive 10 year periods
starting in 1932. The last period then comprises only 8 years of data. Estimation of mc

is analogous to the main catalog, using the method of Mizrahi et al. (2021) with an ac-
ceptance threshold of p = 0.1, but keeping b = 1.01 fixed. This yields

mc(t) =



4.3 for t between 1932 and 1941,

3.9 for t between 1942 and 1951,

4.3 for t between 1952 and 1961,

3.4 for t between 1962 and 1971,

3.1 for t between 1972 and 1981,

3.3 for t between 1982 and 1991,

2.4 for t between 1992 and 2001,

2.8 for t between 2002 and 2011,

3.6 for t between 2012 and 2019.

(20)

The large increase in mc for the years 2012 to 2019 is due to the Ridgecrest events329

in 2019. Although the period affected by aftershock incompleteness only makes up a small330

fraction of the 8 year period, our method with an acceptance threshold of p = 0.1 yields331

a conservative estimate of mc. To avoid such an effect, one could use shorter than 10 year332

periods, or use different methods to estimate time-varying mc. Note that our method333

to invert ETAS parameters for time-varying mc (Section 3.1) accepts mc(t) as an input334

and works independently of how this mc(t) was obtained. We here want to keep the fo-335

cus on the parameter inversion and thus choose the described approach to estimate mc(t)336

due to its simplicity.337

To mimic a realistic scenario, we simulate the synthetic catalog using parameters338

obtained after applying ETAS parameter inversion for time-varying mc on the Califor-339

nia data, with two manual corrections.340

The first correction is done because it has been shown that certain assumptions in341

the ETAS model such as a spatially isotropic aftershock distribution or a temporally sta-342

tionary background rate, as well as data incompleteness can lead to biased estimations343

of the productivity exponent (Hainzl et al., 2008; Hainzl et al., 2013; Seif et al., 2017).344

This bias can lead to a lack of clustering when catalogs are simulated. We thus use an345

artificially increased productivity exponent for our simulation as described in Text S1.346

Secondly, we reduce the background rate µ. In this way, the size of the simulated347

catalog is reduced such that inversion requires a reasonable amount of computational power,348

even for large regions and time horizons. The final parameters used for the simulation349

of the catalog can be found in Table 1, first column.350

A catalog of events of magnitude M ≥ 2.4 = mref is simulated as described in351

Text S3 for the time period of January 1832 to December 2019 in a square of 40° lat ×352

40° long. Because of missing long-term aftershocks in the beginning of the simulated cat-353

alog, we allocate a burn period of 100 years in the beginning of the simulated period and354
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are left with a catalog from 1932 to 2019. The starting year of our synthetic catalog co-355

incides with the introduction of instrumentation in California (Felzer, 2007). This allows356

us to impose the mc(t) history observed in California on the synthetic catalog by dis-357

carding all events ei for which mi < mc(ti).358

We apply the ETAS inversion for time-varying mc with the here-obtained mc(t)359

(equation 20) to the synthetic catalog. The first two columns of Table 1 show the ETAS360

parameters used in the simulation of the synthetic catalog, and inverted from the syn-361

thetic catalog. The parameters estimated from the synthetic catalog lie reasonably close362

to the truth, confirming the correctness of the method.363

4.2 PETAI364

To test the PETAI inversion algorithm, a synthetic catalog is created as follows.365

We use the parameters obtained after applying the PETAI inversion algorithm to the366

California data (1970 to 2019) with mref = 2.5.367

The value of mref is chosen to achieve a balance between the amount of data avail-368

able for the inversion and the computational power required to process such an amount369

of data. For the same reasons as before, we modify the parameters to obtain a corrected370

productivity exponent as described in Text S1. Although this time the starting param-371

eters were estimated using PETAI, which already accounts for short-term aftershock in-372

completeness, the effects of the assumptions of isotropy and stationary background rate373

are not addressed, leaving a still non-negligible negative bias.374

We reduce the background rate µ for the same reasons as before. The final param-375

eters used for the simulation of the catalog can be found in Table 1, third column.376

Using these parameters, we simulate as described in Text S3, a synthetic catalog377

that resembles the Californian catalog, for the period between 1850 and 2020 in a square378

of 40° lat × 40° long. As in the previous case, because of missing long-term aftershocks379

in the beginning of the simulated catalog, we discard the first 100 years of data and are380

left with a catalog from 1950 to 2020. Based on this catalog and given the ETAS param-381

eters used for simulation, we calculate the current event rate at the time of each event382

in the catalog. As the current event rate is to a large extent driven by aftershock rates383

of earlier events, we expect overestimation of detection probabilities, as well as overes-384

timation of independence probabilities, during the beginning of the time period (Wang385

et al., 2010; Schoenberg et al., 2010; Nandan et al., 2019a). For this reason, we allocate386

another 20 years of burn period, leaving us with a catalog starting in 1970.387

Using the detection probability function given by Equation (16) and parameters388

estimated from the Californian catalog (Table 1, Column 3), we calculate for each event389

its probability of being detected, and according to this probability we randomly decide390

for each event whether it has been detected or not. The subset of all events that were391

detected is then our test catalog. While we use β as estimated in California, we adapt392

the value of tR so that the fraction of undetected events in the catalog corresponds to393

the fraction of estimated undetected events inferred for California. This estimated num-394

ber of undetected events is obtained by summing ζ(ti), the expected number of unob-395

served events per observed event, which is estimated as a component of the PETAI in-396

version, over all occurrence times ti of events in the primary catalog. Applied to Cal-397

ifornia, we arrive at 5041.74 undetected events, which make up 6.25% of the inferred to-398

tal. The same fraction of undetected events is obtained for the synthetic catalog when399

a value of 5 minutes (10−2.46 days) is used for tR.400
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4.2.1 Inverted number of undetected events401

Figure 2 (a) shows the series of events of the synthetic test catalog over the pri-402

mary time period in blue, with the undetected synthetic events marked in black. The403

number of undetected events is 1282, which makes up 6.25% of the original synthetic cat-404

alog. Figure 2 (b) shows cumulative number of undetected synthetic events over time405

in black, compared to the cumulative inferred number of undetected events in blue. Over-406

all, it is estimated 1068.88 events were undetected. While this underestimates the true407

number of 1282 undetected events, the major part of events can be reconstructed, with408

accurate timing. As a comparison, we fitted a GR law to the test catalog and calculated409

the difference in event numbers between the extrapolated fit and the test catalog. The410

expected number of undetected events obtained this way is 583.13, which is less than half411

of the true number of undetected events.412

Figure 2 (c) shows inferred versus actual number of undetected events for differ-413

ent assumed detection efficiencies. Starting from the same synthetic catalog, different414

values for tR yield different detection probabilities. In addition to the tR value of 5 min-415

utes, which yields a realistic fraction of thrown out events and is marked with a star, we416

test tR values of 1, 1.97, 10, 30, 60, 180, 360, and 720 minutes (crosses), leading us to417

throw out between 2.88% and 39.23% of events. Note that that value of 1.97 minutes418

for tR corresponds to the value inferred from the Californian catalog. The estimated num-419

ber of undetected events is reasonably accurate when the percentage of undetected events420

is small. For large portions of undetected events above 30%, the number of undetected421

events is increasingly underestimated, such that only 4521.06 undetected events instead422

of 7365 are estimated for a tR of 720 minutes. Such high values of tR, which correspond423

to very high fractions of undetected M ≥ 2.5 events in California, are probably unre-424

alistic.425

4.2.2 Inverted parameters426

Table 1 shows the ETAS parameters and (tR, β) that were used in the simulation427

of the synthetic catalog (Column 3). The parameters inverted from the synthetic test428

catalog are shown in Column 4. With the exception of tR and τ , the inverted param-429

eters correspond well to the parameters used in the simulation. A possible explanation430

for the underestimation of τ is the finiteness of the catalog time window.431

The hypothesis that a finite time horizon causes underestimation of τ is further sup-432

ported by the observation that in the case of the long-term synthetic catalog since 1932,433

τ is only slightly underestimated, and in fact estimates for τ show a modest increase with434

increasing duration of catalog (see Figure S3). Such a bias is expected also when param-435

eters are inverted with the usual method.436

Besides τ , the recovery time tR of the network is clearly underestimated, which might437

explain the overly conservative estimate of undetected events. Despite this underesti-438

mation, we are able to infer a major part of undetected events.439

5 Application to California440

5.1 Inverted Parameters441

Table 2 contains ETAS parameters, β, and, if applicable, tR estimates obtained when442

applying different inversion algorithms to Californian data. Additionally, the resulting443

values for productivity exponent α = a− ργ and branching ratio η (see Equation S1)444

are provided. The first column shows the results of applying the usual inversion method445

as described in Section 3.1 with a constant completeness magnitude of mc ≡ 3.1 to the446

main catalog (1970 to 2019). The second column shows the parameters inverted when447
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time-varying completeness (Equation 20) is accounted for and thus historical data from448

1932 to 2019 can be used with a reference magnitude of mref = 2.4.449

The results of applying PETAI inversion to the main catalog (1970 to 2019) with450

a reference magnitude of mref = 2.5 is given in Column four. Note that the estima-451

tion of β is independent of the ETAS parameter estimates for the first two applications,452

but not so in the case of PETAI inversion.453

For comments on the inverted parameters, see Text S4, and for comments on com-454

putational time required for the two described inversion methods, see Text S5.455

5.2 Incompleteness Insights Through PETAI456

In addition to a new set of estimated ETAS parameters, applying the PETAI in-457

version to the Californian catalog produces further interesting outputs. Similarly to the458

case of the synthetic catalog, Figure 3 (a) shows the estimated cumulative number of un-459

detected events over time. As expected, the increase is predominantly step-wise, caused460

by short, incomplete periods during aftershock sequences, and long, complete periods461

in-between. While the total expected number of undetected events is at 5041.74, the ex-462

trapolated number obtained from a fitted GR law is only 88.91. Although the true num-463

ber of undetected events can never be known, the synthetic test suggests that the PETAI464

result is more reliable, and thus the GR law extrapolation would be a severe underest-465

mation of the true number of undetected events.466

The magnitude-dependent detection probability evolution is illustrated in Figure467

3 (b). Magnitudes with detection probabilities of up to 99.9%, 99%, 90% and 50% are468

shown in light blue, dark blue, black, and yellow, respectively. The white area corresponds469

to detection probabilities higher than 99.9%. In around 84% of event times ti, events of470

magnitude M ≥ 4 are expected to be detected with a probability of 99.9% or more. Sim-471

ilarly, in 82% of event times ti, M ≥ 3 events are expected to be detected with a prob-472

ability of 99% or more. Spikes of incompleteness during large sequences lead to detec-473

tion probabilities of less than 50% for smaller events, in the most extreme case for events474

of magnitude M ≤ 3.47.475

As expected, periods of elevated incompleteness coincide with the periods of rapid476

increase in undetected events shown in (a). The last step in (a), which corresponds to477

the 2019 Ridgecrest sequence, is extraordinarily large compared to all previous steps. This478

is most likely explained by the fact that the sequence was better recorded than compa-479

rable sequences in previous years. When detection the capability of the seismic network480

improves, this would lead to a shorter recovery time tR. Because we have assumed tR481

to be stationary for simplicity, a larger number of recorded events will lead to a smaller482

estimated detection probability, which in turn leads to larger numbers of expected un-483

detected events. In future versions of the model, to avoid such artifacts, it would be ad-484

visable to combine the possibility of including long-term changes in completeness (as in485

the model described in Section 3.1) with rate-dependent aftershock incompleteness by486

means of a non-stationary tR.487

Figure 3 (c) - (g) shows excerpts of Figure 3 (b) for the 1989 M6.9 Loma Prieta,488

the 1992 M6.1 Joshua Tree and 7.3 Landers, the 1994 M6.7 Northridge, the 1999 M7.1489

Hector Mine, and the 2019 M6.4 and 7.1 Ridgecrest events. The x-axes are logarithmic490

with reference point one day prior to the (first) mainshock, and range from 2 hours be-491

fore until 30 days after that mainshock (60 days for (g)). x-axis tick labels represent time492

since the (first) mainshock.493

Figure 3 (h) visualizes the range of observed states of detection efficiency during494

the 2019 Ridgecrest sequence. Current rate of events λ(ti) at all occurrence times ti of495

events in the catalog are estimated as part of the PETAI inversion algorithm, and each496
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λi corresponds to a certain shape of the detection probability function f(m,λ(ti)). Fig-497

ure 3 (h) shows the detection probability as a function of magnitude when the rate λi498

is fixed, for the selection of λi = λ(ti) at times ti that that are highlighted in Figure499

3 (g). Note that time differences in Figure 3 (h) refer to the M7.1 mainshock. Prior to500

the large events, detection is almost perfect for all magnitudes. After the M6.4 event,501

detection is weakened and recovers with time, until the M7.1 mainshock, when it is again502

weakened. Around 15 minutes after the earthquake, events of magnitude below 3.0 still503

have almost no chance to be detected, with M3.5 events having roughly a 50% chance504

to be detected. After three hours, detection has already clearly improved, although M2.5505

events are still almost surely not detected. After six days, the detection probability func-506

tion only slightly differs from the detection probability before the main events happened.507

6 Pseudo-prospective forecasting experiments508

To better understand if and how the PETAI model can improve earthquake fore-509

casts, we conduct a pseudo-prospective forecasting experiment, designed to answer sev-510

eral questions: Does the PETAI model outperform the current state of the art? If so,511

what is the role of the newly estimated ETAS parameters in this improvement? Simi-512

larly, what is the role of newly included small earthquakes in this improvement? How513

do the models perform for different target magnitude thresholds?514

6.1 Competing models515

We compare four models.516

1. The base ETAS model assumes perfect detection above a constant mc = 3.1 and517

represents the current state of the art.518

2. PETAI, the alternative model, has two modifications to the base model. Firstly,519

it uses improved ETAS parameter estimates that were obtained in the PETAI in-520

version with a reference magnitude mref of 2.5. Secondly, magnitude M ≥ 2.5521

earthquakes are allowed to trigger and be triggered. For this, the events in the train-522

ing catalog, which act as triggering earthquakes in the simulation, have their trig-523

gering capability inflated by 1 + ξ(t), as estimated in the PETAI inversion.524

Two intermediate models are assessed to dissect the effect of the two modifications.525

3. par only uses improved parameter estimates, but only models M ≥ 3.1 events526

assuming perfect detection there (i.e. ξ(t) ≡ 0). In this case, the parameters ob-527

tained for the PETAI model have to be transformed to be compatible with a ref-528

erence magnitude of mref = 3.1 as described in Text S6.529

4. Vice-versa, trig only models M ≥ 2.5 events using the inverted ξ(t) for inflated530

triggering, but does not use the improved ETAS parameter estimates. In this case,531

the parameters obtained for the base model have to be transformed to be com-532

patible with a reference magnitude of mref = 2.5 as described in Text S6.533

6.2 Experiment setup534

For a testing period length of 30 days, we define a family of training and testing535

periods such that the testing periods are consecutive and non-overlapping. Each train-536

ing period ends with the starting date of its corresponding testing period. The starting537

date of the first testing period is January 1st, 2000.538

For each testing period, all competing models are trained based on the correspond-539

ing training data. Figure S3 shows the parameter evolution with increasing training pe-540

riod obtained with standard ETAS and PETAI inversion. Then, forecasts are issued with541
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each model through simulation of 100’000 possible continuations of the training cata-542

log. This is done by simulating Type I earthquakes (the cascade of aftershocks of earth-543

quakes in the training catalog) and Type II earthquakes (simulated background earth-544

quakes and their cascade of aftershocks) similarly to how it is described by Nandan et545

al. (2019b). The algorithm used is described in detail in Text S3.546

The performance of each model is evaluated by calculating the log-likelihood of the547

testing data given the forecast. Two competing models can be compared by calculating548

the information gain (IG) of the alternative model Malt over the null model M0, which549

is simply the difference in log-likelihood of observing the testing data. The mean infor-550

mation gain (MIG) is calculated as the mean over all testing periods.551

As a benchmark, we additionally calculate the IG of the null model versus the flat552

model, which gives a spatially and temporally invariant forecast.553

For details on the flat model, on the calculation of the log-likelihood and on the554

conditions under which one model is considered superior over another, see Text S7 and555

Nandan et al. (2019b).556

6.3 Results557

Figure 4 shows the results of the pseudo-prospective forecasting experiments. From558

top to bottom, the panels correspond to increasing target magnitude thresholds. The559

left column of panels shows the cumulative information gain of the three alternative mod-560

els compared to the null model, which is indicated as a black horizontal line. The num-561

ber of events for all testing periods combined, and the total information gain of the null562

model versus the flat model, are indicated as text. The column of panels in the middle563

shows the mean information gain matrix when each model is compared to each other model.564

Green cells indicate positive information gain, while pink cells correspond to negative565

information gain. The significance level of potential outperformance is shown in the right566

column of panels in a matrices similar to the middle panels. Cells highlighted in green567

indicate a p-value of less than 0.05 and thus, significant outperformance. For p-values568

between 0.05 and 1, cell color ranges from dark grey to white.569

For a target magnitude threshold of mt = 3.1, PETAI as well as trig only signif-570

icantly outperform the other two models with p-values of virtually 0 and a mean infor-571

mation gain of 0.97 and 0.94, respectively. Note that this improvement is over a very strong572

null model, which has a total information gain of 49’246 (i.e. a MIG of 202.66) over the573

flat model. PETAI has a slightly positive but not statistically significant information gain574

compared to trig only. On the other hand, par only does not outperform the null model.575

This suggests that the main driver of the improvement of the forecast is the inclusion576

of small events between M2.5 and M3.1 in the simulations, which is possible due to the577

estimated ξ(ti) obtained in the PETAI inversion.578

With increasing values for mt, the mean information gain values generally decrease,579

and almost no model significantly outperforms any other model. Occasionally, par only580

is outperformed by the base model or by trig only. Both of these observations suggest581

that taking into account information about smaller earthquakes mainly helps forecast-582

ing the like. ETAS parameters calibrated using large amounts of small earthquakes will583

reflect more precisely the behaviour of small earthquakes and are unnecessary, if not dis-584

advantageous, when describing large ones. Moreover, simulating aftershocks of small earth-585

quakes is the key ingredient for improved forecasting of similarly-sized events. Although586

theoretically, small earthquakes can trigger large ones, and their relative numerosity im-587

plies significant contribution the overall triggering (Marsan, 2005; Helmstetter et al., 2005;588

Sornette and Werner, 2005a), we find that the beneficial effect vanishes when forecast-589

ing large events. Helmstetter et al. (2006) compared the probability gain of their time-590

dependent model versus their similar but time-independent model and found that prob-591
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ability gain decreases with an increasing target magnitude threshold. They speculated592

that this observation may be due to a smaller sample size when target magnitude thresh-593

old increases. In our case, this effect is observed at considerably large sample sizes of 3601,594

1111, 307, and 85 events for mt = 3.5, 4.0, 4.5, and 5.0. Another possible explanation595

for this effect is provided by the findings of Nandan et al. (2019a) and Nandan et al. (2021),596

that earthquakes tend to preferentially trigger aftershocks of similar size and that ac-597

counting for this preference in the ETAS model produces superior forecasts. Their re-598

sults explain the improved forecast of small events when small events are used for sim-599

ulation, as well as the vanishing of this improvement when the magnitude difference be-600

tween newly included events and target events becomes large. This could furthermore601

serve as an alternative explanation of the results of Helmstetter et al. (2006).602

7 Conclusion603

We propose a modified algorithm for the inversion of ETAS parameters when mc604

varies with time, and an algorithm for the joint inversion of ETAS parameters and prob-605

abilistic, epidemic-type aftershock incompleteness. We test both methods on synthetic606

catalogs, concluding that they are able to accurately invert the parameters used for sim-607

ulation of the synthetics. The given formulations are rather general and can equally be608

applied to spatial or spatiotemporal variations of mc, as well as to any suitable defini-609

tion of a detection probability function.610

Two potential use cases are the estimation of ETAS parameters based on the Cal-611

ifornian catalog since 1932 with long-term fluctuations of mc between 4.3 and 2.4, and612

the estimation of ETAS parameters and short-term aftershock incompleteness based on613

the incomplete Californian catalog of events above M2.5. The latter is further used to614

test the forecasting power of small earthquakes. Results of numerous pseudo-prospective615

forecasting experiments suggest that616

• Information about small earthquakes significantly and substantially improves fore-617

casts of similar-sized events.618

• Main driver of this improvement is the simulation of aftershocks of small events,619

made possible thanks to high-frequency estimates of incompleteness.620

• Information about small earthquakes does not significantly affect the performance621

of large event forecasts.622

This supports previous findings of Nandan et al. (2019a) and Nandan et al. (2021), that623

earthquakes preferentially trigger aftershocks of similar size.624

Our results have potentially major implications for the future of earthquake fore-625

casting. Thanks to the here-presented algorithms, ETAS models may be calibrated for626

regions with low seismicity where the usual inversion algorithms would fail due to miss-627

ing data.628

Furthermore, the newly gained insights from forecasting experiments guide us in629

the search of the next generation earthquake forecasting models. Besides other discussed630

topics such as anisotropy, temporally or spatially non-stationary background rate (Hainzl631

et al., 2008; Hainzl et al., 2013; Nandan et al., 2020), the importance of a magnitude-632

dependent distribution of aftershock magnitudes is emphasized.633
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8 Tables786

Table 1: ETAS and PETAI parameters used and inferred in synthetic tests.

mc(t), mref = 2.4 f(m, t), mref = 2.5
parameter simulation estimated simulation estimated

log10(µ) -7.20 -7.07 -8.00 -7.99
log10(k0) -3.26 -3.25 -3.24 -3.23
a 2.90 2.86 2.82 2.95
log10(c) -2.52 -2.49 -2.85 -2.72
ω -0.02 -0.02 -0.06 -0.11
log10(τ) 3.57 3.58 3.92 3.62
log10(d) -0.86 -0.81 -0.76 -0.78
γ 1.35 1.36 1.22 1.31
ρ 0.67 0.71 0.67 0.75
log10(tR) n/a n/a -2.46 -3.44
β n/a n/a 2.37 2.34
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Table 2: ETAS and PETAI parameters inferred for California. First column shows pa-
rameters when constant mc of 3.1 is assumed. Second and third column show parameters
when time-varying mc is accounted for, and fourth and fifth column show parameters
when PETAI inversion is applied. Note that the originally derived parameters are given in
Columns 1, 2, and 4. Columns 3 and 5 show the parameters of Columns 2 and 4, trans-
formed (as described in Text S6) to a reference magnitude of 3.1 to allow comparison with
Column 1. Productivity exponent α = a − ργ and branching ratio η are not directly
inverted but inferred from the inverted parameters.

parameter mc ≡ const. mc(t) f(m, t)

mref 3.1 2.4 3.1 2.5 3.1
log10(µ) -6.86 -5.97 -6.68 -6.35 -6.97
log10(k0) -2.53 -2.63 -2.36 -2.70 -2.49
a 1.74 1.86 1.86 1.92 1.92
log10(c) -2.97 -2.52 -2.52 -2.85 -2.85
ω -0.05 -0.02 -0.02 -0.06 -0.06
log10(τ) 4.03 3.57 3.57 3.92 3.92
log10(d) -0.51 -0.86 -0.45 -0.76 -0.45
γ 1.19 1.35 1.35 1.22 1.22
ρ 0.60 0.67 0.67 0.67 0.67
log10(tR) n/a n/a n/a -2.86 -2.86
β 2.33 2.32 2.32 2.37 2.37

a− ργ 1.03 0.95 0.95 1.09 1.09
η 0.94 0.95 0.95 0.93 0.93
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9 Figures787
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Figure 1: Simplified schematic illustration of PETAI inversion.

Figure 2: (a) Earthquake magnitudes over time for the test catalog (blue). Events
marked in black were simulated, but declared as undetected. (b) Cumulative number
of unobserved events over time. Black line marks the truth, blue line is inferred from the
test catalog using PETAI. (c) Estimated number of undetected events versus actually
thrown out events, for different assumed detection efficiencies. Star marks the realistic
test catalog used in (a) and (b), crosses represent the same original catalog with different
values for tR used to sample out undetected events.
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Figure 3: Aftershock Incompleteness in California. (a) Estimated cumulative number of
undetected events over time. (b) Evolution of magnitude-dependent detection probabil-
ity. Yellow indicates a detection probability of 50% or less. Black, dark blue, and light
blue indicate detection probabilities of up to 90%, 99%, and 99.9%, respectively. White
area represents detection probabilities higher than 99.9%. (c)-(g) Excerpts of (b) for se-
lected large events. x-axes are logarithmic with reference point one day prior to (first)
mainshock, and range from 2 hours before to 30 days after that mainshock (60 days for
(g)). x-axis tick labels represent time since the (first) mainshock. Colored circles in (g)
represent selected times ti and corresponding magnitude of 99.9% detection. (h) Detection
probability function f(m,λ = λ(ti)) snapshots for the times that are highlighted in (g).
Time deltas are given with respect to the M7.1 mainshock.
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Figure 4: From left to right: Cumulative information gain for the alternative models
versus the null model, mean information gain matrix, and corresponding p-value matrix
comparing all competing models. Matrix entries represent the test of superiority of Malt

(y-axis) versus M0 (x-axis). From top to bottom: target magnitude thresholds mt of 3.1,
3.5, 4.0, 4.5, and 5.0. Indicated as text in the left panels is the cumulative information
gain of the null model versus the flat model, and the number of events in all testing pe-
riods combined. Note the different y-axes for the left panels. Also note that the color
scheme for the middle panels is different between threshold magnitudes mt and normal-
ized with respect to the maximum absolute mean information gain for that mt. Color
coding for the panels on the right is such that p-values of 0.05 and below are green, and
transition from grey to white between 0.05 and 1.
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Text S1 Branching ratio (η) and corrected productivity exponent (α)

Branching ratio (η)

The branching ratio η is defined as the expected number of direct aftershocks (larger than mref )
of any earthquake larger than mref ,

η =

∫ ∞
mref

fGR(m) ·G(m) dm, (S1)

where fGR = β · e−β·(m−mref ) is the probability density function of magnitudes according to the
GR law, and G(m) =

∫∞
0

∫∫
R
g(m, t, x, y) dx dy dt is the total number of expected aftershocks of

an event of magnitude m. We make the simplifying assumption that the considered region R
extends infinitely in all directions, allowing a facilitated, asymptotically unbiased estimation of
ETAS parameters (Schoenberg, 2013). It follows easily that

η =
β · k0 · π · d−ρ · τ−ω · ec/τ · Γ(−ω, c/τ)

ρ · (β − (a− ργ))
, (S2)

if β > a− ρ · γ, where Γ(s, x) =
∫∞
x
ts−1e−t dt is the upper incomplete gamma function.

Corrected productivity exponent (α)

Due to the magnitude dependency of the spatial triggering kernel, our parameter a does not strictly
correspond to a as described in Veen and Schoenberg (2008). For comparability, we define the
productivity exponent α := a− ρ · γ. We fix α′ = 2.0 and from this derive new values for a and k0,
keeping the branching ratio η constant. In particular, we define

a′ := α′ + ρ · γ, (S3)

k0
′ := k0 ·

β − (a′ − ρ · γ)

β − (a− ρ · γ)
. (S4)

It can be easily shown that in this way, the branching ratio η remains the same as long as
β − (a − ρ · γ) < 0. Note that the condition β < α for Equation S2, where α is the productivity
exponent, is generally fulfilled in naturally observed catalogs.

Text S2 Estimation of β and tR, given ETAS parameters and current
rates

In the case when the true ETAS parameters, as well as the current event rates λ(ti) for all events ei
in the primary catalog {e1, . . . , en}, are known, the GR-law exponent β and the network recovery
time tR can be estimated by optimizing the log-likelihood LL of observing the catalog at hand.

LL =

n∑
i=1

(ln (νi + 1)− lnN) (S5)

+

n∑
i=1

(
νi · ln (1− e−β·(mi−mref ))

)
(S6)

+

n∑
i=1

(lnβ − β · (mi −mref )) , (S7)
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where N =
∑n
i=1(νi + 1), and νi = tR ·λ(ti) is the expected number of events blocking the network

at time ti. The expression for LL given above is valid in general for alternative exponents νi in the
definition of detection probability (Equation 16 in the article). LL is derived from the likelihood Li
of an event of magnitude mi to occur and to be observed during a current event rate of λi = λ(ti),

Li = femp(λi) · fGR(mi) · fdet(mi, λi), (S8)

where fGR(m) is the probability density function of magnitudes given by the GR law, fdet(m,λ) is
the detection probability as defined in Equation 16 in the article, and

femp(λ) =

{
tR·λ+1∑
i(tR·λi+1) , if λ ∈ {λ1, . . . , λn}

0, otherwise
(S9)

is the empirical density function of event rates. femp(λ) is defined such that

n∑
i=1

femp(λi) = 1 (S10)

and

femp(λi) ∝
1∫∞

mref
fGR(m) · fdet(m,λi) dm

= λi · tR + 1, ∀i = 1, . . . , n. (S11)

Without the latter condition (Equation S11), we would wrongly assume that the values λ(ti) were
uniformly drawn from the true distribution of event rates. However, in our sample of λi, large
values of λ are underrepresented, because during times t when λ(t) is high, events are less likely
to be detected, and those times and their corresponding rates are thus less likely to be part of our
sample. Defining femp(λi) to be inversely proportional to the fraction of events that are observed
when the current rate is λi corrects for this underrepresentation. This yields

Li =
νi + 1∑
j(νj + 1)

· β · e−β·(mi−mref ) ·
(

1− e−β·(mi−mref )
)νi

, (S12)

which explains the term for LL given above. Figure S1 shows the log likelihood of the synthetic
test catalog for different values of tR and β when λi are known. The crosses highlight that the
resulting estimators match the ground truth parameters used in the simulation of the catalog.

Text S3 Catalog simulation

The following algorithm is used to simulate the continuation of a training catalog.

Note that the synthetic catalogs referred to in Sections 4.1 and 4.2 in the article are not continua-
tions of a training catalog, hence generation 0 (defined in the following) consists only of background
events. The locations of these background events are uniformly distributed in the study region. Also
in the case of synthetic catalog simulation, the “testing period”, which is referred to below, is the
period for which one wishes to simulate a catalog. Where different models are mentioned, the base
model is used for synthetic catalog simulation.

3



1. Background events are simulated for the testing period.

• Number of background events is drawn from a Poisson distribution with mean as given
by the ETAS background rate.

• Occurrence times are drawn from a uniform distribution within the testing period.

• Locations are drawn from the locations of events in the training catalog, weighted by
their probability of being background events. The locations are then randomly displaced
by a distance drawn from a normal distribution with mean 0 and standard deviation of
0.1°.

• Magnitudes are drawn from a GR law with exponent β as estimated in the PETAI
inversion (for PETAI and trig only). For the base model and par only, we use the β
estimate obtained when using the formula proposed by Tinti and Mulargia (1987) for
binned magnitude values, using magnitudes M ≥ 3.1 in the training catalog.

2. The training catalog together with the simulated background events make up generation 0.
igen := 0.

3. Expected number of aftershocks is calculated for all events of generation 0. In the case of the
PETAI and the trig only model, the average number of aftershocks triggered by any event ei
in the training catalog is inflated by 1 + ξ(ti).

4. Actual number of aftershocks of each event is randomly drawn from a Poisson distribution
with mean as calculated in the previous step.

5. Aftershocks of the current generation igen are simulated.

• Aftershock time distance to its parent event is randomly generated according to the
estimated ETAS time kernel. If aftershock time falls out of the testing period, this
aftershock is discarded.

• Aftershock spatial distance to its parent event is randomly generated according to the
estimated isotropic ETAS spatial kernel. If aftershock location falls out of the considered
polygon, this aftershock is discarded.

• Aftershock magnitude is generated according to the GR law with exponent β (same as
for the background events).

6. The newly generated aftershocks now make up the next generation igen + 1.

7. We move on to the next generation. igen := igen + 1

8. Expected number of aftershocks is calculated for all events of generation igen. Continue with
step 4.

The algorithm terminates when no aftershocks fall into the testing period anymore, which is ex-
pected to happen in a finite amount of time if the branching ratio η < 1.
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Text S4 Comments on parameters inverted from the Californian catalog

Table 2 in the article contains ETAS parameters, β, and, if applicable, tR estimates obtained when
applying different inversion algorithms to Californian data. Additionally, the resulting values for
productivity exponent α = a− ργ and branching ratio η (see Equation S2) are provided. The first
column shows the results of applying the usual inversion method as described in Section 3.1 in the
article, with a constant completeness magnitude of mc ≡ 3.1 to the main catalog (1970 to 2019).
The second column shows the parameters inverted when time-varying completeness (Equation 20 in
the article) is accounted for and thus historical data from 1932 to 2019 can be used with a reference
magnitude of mref = 2.4.

The results of applying PETAI inversion to the main catalog (1970 to 2019) with a reference
magnitude of mref = 2.5 is given in Column four. Note that the estimation of β is independent
of the ETAS parameter estimates for the first two applications, but not so in the case of PETAI
inversion.

To allow a better comparison between parameters inverted using different methods when mref

varies, the third and fifth columns show the parameters of Columns two and four, respectively, after
having been translated to a value of mref = 3.1 as described in Section Text S6.

Interestingly, the estimate of τ clearly decreases with an increase of the time horizon of the
catalog, although usually in this case one would expect an increase of τ . The less pronounced
decrease of τ in case of PETAI inversion speaks against the possibility that the decrease is caused
by inclusion of lower magnitude earthquakes revealing previously unseen earthquake interactions.
This indicates that the lower value of τ may actually better reflect the long-term behavior of
earthquake interaction.

Another counter-intuitive observation is the increase of c for both new inversion techniques,
in particular for PETAI inversion. The parameter c has been interpreted to reflect aftershock
incompleteness (Kagan, 2004; Lolli and Gasperini, 2006; Hainzl, 2016) and would thus be expected
to decrease when this effect is accounted for by the model (Seif et al., 2017). The observed higher
value of c even after accounting for STAI thus requires a different interpretation of c. Narteau
et al. (2009) have brought the parameter in relation with differential stress and the intensity of
stress re-distribution. Another possible interpretation provided by Lippiello et al. (2007) is based
on the dynamical scaling hypothesis in which time differences relate to magnitude differences. The
dependence of c of the cutoff magnitude as proposed by Shcherbakov et al. (2004) can qualitatively
explain our observations: The value inverted for c is highest in the case of mref = 2.4, and lowest
for mref = 3.1. Note that such a dependency is not accounted for in our model, and thus the values
in Columns two and three, and four and five of Table 2 in the article, respectively, are identical.
Overall, one should be careful to not over-interpret this estimate of c. After all, c is overestimated
in the PETAI synthetic test and hence an observed increase in c might be a consequence of complex
interdependencies of all parameters involved.

While the branching ratio η does not substantially vary with the different inversion methods,
we observe a slightly increased productivity exponent for the PETAI inversion. This is expected
given the results of Seif et al. (2017), with the extent of the observed increase being in line with
their estimated extent of underestimation for the productivity exponent.

The value of β shows an increase from 2.33 to 2.37, which translates to a b-value increase from
1.01 to 1.03, when STAI is accounted for in the PETAI inversion. This is expected due to the
underestimated number of small events caused by STAI.
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Text S5 Comments on computational time

There are two aspects to consider when discussing the computational time of the here presented
parameter inversion techniques. On one hand, the increased complexity of the algorithms plays an
important role. In particular, the PETAI inversion comprises multiple loops of ETAS and incom-
pleteness estimation. Although convergence was usually reached after 4 iterations, this still implies
a minimum factor of 4 in terms of computation time which is only required for ETAS inversion, on
top of which comes the time needed for the estimation of detection parameters and event rates. The
second factor, which contributes even more to an increase of computation time, is the increased
size of the catalog which is available to be used. For our application to Californian data, the
number of events used in the PETAI inversion increases by a factor of 3.78 because the minimum
considered magnitude is reduced from 3.1 to 2.5. The leads the number of pairs of potentially re-
lated events to increase from 7.3 million to 47.1 million. While this causes a substantial increase in
run time, educated initial guesses for ETAS parameter inversions can substantially reduce run time.

In contrast to the PETAI inversion, the run time of the ETAS parameter inversion with time-
varying mc is barely affected by model complexity. During synthetic experiments, we found run
time to be comparable to the run time of usual ETAS inversion when the number pairs of potentially
related events was similar.

Text S6 Parameter transformation for reference magnitude changes

With the exception of µ, k0 and d, all parameters are mref -agnostic, and the three exceptions can
easily be adjusted to another reference magnitude as follows. Denote by ∆m the difference between
new and original reference magnitude, ∆m = m′ref −mref . Then,

d′ := d · e∆m·γ (S13)

ensures that
d · eγ·(m−mref ) = d′ · eγ·(m−m

′
ref ). (S14)

Stipulating that the branching ratio η remains unchanged, it follows that

k′0 := k0 · e∆m·γ·ρ. (S15)

The adaptation of the background rate µ follows trivially from the GR law,

µ′ = µ · e−β·∆m. (S16)

When comparing the parameter estimates obtained when assuming mref = mc ≡ 3.6, we
transform them to refer tom′ref = 3.3 before calculating their distance to the generating parameters.
Also, for µ, d, k0, c and τ , we apply the log10 before calculating differences, so that the compared
values are in the same order of magnitude for all parameters.

Text S7 Forecast evaluation

The performance of each model is evaluated by calculating the log-likelihood of the testing data
given the forecast. Specifically, we calculate the log-likelihood of Ni earthquakes to occur in each
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bin bi of a spatial grid of 0.1° latitude × 0.1° longitude. Here, Ni is the number of earthquakes that
actually occurred during the testing period in spatial bin bi.

The log-likelihood for bi is calculated based on the smoothed estimate of the probability of Ni
earthquakes to occur in bi, where the probability estimate is based on the 100’000 simulations of the
model in question. For smoothing we use Gaussian kernels with adaptive bandwidth as described
by Nandan et al. (2019), with a fixed value of Ω = 3.0. To avoid arbitrary likelihood values
due to extrapolation, we define a water-level likelihood for event counts larger than the maximum
simulated event count in the respective bin. This waterlevel probability is defined as a uniform
value of 100′001−1/nextr, where nextr is the number of event counts larger than the maximum
observed and smaller than a generously high maximum possible event count. Symbolically, this
suggests that all other possible event counts could have been simulated in the 100′001st simulation.
Inevitably, the probabilities for non-extrapolated event counts are proportionally reduced such that
the probabilities of all possible event counts add up to 1.

The total log-likelihood of the testing data is then given by the sum of log-likelihoods over all
bins bi.

Two competing models can be compared by calculating the information gain (IG) of the al-
ternative model Malt over the null model M0, which is simply the difference in log-likelihood of
observing the testing data. The mean information gain (MIG) is calculated as the mean over all
testing periods. We accept the superiority of Malt over M0 when we reject the null hypothesis
that Malt does not outperform M0. To decide whether to reject the null hypothesis, we perform a
one-sided t-test on the set of IGs for all testing periods, and we reject the null hypothesis when a
p-value of less than 0.05 is observed.

The flat model forecasts the same number of events in all spatial bins. This number of events
forecasted, Nfc, is given by

Nfc =
Ntrain · Ttest
Ttrain ·Nbins

, (S17)

where ntrain is the number of events observed in the training period, Ttrain is the length of the
training period in days, Ttest = 30 is the testing period length, and Nbins is the total number of
spatial bins. The log-likelihood for the flat model is calculated assuming a Poisson distribution of
event numbers with mean Nfc in each spatial bin.
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Figure S1: Log likelihood of observing the test data for different values of tR and b-value, when
current rate is known. Black cross indicates true values used in simulation, blue cross indicates
maximum likelihood estimators obtained.
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Figure S2: Flow diagram of PETAI inversion. Caption on next page.
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Figure S2: (Previous page.) Flow diagram of PETAI inversion. Main algorithm starts at top
left and ends at bottom left. The middle column describes the estimation of incompleteness (I =
λi, tR, β) when ETAS parameters (E) are given. Note that the estimation of (λi)i=1,...,n when ETAS
parameters and (tR, β) are fixed requires yet another loop to obtain self-consistency, as updating
λi (step Λ) leads to changes in the inflation factor 1 + ξ(ti), which forces one to update (λi)i=1,...,n.
This sub-sub-algorithm is visualized in the right column of the flow diagram. Process boxes are
linked to corresponding methods and equations described in this article.
*, **, ***: Convergence is reached when the estimated values of the kth iteration, âk, lie very close
to the estimated values of the previous iteration, that is, if

∑
a∈A |âk − âk−1| ≤ θ. Here, A is the

set of values that are tested for convergence, *A = E , **A = {tR, β}, ***A = {λi, i = 1, . . . , n}.
For convergence threshold θ we use *θ = 10−3, **θ = 10−12, ***θ = 1.
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Figure S3: Evolution of ETAS and PETAI parameter estimates with increasing training catalog,
when using standard inversion (black lines) and when using PETAI inversion (turquoise lines). The
evolution for tR is only given for PETAI inversion because it does not exist in standard ETAS.
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