Joint Dependence of Longwave Feedback on Surface Temperature and Relative Humidity

Brett McKim¹, Nadir Jeevanjee², and Geoffrey K Vallis¹

¹University of Exeter ²Geophysical Fluid Dynamics Laboratory

November 22, 2022

Abstract

Understanding how the outgoing long-wave radiation (OLR) depends on surface temperature is a climate problem of long standing. Various studies have suggested that clear-sky OLR varies linearly with surface temperature, with a longwave clear-sky feedback that is independent of surface temperature and relative humidity. However, this uniformity lies in tension with the notion that humidity controls tropical stability (e.g. the "furnace" and "radiator fins" of Pierrehumbert, 1995). Here we explore the state-dependence of longwave clear-sky feedback as a function of both surface temperature and column relative humidity. We find that a strong relative humidity-dependence in the feedback emerges above 275 K, stemming from the closing of the H2O window. We construct a simple model for estimating the all-sky feedback and find that although clouds lower the zonal-mean longwave feedback, the dependence on humidity remains significant.

Joint Dependence of Longwave Feedback on Surface Temperature and Relative Humidity

Brett McKim¹, Nadir Jeevanjee², Geoffrey K. Vallis¹

 $^1 \rm University$ of Exeter, Exeter, UK $^2 \rm Geophysical$ Fluid Dynamics Laboratory, Princeton NJ

Key Points:

1

2

3

5

6

7	•	The longwave clear-sky feedback exhibits a significant RH-dependence at high tem-
8		peratures.
9	•	Tropical variations in longwave clear-sky feedback (e.g. "radiator fins") are a con-
10		sequence of this RH-dependence.
11	•	Cloud radiative effects estimated from a simple model do not qualitatively change
12		this picture.

Corresponding author: Brett McKim, bam218@exeter.ac.uk

13 Abstract

¹⁴ Understanding how the outgoing long-wave radiation (OLR) depends on surface tem-

¹⁵ perature is a climate problem of long standing. Various studies have suggested that clear-

sky OLR varies linearly with surface temperature, with a longwave clear-sky feedback

¹⁷ that is independent of surface temperature and relative humidity. However, this unifor-

¹⁸ mity lies in tension with the notion that humidity controls tropical stability (e.g. the "fur-

¹⁹ nace" and "radiator fins" of Pierrehumbert (1995)). Here we explore the state-dependence

of longwave clear-sky feedback as a function of both surface temperature and column relative humidity. We find that a strong relative humidity-dependence in the feedback emerges

 22 above 275 K, stemming from the closing of the H₂O window. We construct a simple model

for estimating the all-sky feedback and find that although clouds lower the zonal-mean

²⁴ longwave feedback, the dependence on humidity remains significant.

²⁵ Plain Language Summary

The dependence of outgoing longwave radiation radiation (OLR) on surface tem-26 perature (i.e. the feedback) is a major determinant of the climate's stability. Various in-27 vestigators have suggested that the feedback is largely independent of both surface tem-28 perature and relative humidity, which implies that the climate stability is also indepen-29 dent of surface temperature and relative humidity. However, this uniformity seems to 30 contradict other work which shows that the subtropics are relatively stable and the deep 31 tropics are relatively unstable, implying the feedback must vary between the two regions. 32 We resolve this apparent contradiction by systematically computing the feedback as a 33 function of both surface temperature and relative humidity. Above 275 K, the feedback 34 depends significantly on relative humidity. We then show the feedback does indeed vary 35 in the tropics and that this difference arises from regional differences in relative humid-36 ity. Finally, we estimate the effects of clouds on the feedback with a simple model and 37 find that although clouds have a destabilizing influence, the significant dependence on 38 relative humidity is retained. Our work gives a renewed appreciation for how the feed-39 back can vary significantly with both surface temperature and relative humidity. 40

41 **1** Introduction

The longwave clear-sky feedback parameter λ_{cs} relates a change in clear-sky outgoing longwave radiation OLR_{cs} to a change in surface temperature T_s ,

$$\lambda_{cs} \equiv \frac{\mathrm{dOLR}_{cs}}{\mathrm{d}T_s} \quad (\mathrm{Wm}^{-2}\mathrm{K}^{-1}). \tag{1}$$

It is a measure of the stability of the the climate and thus is a well studied quantity, with a canonical value for its global mean of about $2.2\pm10\%$ Wm⁻²K⁻¹ (Budyko, 1969; R. D. Cess et al., 1989, 1990; Raval et al., 1994; Bony et al., 1995; Allan et al., 1999; Dessler et al., 2008; Chung et al., 2010; Jeevanjee, 2018; Koll & Cronin, 2018; Zhang et al., 2020).

The convergence of the global mean value of λ_{cs} across both observations and the model hierarchy suggests robust physics that is insensitive to the idiosyncrasies of the individual studies. Recently, Koll and Cronin (2018) gave an explanation of this physics as a balance between increasing surface Planck feedback and decreasing surface transmissivity. They verified that $\lambda_{cs} \approx 2.2 \text{ Wm}^{-1}\text{K}^{-1}$ for a wide of T_s in a column model. Zhang et al. (2020) then extended this analysis to GCMs and similarly found λ_{cs} to be independent of both T_s and free-tropospheric relative humidity (RH).

This work on the uniformity of feedback lies in tension with the notion that meridional variations in clear-sky relative humidity are important in controlling tropical stability. In particular, Pierrehumbert (1995) argued that the warm and moist deep tropics, with active deep convection (furnace) are close to a local runaway greenhouse, but are radiatively stabilized by the warm, yet dryer, and more quiescent subtropics (radiator fins). However, Pierrehumbert (1995) was equivocal on whether the furnace and radiator fins manifest as tropical variations in OLR_{cs} , or rather in λ_{cs} , which is the more relevant parameter for stability. Indeed, as we shall show later, the latitudinal variations in OLR_{cs} in the tropics are quite muted compared to OLR_{cs} variations over the globe. Here, then, we will pursue the idea that radiator fins manifest instead as tropical variations in λ_{cs} .

⁶⁴ Clouds are another process that may play a role in controlling the structure of zonal-⁶⁵ mean feedback. Pierrehumbert (1995) argued for the presence of tropical furnaces and ⁶⁶ radiator fins using only clear-sky physics. However, humid regions and cloudy regions ⁶⁷ often go hand-in-hand, and high clouds are known to have a robust influence on the long-⁶⁸ wave feedback (Zelinka & Hartmann, 2010), so we might expect the longwave all-sky feed-⁶⁹ back parameter λ_{as} to look different from λ_{cs} in the zonal mean.

We lack clarity on whether the phenomenology of the furnace and radiator fins are better described by OLR_{cs} or by λ_{cs} . Relatedly there is a tension between the constancy of λ_{cs} observed across studies and the notion that humidity variations control tropical stability, and it is unclear how clouds might modulate this relationship. This state of affairs motivates us to ask the following questions:

75 76

77

78

79

89

2. How do we reconcile variations in λ_{cs} implied by furnaces and radiator fins when other studies suggest λ_{cs} is approximately constant?

1. Do furnaces and radiator fins indeed manifest as a contrast in the zonal-mean λ_{cs} ?

3. How do clouds modify the meridional structure of longwave feedback?

To this end we first construct a "phase space", in which λ_{cs} is computed as a joint 80 function of T_s and column RH. Below 275 K, we find that λ_{cs} stays within 10% of 2.2 81 Wm⁻²K⁻¹, even as RH varies. Above 275 K, however, a significant RH-dependence emerges, 82 leading to much greater variations in λ_{cs} . We show that this RH-dependence stems from 83 the closing of the H₂O window. The tropical contrast in zonal-mean λ_{cs} is, then, a con-84 sequence of this RH-dependence at high temperatures. Finally, we construct a simple 85 model for evaluating the all-sky feedback and find that although clouds decrease the zonal-86 mean feedback, the RH-dependence remains significant. 87

88 2 Results

2.1 Exploring the state dependence of λ_{cs}

We first address Question 2, by exploring the state dependence of λ_{cs} as a func-90 tion of both T_s and RH. We use RH as a state variable because RH-based feedbacks have 91 certain advantages over specific humidity (q_v) based feedbacks both from a thermody-92 namic point of view (Held & Shell, 2012) and from a radiative point of view (Jeevanjee 93 et al., 2021), as specific humidity already has a de facto strong temperature dependence 94 through the Clausius-Clapeyron relation. To compute radiative transfer we use PyRADS. 95 a validated line-by-line column model (Koll & Cronin, 2019). We used the model in 1-96 D radiative-convective equilibrium, following (Koll & Cronin, 2018), in which a moist 97 adiabat profile is assumed. We set the CO_2 concentration to 340 ppmv, the number of 98 pressure levels to 30, and consider a spectral range between 0.1 and 3500 cm^{-1} at 0.01 99 $\rm cm^{-1}$ resolution. We only then need to specify the surface temperature and a vertically-100 uniform relative humidity to compute OLR_{cs} for the column. For more details of atmo-101 spheric structure and spectral databases, see "Materials and Methods" in Koll and Cronin 102 (2018).103

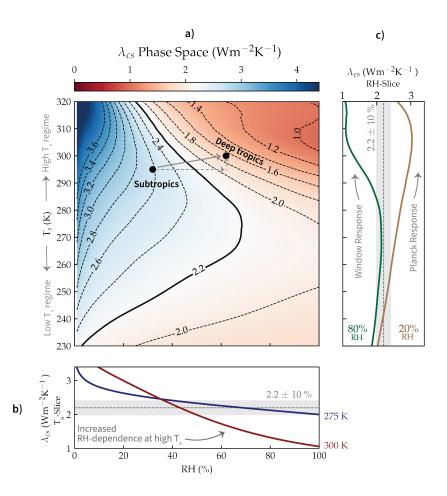


Figure 1. Exploration of state dependence of longwave clear-sky feedback λ_{cs} in a column model. (a) λ_{cs} phase space as a function of surface temperature T_s and column relative humidity RH, with contours indicating values of λ_{cs} . See Equation (2) for details of the calculation. Typical temperatures and humidity of the subtropics and deep tropics are noted as ~295 K/30%, and ~300 K/60%, respectively. The gray arrows indicate different pathways to move from the subtropics to the deep tropics. (b) Cross section of λ_{cs} phase space at 275 K and 300 K. (c) Cross section of λ_{cs} phase space at 20% and 80% relative humidity.

We calculate λ_{cs} in the following way. We first compute OLR_{cs} for some T_s and RH; we then perturb the surface temperature by an amount ΔT , and allow the moistadiabatic atmosphere to respond while holding RH fixed; finally we calculate the perturbed outgoing longwave radiation and take the finite difference between the two states. In summary:

$$\lambda_{cs} \approx \frac{\text{OLR}_{cs}(T_s + \Delta T, \text{RH}) - \text{OLR}_{cs}(T_s, \text{RH})}{\Delta T},$$
(2)

where $\Delta T = 1$ K in our calculations. Note that the Planck feedback and the lapse-rate feedback are included in λ_{cs} . The moist adiabat is not satisfied in the mid-latitudes, but we note that the lapse-rate feedback is small when RH is fixed (R. Cess, 1975; Held & Shell, 2012; Zelinka et al., 2020; Jeevanjee et al., 2021). We exclude the RH-feedback for simplicity and because its value in the global mean is < 0.1 Wm⁻²K⁻¹ (Held & Shell, 2012; Zelinka et al., 2020).

Our results are summarized in Figure 1a) for surface temperatures between 230 K 110 and 320 K and relative humidities between 0% and 100%. We identify 275 K as the de 111 facto boundary between a low temperature regime and a high temperature regime be-112 cause each region exhibits distinct behaviors for λ_{cs} . Below 275 K, there is a very small 113 RH-dependence — for values of RH between 20% and 80%, λ_{cs} remains within 10% of 114 2.2 Wm⁻²K⁻¹. Above 275 K, however, a significant RH-dependence emerges: the value 115 of λ_{cs} differs from 2.2 Wm⁻²K⁻¹ ± by much more than 10% over the same range of hu-116 midity. We explicitly plot the RH-dependence of λ_{cs} at 275K and 300K (Figure 1b) to 117 highlight this difference in behaviour. Thus, in response to Question 2, a λ_{cs} value of 2.2 118 $Wm^{-2}K^{-1}$ will occur over much of the globe, and in particular will manifest as the slope 119 of an OLR_{cs} vs T_s regression, as in Figure 1 of Koll and Cronin (2018). Nonetheless, Fig-120 ure 1 shows that λ_{cs} can still vary considerably at the higher temperatures of Earth's 121 tropics. 122

123

2.2 Importance of the H_2O window

This section provides additional context about λ_{cs} by focusing on the underlying radiation physics that controls the climate response.

Since λ_{cs} is dominated by surface emission through the H₂O window (Koll & Cronin, 126 2018), the wavenumbers at which H_2O absorption is negligible for surface emission, we 127 expect the window to play an important role in the RH-dependence of λ_{cs} at high tem-128 peratures. To display the H₂O window, we plot the surface-to-space transmission \mathcal{T}_{ν} , which 129 measures the portion of surface emission at wavenumber ν that escapes to space. At a 130 surface temperature of 275 K (Figure 2a), the H_2O window remains open as the rela-131 tive humidity is increased from 12.5% to 100%. At a surface temperature of 300 K (Fig-132 ure 2b), however, the H_2O window closes rapidly as the relative humidity is increased 133 from 12.5% to 100%. This is due to activation of H₂O continuum absorption (Koll & Cronin, 134 2018). Thus relative humidity variations are sufficient to close the H_2O window, but only 135 at high temperatures. 136

Koll and Cronin (2018) emphasized the robustness of $\lambda_{cs} \approx 2.2 \text{ Wm}^{-2}\text{K}^{-1}$ as arising from a balance between the closing of the H₂O window and the nonlinear $4\sigma T_s^3$ surface Planck feedback. However, at high temperatures this balance is not guaranteed and depends on RH. The H₂O window closes much faster with temperature at 80% RH than at 20% RH (Figure 2), leading to a "Planck-dominated" response at low RH, and a "windowdominated" response at high RH (Figure 1c).

143 2.3 Tropical variations in λ_{cs}

In Question 1 we asked whether the furnaces and radiator fins described in Pierrehumbert (1995) manifest as a contrast in the zonal-mean λ_{cs} . To answer this question we will compute time- and zonal-mean T_s and RH from ERA5 reanalysis (Hersbach et al., 2020) and

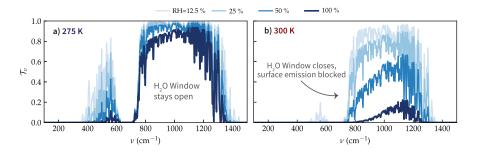


Figure 2. The closing of the H₂O window is sensitive to relative humidity at high surface temperatures. The surface-to-space transmission \mathcal{T}_{ν} is plotted as a function of wavenumber ν for a surface temperature of 275 K (a) and 300 K (b), and a relative humidity of 12.5%, 25%, 50%, and 100%. The H₂O window is where $\mathcal{T}_{\nu} \approx 1$ and surface emission escapes directly to space. We use a SavitzkyGolay filter with a 5 cm⁻¹ width to smooth these plots.



Figure 3. Furnaces and radiator fins manifest as meridional variations in longwave clear-sky feedback λ_{cs} . (a) Zonal-mean λ_{cs} is diagnosed from Figure 1, using the reanalysis zonal-mean RH (b) and the reanalysis zonal-mean T_s (c) as inputs. The shaded region in (a) represents the global mean value of $2.2 \pm 10\% \text{ Wm}^{-2}\text{K}^{-1}$ reported in other studies. We posit that the local maxima and minimum of λ_{cs} that lie outside this range should be considered the "radiator fins" and "furnace", respectively, of the the tropics. Note the equal-area scaling of the x-axis.

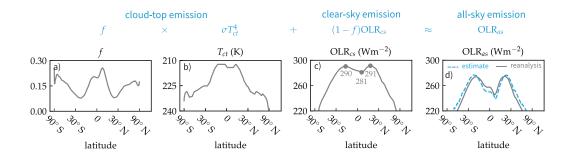


Figure 4. A simple model for zonal-mean all-sky emission. (a) cloud-top fraction f, (b) cloud-top temperature T_{ct} , (c) clear-sky emission OLR_{cs} , and (d) all-sky emission OLR_{as} . The gray curves are from ERA5 reanalyis. The dashed-blue curve in (d) is our simple estimate produced by the equation above the panels (see Equation 3). Note the equal-area scaling of the x-axis.

¹⁴⁷ use these values to read off zonal-mean λ_{cs} from the phase space of Figure 1. We take ¹⁴⁸ hourly data sub-sampled every 6 hours from January 1 - December 31, 1981 and com-¹⁴⁹ pute annual averages. Following Zhang et al. (2020), we calculate a free-tropospheric col-¹⁵⁰ umn RH as the water vapor mass between 850 hPa and the 300 hPa divided by the sat-¹⁵¹ urated water vapor mass within the column. Finally, we exclude the boundary layer RH ¹⁵² and stratospheric water vapor because of their limited impact on the OLR (Zhang et al., ¹⁵³ 2020).

¹⁵⁴ We might expect a significant drop in λ_{cs} from the subtropics to the deep tropics ¹⁵⁵ by looking at representative values of T_s and RH in the λ_{cs} -phase space (Figure 1). In-¹⁵⁶ deed, the meridional structure of zonal-mean λ_{cs} calculated as described above, shows ¹⁵⁷ λ_{cs} varying varies from 2.6 to 1.6 Wm⁻²K⁻¹ in the tropics, a 38% drop (Figure 3a). Both ¹⁵⁸ the subtropical maxima and deep tropical minimum lie outside the 2.2±10% Wm⁻²K⁻¹ ¹⁵⁹ range. We posit that these extrema of λ_{cs} should be considered the true "radiator fins" ¹⁶⁰ and "furnace", respectively, of the the tropics.

We can test whether the significant drop in λ_{cs} between the radiator fins and the 161 furnace is due to the difference in humidity, as emphasized by Pierrehumbert (1995), or 162 if the drop is due to the difference in temperature. If we look again at the phase space 163 in Figure 1, we can take a path that goes from the subtropics to the deep tropics in two 164 parts: a first part with constant surface temperature, and a second part with constant 165 relative humidity (see the dashed gray arrows). In this region of phase space, the dou-166 bling of relative humidity from 30% to 60% causes a much larger change in λ_{cs} than the 167 increase in surface temperature from 295 K to 300 K does. 168

¹⁶⁹ Our answer to Question 2 is then: zonal-mean λ_{cs} exhibits local extrema, which ¹⁷⁰ may be usefully viewed as the furnace and radiator fins of the tropics. Furthermore, these ¹⁷¹ extrema are indeed due to RH variations, consistent with Pierrehumbert (1995). λ_{cs} ex-¹⁷² hibits a local maxima in the subtropics because they are hot and dry enough for the feed-¹⁷³ back to exhibit a Planck-dominated response, and λ_{cs} exhibits a local minimum in the ¹⁷⁴ deep tropics because it is hot and moist enough for the feedback to exhibit a window-¹⁷⁵ dominated response (Figure 1c).

176 2.4 Incorporating the effects of cloudiness

In Question 3, we asked whether clouds affect the meridional structure in zonalmean longwave feedback in the tropics. Rather than explicitly compute cloud feedbacks,

which is beyond the scope of this paper, we try to estimate them by constructing a sim-179 ple model for how clouds modify longwave emission. To validate the approach, we first 180 estimate the all-sky OLR, OLR_{as} , from a few inputs: OLR_{cs} , the cloud-top fraction f, 181 and the cloud-top temperature, T_{ct} . OLR_{cs} is taken directly from ERA5 reanalysis. f 182 is diagnosed from ERA5 reanalysis as the local max of the zonal-mean cloud fraction pro-183 file above a 550 hPa threshold, which is used to avoid misidentifying cloud tops with bound-184 ary layer cloudiness. T_{ct} is the atmospheric temperature at which cloud fraction profile 185 peaks. We smooth the T_{ct} with a Savitzky-Golay filter with a 10° latitude width to ac-186 count for sharp jumps in T_{ct} arising from the limited vertical resolution. This method 187 of identifying cloud tops is similar to Thompson et al. (2017). We show our methodol-188 ogy in the SI. 189

To estimate OLR_{as} , we first consider the effect of high clouds, which block longwave emission from lower levels and replace it with their own longwave emission from cloud tops. We assume high cloud emission acts like a black body and occurs high enough in the atmosphere that emission travels directly to space (Siebesma et al., 2020). As for low clouds, we grossly assume the low clouds emit at a temperature close enough to T_s that they only negligibly alter the outgoing radiation (D. Hartmann, 2015). Given these assumptions, we can now write down a simple expression for OLR_{as} :

$$OLR_{as} \approx \sigma T_{ct}^4 f + OLR_{cs}(1-f).$$
 (3)

This model is similar in some ways to the conceptual model created in (Soden et al., 2008) to examine cross-field correlations between clear-sky and cloud feedbacks.

To get a sense of what the inputs to equation 3 look like, we plot annual- and zonalmean f, T_{ct} , OLR_{cs} , and OLR_{as} from ERA5 reanalysis in gray in Figure 4. Note the muted latitudinal dependence of OLR_{cs} compared to variations in OLR_{cs} throughout the rest of the globe. This is inconsistent with the notion of radiator fins as significant subtropical maxima in OLR_{cs} , which is why focus on λ_{cs} instead. OLR_{as} does have more significant tropical extrema, but these should not be interpreted as a furnace and radiator fins because the longwave warming effect of deep tropical clouds is balanced by their shortwave cooling effect (Pierrehumbert, 1995; D. L. Hartmann & Berry, 2017).

We test the approximate all-sky radiation from Equation 3 against OLR_{as} directly output from ERA5 analysis, which includes cloud opacities and comprehensive radiative transfer in its calculation. We find that our model does an acceptable job in replicating the reanalysis (Figure 4), which gives us enough confidence in this model to proceed.

We now use Equation 3 to compute the longwave all-sky feedback, λ_{as} . We first assume high cloud temperatures do not change appreciably with warming, consistent with a fixed anvil temperature (FAT) hypothesis (D. Hartmann & Larson, 2002; Zelinka & Hartmann, 2010). Although f can change with warming (Bony et al., 2016; Saint-Lu et al., 2020), the high cloud area feedback is quite uncertain (Wing et al., 2020; Sherwood et al., 2020), so for simplicity we assume f is constant with warming. Differentiating Equation 3 with respect to T_s yields:

$$\lambda_{as} = \lambda_{cs} (1 - f). \tag{4}$$

This equation makes it conceptually clear how clouds modify λ_{cs} : the longwave feedback 218 over clouds is 0. Since f is positive definite (Figure 4), $\lambda_{as} \leq \lambda_{cs}$ always. This is well 219 demonstrated in the meridional structure of λ_{as} in Figure 5a. The all-sky feedback looks 220 like a simple translation downward of the clear-sky feedback, and there is still a signif-221 icant (~50%) variation in λ_{as} from the subtropics to the deep tropics. Our answer to 222 Question 3 is then: Clouds have a destabilizing influence on the longwave feedback. How-223 ever, the structure of all-sky feedback looks similar to clear-sky feedback, implying that 224 the RH-dependence from clear-sky effects still dominate the meridional structure. 225

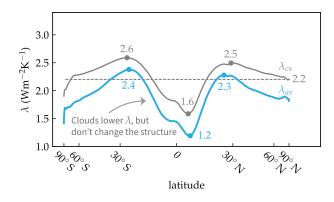


Figure 5. Incorporating clouds into the longwave feedback. Zonal-mean all-sky feedback (λ_{as} , blue) is diagnosed from zonal-mean clear-sky feedback (λ_{cs} , gray) and zonal-mean cloud-top fraction f. See Equation 4 for details. Note the equal-area scaling of the x-axis.

²²⁶ 3 Discussion

227	Our work can be summarized as follows:
228	1. At high temperatures, variations in RH are sufficient to close the H_2O window,
229	driving deviations in λ_{cs} from the typical value of 2.2 Wm ⁻² K ⁻¹ (Figure 1).
230	2. Furnaces and radiator fins can be interpreted as tropical extrema in zonal-mean
231	λ_{cs} as a consequence of the RH-dependence (Figure 3).
232	3. Cloud radiative effects can be estimated with a simple equation to reconstruct the
233	all-sky OLR (Figure 4), which we then use to estimate the all-sky feedback. Clouds
234	lower the feedback relative to clear skies, but the RH-dependence of the feedback
235	is still significant (Figure 5).
236	3.1 Comparison to other work
237	We have demonstrated a reason for why a large contrast in λ_{cs} emerges in the trop-
238	ics. However, Zhang et al. (2020) analyzed GCMs and suggested that the dip in zonal
239	mean λ_{cs} to 1 Wm ⁻² K ⁻¹ in their study results from local column RH increases. Col-

²³⁸ ics. However, Zhang et al. (2020) analyzed GCMs and suggested that the dip in zonal ²³⁹ mean λ_{cs} to 1 Wm⁻²K⁻¹ in their study results from local column RH increases. Col-²⁴⁰ umn RH is fixed in our study and yet we still get a significant tropical dip in λ_{cs} to 1.6 ²⁴¹ Wm⁻²K⁻¹. Therefore, this suggests that climatological RH is as important as local RH ²⁴² changes in GCMs in causing tropical deviations from the global mean value of $\lambda_{cs} \approx$ ²⁴³ 2.2 Wm⁻²K⁻¹.

Our results for the zonal-mean feedback cannot be directly compared to other stud-244 ies of zonal mean feedback (e.g. Feldl and Roe (2013a, 2013b); Armour et al. (2013)) for 245 two reasons. The first is that our λ_{cs} is not equal to the sum of the Planck, Lapse-Rate, 246 and q_v feedbacks, because these feedbacks include "cloud climatological effects" (Yoshimori 247 et al., 2020), i.e. these feedbacks are calculated in the presence of clouds from the con-248 trol simulation. Furthermore, our λ_{as} is also not equal to this sum of conventional feed-249 backs, because those feedbacks fix the cloud pressure, whereas we fix the cloud temper-250 ature. These issues were discussed in detail by Yoshimori et al. (2020), and our λ_{as} should 251 be comparable to their T-FRAT feedback in which the RH and cloud temperatures are 252 fixed. Further work could explicitly explore such comparisons. 253

Our new understanding of the state dependence of λ_{cs} gives context to previous results. For example, Meraner et al. (2013); Bloch-Johnson et al. (2021) attributed an increase in equilibrium climate sensitivity to the decrease in λ_{cs} with warming. We expect these variations in λ_{cs} to be enhanced in climates hotter than present-day Earth

and conversely to be suppressed in climates cooler than present-day Earth. Our partic-

²⁵⁹ ular calculation of the λ_{cs} phase space assumed that the CO₂ concentration is fixed at ²⁶⁰ 340 ppmv, which neglects the increasingly important role of CO₂ in stabilizing the cli-

 $_{260}$ 340 ppmv, which neglects the increasingly important role of CO₂ in stabilizing the climate at high CO₂ concentrations (Seeley & Jeevanjee, 2020). However, the strength in

²⁶⁷ inate at high CO₂ concentrations (Sectory & Sectanjee, 2020). However, the strength in ²⁶⁸ our approach of studying the joint dependence of λ_{cs} on T_s and RH is its generality, for

our approach can not only be applied to our present-day climate, but to past climates

like the Eocene, Pliocene, and Last Glacial Maximum, and to future climates predicted

²⁶⁵ from different RCP scenarios.

266 Acknowledgments

ERA5 data is available from https://doi.org/10.24381/cds.bd0915c6. Data from

the PyRADS calculations are available from https://www.dropbox.com/sh/vam6f6t7vvyj74x/

AAAZtYqz-SbaIvvjrzT81_Wra?dl=0 and will be available in a Zenodo repository upon

acceptance. This work was funded by CEMPS at the University of Exeter. We thank

Penelope Maher, Stephen Thomson, Hugo Lambert, and Mitchell Koerner for their help-

ful conversations on this project.

273 **References**

- Allan, R. P., Shine, K. P., Slingo, A., & Pamment, J. A. (1999).The dependence 274 of clear-sky outgoing long-wave radiation on surface temperature and relative 275 humidity. Quarterly Journal of the Royal Meteorological Society, 125(558), 276 2103-2126. doi: https://doi.org/10.1002/qj.49712555809 277 Armour, K. C., Bitz, C. M., & Roe, G. H. (2013). Time-varying climate sensitiv-278 ity from regional feedbacks. Journal of Climate, 26(13), 4518 - 4534. doi: 10 279 .1175/JCLI-D-12-00544.1 280 Bloch-Johnson, J., Rugenstein, M., Stolpe, M. B., Rohrschneider, T., Zheng, Y., & 281 Gregory, J. M. (2021). Climate sensitivity increases under higher CO2 levels 282 due to feedback temperature dependence. Geophysical Research Letters, 48(4), 283 e2020GL089074. doi: https://doi.org/10.1029/2020GL089074 284 Bony, S., Duvel, J., & Le Trent, H. (1995). Observed dependence of the water vapor and clear-sky greenhouse effect on sea surface temperature: comparison 286 with climate warming experiments. Climate Dynamics, 11, 307-320. doi: 287 https://doi.org/10.1007/BF00211682 288 Bony, S., Stevens, B., Coppin, D., Becker, T., Reed, K. A., Voigt, A., & Medeiros, 289 В. (2016).Thermodynamic control of anvil cloud amount. Proceed-290 ings of the National Academy of Sciences, 113(32), 8927–8932. doi: 291 10.1073/pnas.1601472113 292 Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the 293 Earth. Tellus, 21(5), 611–619. 294 Global climate change: an investigation of atmospheric feedback Cess, R. (1975).295 mechanisms. Tellus, 27(3), 193-198. doi: https://doi.org/10.1111/j.2153-3490 296 .1975.tb01672.x 297 Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Del Genio, A. D., Dqu, M., 298 (1990).Intercomparison and interpretation of climate ... Zhang, M.-H. 299
- ²⁹⁹ ... Zhang, M.-H. (1990). Intercomparison and interpretation of climate
 feedback processes in 19 atmospheric general circulation models. Jour nal of Geophysical Research: Atmospheres, 95(D10), 16601-16615. doi:
 https://doi.org/10.1029/JD095iD10p16601
- Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., ... Yagai, I. (1989). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. *Science*, 245 (4917), 513–516. doi: 10.1126/science.245.4917.513
- ³⁰⁷ Chung, E.-S., Yeomans, D., & Soden, B. J. (2010). An assessment of climate

308	feedback processes using satellite observations of clear-sky olr. Geophysical
309	Research Letters, 37(2). doi: https://doi.org/10.1029/2009GL041889
310	Dessler, A. E., Yang, P., Lee, J., Solbrig, J., Zhang, Z., & Minschwaner, K. (2008).
311	An analysis of the dependence of clear-sky top-of-atmosphere outgoing long-
312	wave radiation on atmospheric temperature and water vapor. Journal of
313	Geophysical Research: Atmospheres, 113(D17). doi: https://doi.org/10.1029/
314	2008JD010137
315	Feldl, N., & Roe, G. H. (2013a). Four perspectives on climate feedbacks. <i>Geophysical</i>
316	Research Letters, $40(15)$, 4007-4011. doi: https://doi.org/10.1002/grl.50711
317	Feldl, N., & Roe, G. H. (2013b). The nonlinear and nonlocal nature of climate feed-
318	backs. Journal of Climate, 26(21), 8289 - 8304. doi: 10.1175/JCLI-D-12-00631
319	
320	Hartmann, D. (2015). <i>Global physical climatology</i> . Elsevier Science. Retrieved from
321	https://books.google.co.uk/books?id=RsScBAAAQBAJ
322	Hartmann, D., & Larson, K. (2002). An important constraint on tropical cloud - cli-
323	mate feedback. Geophysical Research Letters, 29(20), 12-1-12-4. doi: https://
324	doi.org/10.1029/2002GL015835
325	Hartmann, D. L., & Berry, S. E. (2017). The balanced radiative effect of tropi-
326	cal anvil clouds. Journal of Geophysical Research: Atmospheres, 122(9), 5003-
327	5020. doi: https://doi.org/10.1002/2017JD026460
328	Held, I. M., & Shell, K. M. (2012). Using relative humidity as a state variable in cli-
329	mate feedback analysis. Journal of Climate, $25(8)$, $2578 - 2582$. doi: 10.1175/
330	JCLI-D-11-00721.1 Hanshach II Bell B. Dennisford B. Hinshans S. Hannui A. Muss Sabatan
331	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hornyi, A., Muoz-Sabater,
332	J., Thpaut, JN. (2020). The ERA5 global reanalysis. Quarterly
333	Journal of the Royal Meteorological Society, $146(730)$, 1999-2049. doi: https://doi.org/10.1002/ci.2802
334	https://doi.org/10.1002/qj.3803
335	Jeevanjee, N. (2018). The physics of climate change: simple models in climate sci-
336	ence. Retrieved from http://arxiv.org/abs/1802.02695 Jeevanjee, N., Koll, D. D. B., & Lutsko, N. (2021). Simpsons law and the spectral
337	cancellation of climate feedbacks. Submitted to Geophysical Research Letters.
338	doi: https://doi.org/10.1002/essoar.10506744.1
339	Koll, D. D. B., & Cronin, T. W. (2018). Earth's outgoing longwave radiation lin-
340	ear due to H2O greenhouse effect. Proceedings of the National Academy of Sci-
341 342	ences, 115(41), 10293–10298. doi: 10.1073/pnas.1809868115
343	Koll, D. D. B., & Cronin, T. W. (2019, August). <i>PyRADS: Python RADiation</i>
343	model for planetary atmosphereS.
345	Meraner, K., Mauritsen, T., & Voigt, A. (2013). Robust increase in equilibrium cli-
346	mate sensitivity under global warming. Geophysical Research Letters, $40(22)$,
347	5944-5948. doi: https://doi.org/10.1002/2013GL058118
348	Pierrehumbert, R. T. (1995). Thermostats, radiator fins, and the local runaway
349	greenhouse. Journal of Atmospheric Sciences, 52(10), 1784 - 1806. doi: 10
350	.1175/1520-0469(1995)052(1784:TRFATL)2.0.CO;2
351	Raval, A., Oort, A. H., & Ramaswamy, V. (1994). Observed dependence of out-
352	going longwave radiation on sea surface temperature and moisture. Journal of
353	Climate, $7(5)$, 807 - 821. doi: 10.1175/1520-0442(1994)007(0807:ODOOLR)2.0
354	.CO;2
355	Saint-Lu, M., Bony, S., & Dufresne, JL. (2020). Observational evidence for
356	a stability iris effect in the tropics. <i>Geophysical Research Letters</i> , 47(14),
357	e2020GL089059. doi: https://doi.org/10.1029/2020GL089059
358	Seeley, J. T., & Jeevanjee, N. (2020). H2O windows and CO2 radiator fins: A
359	clear-sky explanation for the peak in equilibrium climate sensitivity. Geophys-
360	ical Research Letters, 48(4), e2020GL089609. doi: https://doi.org/10.1029/
361	2020GL089609
362	Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Har-

363	greaves, J. C., Zelinka, M. D. (2020). An assessment of earth's climate
364	sensitivity using multiple lines of evidence. Reviews of $Geophysics, 58(4),$
365	e2019RG000678. doi: https://doi.org/10.1029/2019RG000678
366	Siebesma, A., Bony, S., Jakob, C., & Stevens, B. (2020). Clouds and climate: Cli-
367	mate science's greatest challenge. Cambridge University Press. Retrieved from
368	https://books.google.co.uk/books?id=rvXvDwAAQBAJ
369	Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., & Shields, C. A.
370	(2008). Quantifying climate feedbacks using radiative kernels. Journal of
371	Climate, 21(14), 3504 - 3520. doi: 10.1175/2007JCLI2110.1
372	Thompson, D. W. J., Bony, S., & Li, Y. (2017). Thermodynamic constraint on
373	the depth of the global tropospheric circulation. Proceedings of the National
374	Academy of Sciences, 114(31), 8181–8186. doi: 10.1073/pnas.1620493114
375	Wing, A. A., Stauffer, C. L., Becker, T., Reed, K. A., Ahn, MS., Arnold, N. P.,
376	Zhao, M. (2020). Clouds and convective self-aggregation in a mul-
377	timodel ensemble of radiative-convective equilibrium simulations. Jour-
378	nal of Advances in Modeling Earth Systems, $12(9)$, $e2020MS002138$. doi:
379	https://doi.org/10.1029/2020MS002138
380	Yoshimori, M., Lambert, F. H., Webb, M. J., & Andrews, T. (2020). Fixed anvil
381	temperature feedback: Positive, zero, or negative? Journal of Climate, $33(7)$,
382	2719 - 2739. doi: 10.1175/JCLI-D-19-0108.1
383	Zelinka, M. D., & Hartmann, D. L. (2010). Why is longwave cloud feedback posi-
384	tive? Journal of Geophysical Research: Atmospheres, 115(D16). doi: https://
385	doi.org/10.1029/2010JD013817
386	Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
387	Ceppi, P., Taylor, K. E. (2020). Causes of higher climate sensitivity in
388	CMIP6 models. Geophysical Research Letters, 47(1), e2019GL085782. doi:
389	https://doi.org/10.1029/2019GL085782
390	Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of outgoing longwave
391	radiation: From an atmospheric column to global climate models. Geophysi-
392	cal Research Letters, 47(17), e2020GL089235. doi: https://doi.org/10.1029/
393	2020GL089235

Figure 1.

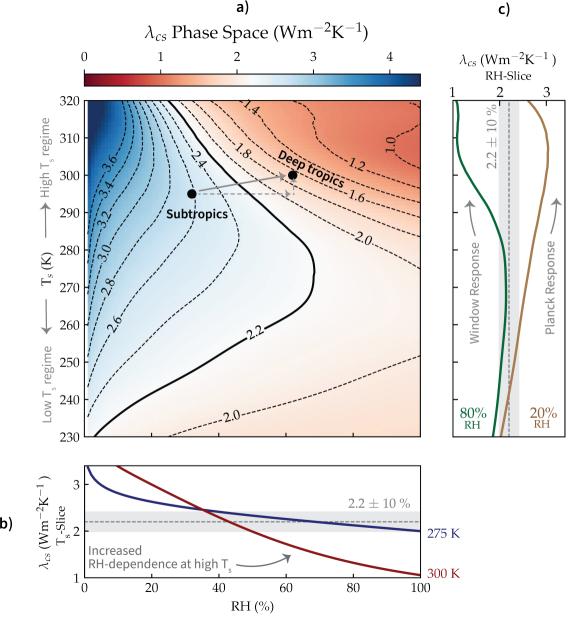


Figure 2.

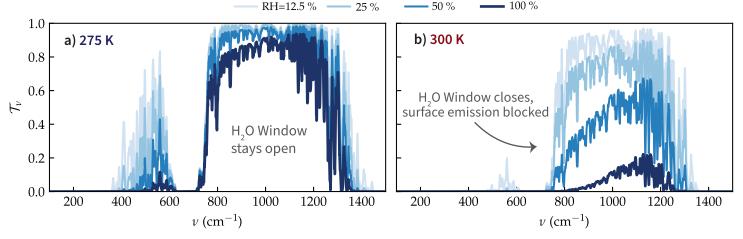


Figure 3.

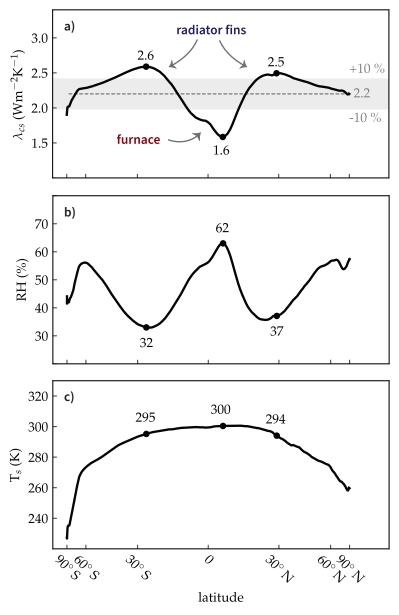


Figure 4.

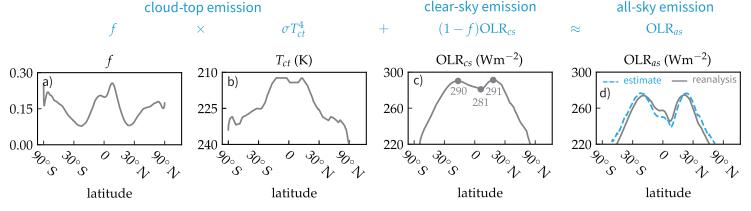
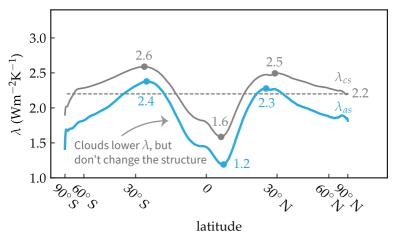



Figure 5.

