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Abstract

The Greenland Ice Sheet discharges ice to the ocean through hundreds of outlet glaciers.

Recent acceleration of Greenland outlet glaciers has been linked to both oceanic and atmospheric drivers.

Here, we leverage temporally dense observations, regional climate model output, and newly developed time series analysis tools

to assess the most important forcings causing ice flow variability at one of the largest Greenland outlet glaciers, Helheim Glacier,

from 2009 to 2017. We find that ice speed correlates most strongly with catchment-integrated runoff at seasonal to interannual

scales, while multi-annual flow variability correlates most strongly with multi-annual terminus variability. The multiple relevant

time scales and the influence of subglacial topography on Helheim Glacier’s dynamics highlight different regimes that can inform

modeling and forecasting of its future. Notably, our results suggest that the recent terminus history observed at Helheim is a

response to, rather than the cause of, upstream changes.
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• Multiple variables control the ice velocity of Helheim Glacier, Greenland.12

• At seasonal timescales, ice velocity responds most strongly to catchment-integrated13

meltwater runoff.14

• Glacier terminus position is an important control on velocity only at multi-annual15
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Abstract17

The Greenland Ice Sheet discharges ice to the ocean through hundreds of outlet glaciers.18

Recent acceleration of Greenland outlet glaciers has been linked to both oceanic and at-19

mospheric drivers. Here, we leverage temporally dense observations, regional climate model20

output, and newly developed time series analysis tools to assess the most important forc-21

ings causing ice flow variability at one of the largest Greenland outlet glaciers, Helheim22

Glacier, from 2009 to 2017. We find that ice speed correlates most strongly with catchment-23

integrated runoff at seasonal to interannual scales, while multi-annual flow variability24

correlates most strongly with multi-annual terminus variability. The multiple relevant25

time scales and the influence of subglacial topography on Helheim Glacier’s dynamics26

highlight different regimes that can inform modeling and forecasting of its future. No-27

tably, our results suggest that the recent terminus history observed at Helheim is a re-28

sponse to, rather than the cause of, upstream changes.29

Plain Language Summary30

Hundreds of “outlet glaciers” transport ice from the Greenland Ice Sheet to the ocean.31

The flow of those outlet glaciers has sped up in recent decades, increasing the contribu-32

tion of Greenland ice to global mean sea-level rise. Previous studies suggest that changes33

in both the ocean and the atmosphere could cause the observed speedup. In this study,34

we bring together satellite observations and information from a regional climate model35

with new software tools to determine which factors in an outlet glacier system are the36

most likely causes of velocity variation. Based on previous studies, we might expect ocean-37

driven changes to be the dominant cause of velocity variation for Helheim Glacier. In-38

stead, we find that the most important factors differ at different time scales. Velocity39

changes over the course of a few months to a year respond to variations in the amount40

of meltwater in the glacier system, which depends on atmospheric conditions. Over longer41

time scales, velocity changes respond more strongly to the position of the glacier front,42

where it meets the ocean. The interaction of multiple factors across time scales highlights43

the importance of continued efforts to simulate future changes of large Greenland out-44

let glaciers in detail.45

1 Introduction46

In recent decades, several glaciers draining the Greenland Ice Sheet have acceler-47

ated, increasing their contribution to global mean sea-level rise (Rignot & Kanagarat-48

nam, 2006; Rignot et al., 2011; Bevan et al., 2012). The observed acceleration of out-49

let glaciers and the ice sheet interior has been attributed to warmer ocean waters melt-50

ing glacier fronts (Murray et al., 2010; Rignot et al., 2012) as well as increased surface51

melt (Joughin et al., 2008; Doyle et al., 2014). Numerical models and indirect observa-52

tions indicate that increasing runoff could enhance solid ice loss by lubricating the glacier53

bed and warming the ice such that it deforms more readily (Reeh & Olesen, 1986; Kra-54

bill et al., 1999; Parizek & Alley, 2004; Phillips et al., 2010; Poinar et al., 2017). How-55

ever, in situ observations of the Greenland Ice Sheet margin have found limited evidence56

for annual-scale acceleration of ice flow driven by increasing runoff (Stevens et al., 2016;57

Nienow et al., 2017). At marine outlets including Helheim Glacier, observations show58

that ice flow speed (and therefore mass discharge) correlates most strongly with iceberg59

calving activity rather than runoff (Howat et al., 2005; Joughin et al., 2008; Nettles et60

al., 2008; Kehrl et al., 2017; Vijay et al., 2019).61

Helheim Glacier is currently the highest-flux outlet of the Greenland Ice Sheet (Mankoff62

et al., 2019). Its dynamics through the early 21st century showed pronounced variabil-63

ity, including episodes of multi-annual retreat and readvance (Howat et al., 2005, 2007;64

Bevan et al., 2012) and net mass gain while most Greenland outlet glaciers were losing65

mass (Howat et al., 2011). Sediment records from the past century suggest that Helheim66
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responds to atmospheric and oceanic variability on time scales of a few years (Andresen67

et al., 2012), highlighting the importance of understanding its dynamics on sub-annual68

to multi-annual time scales. The high ice flux through Helheim Glacier (Rignot et al.,69

2004; Mankoff et al., 2019), its recent variability (Stearns & Hamilton, 2007; Howat et70

al., 2005, 2007), and its sensitivity to short-term variation in climate forcings (Nick et71

al., 2009; Andresen et al., 2012) motivate a quantitative comparison of hypothesized con-72

trols on velocity variability.73

Processes contributing to velocity variability operate at different time scales. For74

example, fracture-driven changes in stress balance can be nearly instantaneous and prop-75

agate rapidly, shaping velocity on the order of hours to days (Das et al., 2008; Nettles76

et al., 2008; Cassotto et al., 2019), while changes in the subglacial drainage system may77

take days to months (Meier et al., 1994; Kamb et al., 1994; Shepherd et al., 2009; Bartholomew78

et al., 2010; Pimentel & Flowers, 2011) and response to changing upstream snow accu-79

mulation can take many years (Weertman, 1958; Nye, 1960; van der Veen, 2001). Ob-80

servations that permit a detailed understanding of one process – such as intensive field81

study of a calving front – may not be sufficient to contextualize influences from processes82

operating at other scales. Accounting for the relative influence of each process, for ex-83

ample to develop accurate predictive models, requires synthesising observations and in-84

ference across scales. Here, we apply the flexible time series analysis tools developed by85

Riel et al. (2021) to publicly available velocity fields (Joughin et al., 2020) and correlate86

the results with temporally dense climate model output (Van Meijgaard et al., 2008; Noël87

et al., 2018) and terminus observations (Supplementary Material) to study the forcings88

of and responses to velocity variability at Helheim over multiple temporal scales.89

2 Methods90

2.1 Inference framework91

We investigate correlations between surface velocity and several factors hypothe-92

sized to drive its variability at seasonal to multi-annual scales. Figure 1 shows the sys-93

tem of causal connections we investigate here. Limited time-dependent data precludes94

us from studying the effect of ice mélange, ocean temperature, and surface damage di-95

rectly. Here, we assume that the primary effect of those three variables is on the rate of96

calving, and we restrict the present study to the relationship between glacier terminus97

position and surface ice velocity. We focus our analysis on time scales of months to years.98

As such, we do not consider the flow response to individual calving events (Murray et99

al., 2015) or tidal variation (de Juan et al., 2010; Voytenko et al., 2015), which have been100

described elsewhere.101

We investigate three factors varying in time (surface mass balance, runoff, and width-102

averaged terminus position) and one varying in space (subglacial topography). To quan-103

tify the strength of the temporal variables’ relationship with velocity, we compute their104

cross-correlation as described below. We interpret the qualitative effect of local topog-105

raphy on velocity variation by analysing spatial patterns in the cross-correlations com-106

puted for the temporal variables.107

2.2 Catchment data108

We produce a one-dimensional time series for each catchment variable. We inte-109

grate monthly surface mass balance and runoff derived from Noël et al. (2018) over the110

Helheim Glacier catchment defined by Mankoff et al. (2020). The time series of calving111

front position is a width-averaged distance from an upstream flux gate, identified from112

satellite imagery (Supplementary Dataset S1) with variable temporal resolution. For the113

present study of seasonal to multi-annual time scales, we apply a 10-day smoothing win-114

dow to the terminus record. We trim all time series to the period for which data is avail-115
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∫
C

Runoff
∫
C

SMB Local topographySurface damage/discont.

Calving eventsMélange strength

Ocean temperature

Surface velocity

Figure 1. Causal relationships tested in this work. Surface mass balance (SMB) and runoff

are catchment-integrated quantities (
∫
C

), both from (Noël et al., 2018). Surface velocity from

(Joughin et al., 2020) is evaluated at each point. We use terminus position from satellite imagery

(Section 2.2) as a proxy for all ocean-driven processes (blue dotted box)

able for all variables: 2009-2017. We interpolate a piecewise linear time-continuous func-116

tion for each time series using the Interp1d class of SciPy v1.4.1 (Virtanen et al., 2020).117

2.3 Producing temporally continuous velocity functions118

We use frequent observations and spline interpolation to produce time-continuous119

estimates of ice surface velocity. We stack all available InSAR-derived glacier site veloc-120

ity observations from Joughin et al. (2020) and extract 1-dimensional time series of ve-121

locity at points spaced at 1 km intervals along a central flowline (as defined in Felikson122

et al., 2021). We define an upstream limit to our analysis by the area for which there123

are sufficient velocity observations to constrain a time-continuous fit. The selected points124

are shown in Figure 2A-B.125

We then construct a continuous function that best fits the observed values at each126

point. Following Riel et al. (2021), we perform a regularized least squares regression that127

estimates the optimal linear combination of representative time functions (linear poly-128

nomials, B-splines, and integrated B-splines of pre-defined center times and scales) to129

fit the data at each point. The resulting function is an optimized superposition of lin-130

ear trend, seasonal variability, and secular change, which facilitates later decomposition131

into components of interest. Example observations and constructed continuous functions132

are shown in Figure 2C.133

2.4 Normalized cross-correlation134

Finally, we find and compare the cross-correlations describing ice speed response135

to each variable at each point. We sample each time-continuous function at regular in-136

tervals. Dickey-Fuller and KPSS tests applied using the Python package statsmodels v0.12.2137

(Seabold & Perktold, 2010) indicate that the raw time series are non-stationary — that138

is, their means and/or variances change over time, which can produce spurious results139

in cross-correlation analysis (Shumway & Stoffer, 2017). In sections 3.1-3.2, we enforce140

stationarity by differencing:141

fi = f̂i − f̂i−1, (1)

where f̂i is the ith point in the raw time series and f is the differenced time series. We142

elect not to difference the long-term-varying series tested in section 3.3, as doing so would143

remove the signal of interest.144
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Figure 2. The physical setting of Helheim Glacier studied here. (A) Hillshade map of Hel-

heim Glacier subglacial topography from Morlighem et al. (2017) with 2009 terminal edge from

Joughin et al. (2020) in white, points along central flowline in bright colors, and inset map of

Helheim Glacier location within Greenland; (B) Mean ice surface speed as of 2016 (ENVEO,

2017), with flowline points outlined; (C) Ice surface speed at two locations from Joughin et al.

(2020) (points) and B-spline smooth approximation to each time series (curves); (D) B-spline

continuous velocity functions for each point along the flowline in panel A, with curve color indi-

cating which point is represented; (E) Catchment-integrated surface mass balance from RACMO;

(F) Catchment-integrated runoff from RACMO (Noël et al., 2018); and (G) Width-averaged

terminus position, relative to a fixed gate on the glacier (larger numbers indicate advance). In

panels E-G, data from the original source is plotted as points, and dark lines show the values of

1d-interpolated functions used to determine signal cross-correlation. In panels C and E-G, light

curves show the long-term-varying component of each signal.
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We compute the normalized cross-correlation at lag k,145

XCorr(f, v)k =
1

N

N∑
i=1

fi+k − f̄
σ(f)

vi − v̄
σ(v)

, (2)

for k ∈ [−N,N ], where ice speed v and variable f are each time series of length N , dif-146

ferenced as in Eqn. 1, with means (v̄, f̄) and standard deviations (σ(v), σ(f)). With this147

convention, a lag k < 0 refers to a cross-correlation with the velocity series offset back-148

ward in time; that is, strong cross-correlations at negative lag indicate that a change is149

observed first in the velocity signal and a similar change is observed later in the variable150

f signal. The normalized cross-correlation may take values between ±1, and a cross-correlation151

at lag k is statistically significant at the 95% confidence level if it exceeds 1.96/
√
N − k.152

Because we anticipate multiple influences on observed surface velocity (Figure 1),153

we do not expect the magnitude of correlations to be close to 1. Rather, we identify the154

largest-magnitude statistically significant correlations for each variable at each point, and155

we compare their relative strength. From the full time series (Section 3.1) and then from156

annual subsets (Section 3.2) and from series filtered to show only multi-annual variabil-157

ity (Section 3.3), we identify the largest magnitude of cross-correlation between the se-158

ries and the lag in days at which that extreme value occurs. We analyse both positive159

and negative lag times for terminus position, given the bidirectional causal relationship160

we expect for that variable (Figure 1). We restrict our analysis to positive lag values for161

surface mass balance and runoff. The quasi-periodic nature of those signals is likely to162

produce significant cross-correlations at negative lags, but there is no physical reason to163

expect feedbacks from velocity to mass balance or runoff at seasonal to multi-annual time164

scales.165

3 Results166

3.1 Seasonal to interannual velocity variability responds most strongly167

to runoff168

The normalized, single-differenced cross-correlations with ice surface speed are dis-169

tinct for each variable. The weakest cross-correlations along the flowline, on average, are170

with catchment-integrated surface mass balance (Fig. 3, left column). For that variable,171

the strongest negative correlation is −0.17, found at the farthest downstream point. The172

strongest positive correlation is 0.13, found 14 km upstream. Cross-correlation of ice sur-173

face speed with catchment-integrated runoff (Fig. 3, center column) is stronger. Its peak174

positive value is 0.25, found near the terminus, and its strongest negative value is −0.20,175

found 19 km upstream. Terminus position (Fig. 3, right column) also shows compara-176

tively strong cross-correlations with velocity. The strongest correlation is −0.22, found177

near the terminus, and the strongest positive correlation is 0.19, found 14 km upstream178

from the terminus. However, the strongest cross-correlations are found at negative lags,179

suggesting that terminus position is responding to upstream velocity variation rather than180

vice versa.181

At every point, the magnitude of strongest cross-correlation with velocity is larger182

for runoff than for surface mass balance, on average 1.2 times larger over the flowline.183

The cross-correlation between terminus position and velocity is similar in magnitude to184

that of runoff, but the former appears to be a response to velocity changes while the lat-185

ter leads velocity changes. We infer that runoff exerts the strongest control on seasonal186

to interannual ice surface velocity variability along the main trunk of Helheim Glacier.187

3.2 No year in which terminus position is more important than runoff188

Because Helheim Glacier is a complex system that changes over time, the multi-189

year bulk analysis of section 3.1 may not capture important interannual changes in the190

–6–
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Figure 3. The cross-correlation of largest absolute value (“AMax. xcorr”) (top row) between

ice surface speed and each variable (columns), and the lag in days (bottom row) at which that

cross-correlation is found. Circles and crosses indicate values that are and are not significant at

the 95% confidence level, respectively.

dominant sources of its velocity variability. To study year-to-year changes in more de-191

tail, we computed the cross-correlation between single-year subsets of the variables we192

studied in section 3.1. Cross-correlations of these single-year subsets are generally stronger193

than those found over the full time period. We present both positive and negative lags194

for all variables, as the signals are quasi-periodic.195

The patterns of cross-correlation between single-year sections of the signals vary196

from year to year, as shown in Figure 4. For example, in 2009 the cross-correlation be-197

tween runoff and surface speed at a downstream point is strongest at a lag of around 90198

days, with a statistically significant minimum following at longer lag times. In 2010, 2012,199

and 2013, the strongest correlation between runoff and surface speed is in negative lag200

space, which we interpret as a response to past years’ runoff peaks. There are statisti-201

cally significant correlations between runoff and surface speed every year.202

We find that the normalized cross-correlation of terminus position and ice surface203

speed is generally low. That correlation is statistically significant in only four of the eight204

years we analyse. The strongest of those correlations are in 2010 and 2013, where there205

is a significant correlation for small negative lags, indicating that terminus position changed206

in response to a velocity change. For every year we study, ice surface speed correlates207

much more strongly with catchment-integrated runoff than with terminus position.208

3.3 Multi-annual velocity variability correlates with terminus position209

We apply a boxcar filter with window of 2 years to the surface mass balance, runoff,210

and terminus position data to isolate long-term (multi-annual) from shorter-term vari-211

ability. We then extract the long-term-varying signal from the ice speed timeseries as212

discussed in Section 2.3. The isolated long-term components are shown as light curves213

in Figure 2. Finally, we recompute the cross-correlation for the filtered time series.214

–7–
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Figure 4. Annual patterns of cross-correlation between surface speed and system variables

for (left) surface mass balance, (center) runoff, and (right) terminus position, sampled at a point

5 km upstream from the 2009 terminus. Dotted curves indicate 95% confidence intervals around

XCorr(f, v) = 0; shading indicates statistically significant difference from zero.
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Figure 5. Influence of a subglacial ridge on Helheim Glacier dynamics. A) Ice speed

cross-correlation with each variable tested, for each point along the flowline, vertically off-

set for legibility. Variable labels coincide with zero cross-correlation and minor ticks indicate

XCorr(f, v) = ±0.5. Solid lines are cross-correlations of the full signals (as reported in Figure 3

and Section 3.1). Dashed lines show results filtered to isolate long-term variability (as in Section

3.3 and Figure S1). Lower portion shows bed topography (brown), ice surface (grey), and mean

surface speed (purple) along the flowline. Velocity ticks correspond to 4.5, 6.0, and 7.5 km a−1.

Vertical marker indicates position of sign changes in cross-correlation for multiple variables. B)

Enlarged contour map of the Helheim Glacier trough around the bedrock bump. Background

image is a black and white hillshade of the topography as in Figure 3; contours show intervals of

approximately 60 meters elevation. Contour colormap and flowline points (black) are consistent

with Figure 2A.

We see a strong correlation between the long-term-varying components of ice speed215

and terminus position. The correlation between these two component signals is much stronger216

than between the corresponding full signals (Figures 5 and S1), with values along the217

lower trunk averaging −0.8, all for non-negative lags. A cross-correlation stronger than218

that for the full signals is also seen for long-term-varying surface mass balance, ranging219

from -0.54 to 0.54. The correlation between long-term-varying components of ice speed220

and runoff is comparable to that between the full signals, ranging from -0.29 to 0.29. We221

infer that terminus position variability is most important for Helheim Glacier’s dynam-222

ics at multi-annual time scales.223

3.4 Subglacial topography modulates velocity response to each variable224

The flowline we examine flows through a trough with a pronounced ridge in its sub-225

glacial topography. The ridge creates a steep along-flow thickness gradient as well as a226

lateral constriction (Figure 5). For all three variables, the flowline separates into two seg-227

ments with opposite sign of maximum cross-correlation. We find changes in sign of ab-228

solute maximum cross-correlation with velocity at 14 km upstream from the terminus—229

coincident with the upstream edge of the subglacial ridge (Figures 3, 5, and S1). We also230

find step changes in the lag at which the strongest cross-correlation occurs aligned with231

the ridge. The spatial pattern of cross-correlation is similar for both seasonal and multi-232
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annual signals (Sections 3.1-3.3). These patterns suggest that the dynamics of the up-233

stream and downstream segments of the flowline are fundamentally different from one234

another. We interpret that the bedrock ridge is an obstacle to the propagation of trav-235

eling waves (Nye, 1960; Fowler, 1982; Weertman & Birchfield, 1983)—whether the waves236

carry velocity variability, seasonal runoff input, or stress adjustment to terminus change237

or surface mass balance.238

4 Discussion239

Our analysis illustrates that Helheim Glacier is a dynamic system with more than240

one important control on its velocity. We find that seasonal-scale variations in ice sur-241

face speed correlate more strongly with catchment-integrated runoff than with terminus242

position, for the full period 2009-2017 (Figure 3) and for every year in it (Figure 4). At243

the multi-annual scale we find stronger correlation with terminus position than with runoff244

(Figure 5), consistent with the findings of Vijay et al. (2019), and in agreement with ear-245

lier work relating ice velocity to ice thickness and glacier terminus position on Alaskan246

tidewater glaciers (Meier & Post, 1987; O’Neel et al., 2005). Our results support pre-247

vious findings that increasing meltwater supply can enhance seasonal speedups in ice flow,248

but does not contribute to multi-annual acceleration (summarized in Nienow et al., 2017).249

Our analysis also supports the assessment by Enderlin et al. (2018) that hypothesised250

distinct variables driving different timescales of velocity variability at Columbia Glacier,251

Alaska.252

The correlation of runoff with seasonal-scale velocity variation described in Sec-253

tion 3.1 is consistent with observations of land-terminating margins of the Greenland Ice254

Sheet (Joughin et al., 2008) and some marine outlets on Greenland’s west coast (Sole255

et al., 2011; Moon et al., 2015), as well as inference of surface-melt-induced acceleration256

(Andersen et al., 2011) and dynamic thinning (Bevan et al., 2015) at Helheim. Although257

our conclusions differ from Moon et al. (2014) and Vijay et al. (2019), who infer that ter-258

minus changes are the strongest control on Helheim’s velocity, the observations presented259

in those studies are consistent with our interpretation that seasonal variations in ice sur-260

face speed are more strongly correlated with runoff than with terminus position change.261

In agreement with Kehrl et al. (2017), we find that 2010 and 2013 are the years for which262

ice surface speed at Helheim is most correlated with terminus position (Fig. 4). How-263

ever, our quantitative analysis shows that, in all years, Helheim’s speed is more corre-264

lated with runoff than terminus position.265

The relative importance of each driver at Helheim Glacier likely does not trans-266

late to other outlets or other time periods. For example, our findings at Helheim con-267

trast those of King et al. (2020), who found that regionally aggregated trends in Green-268

land Ice Sheet discharge correlated most strongly to glacier front position. Ice velocity269

at Helheim may be unusually sensitive to catchment-integrated runoff because of the pres-270

ence of a large firn aquifer that allows hydrofracturing of deep crevasses and enhances271

deformational ice motion (Poinar et al., 2017; Miller et al., 2020). The lower trunk of272

the glacier was also near flotation during the time period we study here (Kehrl et al.,273

2017), which could render it especially sensitive to both changing basal water pressure274

(runoff) and calving activity (Andersen et al., 2010; Cassotto et al., 2019). Finally, the275

spatial pattern of our results highlights the role of unique subglacial topography in shap-276

ing the dynamic response to forcing (Enderlin et al., 2013; Khan et al., 2014; Felikson277

et al., 2017; Catania et al., 2018; Enderlin et al., 2018; Felikson et al., 2021). Although278

our results may be unique to Helheim during the 2009-2017 period, our methods can be279

applied to investigate any glacier with a sufficient observational record.280

One explanation for the weak correlation between ice surface speed and terminus281

position throughout our study period is that the sensitivity of surface speed to termi-282

nus position is itself determined by the terminus position (Cassotto et al., 2019), and that283

–10–
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the terminus did not reach a hypothetical critical position during the time we observed.284

From 2009-2014, the observed terminus positions oscillated around a steady mean po-285

sition at approximately 6 km forward of our reference position; a period of multi-annual286

retreat beginning in late 2014 reflects a multi-annual acceleration on the lower glacier287

trunk beginning around the same time (Figure 2D and G). If the terminus had reached288

a critical position that increased the sensitivity of surface speed to terminus change, we289

would expect to see change in the correlation between those variables as terminus po-290

sition changed over time. Instead we find that the annual cross-correlation between sur-291

face speed and terminus position is no stronger in 2015 and 2016 than in previous years292

(Figure 4).293

A second explanation for the weak correlation between ice surface speed and ter-294

minus position is that iceberg calving is episodic and discontinuous. Field observations295

of Helheim Glacier at finer temporal scales than we study here have found that calving296

activity was an important control on velocity at the timescale of minutes to hours (Nettles297

et al., 2008; de Juan et al., 2010), and that runoff during the melt season contributes to298

daily velocity increases (Andersen et al., 2010, 2011). Thus, even with our temporally299

dense records—average 3 days between measurements—we may more realistically expect300

to see responses to runoff than to iceberg calving. Further, we analyse a width-averaged301

terminus position, which will not capture differing dynamic responses to iceberg calv-302

ing at different points along the face. Extending our methodology to analyse the fine spa-303

tial and temporal scales captured in field observations could provide a fuller picture of304

the forcings driving velocity variability (building on Podrasky et al., 2012, for example).305

In this work, we have assumed that terminus position evolves independently from306

catchment-integrated runoff (Figure 1). This choice ignores the established connection307

between calving rate and subglacial discharge at the terminus (Bartholomaus et al., 2013;308

Cook et al., 2014; Slater et al., 2015; Fried et al., 2018; van Dongen et al., 2020). Mod-309

elling efforts suggest that the calving response to subglacial discharge depends on the310

subglacial hydrologic system near the terminus, in particular whether melt is localized311

to channels (Slater et al., 2015; Todd et al., 2018; van Dongen et al., 2020). Subglacial312

discharge also affects calving through its influence on the vertical pattern of submarine313

melt (Motyka et al., 2003; Jenkins, 2011; O’Leary & Christoffersen, 2013; Luckman et314

al., 2015; Slater et al., 2015; Ma & Bassis, 2019). Recent observations have found no ev-315

idence for a melt-induced enhancement of calving at Helheim Glacier, perhaps because316

of its broad and deep terminus (Everett et al., 2021). However, we anticipate that ac-317

counting for a connection between runoff and calving activity would further strengthen318

the apparent role of runoff in setting Helheim Glacier surface velocity. As new observa-319

tions of the near-terminus environment become available, future work may apply mul-320

tivariate statistical methods to assess this prediction quantitatively.321

Our results show that numerical ice flow modeling experiments will require mul-322

tiple forcing mechanisms to capture the dynamics of Helheim Glacier. Several state-of-323

the-art studies, including the standard experiments performed by several numerical mod-324

els as part of the the Ice Sheet Modeling Intercomparison for the Coupled Model Inter-325

comparison Project Phase 6 (‘ISMIP6”, Nowicki et al., 2020), have used projections of326

outlet glacier terminus positions to force Greenland Ice Sheet mass change simulations327

(Choi et al., 2017; Morlighem et al., 2019). Our results show that this approach is a good328

strategy for projections of multi-annual changes of glaciers like Helheim. However, if fu-329

ture ice sheet modeling efforts seek to reproduce seasonal velocity changes, runoff forc-330

ing must be included. The continued development of subglacial hydrology models (Pimentel331

& Flowers, 2011; Werder et al., 2013) and efforts to couple them with ice dynamics mod-332

els (Aschwanden et al., 2016; Brinkerhoff et al., 2021) are therefore vital to refining our333

understanding of the future evolution of the Greenland Ice Sheet.334
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5 Conclusions335

We have computed normalized cross-correlations between three catchment variables336

(surface mass balance, runoff, and terminus positions) and ice surface velocity of Hel-337

heim Glacier, revealing the dominant controls on velocity variability at multiple time scales.338

We find that velocity responds most strongly to catchment-integrated runoff at seasonal339

scale. At multi-annual scale, velocity variability shows stronger correlation with termi-340

nus position change. We find distinct patterns in correlation along upstream and down-341

stream portions of the glacier trunk, separated by a subglacial ridge. The time scale sep-342

aration of major sources of variability, and the role of underlying topography, are im-343

portant considerations in designing numerical ice flow simulators to project the future344

evolution of large outlet glaciers.345

Acknowledgments346

LU designed the study, with input from DF and BM. DF gathered model data and con-347

tributed literature review. LS contributed a dense record of satellite-derived terminus348

positions. BR developed software used to construct time-continuous velocity functions.349

LU performed quantitative analysis and produced manuscript figures. LU and DF drafted350

the manuscript, and all authors contributed to editing and approving its final form.351

Work toward this manuscript was supported by the National Aeronautics and Space352

Administration grant NNX16AJ90G and Heising Simons Foundation grant 2017-316.353

All code used in this analysis is available via GitHub and archived on Zenodo. Con-354

struction of the time-continuous velocity functions: https://doi.org/10.5281/zenodo355

.4474829. Along-flowline data extraction and cross-correlation: https://doi.org/10356

.5281/zenodo.4707999. Data pre-processing and visualization: https://doi.org/10357

.5281/zenodo.4707997. Terminus position data is available as a supplement to this manuscript358

and [will be deposited] in the Dryad data repository.359
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1. Figure S1

Additional Supporting Information (Files uploaded separately)

1. Caption for Dataset S1

Data Set S1. Terminus position of Helheim Glacier (2002-2019) in terms of a width-

averaged distance from an upstream flux gate, identified from satellite imagery. We

primarily use Moderate Imaging Spectroradiometer (MODIS) imagery, but incorporate

Landsat and Sentinel-2 imagery when available. Terminus positions are derived manually

until 2010 (Schild & Hamilton, 2013) and using an semi-automated technique thereafter

(e.g. Foga et al., 2014).
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Figure S1. Cross-correlation of largest absolute value (top row) and corresponding lag (bottom

row) between the long-term varying components of ice surface speed and each variable (columns).

Colorbars for cross-correlation and lag used here are consistent with main text Figure 3 to allow

intercomparison; however, the range of values represented here exceeds those shown on that

figure.
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