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Abstract

Seismic observations of the Earth’s inner-core testify to it being both a complex and dynamic part of the Earth. It exhibits

significant variation in seismic attenuation and velocity with position, depth and direction. Interpretation of which is difficult

without knowledge of the anelastic processes active in the inner-core is difficult. To address this, we used zinc, a low-pressure

analogue of the hexagonal close pack (hcp) structured iron that forms the inner-core, to provide first-order constraints on the

anelasticity of hcp-metals at high pressure, seismic frequencies ( 0.003-0.1Hz), homologous temperatures (T/Tm) up to 0.8.

Measurements were made in a deformation-DIA combined with X-radiography. The data was analysed using an improved image

processing method that reduces systematic errors and improves strain measurement precision by up to 3 orders of magnitude.

Using this algorithm significant dissipation and softening of zinc’s Young’s modulus is observed. The softening occurs in the

absence of significant impurities or a fluid phase and is caused by grain boundary sliding coupled with dynamic recrystallisa-

tion.The recrystallisation results in a steady-state grain-size and low dislocation density. A softened Young’s modulus predicts a

reduction in shear wave speed 2-3 times greater than that for compressional waves, which is consistent with anelasticity playing

a significant role in the seismic velocity of the inner-core. Comparison of elastic wave speeds from experimental or computed

material properties with anelastically-retarded inner-core seismic velocities will tend to over-estimate the light element budget

of the inner-core. Therefore anelastic effects in hcp-iron must be considered in the interpretation of the inner-core.
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Abstract22

Seismic observations of the Earth’s inner-core testify to it being both a complex and dynamic23

part of the Earth. It exhibits significant variation in seismic attenuation and velocity with po-24

sition, depth and direction. Interpretation of which is difficult without knowledge of the25

anelastic processes active in the inner-core is difficult. To address this, we used zinc, a low-26

pressure analogue of the hexagonal close pack (hcp) structured iron that forms the inner-core,27

to provide first-order constraints on the anelasticity of hcp-metals at high pressure, seismic28

frequencies (∼0.003–0.1Hz), homologous temperatures (T/Tm) up to ≈ 0.8. Measurements29

were made in a deformation-DIA combined with X-radiography. The data was analysed us-30

ing an improved image processing method that reduces systematic errors and improves strain31

measurement precision by up to 3 orders of magnitude. Using this algorithm significant dis-32

sipation and softening of zinc’s Young’s modulus is observed. The softening occurs in the33

absence of significant impurities or a fluid phase and is caused by grain boundary sliding34

coupled with dynamic recrystallisation. The recrystallisation results in a steady-state grain-35

size and low dislocation density. A softened Young’s modulus predicts a reduction in shear36

wave speed 2-3 times greater than that for compressional waves, which is consistent with37

anelasticity playing a significant role in the seismic velocity of the inner-core. Comparison38

of elastic wave speeds from experimental or computed material properties with anelastically-39

retarded inner-core seismic velocities will tend to over-estimate the light element budget of40

the inner-core. Therefore anelastic effects in hcp-iron must be considered in the interpreta-41

tion of the inner-core.42

1 Introduction43

The solid inner-core is the most remote and inaccessible part of our planet but its struc-44

ture and composition may provide constraints on the geological history of the surface en-45

vironment. Information encoded in the inner-core during its solidification could reveal the46

timing and nature of the onset of Earth’s protective magnetic field generated by convection47

in the liquid outer core or even of changes in the way the mantle convects and drives surface48

dynamics [e.g. Aubert et al., 2008]. Key to developing our understanding of the inner-core49

is our ability to use seismic observations to constrain its structure on all scales. Both seis-50

mic velocities recovered from body wave studies (typical frequency 0.5 - 1.5 Hz) and normal51

modes (frequency <10 mHz) are strongly sensitive to the atomic-scale crystal structure, tem-52

perature and composition of the media through which they travel. They are also sensitive53
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to the larger grain-scale microstructure, which reflects the deformation and crystallization54

history of the medium and can be probed by seismic studies of elastic anisotropy (variation55

of wave velocity with direction), dispersion (variation of wave velocity with frequency) and56

attenuation (reduction in wave amplitude with distance). However, the experimental data57

needed to link inner-core seismic observations to microscopic physical behaviour is lacking.58

It is widely accepted that iron in the inner-core adopts the hexagonal close packed59

(hcp) structure stable above 10GPa [e.g. Tateno et al., 2010], albeit diluted by a light element60

[Bazhanova et al., 2017; Fei et al., 2016; Antonangeli et al., 2018, 2010; Fiquet, 2001; Mao61

et al., 2012; Caracas, 2015; Sakamaki et al., 2016; Tagawa et al., 2016; Tateno et al., 2012,62

2015; Prescher et al., 2015; Li et al., 2018]. However, Belonoshko et al. [2019] argued that63

anelasticity of the inner-core is incompatible with that observed for hcp metals, and instead64

suggested that iron adopts a body centred cubic (bcc) structure in the inner-core. In general,65

experimental and computational studies investigating inner-core properties and chemistry,66

implicitly assume negligible anelastic attenuation and no modification to the seismic wave67

speed.68

The anisotropy of the inner-core is well established [Sumita and Bergman, 2015; Deuss,69

2014; Woodhouse et al., 1986] with higher velocities in the polar direction than the equa-70

torial plane [e.g. Morelli et al., 1986]. The top 50-275 kms of the inner-core are isotropic71

[Shearer, 1994; Irving and Deuss, 2011] but there are differences between the Eastern and72

Western hemispheres [Niu and Wen, 2001] and seismic velocity anisotropy increases with73

depth into the inner-core [Lythgoe et al., 2014].74

Along with seismic velocity, seismic attenuation, &−1, is a direct measurement of75

inner-core properties and is the inverse of the seismic quality factor. The seismic quality fac-76

tor, &, is equal to the fraction of energy absorbed per oscillation of a wave [Stein and Wyses-77

sion, 2013; Romanowicz and Mitchell, 2015]. An undamped oscillator with no attenuation or78

energy loss has & = ∞ (&−1 = 0). Using body waves, & has been estimated for the inner-79

core to be ∼200 just below the inner-core boundary increasing to 1000–2000 at the center of80

the Earth [Doornbos, 1974]. Significant regional variation in & has been found to exist by81

Pejić et al. [2019] and Li and Cormier [2002], with a global mean &1Hz ∼ 300. Attenua-82

tion is also anisotropic [e.g. Yu and Wen, 2006], with hemispherical [Cao and Romanowicz,83

2004] and depth variations [Suda and Fukao, 1990] observed. Using normal modes, Mäki-84

nen et al. [2014] showed that attenuation in the inner-core is directionally dependent with the85
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North-South direction being both seismically faster and more attenuating than radial direc-86

tions.87

Microscopically, attenuation is caused by mechanically reversible and thermodynam-88

ically irreversible strain accommodation mechanisms [Li and Wagoner, 2021]. These are89

any mechanism by which strain can be accommodated, for example the flow of trapped fluids90

[e.g. Singh, 2000; Fearn et al., 1981], phase transitions [Li and Weidner, 2008] or the iron91

spin-transition [Marquardt et al., 2018]. Within solid phases strain is accommodated by the92

classic deformation mechanisms e.g. diffusion creep, dislocation motion, grain boundary93

sliding and twinning. The characteristic behaviours of all of these mechanisms are depen-94

dent on the time-scale (frequency or duration) and stress magnitude as well as the temper-95

ature, pressure and microstructure. The time dependent nature of the dissipation leads to96

frequency-dependent moduli and seismic velocities.97

Attenuation mechanisms that have been proposed for the inner-core include partial98

melt [Singh, 2000; Fearn et al., 1981], grain boundary relaxation, and dislocation related re-99

laxations [Jackson et al., 2000]. Mäkinen et al. [2014] preferred Zenner relaxation to explain100

inner-core attenuation; in this mechanism Fe atoms switch positions with vacancies and/or101

solute atoms as a result of the stress imparted by the passing seismic wave. All of these have102

been observed in geological samples or metals, albeit at less extreme conditions than those of103

the inner-core.104

The experimental data needed to distinguish between the proposed atttenuation mecha-105

nisms in seismological observations does not exist because of the extreme conditions under106

which hcp-iron is stable. There are no measurements of anelasticity in hcp metals at signif-107

icant pressure and temperature. The most recent study of the anelasticity of iron [Jackson108

et al., 2000] is over two decades old and is limited to low pressures where iron adopts the109

body centred cubic (bcc) or face centred cubic (fcc) structure.110

Low-pressure analogues are commonly used when deep Earth conditions are too ex-111

treme to be accessible experimentally, leading to various hcp metals including zinc, titanium,112

magnesium and cobalt being utilised as analogues for the inner-core. Anelasticity experi-113

ments have been performed on hcp metals at ambient pressure but are generally at much114

higher frequencies than seismic waves [e.g. Wuttig et al., 1981; Aning et al., 1982; Taka-115

hashi, 1952], or inferred from large strain creep tests [e.g. Li and Wagoner, 2021]. One rare116

example of a seismic frequency investigation is that of Roberts and Brown [1962], who mea-117
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sured the anelasticity of hcp zinc with periods between 10 and 100 seconds and attributed the118

anelasticity to dislocation motion.119

In using analogues, some consideration must be taken for the differences in conditions120

and chemical behaviour between the analogue and Earth forming phase. The ideal 2/0 ax-121

ial length ratio in the hcp structure is 1.63 and is 1.50-1.62 in hcp-iron [Fischer and Camp-122

bell, 2015]. The 2/0 ratio is 1.62 in Mg and 1.88 in Cd. In zinc it is 1.87 at ambient pres-123

sure and decreases with pressure, reaching the ideal 2/0 ratio of 1.633 at ∼30GPa [Kanit-124

panyacharoen et al., 2012]. The slip system activities and deformation fabrics depend on125

the 2/0 ratio of the unit cell [Wang and Huang, 2003], although Poirier and Price [1999]126

argued that stacking fault energy is a better predictor of slip systems than 2/0 ratio. Twin-127

ning is also a significant deformation mechanism in hcp metals [e.g. Price, 1961; Kanitpany-128

acharoen et al., 2012; Liu et al., 2020]. Despite the differences in slip systems, deformation129

mechanism maps are consistent between hcp metals after scaling for the elastic shear mod-130

ulus and homologous temperature (T/TM, where T is the temperature and )" is the melting131

temperature) [e.g. Frost and Ashby, 1982]. For example, both zinc and hcp-iron undergo132

dynamic recrystallisation significantly below their melting temperatures [Frost and Ashby,133

1982; Anzellini et al., 2013] and deform by both basal and prismatic slip on equivalent slip134

systems [Miyagi et al., 2008; Merkel et al., 2004; Yoo and Wei, 1967; Yoo et al., 2001].135

The inner-core is close to its melting temperature but there are no reported hcp-iron de-136

formation experiments at those conditions; the highest temperature that hcp-iron has been137

deformed at is 1000K (and 30GPa, T/TM ∼ 0.4) [Merkel et al., 2004]. However, other138

hcp metals have been deformed close to their melting temperatures. For example, Bergman139

et al. [2018] deformed columnar and untextured zinc-tin alloy close to its melting tempera-140

ture (T/TM = 0.97) and reported that columnar samples deformed by grain boundary sliding141

and untextured samples, with a smaller grain-size, by diffusion creep at the same strain-rates.142

The similarity of deformation mechanism between hcp metals [Yoo and Wei, 1967]143

indicates that the crystal structure plays a fundamental role in deformation mechanisms.144

Anelastic dissipation occurs via processes controlled by crystallography (e.g. dislocations,145

diffusion) and it is therefore reasonable to assume a first-order similarity exists between146

anelastic deformation mechanisms too.147

To address the lack of anelasticity data at seismic frequencies in hcp metals, we mea-148

sured the anelastic response of zinc at high pressure and homologous temperatures up to 0.8.149
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The remaining sections of this paper describe the experimental method, an improved ap-150

proach to data processing needed to extract the anelastic response, the derivation of a model151

of anelasticity that fits our results, and a discussion of the significant softening observed in152

the measurements and the implications of this for our understanding of the inner-core.153

2 Experimental Method154

This study utilises the experimental method of Li and Weidner [2007] to measure the155

anelastic response of zinc relative to an elastic reference. Small-amplitude sinusoidal strains156

were applied to an experimental column consisting of a zinc sample and corundum elastic157

standard, whilst simultaneously acquiring X-radiographic images. Uniaxial strains in the158

sample and standard were determined by tracking displacement of marker foils in the X-159

radiographs with an improved image processing algorithm. Strain in the elastic standard is160

used as a proxy for stress, which combined with the sample strain and phase lag of the sam-161

ple relative to that of the elastic standard, is sufficient to determine the anelastic response of162

the sample. Additional samples were cold-compressed or annealed at high pressure to show163

how the microstructure and crystallographic fabric is affected by the sinusoidal deformation.164

2.1 Samples165

Two different samples were used in this study. A sample of 1mm diameter high-purity166

zinc wire (99.9985% metal basis, Puratronic from Alfa Aesar) and a sample of fine-grained167

zinc powder (99% metal basis, 75 µm particle size, that had not been stored in an inert at-168

mosphere) from Sigma Aldrich; hereafter referred to as ‘wire’ and ‘powder’ samples respec-169

tively. High-resolution X-ray diffraction of the zinc powder shows it to contain trace amounts170

of two forms of ZnO (cubic and hexagonal) and at least one form of Zn(OH)2. The wire sam-171

ples were prepared by polishing to ∼1–1.3mm lengths and the powder samples were pressed172

into similarly long, 1mm diameter pellets in a steel die with flat-ended pins. For the com-173

pression and annealing experiments, the powder sample was wrapped in 25 µm gold foil, to174

ensure it could be distinguished from the wire when recovered.175

The elastic standards were 1mm diameter solid rods of Alsint-23 corundum, from Alfa176

Aesar. Each piece was polished to <0.9mm long with flat parallel ends. Two pieces were177

used on either end of the zinc samples in the anelasticity experiments to keep the cell sym-178

metrical and to guarantee that at least one standard could be observed in the X-radiographs.179
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Disks of 25 µm thick platinum foil were used as markers between the samples and corundum180

standards as well as at the outer ends of the corundum standards. Corundum pistons were181

also used in the compression and annealing experiments to keep the sample environments182

consistent.183

2.2 Anelasticity experiments184

The anelasticity experiments were performed in the D-DIA [Durham et al., 2002;185

Wang et al., 2003] on beam-line X17B2 at the NSLS, Brookhaven National Laboratory, New186

York.187

The sample assembly for the experiments consisted of a 6.1mm cube of pyrophyllite188

baked to 1000◦C. A 3.0mm diameter hole drilled through the pyrophyllite contained a crush-189

able alumina sleeve, 2.36mm outer, 2.10mm inner diameter graphite furnace and a 1.8mm190

outer diameter, 1.0mm inner diameter, 3.0mm long boron nitride sleeve. The sample stack191

was inserted into this boron nitride sleeve and capped at the ends by crushable alumina. A192

C-type thermocouple inside a 0.8mm diameter 4-bore alumina rod was inserted radially with193

its hot junction just inside the furnace and did not touch the sample. A cross-section of the194

cell assembly used here is included in Dobson et al. [2012a].195

Before each experiment was compressed, the 10-element energy dispersive X-ray196

diffraction detector [Weidner et al., 2010] was calibrated using a corundum standard, with 10197

minute exposure, and open-press measurements were taken from both the zinc and corundum198

samples, with 5 minute exposures. Each experiment was compressed to the desired end-load199

over ∼2 hours. After heating to the desired temperature, further diffraction patterns were200

acquired from both sample and standard. The zinc diffraction volume was in the centre of201

the sample and that of the corundum in the part closest to the zinc. The samples were then202

strained sinusoidally at periods of 10, 30, 100 and 300 s by driving the D-DIA’s deforma-203

tion pumps. During sinusoidal deformation, the total load on the system was kept constant204

by retracting or advancing the main ram in response to changes in the force applied by the205

differential pumps. This minimises any changes in pressure applied to the sample. It was not206

possible to acquire shorter period data due to the mechanical limits of the D-DIA system and207

time constraints prevented the acquisition of data with longer periods. The amplitude of the208

deformation was the minimum needed to observe sinusoidal strains in both the sample and209

elastic standard using the software available when the experiments were performed (see sec-210
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Figure 1. Example X-radiograph from Zinc powder experiment Zn_08 at 240 kN, 117 °C and 100 s period.

The bright stripe in the center of the image contains the sample and corundum standards, as annotated on

the right hand side. The red boxes are the positions of the regions of interest tracked between images. The

dark areas at either side of the image are the shadows of the tungsten carbide anvils and the bright curved

cross-cutting feature in the top third of the image is a crack in the YAG scintillator. The scale of the image is

2 µm/pixel.
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tion 3.1). During each deformation experiment, X-radiographs were acquired using a yttrium211

aluminium garnet scintillator and a visible-light camera, for a minimum of 10 nominal peri-212

ods. Between 20 and 40 X-radiographs were collected per driving period, with an exposure213

time of 0.3 s. A typical radiograph is shown in Figure 1. After all data had been acquired at214

each temperature, the temperature was changed and the cycle repeated. In some experiments215

the pressure was then increased and the data acquisition cycle repeated. Data was acquired216

during both increasing and decreasing temperature steps, to confirm that the results are not217

affected by the thermal history of the sample. The maximum temperature at which the data218

reported here was collected was 400 °C (a homologous temperature of ∼0.8). Processing of219

the X-radiographs is discussed in section 3.220

A further D-DIA experiment was performed to confirm there are no significant tem-227

perature differences between the thermocouple, sample and corundum standard. This exper-228

iment used the melting curve of zinc [Errandonea, 2010] as an independent constraint and229

the measured pressure and temperature were within error of the melting curve when the zinc230

sample melted. Full details of the experiment are included in Appendix A.231
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2.3 Compression and annealing experiments232

Powder and wire samples were enclosed in an octahedral assembly for compression in233

a Walker-type multi-anvil [Walker et al., 1990] at University College London. The sample234

assembly consisted of a 18mm edge length chrome-doped MgO octahedron, that was com-235

pressed by anvils with 10mm corner truncations. The samples and corundum pistons were236

contained in a boron nitride sleeve and heating was via a straight graphite furnace (4.1mm237

outer diameter, 3.5mm inner diameter). A thermocouple was inserted through the furnace238

with the hot junction positioned between the two samples.239

The experiments were compressed to ∼ 4GPa over 2 hours. The compression experi-240

ment was then decompressed over 3 hours. The annealing experiment was heated to 300 °C241

for 4 hours before slow decompression. The samples from these experiments are referred to242

as ‘compressed’ and ‘annealed’ samples respectively.243

2.4 Diffraction pattern analysis244

The pressure in the anelasticity experiments was calculated from the energy dispersive245

corundum diffraction patterns. Although zinc is more compressible and should give more246

precise pressure estimates, above ∼200◦C its diffraction patterns ceased to reliably contain247

the multiple diffraction peaks needed to determine volume strains. Individual peaks would248

rapidly increase and decrease in relative intensity, as the zinc underwent rapid recrystallisa-249

tion.250

At each pressure–temperature condition there are 10 independent diffraction patterns,251

corresponding to each element of the detector. The distinguishable diffraction peaks were252

fitted in each pattern using the software package ‘Plot85’ and fit to determine the unit cell253

volume. Volume strains were calculated independently for each of the detector elements us-254

ing the corresponding open-press unit cell volume, the corundum thermal expansion coef-255

ficients of Fei [1995] and the temperature reported by the thermocouple. There was no sig-256

nificant temperature offset between the corundum and thermocouple as confirmed using the257

melting curve as an independent constraint (see Appendix A).258

Pressures were calculated, independently for each detector, from the volume strain,259

assuming a bulk modulus of  0 = 254.28GPa along with pressure and temperature deriva-260

tives of  ′ = 4.27 and d /d) = −0.0173 GPa K−1 respectively. The bulk modulus and the261
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temperature derivative are a linear fit to the Voigt-Reuss-Hill bulk moduli calculated using262

MSAT [the Matlab Seismic Anisotropy Toolbox, Walker and Wookey, 2012] from the elastic263

stiffnesses (28 9s) of Goto et al. [1989]. The pressure derivative was calculated from the pres-264

sure dependencies of the elastic stiffnesses of Gieske and Barsch [1968] in the same manner,265

assuming the derivatives are linear at pressures greater than 1GPa. The pressures reported266

in Tables 1 and 2 are the weighted mean and standard deviation of the values calculated from267

all the detector elements. Elastic stiffnesses were used, rather than an Equation of State, for268

internal consistency with subsequent calculations of Young’s modulus (Section 4).269

2.5 Electron Microscopy analysis270

All experimental samples were mounted in epoxy resin and polished for analysis in271

the FEI Quanta 650 field emission gun (FEG) scanning electron microscope at the Univer-272

sity of Leeds. Prior to mounting, the compressed and annealed samples were removed from273

the pressure medium but the anelasticity samples were not. The final finish was a 0.03 µm274

colloidal silica chemo-mechanical polish in an alkaline solution [Lloyd, 1987]. Electron275

Back-Scatter Diffraction (EBSD) measurements were obtained using a 20 kV accelerating276

voltage, a spot size of 65 µm and a working distance of 27mm. The step size was ∼1 µm.277

The Kikuchi patterns were automatically indexed using Oxford Instrument’s AZtec software278

package. Zinc metal, ZnO, two forms of Zn(OH)2 and Al2O3 were listed as possible phases279

during indexing.280

Analysis of the EBSD data were performed using MTEX v5.5.1 [Bachmann et al.,281

2010, 2011] and CrystalScape v2.0.2, a software package for analysing EBSD data which282

includes a method for relating intracrystalline distortion to dislocation density [Wheeler283

et al., 2009]. Grains were reconstructed in MTEX with the threshold misorientation-angle284

that indicates a grain boundary, set at 10°. Some of the samples retained significant surface285

scratching which influences the grain reconstruction. To account for this, data from grains286

that were within the surface scratches were discarded and the grain-reconstruction rerun. The287

twin plane was identified from the annealed wire sample by finding the most common grain-288

grain misorientation relationships. Twin boundaries were identified in the samples and grains289

merged if the misorentation between adjacent grains was within 5° of the twin plane.290

Grain-grain misorientation distributions were calculated using CrystalScape and the291

method of Wheeler et al. [2001]. Neighbour-pair misorientation angles were calculated for292

–10–



adjacent pixels that are separated by grain-boundaries as defined by the 10° grain boundary293

misorientation threshold. Random-pair distributions were also calculated for misorientations294

between 10 and 80°. The upper threshold was utilised to remove the effect of twinning on the295

distributions, which are not accounted for by CrystalScape. Significant differences between296

these two distributions are indicative that neighbouring grains have some common inheri-297

tance or interaction [Wheeler et al., 2001] but statistical tests were not performed on the mis-298

orientation angle distributions because the distributions are weighted here by the length of299

each grain boundary segment, significantly skewing any probabilities.300

The Weighted Burgers Vector is calculated as a proxy for dislocation density in the301

samples. The Weighted Burgers Vector is calculated from the local curvature of the crystal302

lattice, quantified using gradients in crystal orientation [Wheeler et al., 2009] and has units303

of (length)−1; units of µm−1 prove convenient. High angle boundaries will not have an or-304

ganised geometrically necessary dislocation structure and should be excluded from gradient305

calculations. We err on the side of caution here and exclude from calculations any misori-306

entation of more than 5 degrees between pixels. The magnitude of the vector is strongly307

correlated with other measures of lattice distortion [e.g. Kernal Average Misorientation,308

Hielscher et al., 2019]. With additional assumptions about slip systems, dislocation densi-309

ties can be calculated. These are not necessary here as our aim is to compare datasets from a310

particular material.311

Similarly, converting the grain-size inferred from the EBSD reconstruction into a three-312

dimensional grain volume requires making assumptions about the grain shape in three di-313

mensions, about which we have no information. In the analysis here we are only concerned314

with comparative grain-size between samples and therefore no attempt to determine three-315

dimensional grain volumes has been made.316

3 X-Radiograph Analysis317

In order to determine the anelasticity of the zinc samples, we need to track the ampli-318

tude and phase of strain in the zinc and corundum (used as a proxy for stress) during the ex-319

periment. To do so with sufficient precision, we had to develop an improved analysis method320

for processing the sequences of X-radiographs collected during sinusoidal deformation.321
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3.1 Prior work322

The algorithm used here, for sub-pixel tracking of marker foil displacements in X-323

radiographs, is based on the image processing algorithms of Pratt [1991] and Trucco and324

Verri [1998] and was initially implemented for X-radiographs by Li et al. [2003]. The basis325

of the algorithm is finding the minimum of the Sum Squared Differences (SSD) in pixel in-326

tensity between regions of interest in a reference image (�A {-,. }1) and a search region in327

the comparison image (�2) where {-,. }1 is the array of pixel coordinates for region of in-328

terest 1. The SSD of the pixel intensities between the two images is calculated for a range of329

offsets, >, as:330

�1A ,2 (>) =
∑
8

∑
9

[
�A {-,. }1 − �2{-,. + >}1

]2 (1)

An example set of �1A ,2 (>) are plotted as black crosses in Figure 2a. The displacement (31A ,2)331

of the region of interest, and hence the marker foil, is found with subpixel resolution by find-332

ing the minimum of a cubic spline interpolated between the values of �1A ,2 (>). The offset333

range, >, used to determine the displacement, is generally ±5 pixels (10 µm) vertically in the334

image (H-direction in Figure 1). Li et al. [2003] were primarily interested in tracking compar-335

atively large total displacements (0-10 pixels) during deformation experiments and tracked336

the displacement between consecutive pairs of images (3A=1,2=2, 3A=2,2=3, ... 3A=#−1,2=# ,337

where # is the total number of images) . In this framework, the position of the region of in-338

terest changes as the marker foil moves and the total displacement of each region of interest339

is the sum over all prior displacements. The position of the marker foil in image =:340

%1 (=) = %10 +
=∑
A=1

31 (2)

where %0 is the initial position of the region of interest determined from the mean pixel .341

values in that region.342

The sample length, ;, at each time step is the difference in position of two regions of343

interest above and below the sample:344

; (=) = %1+1 (=) − %1 (=) (3)

Time stamps of each image are used to convert the length as a function of frame number, =,345

into length as a function of time, C.346

This algorithm has been utilised most often to measure strain in high-strain deforma-347

tion experiments [e.g. Li et al., 2003; Dobson et al., 2012b; Hunt et al., 2019, 2010]. Dobson348
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et al. [2008, 2010] used this algorithm to measure small sinusoidally varying displacements349

during thermal conductivity experiments. Hunt et al. [2011, 2012] improved the precision in350

similar thermal conductivity experiments by using the central radiograph in 100–1000 image351

long time series as a single reference (3A=# /2,2=1, 3A=# /2,2=2, ... 3A=# /2,2=# ) and utilising a352

degree-6 polynomial rather than a spline to find the minimum of the SSD. These studies were353

primarily interested in the phase differences and not specifically concerned with the ampli-354

tude of the sinusoidal displacements. In this study, good constraints on both the amplitude355

and phase of the strain are critical. Both the original and improved algorithms returned sig-356

nals that were too variable for the reliable extraction of anelastic properties. We have there-357

fore further refined the algorithm to return more consistent and precise displacements of the358

marker foils.359

3.2 Refined algorithm360

To gain precision in the image processing, rather than treating each pair of images in361

isolation and then interrogating the displacements, we describe all the SSD for a sequence of362

images, � (>, C), as a single polynomial surface, ((>, C) (Figure 2a). The surface has degree363

< in offset (>), = in time (C) and the total degree of the polynomial surface is the greater of <364

and = [Gallier, 2000]. For < > =, the surface is:365

(1 (>, C) =
<∑
D=0

min(=,<−D)∑
E=0

�DE $ (C)D CE , (4a)

where �DE are the polynomial coefficients and $ is a modified form of the pixel offset (>)366

that accounts for the sinusoidal displacement of the foils:367

$ (C) = > + 0 sin( 5 C + q), (4b)

where 0 is the amplitude, q the phase and 5 the frequency of the displacement. If the am-368

plitude, 0, of the sinusoidal displacement is zero then $ = > and Equation 4 is no longer a369

function of time.370

The surface ((>, C) is fit to � (>, C) by ordinary least-squares minimisation. The fit is371

performed simultaneously for all the regions of interest with independent surface coefficients372

for each region of interest and the period of the driving force as the only common parameter.373

For these experiments, with sequences longer than 200 images, < = 6 and = = 3 were found374

to be sufficient to reproduce the shape of the SSD surface and capture the displacement’s375

phase and amplitude. It was found that lower-degree surfaces do not fully capture the shape376
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of the � (>, C) surface while higher-degree surfaces have artefacts in the fit. The formal errors377

in the period, phase and amplitude in the surface fit are typically 0.002 s, 0.01 radians and378

0.001 pixels respectively and, for the 300 s data, up to 3 orders of magnitude smaller than379

those for the previous fitting method (Section 3.1).380

Figure 2a shows the � (>, C) values from the first (top) region of interest from the zinc381

powder experiment at ∼117 °C and 100 s period. This clearly shows the significant increase382

in � (>, C) with offset as the intensity mismatch between the regions of interest in the ref-383

erence and comparison images get larger. The sinusoidal displacements of the marker foil384

with time is reflected in the sinusoidal variation of � with time at constant offset. The fitted385

surface, ((>, C), is shown in Figure 2b and is a good description of the data. The residuals of386

the fit (Figure 2c) are small and not systematic with time.387

The least-squares residuals form a bow-tie shape in offset (Figure 2c). This is because388

at small offsets the intensity differences are small and the addition of noise to small differ-389

ences squared has less effect than at large offsets where the intensity differences increase.390

For example, the addition of 1 arbitrary unit of noise to an intensity difference of 3 increases391

the difference squared from 9 to 16 (difference of 7) whereas 1 arbitrary unit to an intensity392

difference of 10 increases the difference squared from 100 to 121 (difference of 21).393

The displacement of each region of interest, 31 (C), is the minimum of the surface with402

respect to time:403

31 (C) = arg min (1 (C), (5)

which is found by differentiation of the polynomial surface, (1 (>, C), with respect to offset.404

This minimum is sinusoidal in time, retaining the sinusoidal component of $ (Equation 4b).405

Because the reference image is now a single image, the position of the marker foil is now:406

%1 (C) = %1A + 31 (C), (6)

rather than the sum it was previously (Equation 2). The sample length can be calculated as407

previously (Equation 3) but because %1 (C) is an algebraic expression, length is instead cal-408

culated by combining the polynomial and sinusoidal components of the displacements al-409

gebraically, to give both a secular length change over the experiment and a single sinusoidal410

amplitude (�) and phase angle (Φ). This sum has to account for the phase of the sinusoidal411

displacement at the time of the reference image; if the reference coincided with either ex-412

trema of the sinusoidal wave, a small error would be added to the length of the samples and413

propagated into the subsequent calculations.414
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Figure 2. Example of Sum Squared Differences (SSD) data and its fit with our improved algorithm. (a)

SSD data, � (>, C), for the first (top) region of interest plotted against time from Zinc powder experiment

Zn_08, at ∼117◦C with 100 s period. The first set of values, at C = 0, are highlighted by black crosses.

The reference image is shown in Figure 1. (b) The best fit surface, ((>, C), to the data and (c) the residuals

(� (>, C) − ((>, C)). The values of � (>, C) and ((>, C) are in arbitrary units squared. The marker foil dis-

placement is the minimum of the SSD at each time step (Equation 5). The sinusoidal displacement (here

<0.1 pixels) is reflected in the sinusoidal variation in SSD values at constant offset. The combination of

displacements above and below a region gives the length changes which are plotted in Figure 3.
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The largest source of error, in this calculation, is the absolute length of the sample,415

which Li et al. [2003] argued to be ±5 pixels. To minimise both the absolute and relative416

length error between data acquisitions, the regions of interest were positioned automati-417

cally . Horizontally, the regions of interest were centred in the bright part of the image and418

ended close to but not overlapping with the anvil shadows. The regions of interest not ad-419

jacent to the zinc sample (Figure 1, top and bottom red boxes) were centred over the min-420

imum in a spline interpolation of the intensity profile; the width and depth remained very421

similar throughout the experiment. The regions of interest adjacent to the zinc sample be-422

came broader throughout the experiment as the platinum marker foil diffused into the zinc.423

To account for this, the regions of interest were centred over the maximum gradient (as inter-424

polated by a spline) on the side of the foil away from the sample. The sample lengths were425

subsequently adjusted to account for the thickness of the platinum foil; half a foil thickness,426

12.5 µm or 7 pixels, was subtracted from the lengths of the corundum standards and 25 µm427

(14 pixels) from the zinc sample length.428

Figure 3 shows the length change and our fits for the corundum standard and zinc sam-429

ple as a function of time, for the same data set illustrated in Figures 1 and 2. The secular430
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Figure 3. Elastic standard (a, c) and zinc sample lengths (b) calculated by the SSD image analysis for the

same data shown in Figures 1 and 2. Blue dots are minima of the SSD polynomial for independent calcula-

tions of the displacement between each radiograph and the standard and the red lines are the fit to the minima

calculated using the method of Hunt et al. [2011, 2012]. The black lines are the length changes calculated

from the surface fits to all the SSD data (Figure 2) and thus not not fits to the points, but ideally they should

reproduce them. The large blue circles highlight the length in the reference image. The anelastic dissipation

was calculated using only the strains from the top corundum standard.
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length change for the new algorithm is formally a degree-3 polynomial, because = = 3, but431

appears to be approximately a degree-1 polynomial because the higher order terms are small.432

For the zinc sample (Figure 3b), which had a relatively large deformation amplitude, both the433

method used previously by Hunt et al. [2011, 2012] (red lines) and the new method (black434

lines) are good fits to the length change values and give virtually the same values for �, 5435

and Φ. The biggest differences between the values and the fits is at the beginning and end of436

the time series and arises from how the secular length change is dealt with by the previous437

methods’ fit [see Hunt et al., 2011, 2012, for details].438

For the smaller-amplitude corundum values (Figure 3a, c) the algorithmic improve-446

ments in the fit are more significant with the new algorithm overcoming the systematic un-447

derestimation of amplitude present in the previous algorithm. The foil in the lowermost re-448

gion of interest (Figure 1) has significantly lower contrast and is much less distinct than the449

other regions. Consequently the frame-by-frame displacements (� (>), Equation 1) and asso-450

ciated length changes are noisy and the fitted sinusoidal length change is poorly constrained451

using the previous algorithm (red line, Figure 3c). The new algorithm, on the other hand,452
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returns well constrained phases and amplitudes from the noisy data (Figure 3c). This is be-453

cause the SSD (�) values at the highest offsets (>) constrain the fit. Despite the improve-454

ments, only the top marker foil was used in the following analysis, due to the smaller errors.455

Sample strain caused by the sinusoidal deformation is defined as:456

Y = �/;̄ (7)

where � is the amplitude of the sinusoidal length variation and ;̄ is the mean length of the457

sample (Equation 3) after removing the sinusoidal deformation. In some cases, the back-458

ground strain in the sample is of comparable magnitude to, or even larger than, the sinusoidal459

strain amplitude (e.g. Figure 3b); in the subsequent analysis this bulk change is ignored.460

4 Anelastic model461

Assuming that the corundum standard is elastic and isotropic, the frequency-dependent462

Young’s modulus of the zinc sample is:463

�Zn =
YAl2O3

YZn
�Al2O3 (8)

where Y is the sinusoidal strain amplitude (Equation 7) in each sample and �Al2O3 is the464

elastic Young’s modulus of corundum. The Young’s modulus of corundum, �Al2O3 , was cal-465

culated as the Voigt-Reuss-Hill average of corundum’s elastic stiffnesses (28 9s), at the tem-466

perature of the thermocouple and the pressure calculated from the diffraction. These calcu-467

lations were done using MSAT [Walker and Wookey, 2012] and the same elastic stiffnesses468

used to determine the pressure [Section 2.4, Gieske and Barsch, 1968; Goto et al., 1989].469

The strain energy dissipation is:470

&−1 = 1/tan−1 (ΦAl2O3 −ΦZn) (9)

where ΦAl2O3 and ΦZn are the phase of the length changes in the corundum standard and zinc471

sample respectively.472

The temperature and oscillation period variation in Young’s modulus and attenua-473

tion can be fit with various models of linear viscoelasticity [Figure 4, e.g. Sundberg and474

Cooper, 2010; Nowick and Berry, 1972; Jackson et al., 2000; Faul and Jackson, 2015; Jack-475

son, 2015]. Each model has different characteristic frequency-dependent behaviour that476

relates the stress, f(C) = f0 exp(8lC) where l = 2c 5 , to the strain response, Y(C) =477

Y0 exp(8lC − X), by a loss angle, X. For each model, the strain response can be obtained by478

–17–



a. Maxwell
:" ["

b. Voigt
:+

[+

c. Andrade
: [

∫
:8

∫
[8

d. Burgers

:" ["
:+

[+

Figure 4. Schematic representations of (a) Maxwell, (b) Voigt, (c) Andrade and (d) Burgers models of

anelasticity. Springs (labelled :) represent the elastic components of the model and dashpots (labelled [) the

viscous components; under uniaxial deformation :" ≡ � , the Young’s modulus. Dynamic compliances

(Equation 10) of the Maxwell, Andrade and Burgers models are presented in Equations B.2, C.3 and 15

respectively.

490

491

492

493

494

integrating its behaviour over the stress history to compute the dynamic compliance, �∗ (l)479

[Nowick and Berry, 1972; Jackson, 2015]:480

�∗ (l) = Y(C)
f(C) = il

∫ ∞

0
� (C) exp(−ilC)dC (10)

Separating the instantaneous (elastic, real) and retarded (viscous or anelastic, imaginary)481

parts gives:482

�∗ (l) = �1 (l) − i�2 (l) = �* + il
∫ ∞

0
[� (C) − �* ] exp(−ilC)dC (11)

where �* is the unrelaxed compliance and the inverse of the elastic modulus (�* = 1/").483

For simple shear torsion experiments, the relevant elastic modulus is the shear modulus (`)484

and for the uniaxial deformation experiments performed here, " is the Young’s modulus485

(�).486

The frequency-dependent elastic modulus (" = � or `) can be determined from the487

expressions for �1 and �2:488

" (l) = [� 2
1 (l) + �

2
2 (l)]

−1/2 (12)

and the associated strain energy dissipation is:489

&−1 (l) = �2 (l)
�1 (l)

. (13)

Each viscoelastic dissipation model has different characteristic behaviour and equa-495

tions. For the Burgers model (Figure 4d) these equations are usually expressed in terms of496
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�" (= 1/:" ≡ 1/�" ), �+ (= 1/:+ ≡ 1/�+ ), [" and g+ , where g is a relaxation time:497

g = [/: ≡ [/� (14)

Separating the independent components simplifies the fitting of models to data. The complex

compliance, written in terms of the four independent model components, is [after Faul and

Jackson, 2015]:

�∗ (l) = 1
�"
+ 1
�+ (1 + il[+ /�+ )

− i
l["

which rearranges to:

�1 (l) =
1
�"
+ 1
�+ (1 + l2[2

+
/�2

+
)

(15a)

�2 (l) =
l[+

�2
+
(1 + l2[2

+
/�2

+
)
− 1
l["

(15b)

where �" and �+ are the respective spring constants of the Maxwell and Voigt components498

of the Burgers model and [" and [+ are the corresponding dashpot viscosities. The equiv-499

alent complex compliance expressions for the Maxwell and Andrade models are in Appen-500

dices B and C respectively.501

The experimental Young’s moduli and &−1 data (Equations 8 and 9) were fit with a two-502

component Maxwell and four-component Andrade and Burgers models of anelasticity. There503

is not sufficient density or range of frequencies in this study’s data to fit more complex vis-504

coelastic models, e.g. a generalised Burgers model with its normalised distribution of anelas-505

tic relaxation times [e.g. Anderson and Minster, 1979]. The data at each temperature was fit506

independently by simultaneously minimising the unweighted normalised residuals for both507

� (l) and &−1 (l) (Equations 12 and 13). The parameters solved for in the fitting were the508

elastic (�) and viscous ([) components of the anelastic models (Equation 15). This ensures,509

as far as possible, that the model parameters are independent of each other, which is not the510

case when the relaxation time, g (Equation 14), is one of the fitted parameters.511

By assuming negligible pressure derivatives and a functional form for the temperature512

dependence of each model parameter, it was possible to simultaneously fit all the data for513

each experiment with a Burgers model of anelasticity. A linear temperature dependency was514

assumed for �" . The viscosities ([" and [+ ) were assumed to have Arrhenius temperature515

dependencies (ln [()) = 0 + 1/')). The temperature dependence of �+ was less clear516

because with a linear temperature behaviour, which is reasonable for an elastic process, the517

values of �+ become negative at high temperatures. A number of alternative functions were518
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tested but an Arrhenius temperature dependence was used because it both approximated the519

data and remained physically reasonable.520

5 Results521

A number of sinusoidal deformation experiments were performed for this study. The522

results from the successful experiments were consistent, but in some cases subject to signif-523

icant scatter, especially in the phase lag (Equation 9). The experiments that failed, or were524

not consistent, did so because the zinc extruded from the sample space or deformed signifi-525

cantly during compression. Thus, we focus on the results from the two experiments with the526

least scatter, one of which had a sample of zinc wire and the other zinc powder. The powder527

experiment was performed at only one end-load (240 kN, 27 short-tons force) whist the wire528

experiment was performed at two end-loads. The first end-load was the same as the powder529

experiment; the data from the second end-load were more scattered and are not discussed530

here. It is not possible to determine how imperfect the experimental geometry of the pow-531

der sample is from the radiographs because most of the assembly is obscured by the anvils532

(Figure 1). The geometry of the powder experiment is more ideal than that of the wire exper-533

iment because in the latter the thermocouple tip protrudes slightly into the anvil gap.534

5.1 Recovered Microstructures535

Interpretation of anelastic dissipation experiments generally assumes a constant mi-536

crostructure. However, here we observe significant differences between the initial and re-537

covered microstructures (Figures 5 and 6). Despite very different initial microstructures, the538

microstructures in the recovered anelasticity samples are remarkably similar.539

The recovered anelasticity samples have very similar grain-sizes (Figures 5ci, fi, 6a547

and b) and Lattice Preferred Orientations (LPOs) (Figures 5cii, fii). The grain-size spread548

is very similar in both anelasticity samples (Figures 6a and b). The grains in the recovered549

anelasticity samples are subhedral with some grains having concave boundaries. The sam-550

ples also contain a small number of quadruple-grain junctions which is consistent with some551

contribution from grain boundary sliding. The LPO of the two recovered anelasticity sam-552

ples (Figures 5cii and fii) is dominated by a weak [0001] maxima aligned in the direction553

of the applied stress and girdles in the orthogonal directions (e.g. [101̄0], [21̄1̄0]). This is554

consistent with but not proof of slip of dislocations along the basal plane.555
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Figure 5. EBSD analysis of the recovered samples. left column (a, b, c,): wire samples; right column (d,

e, f): powder samples. Top row (a, d): sample after compression; Middle row (b): samples after annealing

for 4 hours and Bottom row (c, f): samples after anelasticity experiments. Parts i. are EBSD maps coloured

by Euler angle and parts ii. are upper hemisphere, antipodal pole figures. White areas in the EBSD maps are

where the sample was not indexed or data discarded; the linear white features in a and b are scratches from

which data were discarded. The sample orientation and applied sinusoidal strain are vertical in the figure, as is

the wire drawing direction (a, b, c). All maps and pole figures are on the same colour scale.
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These contrast with the grain-size of the compressed and annealed samples. The grain-556

size of the compressed and annealed wire samples are more than an order of magnitude557

larger than that of the wire anelasticity sample (Figure 6a). This is despite the apparently558

large number of small grains in the annealed wire skewing the distribution (Figures 5bi, 6a);559

the skew is an artefact of scratches in the sample which could not be perfectly accounted for560

in the grain reconstitution. The mean grain-size of the compressed powder sample is slightly561

smaller than that of the anelasticity sample (Figure 6b), but the spread of the grain-size is562

significantly smaller in the anelasticity sample, with fewer small or large grains. The LPO of563

the compressed wire is very different from that of the annealed or anelasticity samples (Fig-564

ure 6a), while that of the compressed powder is close to uniform.565

The annealed wire sample is abundantly twinned and twins are also present in com-572

pressed wire; the cumulative area of twinned grains is plotted in Figures 6a and b. The twin573

plane of zinc in the annealed wire is calculated to be {1012̄}. This is consistent with that574

in the compressed sample and with previous studies of twinning in zinc [e.g. Antonopoulos575

et al., 1988]. The fractional area of twinned grains is always greater in the annealed wire576

than in any other sample; something that is also clear in the nearest-neighbour misorientation577

plot (Figures 6c), where the annealed wire shows significant numbers of grains with misori-578

entations of ∼86°. The anelasticity samples show almost no twinning even though twinning579

is a low-strain deformation mechanism. This is not a grain-size effect; the fractional area of580

twinned grains is always larger in the compressed or annealed samples than in the anelastic-581

ity samples.582

The distribution of neighbour-pair misorientation angles are plotted using the method583

of [Wheeler et al., 2001] and these are very similar for the two recovered anelasticity sam-584

ples both of which are very different from their initial compressed distributions (Figures585

6c and d). At angles greater than 80° twinning affects the non-anelastic samples and the586

distributions are cut off at the 10° used as the grain boundary threshold. Random-pair dis-587

tributions for angles less than 80° provide a reference against which the nearest-neighbour588

misorientations can be compared. Both the compressed samples have significant excesses of589

low-angle nearest-neighbour pairs relative to the random pair distributions. This is consistent590

with the presence of dislocations and the continuous accretion of dislocations into sub-grain591

boundaries to make new grains, so called ‘continuous dynamic recrystallisation’. Both the592

anelasticity samples have a close correlation between the nearest-neighbour and random-pair593
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a. Wire samples: Grain-size

Wire Anelasticity; n = 8927
Wire Anelasticity; twinned
Wire Compressed; n = 1652
Wire Compressed; twinned
Wire Annealed; n = 854
Wire Annealed; twinned
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b. Powder samples: Grain-size

Powder Anelasticity; n = 888
Powder Anelasticity; twinned
Powder Compressed; n = 6540
Powder Compressed; twinned
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c. Wire samples: Nearest-Neighbour Misorientations

Wire Compressed; n pairs = 61231
Wire Compressed random pairs
Wire Annealed; n pairs = 36353
Wire Annealed random pairs
Wire Anelasticity; n pairs = 83938
Wire Anelasticity random pairs
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d. Powder samples: Nearest-Neighbour Misorientations

Powder Compressed; n pairs = 26777
Powder Compressed random pairs
Powder Anelasticity; n pairs = 3618
Powder Anelasticity random pairs
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e. Wire samples: WBV length
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f. Powder samples: WBV length

Powder Anelasticity
Powder Compressed

Figure 6. Grain-size (a, b), nearest-neighbour misorientation (c, d) and weighted Burgers vector length (e,

f) distributions for the wire (left column) and powder (right column). The dashed lines in a and b are the area

of the sample that contains twinned grains. The dashed lines in c and d are the random pair misorientation

distributions for the data, the thick bars show the position and size of the largest deviation of the neighbour-

pair distribution from that of the random-pair distribution. The solid black lines in c and d show zinc’s twin

misorientation angle and the gray bar highlights the region influenced by twinning.
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misorientation distributions. This implies little or no crystallographic relationship between594

neighbouring grains.595

The weighted Burgers vector length (WBVL) is used as a proxy for dislocation density596

in the samples that makes no assumptions about the possible slip systems. Figures 6e and597

f plot the cumulative WBVL distribution for the samples in this study; WBVL maps, of the598

same areas as shown in Figure 5, are plotted in Supplementary Figure S1. The compressed599

wire and powder have very similar WBVL values. Annealing of the wire fractionally reduces600

the WBVL, consistent with dislocations annealing out of the sample. The anelasticity sam-601

ples though have significantly smaller WBVL than the compressed or annealed samples but602

the mean WBVL is ∼50% greater in the powder. The anelasticity samples therefore have603

lower dislocation densities than the other samples.604

The differences between samples are unlikely to be caused by noise in the EBSD data605

because the WBVL is not uniformly distributed (Figure S1), as would be expected for ran-606

dom noise. Instead it is concentrated in some grains, sub-regions of grains and is in some607

cases in bands within grains, whilst other grains have consistently low WBVL values. Only608

few coherent sub-grain boundaries could be identified within the grains; either the grains609

had no sub-grain boundaries or sub-grain boundaries were identified for almost every pixel.610

There is no strong orientation of the WBV with respect to the crystallographic directions,611

indicating that multiple slip systems must have been activated within the samples.612

It is unlikely that significant dislocation density annealed out of the anelasticity sam-613

ples in the time taken for the experiments to cool down after the temperature was quenched.614

Because (a) both the wire and powder anelasticity samples were at <200 °C when quenched615

and cooling to <50 °C takes less than a minute, (b) the annealed wire sample retains much616

greater non-random dislocation density and (c) the deformation micro-structures do not show617

any indication of annealing (i.e. no grain boundary area reduction, no polygonal foam tex-618

tures, etc.).619

The similarity in the overall fabric of the recovered anelasticity samples coupled with620

the significant contrast to the other samples indicates that the anelasticity sample fabric has621

developed during the experiment and is controlled by the experimental conditions. The simi-622

larity of the grain-size between the recovered samples, the low dislocation and twin densities623

combined with the disequilibrium grain shapes implies rapid recrystallisation of the samples624

during the experiment. This is consistent with the rapid growth and disappearance of peaks625
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in the zinc diffraction observations and ambient temperature dynamic recrystallisation pre-626

viously observed in zinc [Liu et al., 2020]. Zinc is highly susceptible to grain growth and at627

elevated temperatures would ordinarily grain grow very quickly. Therefore, the small grain-628

size and low dislocation density, is an consequence of the sinusoidal deformation and the629

process leading to this is likely related to the anelastic response.630

5.2 Sinusoidal deformation experiments631

The frequency-dependent Young’s moduli (� (l), Figure 7) and dissipation (&−1 (l),632

Figure 8) of the two samples are listed in Table 1 along with the experimental observations633

used to calculate them. The typical strains in both the sample (∼ 5 × 10−4) and the stan-634

dard (∼ 1 × 10−4) are smaller than the typical strains measured by Li and Weidner [2007]635

but large compared to the strains used in previous low-pressure anelastic measurements636

[2 × 10−6 – 2 × 10−5, e.g. Jackson et al., 2000]. The corundum strain implies uniaxial stress637

amplitudes ranging from 111 to 374MPa, with a mean of 241MPa. These stresses, the com-638

paratively large value of &−1 in these experiments (Figure 8) and the decreases in �" (Fig-639

ure 7) indicate that the samples could be outside of the linear elastic regime.640

Outside of the linear anelastic regime, large stresses decrease the values of � (l) and641

increase &−1 (l) [e.g. Li and Weidner, 2007], which is consistent with the observations here.642

The large stresses will enhance creep in the samples, thus providing a lower bound for � (l)643

and an upper bound for &−1 (l).644

The data show a decrease in Young’s modulus and increase in dissipation with oscilla-645

tion period, as expected for a sample with viscoelastic behaviour (Figures 7a,b). The change646

in � (l) and &(l)−1 with temperature and oscillation period is greater in the wire (Figures647

7a and 8a) than in the powder (Figures 7b and 8b). The � (l) data are predominantly smaller648

than the isotropic average elastic Young’s moduli, here defined as the average of a uniform649

random distribution of zinc crystal orientations (solid black lines in Figure 7). All the data650

fall between the maximum and minimum possible Young’s moduli of zinc, which are defined651

here as the maximum and minimum possible moduli for variation in the straining direction652

of a zinc single crystal (dashed black lines in Figure 7). The zinc Young’s moduli were cal-653

culated in MSAT [Walker and Wookey, 2012] using the ambient condition and temperature654

dependencies of the elastic stiffnesses (28 9s) of Alers and Neighbours [1958] and the pressure655

derivatives of Srinivasan and Rao [1971] as compiled by Ledbetter [1977].656
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There is no significant offset between the data collected before and after the maximum657

temperature in each experiment (open vs. filled symbols in Figures 7 and 8; Table 1 lists the658

data in order of collection). The relatively large change in pressure between the first and last659

data sets (Table 1) has no discernible effect on the data implying pressure derivatives close to660

zero.661

For a sample with constant radial stresses, increasing the uniaxial stress by =MPa in-662

creases the pressure by 1/3=MPa. If the confining force is constant in our experiments, pres-663

sure varies from peak to trough over the stress cycle by an average of 320MPa; a value that is664

smaller than the typical error on the pressure measurement. If the pressure is changing dur-665

ing the experiment, strictly, any measurement of Young’s modulus attenuation is convolved666

with that of the bulk modulus. However, we do not think this effect is significant here be-667

cause: (a) volume compression is a purely elastic process, and (b) the experimental protocol668

utilised here, has been shown elsewhere, to maintain the pressure in solid-media apparatus669

approximately constant to very high strains [Hunt et al., 2014]. Note that any measurement670

of Young’s modulus at finite strain (e.g. nano-indentation, tension) suffers from the same671

convolution of stress and pressure as our experiments.672

Fitting the data with a Maxwell (Equation B.2) or Andrade (Equation C.3) model did695

not produce reasonable fits to the data. Neither model can reproduce the gradient changes in696

the dissipation data with frequency (Figure 8a) and the best fitting Maxwell model requires a697

frequency-dependent viscosity. The Andrade model fit prefers the micro-creep coefficient (=,698

Equation C.3) to be > 200. This is much greater than the generally accepted value of = ∼ 1/3699

garnered from micro-creep data [e.g. Sundberg and Cooper, 2010] and which has also been700

observed in creep of zinc [Cottrell and Aytekin, 1947]. The Burgers model (Equation 15), on701

the other hand, produces a reasonable fit to the data and captures its major features, specif-702

ically the decrease in � (l) with temperature and period as well as the shape of the dissipa-703

tion data. The Burgers model parameters calculated independently at each temperature are704

plotted in Figure 9 and listed in Table 2. The extent of the data in frequency is not sufficient705

to reasonably fit an extended Burgers model [e.g. Jackson, 2015]. However, the extended706

Burgers model predicts that the modulus (here �) varies smoothly with frequency but here707

there is evidence of a distinctly non-linear change.708

Assuming temperature dependencies for each Burgers model parameter enables a sin-723

gle model to be fit to all the data from each experiment. The models are plotted with the724
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Table 1. Experimental conditions and strain data from the two experiments in this study. The data for each

experiment are presented in the order in which they were collected. The data in Figures 7 and 8 are calculated

from this data using Equations 8 and 9. The values of EAl2O3 are those used in the calculations and were

calculated as described in the text. The missing values in the � (l) and &−1 (l) columns are values that were

obviously incorrect and excluded from the subsequent analysis. For Zn_08, the Al2O3 strains are those of the

‘top’ elastic reference (Figure 3), whilst in Zn_02 only one corundum standard was imaged.
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Figure 7. Young’s modulus of the Zinc (a) wire and (b) powder samples plotted against temperature and

period. The open symbols are the data collected before the maximum temperature of the experiment and

the filled symbols after; for the order of the data collection see Table 1. Error bars have been excluded for

clarity; the median error in the Young’s modulus for both data sets is 10.1GPa. Dotted lines connect the data

to the corresponding point in the fitted plane. The solid lines are the global Burgers model fit to the data and

plotted at the nominal periods and temperatures of the measurements. Solid black line in the back planes

is the Young’s modulus calculated from a Voigt-Reuss-Hill average of the zinc 28 9s and the dashed lines

are the maximum and minimum possible Young’s moduli from the 28 9s. All lines terminate at the melting

temperature. Note that the directions of the temperature and period axes are reversed relative to Figure 8.
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681

data in Figures 7 and 8. These are a reasonable fit to the data, reproducing its major features.725

The temperature dependent model parameters are listed in Table 3 along with the functional726

forms used, and plotted in Figure 9. The global models closely match the parameters calcu-727

lated independently at each separate temperature.728

The dependence of the infinite-frequency Young’s moduli (�" ) are approximately731

linear in temperature (Figure 9a). The values are similar between the two samples and there732

is some overlap of the individual values. The calculated temperature derivatives (Table 3)733

are different by more than two standard errors of each other and only the powder sample’s734

temperature derivative is within error of that of the elastic values derived from the stiffnesses735

(dE/dT = −0.07MPaK−1). The values for �" are all close to the isotropic elastic Young’s736

modulus and within the maximum and minimum bounds.737

There are a number of possible causes for the higher-than-expected temperature deriva-738

tive. Anelastic softening in the corundum standard would increase the apparent tempera-739
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Group Temp Data used Pressure Burgers’ model parameters Maxwell time
Nominal Period (s) �" [" �+ [+ g = [" /�"

(°C) 10 30 100 300 (GPa) (GPa) (103 GPa s) (GPa) (GPa s) (s)
Zn_02, Wire Sample

1 25 y y y y 4.8± 0.8 149± 6 31.0± 2.4 755± 58 1551± 276 208± 16
2 100 y y y y 4.8± 0.8 131± 5 15.1± 1.2 697± 58 2855± 353 115± 9
3 200 y y y y 4.2± 0.4 120± 6 14.4± 1.7 341± 38 1503± 208 120± 14
4 300 E y y Q 4.2± 0.4 81± 7 11.6± 3.7 109± 26 1726± 301 143± 46
5 400 y y y y 4.1± 0.6 73± 3 5.8± 0.6 94± 7 595± 51 80± 8
6 250 y y y y 3.4± 0.6 113± 18 11.8± 4.8 141± 39 958± 265 105± 42
7 150 y y y y 3.3± 0.9 125± 8 19.3± 2.8 369± 46 1819± 264 154± 23

Zn_08, Powder Sample
1 28 y y y 2.6± 0.6 126± 3 30.9± 4.2 790± 64 4049± 232 246± 34
2 182 y y y 3.7± 0.7 122± 7 11.2± 2.0 331± 37 1125± 172 91± 16
3 227 y y y 3.6± 1.5 95± 3 8.3± 1.9 447± 147 3952± 345 87± 20
4 279 y y y 3.7± 0.5 106± 4 13.0± 2.2 352± 37 1547± 160 122± 21
5 377 y y E 3.4± 0.4 88± 8 2.8± 5.4 1151± 8514 5034± 12939 31± 61
6 34 y y y 2.5± 0.6 134± 7 15.0± 5.8 521± 177 3864± 450 112± 43
7 256 y y E 2.7± 3.6 112± 22 4.1± 3.0 791± 282 1079± 4228 36± 27
8 120 y y y 2.9± 0.8 122± 1 19.1± 0.5 1070± 25 3259± 105 157± 4

Table 2. Burgers model fits to the data for each temperature conditions. The Data Used columns denote

what data was used from each nominal period in calculating Burgers parameters; y – both data used, E - only

E, Q - only Q. The data themselves are listed in Table 1. The errors on the values are those reported by the

minimisation algorithm used for the fitting.

719

720

721

722

Constant Temperature dependency Intercept Slope
() , °C) (?0) (?′)

Zn_02, Wire Sample
�" ?0 + ?′.) 154.6± 9.1 GPa -0.196± 0.031GPa K−1

[" exp(?0 + ?′/'() + 273)) 7.6± 0.3 6889± 1058 J mol−1 K−1

�+ exp(?0 + ?′/'() + 273)) 29.0± 2.6 1199± 108 K−1

[+ exp(?0 + ?′/'() + 273)) 5.7± 0.4 5331± 1385 J mol−1 K−1

Zn_08, Powder Sample
�" ?0 + ?′.) 134.6± 10.7GPa -0.109± 0.045GPa K−1

[" exp(?0 + ?′/'() + 273)) 8.4± 0.8 3433± 2688 J mol−1 K−1

�+ exp(?0 + ?′/'() + 273)) 5.2± 0.6 405± 259 K−1

[+ exp(?0 + ?′/'() + 273)) 6.2± 0.5 5111± 1727 J mol−1 K−1

Table 3. Global Burgers model fit to the data listed in Table 1. These fits are plotted with the data in Figures

7 and 8 and compared to the independent temperature fits in Figure 9.
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Figure 8. Dissipation in the Zinc (a) wire and (b) power samples plotted on a logorithmic scale against

temperature and period. The open symbols are the data collected before the maximum temperature of the

experiment and the filled symbols after; for the order of the data collection see Table 1. Error bars have been

excluded for clarity. Dotted lines connect the data to the corresponding point in the fitted plane. The solid

lines are the global Burgers model fit to the data and plotted at the nominal period and temperatures of the

measurements. All lines terminate at the melting temperature. Note that the directions of the temperature and

period axes are reversed relative to Figure 7.
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ture derivative but this is deemed unlikely to be significant because of the relatively low740

temperatures and other studies do not observe significant anelastic behaviour in corundum741

[Li and Weidner, 2007]. It is possible geometrical imperfections, such as zinc being par-742

tially replaced in the deforming column with the boron nitride sleeve, affect the measure-743

ments. Hexagonal Boron nitride has a Young’s modulus of ∼770GPa at room tempera-744

ture and ∼620GPa at 400 °C [Thomas et al., 2017], significantly higher than that of zinc.745

The Young’s modulus measurements are therefore not significantly contaminated with sig-746

nal from the boron nitride sleeve. Another possibility is that the sampling space of the data747

skews the calculated values but this cannot be tested here.748

The creep viscosities ([" , Figure 9b, Table 3) are within two standard deviations of749

each other and exhibit an Arrhenius relationship between viscosity and inverse temperature.750

The viscosities have similar magnitude, between 100 and 200 °C, to values from creep ex-751

periments on high-purity zinc by Murthy and Sastry [1982] and Tegart and Sherby [1958],752

although they reduce with temperature much more slowly. The activation energies for creep753

in the wire and powder are 6.8±1.1 and 3.4±2.7 kJ/mol respectively. They are much smaller754
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Figure 9. Burgers model parameters plotted against temperature. The symbols are the Burgers fit to the

data at each temperature only; the blue squares denote the wire sample and the red triangles are for the powder

sample. The open symbols are the data collected before the maximum temperature of the experiment and the

filled symbols after. Red and blue lines are from the fit to all the data assuming the temperature derivatives

listed in Table 3. In a) the solid black line is the isotropic elastic Young’s modulus of zinc at the average

pressure of the wire experiment (4.1GPa), the dashed lines are the maximum and minimum possible elastic

Young’s moduli calculated in MSAT [Walker and Wookey, 2012]. In b) the solid black line, dashed black line

and grey area are viscosities ([ = f/ ¤Y) derived from the experiments in dislocation-controlled creep regimes

by Tegart and Sherby [1958], Thompson [1955] and Murthy and Sastry [1982] respectively. There are no

comparable previous measurements for parts c. and d.
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than the activation energies for creep by dislocation climb or basal slip in zinc [88 and 159 kJ/mol755

respectivley, Tegart and Sherby, 1958] or implied by the creep data of Murthy and Sastry756

[1982]. The values here are also significantly smaller than the activation energy for zinc757

self-diffusion [91.3 - 101.7 kJ/mol, Chabildas and Gilder, 1972; Shirn et al., 1953] or grain758

boundary diffusion [60.7 kJ/mol,Wajda, 1954]. Twinning can produce strains of up to 7 %759

in zinc [Price, 1961], but the activation energy is 29.7±10 kJ/mol [Cooper and Washburn,760

1967] and not many twins are observed in the anelasticity samples. Grain boundary slid-761

ing has a wide range of activation energies; ranging from 40 − 100 kJ/mol in zinc bicrystals762

[Watanabe et al., 1984], to as low as 20 kJ/mol [Matsunaga et al., 2010]. The lowest activa-763

tion energies are for grain boundary sliding and they are still significantly greater than those764

observed here.765

The functional forms of the Voigt elements of the model are less clear and more scat-766

tered than those of the Maxwell elements. For both elements an Arrhenius temperature de-767

pendence was assumed because other functional forms gave unphysical results or did not768

describe the data well. The values of the two parameters are similar between the experiments769

but those from the powder sample tend to be slightly greater than from the wire sample. The770

value of [+ is an order of magnitude less than that of [" . Conversely, at all temperatures,771

the values of anelastic spring component (�+ ) are much greater than the pure elastic compo-772

nent (�" ).773

The global model of attenuation (Figure 8) reveals differences between the data sets. In774

the wire’s &−1 values, there are two clear inflection points at each temperature (i.e. [m&−1/mPeriod]) =775

0) within the range of experimental periods (Figure 8a). The position of these inflection776

points, and therefore the dissipation peak, increases by about 0.25 log-units with increas-777

ing temperature. The steepest gradients in [m�/mPeriod]) correspond to this same period778

region (Figure 7a). The powder sample does not have such a prominent dissipation peak and779

the position of the minimum gradient decreases in period slightly with increasing tempera-780

ture (Figure 8b). The corresponding change in Young’s modulus is also less pronounced than781

in the wire (Figure 7b). There is also more variation in [m&−1/m)]Period and [m�/m)]Period782

in the wire than the powder. This points to subtle differences between the experiments. They783

are likely due to imperfections in sample geometry, rather than systematic differences be-784

tween the samples, and not significant for interpretation of the experiments.785
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In this study, the interpretation of the data is restricted by the number of periods at786

which the data was collected and the scatter in the data. Small geometrical imperfections,787

while possibly influencing the details of the measurements, do not appear to significantly dis-788

tort the overall picture. The overall similarity of the Burgers model parameters and the mi-789

crostructures of the two samples implies the same physical process is causing the attenuation790

in both samples. The sample histories (i.e. wire vs. powder) have a small but distinguishable791

effect on the measurements.792

6 Discussion793

The similarity of the recovered microstructures and Burgers models for both the wire794

and powder samples strongly supports the dissipation is controlled by the same physical pro-795

cess in both samples. The nature of this process is discussed in Section 6.1 and is followed796

by its implications for sound velocity (Section 6.2) and their implications for the inner-core797

(Section 6.3).798

6.1 Dissipation mechanism799

Dissipation in the samples is related to, or caused by, the sample recrystallisation which800

overwrites the sample’s previous history and maintains a quasi-equilibrium grain-size dur-801

ing the experiments. This is in contrast to creep experiments in which columnar and ran-802

domly oriented zinc retained distinct behaviours [Bergman et al., 2018]. The development803

and maintenance of the small grain-size, in samples that would normally grain-grow very804

quickly [e.g. Niessen et al., 1963], indicates that the easiest method of anelastic dissipation in805

these samples involves grain-boundaries. Dissipation by grain boundary sliding is supported806

by the 4 grain contacts, the lower and unusually homogeneous WBVL values as well as by807

the differences in LPO and misorientations which are much closer to a random ODF in the808

anelastic samples relative to the compressed samples. LPOs which are near random and un-809

usually homogeneous dislocation density is more indicative of grain boundary sliding than810

dislocation creep. Elastically accommodated grain boundary sliding has been shown to pro-811

duce a grain-size dependent dissipation peak at a single frequency, at least in a 2-dimensional812

idealised model [e.g. Lee and Morris, 2010]. The presence of a single dissipation peak is813

supported by the better fit of the Burgers model compared to the Andrade model, which has a814

wide dissipation peak. In the model of elastically accommodated grain boundary sliding the815

relaxation time, g, is linearly dependent on the grain-size, 3, according to Faul and Jackson816
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[2015]:817

g = [613/�X (16)

where [61 is the grain boundary viscosity, � the elastic shear modulus and X the grain bound-818

ary width. Accordingly, and if applicable, larger grain-size increases the effective creep vis-819

cosity of the sample.820

It is apparent in this study that the application of stress is forcing the recrystallisation,821

and the resulting grain-size is such that g and the associated dissipation peak are within the822

frequency range of the experiments (Table 2). Whilst this could be entirely coincidental, it is823

also possible that the grain-size in each measurement changes slightly to minimise the stored824

energy and thus maximise the dissipation. If this is the case, then the microstructure, at high825

temperatures, evolves to keep the relaxation time close to that of the driving period. For both826

samples, the Maxwell time shows a decreasing trend with temperature.827

Grain boundary sliding is a significant mechanism in the deformation of columnar zinc828

[Bergman et al., 2018]. In high-strain experiments on untextured samples, grain boundary829

sliding only forms a small part of the total strain and appears to saturate with increasing total830

strain and temperature [Gokhale et al., 2019; Matsunaga et al., 2010]. Geometric misalign-831

ment from grain boundary sliding can be accommodated elastically or by dislocations and832

diffusion. The presence of domains with higher dislocation densities may suggest that grain833

boundary sliding is accommodated by dislocation creep rather than diffusion creep but we834

cannot be sure of their relative importance.835

Zinc has a high stacking fault energy [Harris and Masters, 1965] and would normally836

undergo recrystallisation by ‘continuous dynamic recrystallisaion’ [Gourdet and Montheil-837

let, 2003; Montheillet and Jonas, 2003] where dislocations aggregate to form subgrain-838

boundaries and then high angle grain boundaries. In the anelasticity samples, there are rel-839

atively few grains with coherent subgrain boundaries and the grain boundary misorientation840

distributions (Figures 6c–d) are close to the random distribution indicating there is little or841

no crystallographic inheritance between grains. Additionally, many grains have very low842

WBVl values, indicating low dislocation density. Grains with the highest WVBL (i.e. dislo-843

cation density) have a wide spread of WBV orientations pointing to multiple active disloca-844

tion systems. As grains grow and multiple dislocation systems are activated, these are likely845

to tangle strain-hardening the grains. In order for easy grain boundary dissipation and lower846

elastic strain energy, new grains are therefore nucleated and grow, so-called ‘discontinuous847
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dynamic recrystallisation’ [Montheillet and Jonas, 2003; Tutcuoglu et al., 2019; Liu et al.,848

2020]. These new grains nucleate randomly and have no inheritance to the grains they ulti-849

mately replace.850

Grain boundary sliding is also often associated with diffusion in viscoelastic models851

[e.g. Cooper, 2002]. Diffusion is significant on the time scale of the experiment. The plat-852

inum marker foils adjacent to the zinc noticeably thicken and blur into the zinc sample, dur-853

ing the experiments, while the thickness of the foils away from the zinc remains constant.854

The platinum foils double their apparent thickness over the course of the experiments. Using855

the self-diffusivity of zinc (�) from Shirn et al. [1953], the diffusion length (
√
�C) in zinc is856

greater than the grain radius at temperatures above ∼90 °C, and greater than the radius of the857

largest grains above ∼115 °C. Thus, even in the 10 s period experiments, diffusion is signif-858

icant and could reasonably be the deformation mechanism – although this is not reflected in859

the activation energy for the macroscopic creep viscosity ([" ) measured in the experiments.860

However, the unphysical fit of the Andrade model to the data means that the diffusion is un-861

likely to be a significant cause of accommodation.862

We conclude therefore, that dissipation during the sinusoidal deformation is caused by863

the combination of dynamic recrystallisation and grain boundary sliding. This prevents the864

growth of large crystals and instead establishes a quasi-equilibrium grain-size which is con-865

stantly reforming. While both diffusion and dislocations may play a role in the dissipation,866

their magnitude is small compared to that of grain boundary sliding. The establishment of867

a steady-state grain-size and fabric here is similar to the steady-state foliation that occurs in868

natural rocks [Means, 1981] and implies an overall balance between the grain boundary and869

internal energy of the grains.870

6.2 Anelastic modification of sound velocity871

The experiments here show significant softening in zinc at seismic frequencies (1 × 10−3.872

5 . 1 Hz) which will reduce the sound velocity. Calculation of E? (l) and EB (l) in an873

isotropic medium requires knowledge of both the shear modulus and Young’s moduli (or874

two pieces of equivalent information). Here though, we have only measured the frequency-875

dependent Young’s modulus, and fitted for the infinite-frequency, elastic, Young’s modu-876

lus, �" (Equation 15, Figure 9a, Table 3). Although, the bulk modulus ( ) is also formally877

anelastic in an anelastic system [Anderson, 1989; Nowick and Berry, 1972], we assume here878
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the effective bulk modulus is unaffected by the dissipation mechanism. This is a reasonable879

assumption because recrystallisation, grain boundary sliding or the presence of dislocations880

should not significantly affect the compressibility. As additional confirmation, the 1 Hz bulk881

moduls of (Mg,Fe)O has been shown to closely correspond to the elastic bulk modulus, away882

from the iron spin transition [Marquardt et al., 2018]. The elastic bulk modulus ( ) gives883

the second piece of information with which to calculate E? (l) and EB (l) from the following884

relations:885

E? (l) =

√
3 [3 + � (l)]
d[9 − � (l)] (17a)

EB (l) =

√
− 3 � (l)
d[� (l) − 9 ] (17b)

where d is the density. Assuming a bulk modulus with the same anelastic dissipation as the886

Young’s modulus compounds the softening, making it much more significant and further887

reducing E? (l) and EB (l).888

The sound speed of zinc at finite-frequency is plotted in Figure 10a. The required bulk889

modulus was calculated using the same elastic stiffnesses as the elastic Young’s moduli of890

zinc (Section 4), at the mean pressure of each experiment (Table 1). The density was cal-891

culated using a reference density of 7.12 g cm−3, the calculated bulk modulus and the ther-892

mal expansion coefficients of Nuss et al. [2010]. In calculating the sound speed, we used the893

measured creep viscosity, [" . At smaller strains, or larger grain-sizes, it can be expected to894

have an effectively larger value (Equation 16). Removing the effect of [" , by setting it to a895

very large value, has only a small effect: the 300 s period EB changes by less than ∼50ms−1.896

The elastic sound velocities, at the pressures of the experiments, are greater than those897

reported by Ledbetter [1977] whose values are for 0GPa. The change in velocity with tem-898

perature in our powder sample compares very well with the data of Ledbetter [1977]. The899

change of velocity with temperature is greater in the wire sample because the temperature900

dependence of the elastic Young’s modulus is also greater (Figure 9a). Close to melting, both901

Burgers models predict similar reductions in sound speed as a function of frequency. For a902

30 s period, the reductions in E? are 0.05 and 0.11 km s−1 for the wire and powder samples903

respectively; the corresponding reductions in EB are 0.11 and 0.17 km s−1. These correspond904

to percentage reductions in sound velocity of 1.4 and 2.6% for E? and 7.8 and 8.5% for EB .905
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Figure 10. (a) Sound velocity as a function of temperature and experimental wave periods and (b) the rela-

tionship between EB (l)/E? (l) against ' = � (l)/� , calculated from the Burgers models and Equations 17

and 20. In both Figures, blue lines denote the wire sample and the red lines the powder sample. Thick black

lines are the values from Ledbetter [1977]. In (b) the thin blue and red lines are isotherms in the models at

100 °C intervals. The dashed black lines are the relationship denoted by Equation 20 and the green stars are

the predicted EB/E? ratio from the extrapolated elastic constants of Vočadlo et al. [2009]. The grey bar is the

range of EB/E? values reported by PREM and ak135.
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6.3 Effect of anelasticity on the inner-core913

The absolute reduction in the zinc’s EB (l) is between 1.5 and two times greater than914

the reduction in E? (l), which in consistent with the inner-core in which EB (l) is reduced915

more than E? (l) relative to pure Fe at infinite-frequency.916

The larger reduction in EB (l) than E? (l) with increased anelastic softening is implied917

by Equations 17. If we define the bulk modulus to be a multiple of the elastic Young’s modu-918

lus, i.e.:919

A =  /� (18)

and the amount of anelastic softening as a fraction of the elastic, i.e. infinite frequency, Young’s920

modulus,921

' = � (l)/�, (19)

the frequency-dependent sound velocity ratio is:922

EB (l)
E? (l)

=

√
'

3A + ' . (20)

The ratio EB (l)/E? (l) is independent of density but implicitly depends on � ; an equivalent923

expression exists in terms of the shear modulus. For real values, 0 ≤ ' ≤ 1, this relationship924
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is a maximum at ' = 1, confirming that under anelastic dissipation EB reduces faster than925

E? . The higher the value of A , the lower the ratio of EB/E? in the elastic limit (' = 1). At a926

constant value of anelastic softening ('), the ratio EB (l)/E? (l) changes with temperature927

via the dependence of A on the elastic stiffnesses.928

Figure 10b shows EB (l)/E? (l) against ' for 0.5 < A < 4. It shows that increasing929

A decreases EB (l)/E? (l) and that increased anelastic softening (Equation 12), decreased ',930

further reduces EB (l)/E? (l). Any anelastic softening will be accompanied by dissipation931

(Equation 13); effects that are not accounted for in the plot.932

The Burgers models for zinc determined in this study are plotted to illustrate the effects933

of temperature and anelastic softening (Figure 10b). For both samples, the range of A with934

temperature is larger than that inferred from the sound speeds of Ledbetter [1977]. This is935

because the change of �" with temperature is greater than that of the isotropic elastic aver-936

age (Figure 9a). As with the earlier figures, significantly more softening is observed in the937

zinc wire than in the powder. Decreases in ' at constant temperature (thin red and blue lines938

in Figure 10b) are accompanied by reductions in EB (l)/E? (l).939

Only at the highest temperatures and longest periods does the zinc wire reach the EB/E?940

ratio, but not the absolute velocities, of the inner-core reported by PREM [Dziewonski and941

Anderson, 1981] or ak135 [Kennett et al., 1995]. This is because A is significantly smaller942

in zinc than in hcp-Fe [e.g. Vočadlo et al., 2009]. Although Figure 10b neglects density as a943

constraint on the composition of the inner-core, it predicts that the inner-core alloy must have944

A < 3 and lower values must be accompanied by finite amounts of anelastic dissipation.945

Inner-core sound velocity cannot be matched by the elastic constants of hcp-iron [e.g.946

Vočadlo et al., 2009], which always predict sound velocities that are too fast. However, if947

anelastic softening is included, the sound velocities can be matched by the elastic constants948

of Vočadlo et al. [2009] with an, admittedly unrealistic, extrapolated temperature of ∼7250K949

and equally unrealistic ' = 0.68. Although these conditions match the sound velocity, the950

density of the hypothetical pure iron remains greater than that of the inner-core. Anelastic-951

ity, therefore, does not remove the need for light element(s) in the inner-core and hints that a952

wider range of light elements could match the inner-core properties than previously has been953

managed.954
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Conversely, finite dissipation in the inner-core, reduces seismic wave speed resulting955

in an underestimation of the inner-core’s elastic moduli ( and `, Equation 20, Figure 10b).956

The estimated difference between the elastic properties of stiffer pure iron and that of the957

softer inner-core alloy are therefore overestimated. Thus comparison of seismic wave speed958

with experimental or computed material properties will tend to over estimate the light ele-959

ment budget of the inner-core and needs to be considered in future studies.960

The inner-core is very close to the melting temperature of its alloy and at high temper-961

ature iron, like zinc, undergoes rapid recrystallisaion [Anzellini et al., 2013]. Therefore it is962

likely that the inner-core is undergoing rapid recrystallisation, which we have shown here is963

an intrinsic part of the dissipation. The stress amplitude of seismic waves is significantly964

less than those in this study; accordingly any quasi-equilibrium grain-size is expected to be965

larger in the inner-core than in the experiments here. A larger grain-size will result in less966

grain boundary area and lower dissipation but even a small amount of anelastic dissipation967

reduces the effective elastic moduli and reduces the seismic velocity. Regional and depth de-968

pendent variations in attenuation [Pejić et al., 2019; Suda and Fukao, 1990] may be the result969

of variation in grain-size and homologous temperature within the inner-core. Directionally970

dependent attenuation [Mäkinen et al., 2014] could be attributable to shape preferred ori-971

entation of crystals giving different directionally dependent effective grain-sizes. It seems972

unreasonable therefore to be able to fully understand the inner-core without a comprehensive973

model that accounts for both the seismic velocity and attenuation.974

7 Conclusions975

Significant dissipation is observed at seismic frequencies in the experiments of this976

study. This shows that signifcant anelastcity occurs in hcp metals at high pressures and tem-977

peratures, without the need for a fluid phase or significant impurities. The inner-core also978

exhibits non-zero &−1 values, evidence of active anelastic processes. Thus anelasticity must979

be accounted for when interpreting the inner-core’s seismic velocity structure.980

The high-pressure response of zinc wire and powder samples to sinusoidal stress at981

seismic frequencies and up to )/)" ∼ 0.8 have been measured and show that the hcp metal982

zinc has significant anelastic dissipation at seismic frequencies. The Burgers model used to983

fit the data successfully reproduces its features. The elastic (�" ) components of the model984

show a good correspondence to previous studies (Figure 9). The activation energy for creep985
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([" ) is much lower than previous studies have found; the values of �+ and [+ are less well986

constrained and do not simply correspond to a distinct physical process. It is therefore prob-987

able that the Burgers model is too simplistic to properly describe the dissipative processes988

active in the sample but there is not sufficient data to warrant the use of more complex mod-989

els. The small differences between the experiments are caused by imperfections in the exper-990

imental geometry. Nevertheless, the experiments here show that significant anelastic soften-991

ing occurs at high pressure and temperature in zinc and by extension hcp metals.992

The recovered samples have very similar grain-size and LPO (Figures 5 and 6a) de-993

spite the initial grain-size and fabric being very different. The small amplitude deformation994

during the experiment appears to have prevented the growth of large grains in both wire and995

powder samples; the grain-size is therefore in a steady-state fabric, analogous to the steady-996

state foliation of Means [1981]. The grains are not equant equilibrium shapes and have very997

few dislocations and sub-grain boundaries. It seems likely that the anelastic dissipation is998

caused by grain boundary sliding combined with dynamic recrystallisation . To the best of999

our knowledge, this is the first observation of dynamic recrystallisation as a significant con-1000

tributing factor to an anelastic dissipation mechanism.1001

Associated with the dissipation is a significant drop in the effective Young’s modu-1002

lus with increasing period and an associated reduction in sound speed. We have shown1003

that anelastic softening reduces EB (l) by more than E? (l). This is consistent with obser-1004

vations of the inner-core, where the reduction in EB is much larger than that in E? , relative to1005

pure iron. Accounting for anelasticity and ignoring density, it is possible to match the sound1006

speeds of pure iron to those of the inner-core. Accounting for anelastic reductions of inner-1007

core sound velocity will increase the elastic moduli and sound velocities of the inner-core1008

alloy closer to those of pure iron. Anelastic effects may therefore imply that the light-element1009

budget of the inner-core is less than previously considered. A comprehensive understanding1010

of the inner-core must therefore account for both the seismic velocity and attenuation.1011

A Temperature Calibration1012

Thermal gradients in small multi-anvil cells are potentially significant and increase1013

with temperature and distance from the centre of the furnace [Liebermann and Wang, 1992;1014

Hernlund et al., 2006]. The corundum standard, which was used to measure the pressure and1015

was the reference to determine the sample’s Young’s modulus, was not in the centre of the1016
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furnace or immediately adjacent to the thermocouple. A temperature difference between the1017

thermocouple and the corundum standard could result in a systematic underestimation of the1018

Young’s modulus of corundum, an error which would propagate into the analysis of anelastic1019

dissipation.1020

To determine if a significant temperature gradient or difference existed in the experi-1021

mental cell experiment Zn_06 was performed, in which the temperature was increased until1022

the zinc melted. The temperature at which melting occurs is an independent, absolute, ref-1023

erence of the temperature in the experiment. The cell in this experiment was the same as in1024

the other experiments and the sample was zinc wire. At the same load as before (270 kN),1025

the experiment was heated from 150 °C to ∼570 °C over a period of 3 hrs 35mins, by which1026

point the zinc had melted. During heating, X-radiographs were collected at a rate of 1.5 s/frame.1027

Diffraction patterns were collected intermittently during the temperature ramp.1028

The melting point of the zinc was determined from the radiographs; when the zinc1029

melted a plume of platinum-rich material rose through the sample. Although the sample1030

melted, it did not make a ball of molten metal in the cell because convection stirred platinum1031

into the sample. There is no eutectic depression of the melting point at the zinc-rich end of1032

the Zn-Pt binary [Moser, 1991] and adding platinum to zinc increases the melting temper-1033

ature and re-froze the sample. The thermocouple temperature was 544 °C when the zinc1034

melted; the error in this measurement is negligible. From the zinc melting curve [)",0 =1035

419.5◦C, d)"/d% = 40K/GPa; Errandonea, 2010] this temperature corresponds to 3.11GPa.1036

During heating, the pressure was measured by diffraction from the corundum at 27,1037

225, 289, 368 and 422 °C. Assuming the temperature in the corundum was the same as the1038

thermocouple reported, the pressures were 3.83(48), 3.52(26), 3.50(15), 3.53(23) and 3.37(34)GPa.1039

A linear fit of the pressure against temperature gives a reduction in pressure of −1.04 MPa K−1
1040

and intercepts the melting curve at 550(13) °C and 3.26(33) GPa. These estimates are within1041

error of the observed melting conditions. Any differences in temperature between the ther-1042

mocouple, zinc sample and corundum standard are therefore insignificant and no temperature1043

correction is required.1044

B Maxwell Model1045

The Maxwell model (Figure 4a) along with the Voigt model (Figure 4b) are the two1046

simplest models that contain intrinsic attenuation and thus frequency-dependent behaviour.1047
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The creep function for the Maxwell model is [e.g. Faul and Jackson, 2015]:1048

� (C) = 1
:"
(1 + C

g"
) (B.1)

where the relaxation time g" = ["/:" , :" is the spring constant and [" is the dash-pot1049

viscosity. Integrating this creep function over the dynamic compliance (Equation 10) and1050

expressing in terms of :" and [" gives [Faul and Jackson, 2015]:1051

�∗ (l) = 1
:"

(
1 + :"

il["

)
; �1 =

1
:"

; �2 =
1

il["
; & =

:"

l["
(B.2)

Equation B.2 shows that the Maxwell model’s frequency dependence of & is proportional to1052

period and cannot contain any inflection points (i.e. 32&(l)/3l2 ≠ 0 ).1053

The Voigt/Kelvin model has & inversely proportional to period and is also without1054

the possibility of inflection points. The equivalent characteristic equations for which can be1055

found in Cooper [2002].1056

C Andrade Model1057

The Andrade model (Figure 4c) is a phenomenological model derived from micro-1058

creep experiments and provides a good fit to the transient, pre-steady state, part of creep1059

curves [Sundberg and Cooper, 2010; Cooper, 2002]. The time-dependent creep function1060

is:1061

� (C) = �* + VC= + C/[, 1/3 < = < 1/2 (C.1)

Integrating this creep function over the dynamic compliance gives [Faul and Jackson, 2015]:1062

1063

�∗ (l) = �* + VΓ(1 + =) (il)−= − i/[l. (C.2)

Rearranging this to the same form as Equation 15, and substituting �* = 1/: , gives:

�1 (l) = 1/: + VΓ(1 + =) (il)−= cos(=c/2) (C.3a)

�2 (l) = VΓ(1 + =) (il)−= sin(=c/2) − i/[l (C.3b)

where Γ(1 + =) is the gamma function [Gribb and Cooper, 1998] and : , V, = and [ are the1064

material properties of the different components of the model (Figure 4c). The parameters V1065

and = describe the shape of the transient seen during creep experiments and under oscilla-1066

tory stress provide damping over a wide range of frequencies. The value of = has been con-1067

strained experimentally to be approximately 1/3 [Gribb and Cooper, 1998]. Because dissipa-1068

tion occurs over a wide range of frequencies, the Andrade model has been argued to provide1069
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a physically consistent description of both the rheological and anelastic properties of peri-1070

dotite [Sundberg and Cooper, 2010].1071
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Figure S1. Weighted Burgers Vectors Length maps for EBSD data. The samples, layout and areas plotted

are the same as those in Figure 5. All maps are to the same colour scale. White areas in the EBSD maps are

where the sample was not indexed or data discarded; the linear white features in a and b are scratches from

which data has been discarded. The cumulative WBV length distribution for each map is plotted in Figures 6e

and 6f.
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