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Abstract

This study aims to comprehensively examine diverse uncertainties/multiplicities (e.g., performance indicators, bias-correction

methods, hydrologic models, bias-correction schemes, predictor combinations, watersheds, streamflow magnitudes, and temporal

scales) in bias-corrected hydrologic simulations (BCHS). The focus is placed on the variations of BCHS accuracies (representing

climatic impacts on runoffs) with every uncertainty, as well as their interactions with the other uncertainties. To achieve this,

an integrated bias-corrected hydro-modeling uncertainty analysis approach (IBCHMUA) is developed based on one advanced

hydro-modeling method, i.e., discrete principal-monotonicity inference (DiPMI), and two hydrologic models, i.e., Xin’anjiang

and HyMOD. IBCHMUA is applied to two representative watersheds (Xiangxi and Zhongzhou) in southern China. Many

findings are revealed. For instance, it is necessary to apply multiple performance indicators and DiPMI is effective in correcting

hydro-model biases. Every uncertainty poses significant impacts on BCHS, and the significance of the impacts further varies with

all or part of the other uncertainties. BCHS accuracies (or the estimated climatic impacts on runoffs in southern China) increase

from daily to monthly scales, from Xiangxi to Zhongzhou Watersheds, from the highest through the lowest to the overall runoff

magnitudes, from Xin’anjiang to HyMOD models, and from original to bias-corrected hydrologic simulations. Meanwhile, the

impacts of the uncertainties in BCHS decrease from bias-correction schemes, temporal scales, streamflow magnitudes, hydrologic

models or predictor combinations, to watersheds. These findings are helpful for reducing the complexity and enhancing the

reliability of BCHS under diverse uncertainties, and point out the importance of taking into account the interactions of the

uncertainties in BCHS studies.
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Key Points:

 An approach was developed to comprehensively examine diverse uncertainties
in bias-corrected hydrologic simulations over southern China.

 Uncertainty impacts: bias-correction schemes > temporal scales > streamflow 
magnitudes > hydrologic models or predictor combinations > watersheds.

 Every uncertainty poses significant impacts on simulations, which further 
varies with all or part of the other uncertainties.

Abstract: 
This study aims to comprehensively examine diverse uncertainties/multiplicities 

(e.g., performance indicators, bias-correction methods, hydrologic models, bias-
correction schemes, predictor combinations, watersheds, streamflow magnitudes, and 
temporal scales) in bias-corrected hydrologic simulations (BCHS). The focus is 
placed on the variations of BCHS accuracies (representing climatic impacts on 
runoffs) with every uncertainty, as well as their interactions with the other 
uncertainties. To achieve this, an integrated bias-corrected hydro-modeling 
uncertainty analysis approach (IBCHMUA) is developed based on one advanced 
hydro-modeling method, i.e., discrete principal-monotonicity inference (DiPMI), and 
two hydrologic models, i.e., Xin’anjiang and HyMOD. IBCHMUA is applied to two 
representative watersheds (Xiangxi and Zhongzhou) in southern China. Many 
findings are revealed. For instance, it is necessary to apply multiple performance 
indicators and DiPMI is effective in correcting hydro-model biases. Every uncertainty
poses significant impacts on BCHS, and the significance of the impacts further varies 
with all or part of the other uncertainties. BCHS accuracies (or the estimated climatic 
impacts on runoffs in southern China) increase from daily to monthly scales, from 
Xiangxi to Zhongzhou Watersheds, from the highest through the lowest to the overall 
runoff magnitudes, from Xin’anjiang to HyMOD models, and from original to bias-
corrected hydrologic simulations. Meanwhile, the impacts of the uncertainties in 
BCHS decrease from bias-correction schemes, temporal scales, streamflow 
magnitudes, hydrologic models or predictor combinations, to watersheds. These 
findings are helpful for reducing the complexity and enhancing the reliability of 
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BCHS under diverse uncertainties, and point out the importance of taking into 
account the interactions of the uncertainties in BCHS studies. 

Keywords: hydrologic modeling, bias correction, DiPMI, uncertainty analysis, China.

1.Introduction
Hydrologic simulation is crucial for understanding hydrologic systems and 

mitigating hydrologic risks (e.g., droughts and floods) under climatic and 
anthropogenic impacts. Nevertheless, biases (i.e., systematic errors) exist because it is
challenging for hydrologic models to perfectly reproduce complex hydrologic 
processes (Piani et al., 2010; Roberto Buizza, 2005). The biases would reduce the 
robustness of hydrologic simulation, the reliability of the corresponding water 
resources management schemes, and the reasonableness of socio-economic and eco-
environmental development (Piani et al., 2010; Saber et al., 2018). Correcting biases 
of hydrologic simulation through effective methods is required for eliminating these 
consequences and enhancing the sustainability and resilience of water resources 
systems.

Correspondingly, bias correction was proposed. Representative methods consist 
of linear scaling, power transformation, and quantile mapping (Shrestha et al., 2017). 
These methods presented encouraging performances in correcting averages, variances,
distributions, or other features of biases in hydrologic simulation, while their 
effectiveness was limited in some cases. Meanwhile, a series of sophisticated 
statistical methods emerged for hydrosystem analyses and might overperform existing
ones in bias correction. As a representative, discrete principal-monotonicity inference 
(DiPMI) (G. Cheng et al., 2016b, 2016a; G. H. Cheng et al., 2017) can be used to 
enhance the reliability of hydro-model bias correction, and to reveal the joint, 
dominant, interactive, and non-monotonic impacts of climatic conditions on 
streamflow. Correcting biases of hydrologic simulation through both conventional and
emerging methods deserves exploration.

In addition, many multiplicities (i.e., uncertainties in most hydrologic, 
geophysical or other relevant studies) exist and propagate in bias-corrected hydrologic
simulation (BCHS) (Cheng et al., 2017; Ehret et al., 2012). Typical ones include the 
multiplicities/uncertainties of hydrologic models, bias-correction methods, predictor 
selections, watersheds, temporal scales, streamflow magnitudes, etc. Neglecting them 
(e.g., choosing one hydrologic model corrected by one method to represent a 
hydrologic system of uncertain structures) would lead to arbitrary BCHS results, 
unilateral research findings, and unreliable decision support. Examining these 
uncertainties is conducive to enhancing the reliability of hydrologic simulation and 
the related water resources management and engineering practices (Vetter et al., 
2017). 

In this regard, many studies have been conducted. For instance, Beven et al.
(1992) analyzed the uncertainties of hydrologic models by the GLUE method (Beven 
and Binley, 1992). The selection of bias-correction methods had a more significant 
impact on runoff extremes than runoff averages (Lenderink et al., 2007). Different 
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simulation structures or conceptualizations might result in significant uncertainties in 
hydrologic predictions (Arkesteijn and Pande, 2013). Addor et al. (2014) identified 
the dominant impacts of uncertainties in climate models, emission scenarios, post-
processing methods, and catchments. However, few studies took all aforementioned 
uncertainties into account and revealed their interactive impacts on hydro-simulation 
reliabilities. This gap may decrease the robustness of hydrologic simulations, increase 
the unreliability of simulation-based decision support, and hinder the mitigation of 
hydrologic hazards (e.g., floods and droughts). 

Therefore, the objective of this study is to develop an integrated bias-corrected 
hydro-modeling uncertainty analysis approach (IBCHMUA) for comprehensively 
examining interactive impacts of diverse uncertainties (especially their interactive 
impacts) in BCHS. Specifically, Section 2 introduces two representative catchments in
southern China, and the necessity of this study for local water resources management. 
Section 3 presents the principle of DiPMI and the framework of IBCHMUA. Section 
4 focuses on the variations of BCHS performances with method-related uncertainties 
(i.e., performance indicators, bias-correction methods, hydrologic models, bias-
correction schemes, and predictor combinations). Section 5 elaborates the variations 
with non-method uncertainties (i.e., watersheds, streamflow magnitudes, and temporal
scales), as well as the interactions of all uncertainties. Section 6 summarizes the 
innovation, findings, and potential extensions of this study.

2. Study Areas: Southern China
(1) Representative Watersheds

Southern China is one of the most economically active areas across the world. 
Two large rivers (i.e., Yangtze River and Pearl River) are supporting extensive socio-
economic activities (e.g., agriculture, fishery, shipping and industries) over this 
region. As rapidly developing areas in economics, both river basins are the frontier of 
scientific and technological innovation in China (Liu et al., 2018; Zhang et al., 2016). 
In this study, two watersheds (Figure 1) are selected due to their representative 
characteristics (as specified below) of watersheds in the river basins. 

Xiangxi Watershed is an upstream tributary of Yangtze River that is closest to the
Three Gorges Dam. It is located between 30.99° N and 31.67° N and between 110.47°
E and 111.06° E. Its mainstream, Xiangxi River, reaches a length of 97.3 kilometers 
and a drainage area of 1189 km2. This river has two sources, i.e., Shendu River of 
64.5 kilometers in the east, and Baisha River of 54 kilometers in the west. Both rivers 
intersect at Gaoyang Town, Xingshan County. The elevation of the Watershed ranges 
from 67 to 3088 meters, and the average slope is 1.42%. In contrast, Zhongzhou 
Watershed (Figure 1) has a length of 136.5 kilometers and a drainage area of 2,328 
km2. Its mainstream, Xiaohuanjiang River, is the secondary tributary of Beijiang 
River in Pearl River Basin. It is located between 23.96° N and 24.44° N and between 
112.02° E and 112.26° E. Its elevation fluctuates from 61 to 1411 meters, and the 
average slope is 0.76%. 

In addition, both mountainous watersheds have narrow and twisted river 
channels, and fast river flows. High coverages of forests and red soils lead to low 
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sediment concentrations in both watersheds. The forest-coverage rates of Xiangxi and 
Zhongzhou Watersheds are 80.02% and 72.63%, respectively. Xiangxi Watershed is 
full of shoals without waterway transportation, the river valley (i.e., ≤ 800 m) is 
composed of purple sand shales and argillaceous rocks, and the high-altitude area is 
dolomites, siliceous rocks and limestones. In comparison, Zhongzhou Watershed is 
characterized by magmatic rocks and granites, few dangerous shoals, efficient 
shipping conditions, and developed waterway transportation. 

Figure 1. Locations and topographic characteristics of selected watersheds in
Southern China.

(2) Climatic and Hydrologic Features
The climatic conditions that significantly drive changes of streamflow are 

identified through correlation analysis. A group of data for hydrological simulation are
obtained by Kriging interpolation. Based on the finalized datasets for both 
watersheds, hydroclimatic characteristics are primarily analyzed to facilitate 
subsequent bias-corrected hydrologic simulation. Critical results of the analysis are 
presented as follows. 

Multi-year averages of daily discharges at outlets are 30.2 m3/s in Xiangxi 
Watershed and 30.5 m3/s in Zhongzhou Watershed. Annual average numbers of flood 
peaks (≥ 100 m3/s) are 75 and 83 for Xiangxi and Zhongzhou Watersheds, 
respectively. Both rivers are prone to floods in flooding seasons. Precipitation and 
evaporation have the highest correlation with runoffs, which are 0.89 and 0.76 
respectively. The driving force of the two climate conditions for runoffs is stronger 
than the others. 

Both watersheds belong to subtropical monsoon climates, with flood seasons 
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from April to September, dry seasons from October to March of the next year, and no 
frozen seasons. Zhongzhou Watershed is more susceptible to heavy precipitation in 
summer than Xiangxi Watershed, which may be associated with high vulnerability of 
southeastern coastal areas of China to typhoons. The annual average number of 
precipitation days in Xiangxi Watershed is 128.8, while that in Zhongzhou Watershed 
is 159.6. The numbers of days precipitation exceeding 50 and 100 mm in Xiangxi 
Watershed are 9 (0.49% of total days) and 1 (0.05%), respectively; they are 36 
(1.97%) and 8 (0.04%) for Zhongzhou Watershed, respectively. The highest 

temperature in Xiangxi Watershed is 41.5 ℃ and the lowest is -4.5 ℃; in Zhongzhou 

Watershed, they are 38.7 and -0.9 ℃, respectively. The numbers of days with above 

35 °C in Xiangxi and Zhongzhou Watersheds are 40.6 and 39.8, respectively. Heavy 
precipitation dominates streamflow changes. This indicates the existence of extreme 
climatic events in both watersheds. 

(3) Research Necessity
Both watersheds as well as many others in southern China are prone to 

hydrologic hazards, i.e., floods, droughts and the related events (e.g., landslides, 
mudslides, or mountain torrents). Changing climates, dense populations, and 
prosperous economies in the watersheds aggravate socio-economic and eco-
environmental effects of the hazards. Particularly, both watersheds suffer from 
varying degrees of economic losses each year. For instance, heavy precipitation 
triggered a 50-year flood in Xiangxi Watershed on August 23, 2011. As a result, 
streamflow overtopped river banks, flooded riverine communities, destroyed national 
road sections, affected over 22,000 people, and caused severe economic losses. In 
October 2004, the drought area of Zhongzhou Watershed was 7,093 hectare, including
3,000 hectare of serious drought areas. Meanwhile, extreme weather shows higher 
risks and severer impacts under climate change (McBean et al., 2019). 

Reliable hydrologic forecasting is highly required for guiding strategic flood 
control, drought mitigation, policy making, engineering practices, and public 
engagement in addressing potential hydrologic hazards over the two watersheds under
climate change. This depends on the reliability of hydrologic modeling in reproducing
climatic impacts on historical hydrologic regimes. One challenge for this is the 
existence of biases in hydrologic modeling, and another is diverse uncertainties (e.g., 
hydrologic models, bias-correction methods, and temporal scales) in correcting them. 
Hydrologic modeling and forecasting without integrated analyses of the uncertainties 
in bias correction is hardly reliable for providing scientific decision support, and may 
aggravate socio-economic and eco-environmental consequences of hydrologic 
hazards under climate change. Thus, this study focuses on the analyses of diverse 
uncertainties (especially their interactive impacts on hydroclimatic responsive 
relationships) in bias-corrected hydrologic simulation of Xiangxi and Zhongzhou 
Watersheds in southern China. 
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3. Methodology
(1) Research Framework

An integrated approach is proposed to systematically analyze diverse 
uncertainties in bias-corrected hydrologic simulations (especially interactive impacts 
of uncertainties). It is named as integrated bias-corrected hydrologic modeling 
uncertainty analysis (IBCHMUA) in this study. Its flowchart is shown in Figure 2. 
Specifically, (i) the historical observations of runoffs and the related climatic 
conditions are extracted through fundamental data processing; (ii) two hydrologic 
models are employed to simulate climatic impacts on runoffs; (iii) according to five 
predictor selection schemes, a set of datasets involving hydrologic simulations and 
hydroclimatic observations are constructed for bias corrections; (iv) for every dataset, 
biases in hydrologic simulation are corrected by DiPMI and other methods through 
four different approaches (e.g., day-to-day or distributional corrections); and (v) 
twelve indicators such as the Nash-Sutcliffe efficiency coefficient (Krause et al., 
2005) and the root mean square error (Ye et al., 2014) are introduced to represent the 
multi-dimensional accuracies of all simulations.

Figure 2. Flowchart of IBCHMUA (all abbreviations are specified in Tables 1 and 2. 

(2) DiPMI
DiPMI (i.e., discrete principal-monotonicity inference) is an advanced statistical 

classifier for quantifying concurrent variations of dependent variables (Y) with 
independent variables (X) through recursive classifications of X-Y samples and 
statistical inferences of classified results. The fundamental algorithm of DiPMI is 
mainly based on the theories of multivariate variance and discrimination analyses
(Cheng et al., 2016a). The algorithm is illustrated in Figure 3, and is briefly 
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introduced as follows. 
Step 1: A normality test is conducted to analyze whether the predictand (y) (e.g., 

observed runoffs in this study) is normally distributed. If the test does not pass, y is 
converted by a discrete method (Cheng et al., 2016a) to a normal distribution based on
the inversible transformation between the [0, 1] uniform distribution and the 
cumulative distribution of y. The distribution of y is restored by the discrete method 
after construction of a DiPMI-based bias-correction model.

Step 2: Two sub-modules, i.e., classification and clustering, are employed to 
group the variations of y with multiple predictors (X) (e.g., simulated runoffs and 
observed climates in this study). Multi-year paired data series (X, y) are classified as a
series of different nodes in the former sub-module, while the latter clusters any two 
similar nodes of (X, y). Both are recursively conducted to discretize the responsive 
relationship between X and y as nodes (constituting a DiPMI model) (Cheng et al., 
2017; Cheng et al., 2017).

Steps 3&4: The Nash coefficient (Ye et al., 2014) is introduced to quantify model
accuracies. Two model parameters Nmin (i.e., the minimum sample size in nodes) and 
α (i.e., the statistical significance level) are calibrated through greedy search (Steven 
et al., n.d.) and a two-stage calibration strategy (Cheng et al., 2016a). The 
performance of the calibrated DiPMI model is verified through another (X, y) series.

DiPMI was initially developed for modeling complicated hydrologic systems 
under irregular nonlinearities, multivariate dependencies, and data uncertainties 
(Cheng et al., 2016a). One unique advantage of this method is that it could reveal the 
joint, dominant, interactive, and non-monotonic impacts of multiple influencing 
factors (e.g., climatic conditions) on hydrologic variables based on rigorous statistical 
inferences. As an emerging advanced statistical method, DiPMI may outperform 
conventional bias-correction methods (e.g., linear regression). Thus, both methods are
incorporated into the framework of IBCHMUA to address the uncertainty of bias-
correction methods.
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Figure 3. Procedures of discrete principal-monotonicity inference.

(3) Uncertainty of Hydrologic Models
BCHS (i.e., bias-corrected hydrologic simulation) consists of multiple modules, 

e.g., hydrologic modeling, bias correction, and predictor selection. For each module, 
multiple models, methods, approaches or options are available, and the uncertainty 
may pose significant impacts on BCHS results and findings. These uncertainties are 
named as method uncertainties to structuralize various uncertainties that are taken into
account in this study. To reflect each of them, multiple options are employed in the 
IBCHMUA approach. These options are briefly explained as follows.

It has been reported that the uncertainty of hydrologic models has an essential 
contribution to hydro-simulation uncertainties. To reflect such an uncertainty, two 
hydrologic models (i.e., HyMOD and Xinanjiang) are calibrated through the SCEUA 
algorithm (Tu & Smith, 2018) to simulate runoffs at outlets of the two watersheds 
(i.e., Xiangxi and Zhongzhou). The HyMOD model (Yin et al., n.d.) conceptualizes 
runoff generation by a water storage capacity curve, and flow routing by two linear 
tanks. In comparison, the Xinanjiang model (Yuan et al., 2008) characterizes 
hydrologic processes as three modules, i.e., three-layer evapotranspiration, runoff 
generation, and runoff routing. Both models are suitable for southern China of humid 
climates and their suitability has been verified in previous studies (Liu et al., 2018; Wi
et al., 2015; Zhang et al., 2016). 
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(4) Uncertainty of Bias-Correction Methods & Schemes
In consideration of the uncertainty of bias-correction methods, two methods (i.e.,

DiPMI and linear regression) are used to correct biases of the two hydrologic models. 
Meanwhile, multiple schemes exist for any bias-correction method, and such an 
uncertainty may also significantly influence hydrologic simulations (Chen et al., 
2013; Haerter et al., 2011). For instance, correction can focus on either both 
magnitudes and timing of biases, or overall distributions; the former scheme is 
suitable for the cases (e.g., flood control) where timing of streamflow is critical, while
the latter for those (e.g., engineering design) concentrating on multi-year distributions 
of streamflow. Besides, the selection of samples for calibration and verification can be
either random or chronological at a given ratio (e.g., 4:1); these selections are suitable
for stationary and nonstationary cases, respectively, and their differences can help 
reveal the nonstationarity of hydroclimatic responsive relationships. Accordingly, five
bias-correction schemes are proposed as listed in Table 1. In every scheme, 80% and 
20% of data series are exacted for calibration and verification, respectively. 

Table 1. Five bias-correction schemes.
Abbreviation Sample pre-processing Sample selection

SOR

Original samples (X, y): Day-to-day 
climatic conditions and runoff 
simulation (X), and runoff observation
(y)

Random sampling: randomly extract 
4/5 of (X, y) data series for 
calibration, and the remaining 1/5 for 
verification

SOC Original samples

Chronological sampling: extract the 
first 4/5 of (X, y) data series for 
calibration, and the remaining 1/5 for 
verification

SSR
Sorted samples: Sort X by simulated 
runoff magnitudes (from low to high), 
and also for y by observed magnitudes

Random sampling

SSC Sorted samples Chronological sampling
SUC Not correct biases

(5) Uncertainty of Predictor Combinations
Various combinations of predictors (X) (especially climatic conditions) are 

available for any hydrologic-model bias-correction practice. The variation is related to
bias-correction accuracies although the relation may be weaker than that from other 
uncertainties (e.g., hydrologic models and bias-correction schemes) (Muleta & 
Nicklow, 2005). In this study, the variation mainly represents the associations of 
runoff-simulation biases with antecedent climatic conditions of different lag times. 
Specifically, five lag times between streamflow and climatic conditions are selected as
listed in Table 2. In addition to simulated runoffs, four climatic variables, i.e., daily 
accumulative precipitation (P), daily highest temperature (HT), daily lowest 
temperature (LT), and daily mean moisture (M), at any lag time are used as predictors 
in bias-correction modeling based on data availabilities. Cross-comparisons of 
modeling results under these predictor combinations can differentiate the 
contributions of incorporating antecedent climatic conditions at different lag times to 
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correcting biases of hydrologic models. This would be helpful for facilitating the 
other related BCHS practices. 

Table 2. Five combinations of predictors in hydro-modeling bias correction.
Abbreviation Lag time Selected predictors
C5x No R; P, HT, LT, M
C9x14 14 days R; P, HT, LT, M; P14, HT14, LT14, M14

C9x1 1 day R; P, HT, LT, M; P1, HT1, LT1, M1

C9x2 2 days R; P, HT, LT, M; P2, HT2, LT2, M2

C13x Consecutive 2 days
R; P, HT, LT, M; P1, HT1, LT1, M1; P2, 
HT2, LT2, M2

Note: daily accumulative precipitation (P), daily highest temperature (HT), daily lowest 

temperature (LT), daily mean relative humidity (M), and simulated runoff (R). Subscripts 

represent the numbers of lag days between streamflow and antecedent climatic conditions.

(6) Uncertainty of Hydro-Modeling Performance Indicators
For any hydrologic or bias-correction model, its accuracy can be represented as 

various indicators. For instance, correlation coefficients reflect the matchiness of 
simulation and observation in overall linear/nonlinear trends, error indices for the 
deviations of simulation with observation, while others for the similarity between 
them. Any indicator can hardly be suitable for assessing model accuracies from the 
perspective of all application practices of diverse emphases (Tian & Xu, 2015). To 
address such an uncertainty, eleven commonly-used indicators are employed to 
quantify the multi-aspect accuracies of hydrologic modeling and the associated bias 
correction. The abbreviations, full names, formulas, optimal values, and value ranges 
of these indicators are specified in Table 3. 

Table 3. Indicators of modeling accuracies.

Abbreviation Name Formula
Perfect/

Interval

PR
Pearson correlation 

coefficient

n∑
i=1

n

x i y i -∑
i=1

n

x i∑
i=1

n

y i

√n∑
i=1

n

x i
2 - (∑

i=1

n

x i )
2√n∑

i=1

n

y i
2- (∑

i=1

n

y i)
2

1/-1~1

KR
Kendall correlation 

coefficient

2∑
i<j

sgn( x i -x j)sgn( y i- y j)

n(n-1)
1/-1~1

SR
Spearman correlation 

coefficient 1 -

6∑
i=1

n

d i
2

n( n2-1)

1/-1~1
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MAE Mean absolute error ∑
i=1

n

|y i- x i|

n

0/0~+∞

RMSE
Root mean squared 

error √∑i=1
n

(x i - y i )
2

n

0/0~+∞

NRE1
Type-1 normalized root 

mean squared error

∑
i=1

n

( x i- y i )
2

∑
i=1

n

y i
2

0/0~+∞

NRE2
Type-2 normalized root 

mean squared error

RMSE
y

0/0~+∞

RAE Relative absolute error

∑
i=1

n

|xi - y i|

∑
i=1

n

|y i - y|

0/0~+∞

RRSE
Root relative squared 

error √
∑
i=1

n

(x i - y i )
2

∑
i=1

n

( y i - y )
2

0/0~+∞

NSE
Nash-Sutcliffe 

coefficient
1-

∑
i=1

n

( xi - y i )
2

∑
i=1

n

( y i - y )
2

1/-∞~1

IOA Similarity coefficient 1 -
∑
i=1

n

( x i -y i )
2

∑
i=1

n

(|x i- x|+|y i - y|)
2

1/-∞~1

Note (taking daily modeling as an example): day i = 1, 2, 3, …, n (n is the total number of 

samples); xi: simulated discharge at the ith day; yi: observed discharge at the ith day; x: the average

of xi; y = the average of yi; di = rg(xi) - rg(yi) where rg() is the rank of xi or yi for all i.

(7) Non-Method Uncertainties
There are also some other uncertainties (or multiplicities) in bias-corrected 

hydrologic simulation from the perspective of model applications (Ajami et al., 2007; 
Liu & Gupta, 2007b). For example, the findings of hydroclimatic relationships or 
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modeling practices for one watershed may not be transferable for another. Model 
users may be interested in low, medium, high, or other magnitudes of streamflow, 
depending on the discrepant, dynamic or allied importance of these magnitudes for 
them. Daily, monthly, seasonal or yearly modeling results are required for various 
water resources management or engineering practices (Brunner et al., 2012). To 
address these non-method uncertainties, multiple watersheds, streamflow magnitudes,
and temporal scales are taken into account in this study. Specifically, (1) two 
representative watersheds (i.e., Xiangxi and Zhongzhou) of different hydrologic, 
climatic, geophysical, socio-economic, eco-environmental, and other characteristics in
southern China are selected as study areas. The selection is helpful for examining the 
transferability of key findings of the IBCHMUA approach among different 
watersheds. (2) Magnitudes of streamflow discharges are refined as six quantile 
intervals (i.e., 0 to 10%, 10 to 25%, 25 to 50%, 50 to 75%, 75 to 90%, and 90 to 
100%) of related simulations or observations. The refining can help reveal the 
variations of bias-corrected hydrologic simulations and their accuracies with 
streamflow magnitudes. (3) Modeling results at three temporal scales (i.e., monthly, 
seasonal, and yearly) are composited to facilitate cross-scale analysis of hydroclimatic
relationships and model performances. The relevant modeling results are summarized 
in Section 5.

4. Impacts of Method Uncertainties
(1) Model-Performance Indicators

A total of 11 indicators are employed to quantify the bias-corrected hydro-
modeling accuracy during verification for every combination of hydrologic models, 
bias-correction methods and schemes, predictor combinations, watersheds, 
streamflow magnitudes and temporal scales under the diverse uncertainties. The 
correlation of every pair of the indicators, and the distribution and statistics of every 
indicator for all combinations are shown in Figure 4. One representative statistic is the
coefficient of variation (CV) (Brian et al., 1998) that can characterize the standardized
dispersion of the distribution of an indicator under the uncertainties in BCHS. It can 
be used to reflect the impact of the uncertainties on BCHS accuracies (i.e., the 
indicators). Meanwhile, the indicators can quantify the impacts of climatic conditions 
on the trends, absolute magnitudes, relative magnitudes, or other features of runoffs, 
in addition to indicating BCHS accuracies. Thus, a comparison of the CVs for all 
indicators implies that the impacts of the uncertainties in BCHS on hydro-modeling 
accuracies (i.e., on the estimations of climatic impacts on runoffs) vary with 
performance indicators significantly and generally decrease from the relative 
magnitudes, through the absolute magnitudes, to the trends of runoffs. 

In addition, significant differences exist for the similarities of the indicators. For 
instance, RAE (i.e., the relative absolute error of a bias-corrected hydrologic model) is
significantly different with the other indicators. This implies that the RAE of a 
hydrologic model calibrated according to the other indicators can hardly be 
guaranteed and vice versa. This also reflects the significant impacts of the uncertainty 
of performance indicators on BCHS (e.g., accuracies and results). In contrast, NSE is 
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 PR SR KR MAE RMSE NRE1 NRE2 RAE NSE RRSE IOA 
Median 0.920 0.930 0.790 8.90 21.11 0.030 0.140 1.080 0.800 0.440 0.940 

CV 0.133 0.101 0.212 0.731 0.515 0.789 0.985 0.106 0.282 0.503 0.096 
 

highly positively/negatively correlated with the other indicators (except RAE); the 
median of its absolute correlations with the others is equal to 0.91, higher than that for
any others. Although NSE cannot perfectly represent all diverse performance 
indicators (especially RAE), it could be the most representative indicator in BCHS 
studies. Compared with PR, NRE2, RRSE and IOA (of which the absolute 
correlations with NSE are higher than 0.90), SR, KR, MAE and RMSE show 
relatively lower absolute correlations with NSE although the correlations are higher 
than 0.82 as well as that between RAE and NSE. In the following results analyses, 
NSE and couple of other indicators are selected to reflect the uncertainty of 
performance indicators.

Figure 4. Distributions, correlations and statistics of bias-corrected hydro-modeling
performance indicators under all uncertainties. Upper right: correlation coefficient for
every pair of indicators; lower left: scatter plot for every pair of indicators; diagonal
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line: distribution and relative variance (i.e., variance / mean) of every indicator; table
at the bottom: median, and coefficient of variation (CV = standard deviation / mean)
of the distribution of every indicator; performance indicators are defined in Table 3.

(2) Bias-Correction Methods
Table 4 lists the bias-corrected hydro-modeling accuracies for Xiangxi 

Watershed during the verification period based on two bias-correction methods and 
three bias-correction schemes. The accuracies under the other combinations of 
hydrologic models, predictor combinations, and watersheds present similar patterns. 
Results show that DiPMI is more effective than LM in correcting biases of hydrologic
models. The advantages of DiPMI over LM are apparent for all performance 
indicators. In the bias-correction scheme of SOR, both DiPMI and LM have 
encouraging performances, e.g., NSE raised by 95.3% and 55.2%, respectively in 
comparison with original biased hydrologic simulations. In the SOC scheme, the 
improvement of modeling accuracies is less significant than SOR due to the different 
foci of the two schemes (i.e., SOR on multi-year streamflow distributions, while SOC 
on monthly streamflow timing and magnitudes). Besides, modeling accuracies are 
decreased after bias corrections in some combinations (bold numbers in Table 4) of 
performance indicators, bias-correction methods, and bias-correction schemes. For 
example, bias corrections enhance the overall modeling accuracies of hydrologic 
models (in consideration of the representativeness of NSEs), but lead to higher RAEs 
(i.e., the relative absolute errors) for the verification period. The cause for this might 
be the nonstationarity of hydro-model biases or rainfall-runoff relationships between 
calibration and verification periods. A bias-corrected hydrologic model built for the 
calibration period may over-correct model biases that differ for the calibration and 
verification periods, and performs worse than the original hydrologic model in the 
verification period. This points out the potential limitation of bias corrections for 
nonstationary rainfall-runoff relationships, and the necessity of applying multiple 
performance indicators in evaluating bias-corrected hydrologic simulations. 

Table 4. Verification accuracies of hydrologic simulations through two bias-correction
methods (DiPMI and LM) for Xiangxi Watershed in southern China. Performance 
indicators are defined in Table 3; bias-correction schemes (SUC, SOC and SOR) are 
defined in Table 1.

Indicators SUC DiPMI-SOC DiPMI-SOR LM-SOC LM-SOR

KR 0.61 0.63 0.99 0.54 0.82

RMSE 26.19 25.14 6.99 25.88 11.76

RAE 1.07 1.10 1.13 1.10 1.09

NSE 0.52 0.57 0.96 0.55 0.90

The impacts of bias-correction methods (i.e., DiPMI and LM) on hydrologic 
simulations under combinations of watersheds, hydrologic models, temporal scales 
(e.g., monthly or yearly), bias-correction schemes, and performance indicators are 
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illustrated in Figure 5. Results verify the advantages of DiPMI over LM in correcting 
biases of hydrologic models, although LM performs better than DiPMI in few cases. 
Since performance indicators can reflect the impacts of climate change on runoffs, 
Figure 5 shows the estimated climatic impacts on the streamflow of southern China 
significantly vary with bias-correction methods for single months, but not for the 
entire verification period. Namely, the impacts of the uncertainty of bias-correction 
methods on hydrologic modeling accuracies (or the estimations of climatic impacts on
runoffs) increase from yearly to monthly scales. Additionally, the differences of 
modeling accuracies between bias-correction methods are higher in the SOR scheme 
than those in the SSR scheme. This implies the impacts of the uncertainty of bias-
correction methods significantly vary with bias-correction schemes (e.g., decreasing 
from SOR to SSR). Besides, it is also shown that the impacts of the uncertainty of 
bias-correction methods do not significantly vary with hydrologic models and present 
significant spatial heterogeneity for different watersheds in southern China. 
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(b) NSE of HyMOD for Zhongzhou Watershed

(a) NSE of HyMOD for Xiangxi Watershed

(c) NSE of Xin’anjiang for Xiangxi Watershed

(d) NSE of Xin’anjiang for Zhongzhou Watershed

(e) RMSE of HyMOD for Xiangxi Watershed

(f) RMSE of HyMOD for Zhongzhou Watershed

(g) RMSE of Xin’anjiang for Xiangxi Watershed

(h) RMSE of Xin’anjiang for Zhongzhou Watershed

Figure 5. Verification accuracies of hydrologic models (HyMOD and Xin’anjiang) corrected by DiPMI and LM for watersheds (Xiangxi and
Zhongzhou) in southern China. Performance indicators (NSE and RMSE) are defined in Table 3; bias-correction schemes (SUC, SOR and SSR)

are defined in Table 1.
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(3) Hydrologic Models
To examine the impact of the uncertainty of hydrologic models on BCHS, we 

analyzed the verification accuracies of two hydrologic models (i.e., HyMOD and 
Xin’anjiang) for the watersheds in southern China under representative scenarios of 
bias-correction schemes and performance-indicator selections. The relevant results are
presented in Table 5. Generally, HyMOD is more capable of capturing the hydrologic 
processes in southern China under the impact of climate change than Xin’anjiang, 
which does not significantly differ for various performance indicators; its advantages 
over Xin’anjiang are shrunk after the biases of original hydrologic simulations being 
corrected. Meanwhile, HyMOD cannot outperform Xin’anjiang in all cases. For 
instance, both NRE2 and RRSE of the original HyMOD-based simulation of 
Zhongzhou Watershed are higher than those of Xin’anjiang, implying that Xin’anjiang
performs better than HyMOD in simulating the relative magnitudes of runoffs in 
southern China under climate change. Furthremore, we may conclude that the 
uncertainty of hydrologic models poses significant impacts on BCHS accuracies and 
on the estimations of climatic impacts on runoffs in southern China, and that the 
significance varies with bias-correction schemes (e.g., decreasing after bias 
correction). 

Table 5. Verification accuracies of two hydrologic models (HM and XAJ) for the 
watersheds (Xiangxi and Zhongzhou) in southern China under various scenarios of 
bias-correction schemes (SUC, SOR and SSR in Table 1) and performance-indicator 
selections (NSE, NRE2 and RRSE in Table 3). HM: the HyMOD hydrologic model; 
XAJ: the Xin’anjiang hydrologic model.

Watershed SUC: HM SUC: XAJ

NSE
NRE

2
RRSE NSE NRE2 RRSE

Xiangxi 0.52 0.29 0.69 0.36 0.40 0.79

Zhongzho

u
0.54 0.55 1.16 0.36 0.36 0.80

SOR: HM SOR: XAJ

NSE
NRE

2
RRSE NSE NRE2 RRSE

Xiangxi 0.58 0.26 0.65 0.52 0.30 0.69

Zhongzho

u
0.77 0.16 0.48 0.70 0.21 0.55

SSR: HM SSR: XAJ

NSE
NRE

2
RRSE NSE NRE2 RRSE

Xiangxi 0.97 0.020 0.18 0.95 0.034 0.23

Zhongzho

u
0.89 0.074 0.32 0.89 0.080 0.34
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HM: XX
HM: ZZ

XAJ: XX
XAJ: ZZ

HM: XX
HM: ZZ

XAJ: XX
XAJ: ZZ

(4) Bias-Correction Schemes
In this study, five bias-correction schemes (or literally four, i.e., SOR, SOC, SSR

and SSC, and the scheme of no bias correction as the baseline, i.e., SUC) are applied. 
Their foci differ from each other. SOR and SOC emphasize the timing of runoffs 
(crucial for water resources management) under the impacts of climate change, while 
SSR and SSC for the multi-year distribution of runoffs (especially important for 
relevant engineering designs). On the other hand, SOR and SSR focus on climatic 
impacts on runoffs in the entire historical period, while SOC and SSC on their 
nonstationarity (or temporal change) within the period. Comparing them with SUC 
can reveal the biases of original hydrologic simulations in these different aspects, and 
comparing all schemes can examine the impacts of the uncertainty of bias-correction 
schemes on hydrologic simulations. 

Some representative results (i.e., verification accuracies of the hydrologic models
corrected by the DiPMI method for the watersheds in southern China) are shown in 
Figure 6. They verify a few of existing findings, e.g., the significant improvement of 
modeling accuracies by bias correction, and the higher accuracies of hydrologic 
models in reproducing runoff distributions than timing. In addition, they also reveal a 
series of new findings. For instance, the overall impacts of climate change on multi-
year distributions of runoffs are higher than those on runoff timing. The 
nonstationarity of rainfall-runoff relationships exists for the watersheds in southern 
China and poses relatively insignificant impacts on hydrologic simulations; 
meanwhile, it decreases from Zhongzhou to Xiangxi Watersheds, implying higher 
impacts of human activities on runoffs in the former watershed than the latter, and 
does not significantly vary with hydrologic models and performance indicators. 
Besides, the impacts of the uncertainty of bias-correction schemes on the accuracies 
of hydrologic simulations (reflecting the estimated climatic impacts on runoffs) are 
significant for all combinations of watersheds, hydrologic models and performance 
indicators, especially for Zhongzhou Watershed. 

Figure 6. Verification accuracies of hydrologic models for the watersheds in southern
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China under various bias-correction schemes (SUC, SOR, SOC, SSR and SSC in
Table 1). XX: Xiangxi Watershed; ZZ: Zhongzhou Watershed; HM: the HyMOD

hydrologic model; XAJ: the Xin’anjiang hydrologic model; NSE, MAE, RMSE and
RRSE: four performance indicators in Table 3.

Furthermore, the intra-annual variations of the impacts of bias-correction 
schemes on hydrologic simulations are presented in Figure 7. It is shown that, at the 
monthly scale, the impacts of bias-correction schemes on hydrologic simulations vary 
with performance indicators significantly. Compared with NSEs (denoting the 
accuracies of bias-corrected hydrologic models in reproducing the impacts of climatic
conditions on both trends and magnitudes of runoffs), RMSEs (denoting those for 
runoff magnitudes) present V-shape patterns in the Figure. One cause for this is that 
the accuracies of bias-corrected hydrologic models in simulating runoff magnitudes, 
or the impacts of climate change on runoff magnitudes show more significant intra-
annual variations than those on runoff trends. Another cause is that, in comparison 
with runoff magnitudes, the impacts of bias-correction schemes on the hydro-
modeling accuracies for and the estimated climatic impacts on runoff trends are more 
significant. In addition, the intra-annual variations of the impacts of bias-correction 
schemes do not significantly vary with watersheds and hydrologic models; although 
the impacts for Xiangxi Watershed are intensified from HyMOD to Xin’anjiang, their 
intra-annual variations seem similar. 

Figure 7. Verification accuracies of hydrologic models for the watersheds in southern
China in every month under various bias-correction schemes (SUC, SOR, SOC, SSR
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and SSC in Table 1). XX: Xiangxi Watershed; ZZ: Zhongzhou Watershed; HM: the
HyMOD hydrologic model; XAJ: the Xin’anjiang hydrologic model; NSE and

RMSE: two performance indicators in Table 3.

(5) Predictor Combinations
For any hydrologic simulation, multiple combinations of predictors (e.g., 

different climatic variables in different lag months) are optional. Such an uncertainty/
multiplicity may diversify hydrologic simulations (e.g., their accuracies representing 
the impacts of climate change on runoffs) and can differentiate the impacts of various 
predictors by comparing the simulations. Accordingly, we compared the verification 
accuracies of bias-corrected hydrologic models for the watersheds in southern China 
under five predictor combinations (Figure 8). The comparison is helpful for 
investigating the impacts of the uncertainty/multiplicity of predictor combinations, as 
well as their variations with the other uncertainties/multiplicities (e.g., hydrologic 
models, bias-correction schemes, watersheds, performance indicators, and seasons).

Specifically, compared with the other uncertainties, bias-correction schemes pose
the most significant impacts on hydrologic simulations under various predictor 
combinations. According to the foci of the schemes, the impacts of climate change on 
the multi-year distributions of runoffs are significantly higher than those on runoff 
timing regardless of the other uncertainties. Besides, the impacts of performance 
indicators on hydrologic simulations in the bias-correction schemes of SOR and SOC 
are more significant than those in the other two schemes. This implies that, due to the 
nonstationarity of climatic impacts on runoffs, the impacts estimation would be more 
sensitive with the multiplicity of performance indicators. Additionally, the impacts of 
predictor combinations on hydrologic simulations are less significant than those of the
other uncertainties; according to NSEs (i.e., the most representative performance 
indicator), they significantly vary with watersheds (decreasing from Zhongzhou to 
Xiangxi Watersheds) and seasons (decreasing from JJA, Son, MAM to DJF) and do 
not with hydrologic models. Meanwhile, insignificant improvements of hydrologic 
modeling accuracies from predictor combination C5x to the others reveal that the 
runoffs in southern China are dominated by the current-day climate under all 
uncertainties. Generally, the impacts of predictor combinations on hydrologic 
simulations decrease from bias-correction schemes, performance indicators, seasons, 
watersheds to hydrologic models. 
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Figure 8. Verification accuracies of bias-corrected hydrologic models for the
watersheds in southern China under various predictor combinations. Horizontal axes:

predictor combinations (C5x, C9x14, C9x1, C9x2 and C13x in Table 2) and
hydrologic models (HM = HyMOD and XAJ = Xin’anjiang); vertical axes:

watersheds (XX = Xiangxi and ZZ = Zhongzhou) and seasons (DJF, MAM, JJA and
SON); bias-correction schemes (SOR, SOC, SSR and SSC in Table 1); performance

indicators (NSE, MAE, RMSE and RRSE in Table 3).

5. Impacts of Non-Method Uncertainties
(1) Watersheds

Two watersheds were selected to represent southern China. Whether and how the
accuracies of hydrologic simulations vary with watersheds under all uncertainties can 
reflect the spatial heterogeneities of climatic impacts on runoffs in southern China, 
and their interactions with the other diverse uncertainties. To achieve this, analyzed all
relevant modeling results. For instance, the enhancements of hydrologic modeling 
accuracies by bias corrections are more significant for Zhongzhou Watershed than 
Xiangxi Watershed (Figure 5), especially under the scenarios of HyMOD and dry 
seasons. Generally, the impacts of climate change on runoffs in Zhongzhou Watershed
are higher than those in Xiangxi Watershed (Figure 5), implying the relatively lower 
impacts of non-climatic factors (e.g., water resources management or other human 
activities) in Zhongzhou Watershed. As shown in Table 5, the original hydrologic 
models underestimate the differences of climatic impacts on runoffs between the 
watersheds in southern China due to the existence of biases and, after bias corrections,
the estimated impacts significantly vary with watersheds. Furthermore, the variation 
with watersheds is shrunk from the HyMOD to Xin’anjiang models (Figure 6) and is 
higher in the SOR and SOC schemes compared with the other bias-correction 
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schemes (Figure 6 or 7). Besides, the differences of hydrologic simulations between 
watersheds do not significantly vary with predictor selections (Figure 8). 

(2) Streamflow Magnitudes
Climatic impacts on runoffs in southern China may vary with runoff magnitudes 

(represented as quantile intervals of runoffs as defined in Section 3(7)). To reveal the 
variational effects and their interactions with the other uncertainties, we analyzed the 
verification accuracies of bias-corrected hydrologic models under all combinations of 
watersheds, hydrologic models, predictor selections, runoff magnitudes, bias-
correction schemes, and performance indicators (Figure 9). 

According to the bias-corrected hydrologic simulations, the overall impacts of 
climatic conditions on runoff magnitudes and trends in southern China show 
increasing and decreasing trends with runoff magnitudes, respectively. Namely, 
drought trends and flood magnitudes are more sensitive with climate change 
compared with flood trends and drought magnitudes. The impacts of climate change 
on runoffs increase from runoff timing to distributions, their variations with 
streamflow magnitudes show opposite trends, and the nonstationarity of rainfall-
runoff relationships due to human interferences would intensify these effects. The 
variations of climatic impacts on runoffs with runoff magnitudes vary significantly 
with predictor selections in the bias-correction scheme of SOR, while not in the other 
schemes (i.e., SOC, SSR and SSC). This may be because the latter schemes cannot 
eliminate anthropogenic impacts on runoffs or specify temporal variability of rainfall-
runoff relationships. 

The difference of predictor combinations mainly originates the lag time (e.g., 0, 
1, 2 or 14 lag days) between climatic conditions and runoffs. In the SOR scheme, the 
impacts of such a difference on the variations of climatic impacts on runoffs with 
runoff magnitudes differ for the combinations of watersheds and hydrologic models. 
Take the impacts of climatic conditions on the runoffs of Xiangxi Watershed 
estimated by bias-corrected HyMOD models as an example, the impacts on the lowest
runoffs (i.e., Q10) are the highest for the climatic conditions in the current, lag-1 and 
lag-2 days and are the lowest for those in the current days, while the impacts on the 
highest runoffs (Q100) are the highest for the climatic conditions in the current, lag-1 
and lag-2 days and the lowest for those in the current and lag-1 days. Although both 
watersheds and hydrologic models pose significant impacts on the variations of 
rainfall-runoff relationships with runoff magnitudes, no significant patterns are found 
for the impacts. Generally, climatic impacts on runoffs in southern China significantly
vary with runoff magnitudes, which further varies with bias-correction schemes, 
performance indicators, predictor combinations, hydrologic models, and watersheds.
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Figure 9. Verification accuracies of bias-corrected hydrologic models in modeling
various runoff magnitudes for the watersheds in southern China. Horizontal axes:

predictor combinations (C5x, C9x14, C9x1, C9x2 and C13x in Table 2), watersheds
(XX = Xiangxi and ZZ = Zhongzhou), and hydrologic models (HM = HyMOD and

XAJ = Xin’anjiang); vertical axes: runoff magnitudes represented as quantile intervals
(i.e., Q10 = 0 to 10%, Q25 = 10 to 25%, Q50 = 25 to 50%, Q75 = 50 to 75%, Q90 =
75 to 90%, and Q100 = 90 to 100%) of runoffs; bias-correction schemes (SOR, SOC,

SSR and SSC in Table 1); performance indicators (NSE and RMSE in Table 3).

(3) Temporal Scales
All analyses above focus on the daily-scale hydrologic simulations for southern 

China. To reveal the impacts of temporal scales on the simulations, as well as their 
interactions with every other uncertainty, we estimate the medians of the NSEs at 
daily and monthly scales, and their differences between both scales. Take the 
multiplicity/uncertainty of watersheds in southern China as an example, the median of
the NSEs during the verification period for all combinations of streamflow 
magnitudes, predictor combinations, hydrologic models, and bias-correction schemes 
is calculated for every watershed (i.e., Xiangxi and Zhongzhou). The related results 
are presented in Figure 10. Due to the significantly low accuracies of the LM bias-
correction method and the SUC bias-correction scheme as discussed above, they are 
excluded in the results. Only two representative predictor combinations (i.e., C13x 
and C5x in Table 2), and the most representative performance indicator (i.e., the NSE 
in Table 3) are selected.

Modeling accuracies increase from the daily to monthly scales in most cases, 
which has been verified in many existing studies and implies the higher impacts of 
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Streamflow 
magnitude

Predictor 
selection

Bias-correction 
scheme

Water-
shed

Hydro-
model

climatic conditions on runoffs in southern China at the monthly scale than those at the
daily scale. The increments of climatic impacts on runoffs (except floods 
corresponding to the highest quantile interval Q100) from the daily to monthly scales 
show a significantly increasing trend with runoff magnitudes. This is attributable to 
the significant decreases in climatic impacts at the daily scale, and the insignificant 
difference of them at the monthly scale as runoff magnitudes increase. The difference 
of modeling accuracies (or the estimated climatic impacts on runoffs) between 
temporal scales varies with predictor combinations, watersheds, and hydrologic 
models, although the variation is not highly significant. In contrast, bias-correction 
schemes pose significant impacts on the difference that is the highest for the SOC 
scheme and insignificant for the others. In consideration of the differences of these 
schemes in characterizing runoff characteristics (e.g., timing versus distributions, and 
stationarity versus nonstationarity), we may conclude that the estimated nonstationary
climatic impacts on runoff timing in southern China significantly vary with temporal 
scales. Generally, it is shown that the significance of the impacts of temporal scales on
hydrologic simulations increases from hydrologic models, watersheds, predictor 
combinations, bias-correction schemes, to runoff magnitudes. 

Figure 10. Medians of the Nash coefficients of bias-corrected hydrologic simulations 
for the watersheds in southern China at daily and monthly scales (and their differences
= Monthly-Daily). Streamflow magnitudes: Qfull (full data series), and quantile 
intervals (i.e., Q10 = 0 to 10%, Q25 = 10 to 25%, Q50 = 25 to 50%, Q75 = 50 to 75%,
Q90 = 75 to 90%, and Q100 = 90 to 100%) of multi-year runoff observations; 
predictor combinations: C13x and C5x (Table 2); watersheds: XX = Xiangxi, and ZZ 
= Zhongzhou; hydrologic models: HM = HyMOD, and XAJ = Xin’anjiang; bias-
correction schemes: SOC, SOR, SSC and SSR (Table 1).

(4) All Uncertainties
To reveal the interactions of the impacts of all uncertainties, we calculate the 
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medians of the NSEs (as the most representative performance indicator) for every 
predictor combination, every hydrologic model, and every bias-correction scheme 
under all combinations of temporal scales, watersheds, and streamflow magnitudes. 
Due to the significantly low accuracies of the LM bias-correction method and the 
SUC bias-correction scheme as discussed above, they are also excluded in this group 
of results (Table 6). 

It is shown that the modeling accuracies (or the estimated climatic impacts on 
runoffs) increase from daily to monthly scales, and from Xiangxi to Zhongzhou 
Watersheds. The accuracies or impacts for various runoff magnitudes are lower than 
those for the overall runoffs for all predictor combinations, hydrologic models, and 
most bias-correction schemes at the monthly scale, and for the SSR scheme at the 
daily scale. As streamflow magnitudes increase, the NSEs decrease for most 
combinations of temporal scale, watersheds, predictor combinations, hydrologic 
models, and bias-correction schemes, although they also show nonlinear or 
insignificant variations for the other combinations. The lag time between precipitation
and runoffs tends to be two days for Xiangxi Watershed and zero to one day for 
Zhongzhou Watershed, and it varies with runoff magnitudes significantly (generally 
decreasing with them) and temporal scales insignificantly. The HyMOD model is 
more effective than Xin’anjiang at capturing the impacts of climate change on runoffs 
in southern China (especially at the monthly scale, for Xiangxi Watershed, and on 
non-flood or overall runoff magnitudes), although Xin’anjiang also shows higher 
accuracies in a few of cases. The estimated climatic impacts on runoffs in southern 
China are the highest for the bias-correction scheme of SSR, do not significantly vary 
with temporal scales and watersheds for the SOR and SSR schemes, their variations 
with the SOC and SSC schemes show opposite patterns between the daily and 
monthly scales. Namely, the variations of the estimated climatic impacts on runoffs 
with temporal scales, watersheds, and runoff magnitudes are significantly influenced 
by bias-correction schemes. 

Generally, the uncertainties in bias-corrected hydrologic simulations are 
interactive with each other. As shown in the extension table at the bottom of Table 6, 
the bias-corrected hydrologic modeling accuracies (or the estimated climatic impacts 
on runoffs in southern China) increase from daily to monthly scales, from Xiangxi to 
Zhongzhou Watersheds, from the highest through the lowest to the overall runoff 
magnitudes, from C9x2, C9x14, C13x, C5x to C9x1 predictor combinations, from 
Xin’anjiang to HyMOD models, and from SUC, SOC, SOR, SSC to SSR bias-
correction schemes. Meanwhile, the impacts of the uncertainties in bias-correction 
hydrologic simulations decrease from bias-correction schemes, temporal scales, 
streamflow magnitudes, hydrologic models or predictor combinations, to watersheds. 
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Table 6. Medians of the verification-period Nash coefficients (NSEs) for every predictor combination (i.e., C5x, C9x14, C9x1, C9x2 and C13x 
in Table 2), every hydrologic model (i.e., HM = HyMOD and XAJ = Xin’anjiang), and every bias-correction scheme (i.e., SOC, SOR, SSC and 
SSR in Table 1) for all combinations of temporal scales, southern-China watersheds, and streamflow magnitudes (i.e., all and quantile intervals 
(Q10 = 0 to 10%, Q25 = 10 to 25%, Q50 = 25 to 50%, Q75 = 50 to 75%, Q90 = 75 to 90%, and Q100 = 90 to 100%) of multi-year runoff 
observations). The maximum of the Nash coefficients for all predictor combinations, hydrologic models, or bias-correction schemes under every 
combination of temporal scales, watersheds, and streamflow magnitudes is bolded. The extension table at the bottom lists the medians of the 
NSEs for every alternative, and their standard deviation (SDV) for all alternatives of every uncertainty/multiplicity.

Temporal 

scale
Watershed

Streamflow

magnitude

Predictor combination Hydro-model Bias-correction scheme

C5x C9x1 C9x2 C13x C9x14 HM XAJ SOC SSC SOR SSR

Daily

Xiangxi

All 0.75 0.81 0.82 0.81 0.80 0.83 0.72 0.55 0.92 0.57 0.95

Q10 0.72 0.68 0.73 0.77 0.75 0.77 0.73 0.37 0.83 0.57 0.88

Q25 0.59 0.21 0.20 0.68 0.50 0.73 0.27 0.14 0.27 0.53 1.00

Q50 0.53 0.16 0.47 0.59 0.35 0.47 0.32 0.07 0.46 0.50 1.00

Q75 0.39 0.12 0.69 0.65 0.19 0.26 0.33 0.07 0.26 0.52 1.00

Q90 0.27 0.17 0.70 0.60 0.27 0.28 0.26 0.07 0.28 0.31 1.00

Q100 0.77 0.54 0.37 0.32 0.59 0.52 0.46 0.03 0.94 0.20 0.99

Zhongzhou

All 0.85 0.84 0.59 0.78 0.84 0.85 0.71 0.62 0.90 0.67 0.93

Q10 0.74 0.75 0.67 0.78 0.77 0.76 0.74 0.48 0.77 0.74 0.80

Q25 0.82 0.80 0.56 0.56 0.54 0.71 0.72 0.18 0.78 0.66 1.00

Q50 0.73 0.84 0.52 0.55 0.58 0.69 0.56 0.15 0.48 0.67 1.00

Q75 0.82 0.04 0.43 0.42 0.47 0.12 0.65 0.03 0.12 0.65 1.00

Q90 0.46 0.04 0.18 0.28 0.38 0.16 0.41 0.04 0.13 0.37 1.00

Q100 0.36 0.12 0.46 0.71 0.23 0.37 0.37 0.09 0.22 0.37 0.95

Monthly Xiangxi All 0.70 0.75 0.78 0.81 0.74 0.78 0.76 0.39 0.92 0.43 1.00

Q10 0.91 0.88 0.92 0.85 0.85 0.90 0.80 0.99 0.66 -0.75 1.00

731

732

733

734

735

736

737



Q25 0.80 0.87 0.94 0.78 0.86 0.90 0.76 0.99 0.66 0.22 1.00

Q50 0.93 0.94 0.89 0.91 0.93 0.92 0.90 0.99 0.68 0.63 1.00

Q75 0.85 0.88 0.88 0.86 0.85 0.88 0.87 0.99 0.61 0.69 1.00

Q90 0.89 0.90 0.90 0.89 0.83 0.89 0.89 0.91 0.65 0.76 1.00

Q100 0.65 0.68 0.65 0.75 0.63 0.67 0.73 0.36 0.61 0.77 1.00

Zhongzhou

All 0.82 0.83 0.66 0.82 0.82 0.84 0.76 0.58 0.92 0.49 1.00

Q10 0.93 0.94 0.81 0.91 0.93 0.93 0.91 0.99 0.71 0.07 1.00

Q25 0.90 0.90 0.84 0.86 0.92 0.90 0.89 0.99 0.75 0.32 1.00

Q50 0.96 0.93 0.87 0.89 0.90 0.92 0.88 0.99 0.78 0.63 1.00

Q75 0.95 0.89 0.87 0.87 0.87 0.90 0.87 0.99 0.75 0.65 1.00

Q90 0.95 0.90 0.83 0.89 0.89 0.89 0.89 0.95 0.72 0.70 1.00

Q100 0.68 0.79 0.80 0.64 0.74 0.72 0.73 0.21 0.73 0.66 1.00
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Temporal scale Daily Monthly SDV

0.56 0.87 0.22

Watershed Xiangxi
Zhongzho

u
SDV

0.74 0.77 0.02

Streamflow magnitude All Q10 Q25 Q50 Q75 Q90 Q100 SDV

0.81 0.78 0.77 0.76 0.72 0.71 0.64 0.05

Predictor combination C5x C9x1 C9x2 C13x C9x14 SDV

0.79 0.81 0.72 0.78 0.76 0.03

Hydrologic model HyMOD Xin'anjiang SDV

0.78 0.73 0.03

Bias-correction scheme SOC SSC SOR SSR SDV

0.44 0.69 0.57 1.00 0.24
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6. Conclusions
In this study, an integrated bias-corrected hydro-modeling uncertainty analysis 

(i.e., IBCHMUA) approach based on DiPMI (i.e., discrete principal-monotonicity 
inference) was developed to investigate the impacts of various uncertainties on BCHS
(i.e., bias-corrected hydrologic simulations). These uncertainties were classified as 
two groups, i.e., method uncertainties (e.g., performance indicators, bias-correction 
methods, hydrologic models, bias-correction schemes, and predictor combinations) 
and non-method uncertainties (e.g., watersheds, streamflow magnitudes, and temporal
scales). The approach was applied to two representative watersheds (Xiangxi and 
Zhongzhou) in southern China. As summarized below, a series of findings regarding 
the impacts of these uncertainties were revealed through IBCHMUA. 

(1) The impacts of the uncertainties in BCHS on hydro-modeling accuracies (i.e.,
on the estimations of climatic impacts on runoffs) vary with performance indicators
significantly  and  generally  decrease  from  the  relative  magnitudes,  through  the
absolute magnitudes, to the trends of runoffs. This points out the necessity of applying
multiple performance indicators in evaluating BCHS. Although the Nash coefficient
cannot perfectly represent all  diverse performance indicators,  it  could be the most
representative indicator in BCHS studies. 

(2)  DiPMI  is  more  effective  than  one  commonly-used  method  (i.e.,  multiple
linear  regression)  in  correcting  biases  of  hydrologic  models.  The  impacts  of  the
uncertainty  of  bias-correction  methods  on  hydro-modeling  accuracies  (or  the
estimations of climatic impacts on runoffs) increase from yearly to monthly scales.
The impacts  of  the  uncertainty  of  bias-correction  methods  significantly  vary  with
bias-correction  schemes,  do  not  with  hydrologic  models,  and  present  significant
spatial heterogeneity for watersheds in southern China.

(3) HyMOD is more capable of capturing  the hydrologic processes in southern
China under the impact of climate change than Xin’anjiang, and Xin’anjiang performs
better in simulating the relative magnitudes of runoffs. The uncertainty of hydrologic
models poses significant impacts on BCHS accuracies (or the estimations of climatic
impacts on runoffs), and the significance varies with bias-correction schemes (e.g.,
decreasing after bias correction).  The nonstationarity of rainfall-runoff relationships
decreases from Zhongzhou to Xiangxi Watersheds, implying higher impacts of human
activities on runoffs in the former watershed than the latter, and does not significantly
vary with hydrologic models and performance indicators. 

(4) The impacts of the uncertainty of bias-correction schemes on the accuracies of
hydrologic simulations (or the estimated climatic impacts on runoffs) are significant
for all combinations of watersheds, hydrologic models and performance indicators,
especially  for  Zhongzhou  Watershed.  At  the  monthly  scale,  the  impacts  of  bias-
correction  schemes  on  BCHS vary  with  performance  indicators  significantly.  The
intra-annual variations of the impacts of bias-correction schemes do not significantly
vary with watersheds and hydrologic models. Compared with the other uncertainties,
bias-correction schemes pose the most significant impacts on BCHS under various
predictor combinations. Due to the nonstationarity of climatic impacts on runoffs, the
impact estimation is sensitive with the multiplicity of performance indicators. 
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(5)  The impacts of  predictor  combinations  on BCHS are less significant  than
those of the other uncertainties, significantly vary with watersheds (decreasing from
Zhongzhou to Xiangxi Watersheds) and seasons (decreasing from JJA, Son, MAM to
DJF)  and  do  not  with  hydrologic  models.  The  runoffs  in  southern  China  are
dominated by the current-day climate under all uncertainties. The impacts of predictor
combinations  on  hydrologic  simulations  decrease  from  bias-correction  schemes,
performance indicators, seasons, watersheds to hydrologic models. 

(6) The enhancements of hydrologic modeling accuracies by bias corrections are
more significant for Zhongzhou Watershed than Xiangxi Watershed. The impacts of
climate change on runoffs in Zhongzhou Watershed are higher than those in Xiangxi
Watershed, implying the relatively lower impacts of non-climatic factors (e.g., water
resources  management  or  other  human  activities)  in  Zhongzhou  Watershed.  The
original  hydrologic  models  underestimate  the  differences  of  climatic  impacts  on
runoffs between the watersheds in southern China due to the existence of biases and,
after bias corrections, the estimated impacts significantly vary with watersheds. The
variation with watersheds is shrunk from the HyMOD to Xin’anjiang models and is
higher  in  the  SOR  and  SOC  schemes  compared  with  the  other  bias-correction
schemes.  The  differences  of  hydrologic  simulations  between  watersheds  do  not
significantly vary with predictor selections. 

(7) The overall impacts of climatic conditions on runoff magnitudes and trends in
southern  China  show  increasing  and  decreasing  trends  with  runoff  magnitudes,
respectively. The impacts of climate change on runoffs increase from runoff timing to
distributions, their variations with streamflow magnitudes show opposite trends, and
the nonstationarity of rainfall-runoff relationships due to human interferences would
intensify  these  effects.  The  variations  of  climatic  impacts  on  runoffs  with  runoff
magnitudes vary significantly with predictor selections in the bias-correction scheme
of SOR, while  not  in the other  schemes.  Climatic  impacts on runoffs  in  southern
China  significantly  vary  with  runoff  magnitudes,  which  further  varies  with  bias-
correction  schemes,  performance  indicators,  predictor  combinations,  hydrologic
models, and watersheds.

(8)  The  impacts  of  climatic  conditions  on  runoffs  in  southern  China  at  the
monthly scale are higher than those at  the daily scale. The increments of climatic
impacts  on  runoffs  (except  floods)  from  the  daily  to  monthly  scales  show  a
significantly increasing trend with runoff magnitudes.  The estimated nonstationary
climatic impacts on runoff timing in southern China significantly vary with temporal
scales. The significance of the impacts of temporal scales on BCHS increases from
hydrologic models, watersheds, predictor combinations, bias-correction schemes, to
runoff magnitudes. 

(9) Generally, the uncertainties in BCHS are interactive with each other. The bias-
corrected  hydrologic  modeling  accuracies  (or  the  estimated  climatic  impacts  on
runoffs in southern China) increase from daily to monthly scales, from Xiangxi to
Zhongzhou Watersheds,  from the  highest  through the lowest  to  the overall  runoff
magnitudes,  from C9x2, C9x14, C13x, C5x to C9x1 predictor combinations, from
Xin’anjiang  to  HyMOD  models,  and  from  SUC,  SOC,  SOR,  SSC  to  SSR  bias-
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correction schemes. Meanwhile, the impacts of the uncertainties in BCHS decrease
from bias-correction schemes,  temporal  scales,  streamflow magnitudes,  hydrologic
models or predictor combinations, to watersheds. 

These findings are of great significance for hydrologic simulations under 
uncertainties, as well as for water resources management practices over southern 
China and the other similar watersheds. As one of few attempts to comprehensively 
examine diverse uncertainties in BCHS, this study can be improved in various 
aspects. For example, data uncertainty, spatial-scale uncertainty, and uncertainty of 
climate models may contribute significantly to the uncertainty of hydrologic 
simulations. An analysis of predictor interactions may help improve simulation 
efficiencies. A systematic multifactorial analysis would help quantify both individual 
and interactive impacts of all uncertainties in BCHS. Many subsequent studies will be
conducted to achieve these and some other potential improvements of this study.
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