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Abstract

The arid and semi-arid regions are highly vulnerable to climate change and variability. Agricultural production in these regions

is particularly vulnerable because of its heavy dependence on on climate conditions. Therefore, it is important to improve

the projections of future agro-climatic conditions. This study investigates the projections of agroclimatology change during

2031–2050 under the Representative Concentration Pathway (RCP) 8.5 emission scenario in the semi-arid North China. It

is simulated by the agro-ecological zone (AEZ) model with climate data provided by the regional climate model (RCM) of

Providing regional Climates for Impacts Studies (PRECIS). The Chinese Medicinal Yam (CMY), which is genuinely produced

over semi-arid regions, is taken as an example to study the change of its yield and producing area under future climate change.

The results show that the high-resolution RCM simulation corresponds better with the observations than the general circulation

model (GCM) in precipitation and temperature. In North China, the CMY genuine production area, the precipitation will

increase by about 10% and the temperature will increase by about 2oC under the RCP8.5 scenario. After the evaluation

and projection of climate models, the potential yield of CMY and the suitable planting regions are simulated by using the

AEZ model. The CMY production areas will expand northward in the future, due to the climate warming in the north. The

traditional yam production area still maintains the suitability of CMY production. The production of CMY will augment

because of the increased production area.
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 The high-resolution PRECIS projection correspond better with the 
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 The CMY production areas will expand northward in the future, due to the 
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The effects of climate change on Chinese Medicinal Yam over North China

under the high-resolution PRECIS projection

Abstract

The arid and semi-arid regions are highly vulnerable to climate change and 

variability. Agricultural production in these regions is particularly vulnerable because 

of its heavy dependence on on climate conditions.  Therefore, it is important to 

improve the projections of future agro-climatic conditions. This study investigates the 

projections of agroclimatology change during 2031–2050 under the Representative 

Concentration Pathway (RCP) 8.5 emission scenario in the semi-arid North China. It 

is simulated by the agro-ecological zone (AEZ) model with climate data provided by 

the regional climate model (RCM) of Providing regional Climates for Impacts Studies

(PRECIS). The Chinese Medicinal Yam (CMY), which is genuinely produced over 

semi-arid regions, is taken as an example to study the change of its yield and 

producing area under future climate change. The results show that the high-resolution 

RCM simulation corresponds better with the observations than the general circulation 

model (GCM) in precipitation and temperature. In North China, the CMY genuine 

production area, the precipitation will increase by about 10% and the temperature will

increase by about 2oC under the RCP8.5 scenario. After the evaluation and projection 

of climate models, the potential yield of CMY and the suitable planting regions are 

simulated by using the AEZ model. The CMY production areas will expand 

northward in the future, due to the climate warming in the north. The traditional yam 

production area still maintains the suitability of CMY production. The production of 

CMY will augment because of the increased production area.
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1 Introduction

The  Intergovernmental  Panel  on  Climate  Change (IPCC) published a  special

report indicating that the global average temperatures have increased by about 1°C

since the pre-industrial era, and the anthropogenic warming contributes around 0.2°C

increase to global average temperatures every decade (IPCC, 2018). Also, the global

average warming reaching about 1.5°C between 2030 and 2052 is projected in the

report at the present anthropogenic greenhouse gas (GHG) emissions. Climate is one

of the most critical limiting factors for agricultural production (Moonen et al., 2002).

It is expected that the climate change will significantly influence the food production

no matter on regional scale or global scale. The change of temperature regimes and

precipitation and the like agroclimatic conditions will vary the crop suitability and soil

moisture  conditions  (Fischer  et  al.,  2005).   Relatively  small  changes  in  the mean

values of rainfall and temperature can significantly affect the frequency of extreme

levels of available warmth and moisture (Parry, 2019). The annual mean temperature

increases only 1 or 2 oC could result in significant growth of scorching days which has

devastating  impact  on  crops  and  livestock.  Likewise,  the  average  soil  moisture

decrease resulting from higher evapotranspiration rates could substantially raise water

shortage days for crops. 

Global  climate  models  (GCMs) are constructive  for  predicting  future  climate

changes. Many studies have provided in-depth explanations of future climate changes

and their impacts  based on GCMs (Xu et al.,  2019; Chen et  al.,  2019; Sun et  al.,

2015). The accuracy of current GCMs has become higher and higher, but there are

still limitations in representing small-scale processes that affect the local climate (Han

et al., 2019). The dynamic downscaling method uses regional climate models (RCMs)

to  generate  more  regional  or  local  climate  information  (Giorgi  et  al.,  2009),  as  a

balance of computational resource and resolution demand. Therefore it has become

one of the commonly used methods for obtaining high-resolution climate simulation

and  prediction.  Down-scaled  regional  climate  information  is  vital  for  quantitative
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impact  assessment  and  risk  analysis  (such  as  water  resources  and  water-related

disasters). In China, many climate simulations and predictions based on RCMs have

been carried out (Park et al., 2019; Duan et al., 2019; Niu et al., 2018; Jiang et al.,

2020; Dong et al., 2020). The studies found that, compared with GCMs, RCMs have

superior performance in climate simulations (Gu et al., 2018; Hui et al., 2018), can

reduce  precipitation  overestimation  in  some  areas  (Zhang  et  al.,  2017),  and  can

provide a more reliable extreme value index (Bucchignani et al., 2017; Kong et al.,

2019). However, the RCMs used in previous studies are still too rough to represent

some  surface  details.  The  horizontal  grid  spacing  is  usually  30–60  km,  which

gradually cannot meet the operational requirements for accuracy. A common belief is

that higher resolution brings more realistic simulation in a certain range, along with

the precipitation of physical process. Climate predictions with high resolution are still

too few to give credible  results.  Therefore,  higher-resolution RCMs are needed to

obtain more reliable climate simulations and projections.

The future climate changes rapidly in arid and semi-arid regions (Dong et al.,

2020). Further studies are needed over there about the responses of the crop growth or

yield (Bouras et al., 2019). According to Li et al. (2015), Chinese semi-arid regions

have expanded during the last 60 years, and the northeastern China has suffered from

droughts, while the northwestern China has experienced less-severe droughts. Arid

and  semi-arid  areas  may  be  susceptible  to  longer  duration  dry-spells  and  more

frequent  drought  (Waldman et  al.,  2019),  facing the developing risk from climate

change (Xia et al., 2017). Thus, it is essential to develop appropriate strategies to cope

with significant semi-arid climate change and maintain sustainable development in

these regions (Huang et al., 2019). Due to the importance of semi-arid regions, many

studies  have  been  carried  out  worldwide  (Du  et  al.,  2019;  Yang  et  al.,  2019;

Fernández  et  al.,  2019).   In  China,  by  using  multi  GCMs  Wang  et  al.  (2019)

discovered the great uncertainty of precipitation change in the inland arid region of

Northwest China. Using an RCM with a horizontal  grid spacing of 0.5°, Xu et al.
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(2017) found significant increase in the surface air temperature at 2 m height by 1–

1.5oC especially in the warm days from 1980 to 2014. 

Though climate assessments have been made in the semi-arid regions of China,

there is still little researches about the influence of climate change to the agricultural

production  based  on  a  high-resolution  RCM.  Many  researches  focused  on  the

statistical  analysis  of  historical  change  (Kukal  et  al.,  2018),  or  lacked  a  higher

resolution prediction of future agroclimatology changes (Mo et al., 2017), or did not

combine with the crop yield (Shkolnik et al.,  2019). Tian et al.  (2014) used high-

resolution  climate  scenarios  from RCMs as  the  input  to  the  agro-ecological  zone

(AEZ)  model  for  China,  and  computed  a  comprehensive  set  of  agroclimatic

indicators.  Nevertheless,  they  did  not  have  an  exact  prediction  of  any  crop.  The

combination  of  the  regional  climate  model  and crop model  has  been delivered  in

many parts of the world (Kourat et al., 2020; Singh et al., 2018). In China, Zou et al.

(2019) evaluated the performance of a coupled climate-crop model based on RegCM4

(Regional Climate Modeling system version 4) at 0.5° grid spacing, finding a great

ability to simulate the phenological change and spatial variation of crops, but they did

not give a projection of the future crop yield. The future agroclimatic conditions based

on high-resolution RCM projections in arid and semi-arid regions of China is still a

question worth studying.

Climate factors could largely affect the yield and quality of Chinese Medicinal

Yam (CMY) (Hu et al., 2018). The Chinese herbal medicine has obvious geographical

distribution characteristics. With genuine CMY growing in the semi-arid and semi-

wet regions of North China, it is essential to evaluate the future ecological suitability

of CMY planting area. Geographic Information System technology is used by Hu et

al.  (2018)  to  evaluate  the  ecological  suitability  of  planting  area  by  the  similarity

classification,  instead  of  climate  models.  Fan  et  al.  (2019)  simulated  the  yield

variations of CMY with the AEZ model driven by several GCMs. They found the

agroecological suitability of CMY in the northern Shaanxi, the eastern Shandong, the
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eastern Hebei and some parts of northeastern China will be improved because of the

improved  hygrothermal  conditions.  However,  there  is  a  shortage  of  CMY  yield

simulations based on high-resolution RCM.

This  study  combines  the  crop  model  (AEZ)  and  the  high-resolution  RCM

(PRECIS, 0.25° grid spacing), and uses the updated CMY parameters from Fan et al.

(2019) to further understand the agroclimatology and agricultural production in the

semi-arid  regions  of  China.  The  remainder  of  this  paper  is  organized  as  follows.

Section 2 provides details of the experiment design and reference datasets. Section 3

presents the evaluation of RCM simulations and the projection of CMY production

over China. The results are summarized in Section 4.

2 Data and Methods

2.1 Observation

CN05.1 dataset is interpolated from over 2400 observing station in China, with

the  resolution  of  0.25°×0.25°  (longitude  ×  latitude).  The  climatology  is  first

interpolated by thin plate smoothing splines and then a gridded daily anomaly derived

from angular distance weighting method is added to climatology to obtain the final

dataset (Wu d Gao, 2013). The dataset includes daily temperature and precipitation

from  1961-2005.  It  has  been  used  for  verification  in  many  studies.  CRUTS32

(Climatic Research Unit gridded Time Series v3.2) is a widely used climate dataset

with the resolution of 0.5°×0.5° over all land domains of the world except Antarctica.

It  is  interpolated  by  the  monthly  weather  station  observations  across  the  world,

containing climate variables such as mean temperature, diurnal temperature range and

precipitation (Harris et al., 2014).

2.2 Climate models

HadGEM2-ES  (Hadley  Center  Global  Environment  Model,  version  2)  is  a

coupled  AOGCM  with  atmospheric  resolution  of  N96  (1.875◦  ×  1.25◦)  with  38

vertical levels and an ocean resolution of 1◦ (increasing to 1/3◦ at the equator) and 40
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vertical  levels.  It  in-corporates  elements  of  dynamic  vegetation,  marine  biological

processes, sea ice, tropospheric chemistry and the carbon cycle over land and ocean

(Bellouin et al., 2011).

PRECIS  is  a  regional  climate  simulation  system  based  on  GCM-HadCM3

developed by the Hadley Centre for Climate Prediction and Research, Met Office,

UK. Its horizontal resolution is 50 km or 25 km. With HadRM3P (RCM) as its core

component,  PRECIS  can  operate  in  any  limited  region  of  the  world.  The  model

includes the atmospheric dynamic processes, sulfide cycle and related atmospheric

and land surface physical processes. The model’s physical processes include cloud

and precipitation, convection, radiation, boundary layer, land surface exchange and

gravity wave resistance (Wu et al., 2020). The model convection scheme adopts the

mass  flux  penetrating  cumulus  scheme,  and  considers  the  influence  of  vertical

convective momentum. The land surface scheme adopts the updated version of the

Met  Office  surface  exchange  scheme  (Moses),  and  uses  the  improved  subgrid

technology to splice vegetation information and soil type information. The dynamic

part  of the model  includes  dynamic processing of the evolution of meteorological

variables such as wind and temperature, and the continuous improvement of physical

process parameterization of humidity and pressure (Guo et al., 2019). It is based on

the  atmosphere  part  of  HadGEM2-ES  to  provide  boundary  conditions  and  initial

fields, and to run again based on its relatively low-resolution grid.

PRECIS  is  driven  by  high-resolution  side  boundary  conditions  generated  by

HadRM3P,  and  uses  the  quasi-hydrostatic  balance  equation  to  deal  with  the

atmospheric part. It has 19 vertical levels, with the top being 0.5 hPa. The bottom four

levels in the vertical direction adopt the terrain-following σ coordinate system, the top

three levels adopt the P coordinate system, and the middle levels adopt the hybrid

coordinate  system.  In  the  horizontal  direction,  the  Arakawa  B  grid  is  used  for

calculation,  and  the  horizontal  diffusion  term  is  used  to  control  the  nonlinear

instability.  The  horizontal  resolution  of  the  bottom level  (surface)  in  the  rotating
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coordinate  system is 0.22° (longitude)  × 0.22° (latitude),  the horizontal  interval  is

about 25km in the middle latitude region, and the integration step length is 5 min. The

historical simulation period is 1986-2005 and the future period is 2031-2050.

2.3 AEZ model

The  AEZ  model  used  in  this  study  is  jointly  developed  by  the  Food  and

Agriculture  Organization  of  the  United  Nations  (UN-FAO)  and  the  International

Institute  for  Ap-plied  Systems Analysis  (IIASA),  and it  is  mainly  used  for  crop-

suitability  assessment  and  productivity-potential  calculation.  The  agricultural

ecological  region model  is  widely used in  various  fields.  It  takes  radiation,  light,

precipitation,  temperature,  soil  and other ecological  factors into consideration,  and

constructs  the  feedback  mechanism  of  climate  soil-plant  interaction.  Due  to  the

relatively rigorous calculation process of production potential,  the model has been

widely used in agricultural evaluation and has achieved good results (Fischer et al.,

2000; Fischer et al.,  2002). The AEZ model gradually modifies the maximum bio-

logical  yield  of  crops  by  limiting  parameters  (such  as  cumulative  temperature,

humidity,  soil  suitability  and  management  methods),  and  could  simulate  the

maximum  yield.  The  AEZ  model  is  supported  by  crop  growth  algorithm  and

environment  matching  program,  and  it  is  very  suitable  for  large-scale  crop

productivity assessment (Fischer et al., 2005; Tian et al., 2012).

The model calculates the production potential under different conditions step by

step, considering the input level and management measures in the production process.

The final agricultural production potential is obtained under the chosen condition of

heat, light and the like. When the temperature, soil moisture, soil pH and other soil

conditions are in the most appropriate state, the model only considers the impact of

light on the production potential that is called the photosynthetic potential. Similarly,

solar and temperature potential productivity is the crop yield under the influence of

light and temperature at the same time while other conditions at the most appropriate

state. It is a temperature correction over the photosynthetic productive potential. Land
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production potential takes integrating climate productivity and the soil availability co-

efficient into consideration based on prior potential. The relative importance of each

influencing factor is assessed by the key information of soil pH value, texture, soil

nutrient (N, P, K) content and slope, which results in the weight coefficients of each

soil availability factor. Then the soil availability coefficient is obtained by integrating

each influencing factor. The above calculation only considers the land productivity,

that is, the productive potential excluding the influence of non-natural factors. The

agricultural production potential is defined as the comprehensive evaluation of crop

production  potential  considering  the  impact  of  different  economic  input  and

management measures. In the AEZ model, economic input can choose high, middle or

low  conditions.  This  paper  chooses  the  high  input  level.  In  this  paper,  the  crop

production potential under a high input level is calculated. 

In  the  past  50  years,  the  original  parameters  in  the  AEZ  model  are  not

representative in the middle and high latitudes due to climate warming. Moreover, the

parameters for yam in the model are set for dioscoreaceae, which is not suitable for

the typically Chinese medical yam. At present,  the parameters of CMY have been

updated in Table 1 by Fan et al. (Fan et al., 2019). Focus on medicine property of

CMY, Fan et al. chose the climate factors in the genuine  CMY producing  areas to

update CMY-dedicated physiological and ecological parameters in the AEZ model. In

this study, new CMY varieties are introduced into the AEZ model, and then the AEZ

model is applied to evaluate the CMY suitability under potential climate conditions in

China.  Some  advantages  of  AEZ  model  are  the  high  calculating  speed  and  the

expansibility to incorporate climate predictions, so it is chosen in this study. 

 

Table 1. New LUTs of Chinese Medicinal Yam added in AEZ model

NAME CYA+CYB TMN TREF HI MLAI YF% TS2n TS1n TS1x TS2x

YAM M1 0 + 180 10.0 23.0 0.50 3.00 0.51 3400 3750 4250 4500

YAM M2 0 + 195 10.0 22.5 0.50 3.00 0.54 3600 4000 4500 4750

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247



YAM M3 0 + 210 10.0 22.0 0.50 3.00 0.57 4000 4400 4850 5200

LUTs:  Land  utilization  types;  TS2:  the  lower  and  upper  boundaries  of

accumulated  heat  units  range;  TS1:  optimum  accumulated  heat  units;  TS3:  the

accumulated temperature above 10 degrees; HI: the harvest index; MLAI: Maximum

Leaf Area Index;

3 Results

3.1 Climate simulation and the climate change in semi-arid regions

As this study focuses on the semi-arid regions, the CMY genuine production area

in North China is selected as the study area, which includes parts of semi-wet regions.

Figure 1 shows the topography of the study area and the red provinces are genuine

CMY production areas. As the CMY planting and growing period are mainly from

May to October, the daily average temperature, daily maximum temperature and daily

mini-mum temperature in that period are shown in Figure 2. For most parts of the

study  area,  PRECIS  overestimates  the  daily  mean  temperature  by  1–3oC,  while

HadGEM2-ES underestimates a little in the southern part. PRECIS is more consistent

with the observations in the northeastern part. For daily maximum temperature, the

simulations show similar spatial pattern with the daily mean temperature, with a warm

bias (less than 2oC) in most areas, which is contrast to the cold bias by HadGEM2-ES

in  the  southern  part.  A  clear  improvement  is  shown  in  Figure  1i  that  PRECIS

represents daily minimum temperature more accurate than HadGEM2-ES, with the

bias ranging from −1 to 1oC in most parts.
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Figure 1. Study domain and the topography within it (unit: m). The red provinces

are main producing area of CMY. 

Besides  temperature,  precipitation  also  plays  an  essential  role  in

agrometeorology.  Figure  3  shows  the  annual  and  growing-period  average

precipitation  observed  during  1986–2005  and  the  deviations  between  model

simulations and the observations. In the simulations, the annual and growing-period

average precipitation is underestimated in the southeast while overestimated in the

northwest. The bias in the growing period is smaller than that in the whole year. The

bias of HadGEM2-ES is transmitted to PRECIS to a certain extent, as the bias spatial

distribution and value of PRECIS correspond well with the HadGEM2-ES. PRECIS

underestimates  the annual precipitation  in Shandong, Henan and their  surrounding

areas.  The  underestimation  is  also  found  in  the  growing  period,  while  the

overestimation in the northern part is much smaller. 
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Figure 2. Observed (a) daily mean, (b) maximum and (c) minimum temperatures

in  CMY  growing  period  (GP,  May–October),  and  the  model  biases  with  the

observations ((d) and (g) correspond with (a); (e) and (h) correspond with (b); (f) and

(i) correspond with (c)).
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Figure 3. Observed daily mean precipitation in (a) ANN (annual) and (b) GP, and

the model biases with the observations (c) and (e) correspond with (a); (d) and (f)

correspond with (b)).

Though the improvement of PRECIS in average temperature or precipitation is

not so obvious as HadGEM2-ES in the study area, the benefits are recognized in other

regions  or extreme indexes  (Jiang et  al.,  2020;  Dong et  al.,  2020).  Moreover,  the

temperature bias shown in Figure 2g,i at Hebei and Shandong is smaller by PRECIS,
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where  is  genuine  CMY production  region.  The  CMY simulation  is  mainly  under

irrigation condition in this article, so the precipitation bias is not so important while

PRECIS  remains  well  reality.  As  shown in  Figure  4,  under  the  RCP8.5  scenario

during 2031–2050, the temperature in the study area will be 1.5 oC higher than that in

1986–2005,  and  the  maximum  daily  temperature  may  increase  by  3  oC  in  local

regions. The average temperature simulated by PRECIS increases more in the areas

near Henan than that by HadGEM2-ES. Such spatial pattern difference of temperature

may  come  from a  better  representation  of  topography.  The  temperature  variation

differs  between the provincial  boundaries  of Shanxi  and Hebei,  where locates  the

Taihang Mountains. The seasonal variations of daily maximum temperature and daily

minimum temperature are similar to that of the daily average temperature to a certain

extent (figure omitted). 
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Figure 4. The spatial patterns of the daily mean temperature change in (a, c) the

whole year and (b, d) the growing-period (unit: oC).

Figure 5 shows the change of average precipitation in the future during 2031–

2050  relative  to  1986–2005.  The  annual  precipitation  will  increase  in  almost  all

regions, with the maximum increase of more than 30% in PRECIS. There is little

difference  between  the  HadGEM2-ES  projection  and  the  historical  period.  The

change range of annual precipitation in each region is relatively uniform, concentrated

within  20%.  PRECIS  and  HadGEM2-ES  have  good  consistency  in  the  annual

precipitation, but PRECIS projects a precipitation decrease in more regions, especially

in the northeast. The changes in GP fluctuate more than that in the annual average. In

many parts of CMY genuine producing area, PRECIS also projects less precipitation

in GP, such as in the northern Henan, western Shanxi and northern Hebei, and the

decrease can reach 20% locally. 
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Figure 5. The spatial patterns of the future precipitation change in (a, c) the whole

year and (b, d) the growing-period (unit: %).

Global warming will bring further increase of heat resources in most areas, which

has been a consistent recognition. Accumulated temperature refers to the sum of daily

average  temperature  in  the  growing stage  of  crops.  The accumulated  temperature

above 10  oC is an important  index to measure agricultural  climate heat  resources,

because  CMY is  thermophilic  crops.  By  the  2050s,  under  the  both  scenario,  the

accumulated temperature (above 10 oC) will generally increase in the growing season

in China, and most of the temperature increase in genuine producing areas is above

450 oC under RCP4.5 and above 800oC under RCP8.5 (Figure 6). Under the influence

of climate warming, the heat resources that can satisfy the growth and development of
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crops are further enriched,  so the accumulated  temperature increases  significantly.

Therefore, the heat resources are more abundant, which is the consistent impact of

global warming on agricultural cli-mate resources.

The length of the growing season in agroclimatic resources is an important index

to  comprehensively  consider  the  heat,  moisture,  radiation  and  other  regional

resources. It represents the length of the period suitable for agricultural planting in a

region in a year, which is of great significance to deploying crop sowing time and

planting systems. The growing season in the AEZ model is defined as the number of

days  that  the  crop actual  evapotranspiration  (ETA) is  greater  than or  equal  to  50

percent of the reference evapotranspiration (ET0) above the critical temperature of 5

oC. Under the future climate scenario, the change of meteorological factors, such as

temperature, precipitation and evapotranspiration, will result to a general extension of

the growing season (Figure 7). The growing season in the northern region, where the

original  growing season is  short,  may also have a general  extension .  Due to  the

warmer and wetter climate conditions, the growing season in the genuine yam area is

extended by more than 20 days.

Evapotranspiration  plays  an  important  role  in  the  earth's  atmosphere-

hydrosphere-biosphere. Together with precipitation, it  could determine the regional

dry and wet conditions, and plays a key role in estimating ecological water de-mand

and  agricultural  irrigation.  In  the  AEZ  model,  the  Penman-Monteith  formula

recommended by UN-FAO is used to calculate the reference crop evapotranspiration.

Assuming that the reference crop height is 0.12 m, the crop canopy resistance is a

constant  of  70  m s-1 and  the  surface  reflectance  is  0.23,  then  the  reference  crop

evapotranspiration  could  be  calculated.  Under  the  baseline  climate  condition,  the

evapotranspiration  of  yam  road  is  more  than  500  mm  A-1 (not  shown).  The

evapotranspiration in the east and the south will increase in the future. The increase of
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evapotranspiration in the yam production area is mostly within 60 mm A-1 under the

RCP4.5 scenario, and more under the RCP8.5 scenario (Figure 8).

 

 

Figure  6.  The change of  accumulated  temperature  (above 10oC) in  the  2050s

com-pared with the baseline for (left) the RCP4.5 and (right) RCP8.5 scenarios.

 

 

Figure 7. The change of growing period length in the 2050s compared with the

baseline for (left) the RCP4.5 and (right) RCP8.5 scenarios.
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. 

 

Figure 8. The change of reference evapotranspiration in the 2050s compared with

the baseline for (left) the RCP4.5 and (right) RCP8.5 scenarios.

3.2 Simulating the CMY yield under future climate scenarios

Under the historical climate conditions, the suitable regionalization of CMY is

shown in Figure 9. It can be seen that the simulated dry weight yield of CMY is more

than 3000 kg ha−1, that is, 200 kg mu−1. Because of the high drying rate of yam, the

water  accounts  for about  70% and the dry matter  is  about  30%. Suppose the dry

weight is 200–500 kg mu−1,  and then it  could be converted into the fresh weight,

which is about 700–1700 kg mu−1, very close to the current unit yield (1000–1500 kg

mu−1) in the main production areas of CMY. The AEZ model output are in the same

range of the observed yield values of the typical CMY production area.  The PRECIS

simulation also well meets this feature. The maximum yield of PRECIS simulation is

slightly larger than that of another observation data set (CRUTS32). It may be related

to the fact that the model summer is warmer than observations in the growth suitable
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areas, because the quality of heat conditions will affect the growth and development

of crops and determine the formation speed of yam organs, thus affecting its yield. 

 

Figure 9. The CMY yield (kg DM mu-1) in the suitable planting areas under the

historical climate (Left: CRUTS32, 8110; right: PRECIS, 1986–2005).

By comparing and analyzing the suitability zoning of CMY under the historical

climate conditions and the climate scenarios in the middle of this century, the suitable

planting areas under future climate scenarios are superimposed with the suitable areas

under the historical climate conditions. The results are shown in the Figure 10. The

PRECIS predicts  that  the  suitable  areas  of  CMY in  Shandong,  Henan and Hebei

provinces  would remain suitable  during the 2050s.  The suitable  areas of Shaanxi,

Shanxi and Shandong are significantly expanded, and the suitable areas also appear in

Liaoning Province. Considering the suitable areas, there are no significant differences

between the RCP8.5 and RCP4.5 scenarios. But there is a larger suitable area in the

northeast under the RCP8.5 scenario.

The northward extension of the suitable area is mainly due to the enrichment of

heat resources and water-soil conditions under the influence of climate warming. In
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addition to the extreme precipitation risk, the impact of precipitation change on the

CMY growth is relatively small because it mainly relies on irrigation, and the impact

of extreme precipitation on yam yield needs further studies.

 

Figure 10. The change of the suitable area for CMY in 2050s comparing with the

baseline for (a) the RCP4.5 scenario and (b) the RCP8.5 scenario in PRECIS. red：

unsuitable -> suitable, green: suitable -> unsuitable, blue: suitable -> suitable

The  PRECIS  simulations  show  there  will  be  a  small  reduction  in  CMY

production  in  the  existing  areas,  while  the  unit  yield  in  Shaanxi  and Shanxi  will

increase slightly, but most of the increased production will be distributed in the newly

added yam production areas (Figure 11, Table 2,3). In Shandong and Liaoning, the

output in new production areas is larger, but less than the historical maximum level.

In addition,  the growth in the northernmost  part  of the study region is  not much,

which indicates that only the suit-ability of yam planting appears in this region, but

the yield could not be guaranteed. According to the map (Figure 6,8), the increase of

accumulated temperature may in-crease evaporation and cause water waste. At the

same time,  it  will  also  shorten  the  growth period  of  crops,  which  will  affect  the

accumulation of nutrients and reduce the yield in Henan Province and other regions.
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Hu (2019) projected that the unit output in eastern Shandong and eastern Hebei

will increase in 2050, while in some western regions it will decrease. The unit yield in

the eastern part of Henan Province will decrease, while that in the western region will

in-crease. In most areas of central and southern Shanxi, the unit yield will decrease.

Overall, in Hu (2019) the yield in the traditional production area decreases, but there

are some new production areas in the northeast. His conclusions are consistent with

the simulation results in our study.

  

Figure 11. The change of the CMY yield (kg DM) in the 2050s under (a) the

RCP4.5 scenario and (b) RCP8.5 scenario in PRECIS.

Table 2. Output changes of CMY under RCP4.5

Decrease area(km2) Increase area(km2) Cumulative change(t)

Shanxi 166 16470 33468

Shandong 24610 26777 55437

Henan 54991 5706 -12820

Hebei 418 8597 17427

Liaoning - 16490 65926

Gansu - 3998 4912

Shaanxi 696 32129 57022

Total 80881 110167 221372

Table 3. Output changes of CMY under RCP8.5
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Decrease area(km2) Increase area(km2) Cumulative change(t)

Shanxi 944 10195 24088

Shandong 16228 21158 43894

Henan 43035 2406 -12675

Hebei 864 4051 11525

Liaoning - 13054 56410

Gansu - 3153 6375

Shaanxi 1861 12935 24365

Total 62942 66952 153982

4 Conclusion and Discussion

Future climate  conditions  remain  considerable  uncertainties,  though existing

studies have made many climate projections over China (Xu et al., 2019; He et al.,

2019). There is a shortage of literature assessing the impacts of climate change on

agroclimatic conditions based on high-resolution RCMs (Tian et al., 2014; Tian et al.,

2015).  This  study focuses  on  the  agroclimatic  change  based  on a  high-resolution

RCM in China, providing an overall impression of agriculture yield over semi-arid

regions, and then projects the yield and the suitable area for the CMY in the 2050s.

To verify the simulation ability of PRECIS in semi-arid regions and find its ad-

vantages compared to the GCMs, the historical simulation is evaluated first. Though

PRECIS simulation does not show the significant advantage in precipitation amount,

the PRECIS simulation of average temperature is more in line with the observations

in  most  parts  of  the  country,  which  is  significantly  better  than  the  simulation  of

HadGEM2-ES. In 2031–2050, under the RCP8.5 scenario, the temperature in most

parts  of  China  will  generally  rise  by  more  than  1.5oC  in  PRECIS.  The  high-

temperature days will increase, and the low-temperature days will decrease. For the

average annual precipitation, there will be about 10% more in the future nationwide,

but there is a possibility of a decrease in North China. The precipitation increase is
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larger in the growing period, reaching 20% by HadGEM2-ES, while PRECIS projects

a decrease in local regions of genuine production areas.

Under the influence of climate warming, the heat resources that can satisfy the

growth  and  development  of  crops  are  further  enriched,  so  the  accumulated

temperature increases significantly. The accumulated temperature increases by about

500oC in  the  CMY  genuine  areas  over  the  semi-arid  regions.  The  length  of  the

growing season in the genuine yam area will extend slightly, while will decrease in

other arid and semi-arid regions.  The evapotranspiration in the northwest or north

China may slightly increase by no more than 80 mm.

Because the temperature conditions in the north could meet the growth needs of

yam due to the climate warming in the future, the CMY production areas will expand

northward, and more than 10,000 km2 new suitable areas will appear in Liaoning. The

traditional yam production areas are still suitable for yam production. The CMY yield

will increase, which is the result of the increased suitable plating areas and unit area

yield.

The future climate change has been reported to influence the botany spatial

distribution  and their  local  ecosystems.  Zhang et  al.  (2018) reported a  continuous

rising-temperature might decrease the suitable habitat of Paeonia delavayi which lives

in the southwest mountain region of China. Climate change also might affect the G.

rigescens in the southwest of China, making habitat moving to higher elevation (Shen

et al., 2021). More than 1000 woody plant suffer from loss of distribution areas in

Yunnan due to extreme climate change (Zhang et al., 2014). 

This  study uses  a  high-resolution  RCM to  simulate  the  future  CMY yield.

However,  there  must  be  large  uncertainties  and  systematic  deviations  in  a  single

model. In future studies, there is still some improving room by using higher-resolution

RCMs. Moreover, climate condition is not the only impact of crop growth, so further

researches are needed to better understand which factors could determine the CMY

quality of the medicinal components (Fan et al., 2019).
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