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Abstract

We propose a new machine learning-based method for nowcasting earthquakes to image the time-dependent earthquake cycle.

The result is a timeseries which may correspond to the process of stress accumulation and release. The timeseries is constructed

by using Principal Component Analysis of regional seismicity. The patterns are found as eigenvectors of the cross-correlation

matrix of a collection of seismicity timeseries in a coarse grained regional spatial grid (pattern recognition via unsupervised

machine learning). The eigenvalues of this matrix represent the relative importance of the various eigenpatterns. Using the

eigenvectors and eigenvalues, we then compute the weighted correlation timeseries (WCT) of the regional seismicity. This

timeseries has the property that the weighted correlation generally decreases prior to major earthquakes in the region, and

increases suddenly just after a major earthquake occurs. As in a previous paper (Rundle and Donnellan, 2020), we find that

this method produces a nowcasting timeseries that resembles the hypothesized regional stress accumulation and release process

characterizing the earthquake cycle. We then address the problem of whether the timeseries contains information regarding

future large earthquakes. For this we compute a Receiver Operating Characteristic and determine the decision thresholds for

several future time periods of interest (optimization via supervised machine learning). We find that signals can be detected

that can be used to characterize the information content of the timeseries. These signals may be useful in assessing present and

near-future seismic hazard.
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Abstract	
We	propose	a	new	machine	learning-based	method	for	nowcasting	earthquakes	to	image	

the	time-dependent	earthquake	cycle.		The	result	is	a	timeseries	which	may	correspond	to	
the	 process	 of	 stress	 accumulation	 and	 release.	 	 The	 timeseries	 is	 constructed	 by	 using	
Principal	Component	Analysis	of	regional	seismicity.		The	patterns	are	found	as	eigenvectors	
of	 the	cross-correlation	matrix	of	a	collection	of	seismicity	 timeseries	 in	a	coarse	grained	
regional	 spatial	 grid	 (pattern	 recognition	 via	 unsupervised	 machine	 learning).	 	 The	
eigenvalues	of	 this	matrix	represent	the	relative	 importance	of	 the	various	eigenpatterns.		
Using	 the	 eigenvectors	 and	 eigenvalues,	 we	 then	 compute	 the	 weighted	 correlation	
timeseries	 (WCT)	 of	 the	 regional	 seismicity.	 	 This	 timeseries	 has	 the	 property	 that	 the	
weighted	 correlation	 generally	 decreases	 prior	 to	 major	 earthquakes	 in	 the	 region,	 and	
increases	suddenly	just	after	a	major	earthquake	occurs.		As	in	a	previous	paper	(Rundle	and	
Donnellan,	2020),	we	find	that	this	method	produces	a	nowcasting	timeseries	that	resembles	
the	 hypothesized	 regional	 stress	 accumulation	 and	 release	 process	 characterizing	 the	
earthquake	 cycle.	 	 We	 then	 address	 the	 problem	 of	 whether	 the	 timeseries	 contains	
information	regarding	future	large	earthquakes.		For	this	we	compute	a	Receiver	Operating	
Characteristic	 and	 determine	 the	 decision	 thresholds	 for	 several	 future	 time	 periods	 of	
interest	 (optimization	 via	 supervised	 machine	 learning).	 	 We	 find	 that	 signals	 can	 be	
detected	that	can	be	used	to	characterize	the	information	content	of	the	timeseries.		These	
signals	may	be	useful	in	assessing	present	and	near-future	seismic	hazard.	

	

Plain	Language	Summary	
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Major	earthquakes	on	fault	systems	in	a	tectonically	active	region	are	thought	to	occur	in	
approximately	 repetitive	 cycles	 as	 a	 result	 of	 the	 buildup	 and	 release	 of	 tectonic	 forces	
(stress).	 	 	Nowcasting	 is	a	 technique	adopted	from	weather,	 finance,	and	other	 fields	 that	
uses	 readily	 observable	 proxy	 data	 to	 represent	 the	 unobservable	 stress	 accumulation	
process	of	interest.		This	paper	presents	a	method	that	computes	a	timeseries	representing	
the	weighted	correlation	of		small	earthquake	activity	in	the	California	region		from	1990-
2020.	 	Prior	 to	major	magnitude	M	>	7	earthquakes,	 the	 timeseries	 trends	 toward	 lower	
values.	 	 Just	after	 the	earthquake	occurs,	 the	timeseries	 increases	suddenly	 in	association	
with	the	earthquake,	before	resuming	its	gradual	trend	towards	lower	values.		Plotting	the	
timeseries	 on	 an	 inverted	 scale,	 one	 sees	 a	 cyclic	 behavior	 that	 strongly	 resembles	 the	
hypothesized	 earthquake	 cycle.	 	 In	 principle,	 we	 can	 therefore	 use	 this	 timeseries	 for	
nowcasting,	 as	 a	 proxy	 for	 stress	 accumulation	 and	 release.	 	 Using	 methods	 of	 signal	
detection	first	developed	for	radar	by	the	British	in	the	1940’s,	we	find	that	the	timeseries	
contains	information	about	future	large	earthquakes	that	can	be	used	for	hazard	assessment.	

Key	Points	

• The	 current	 state	 of	 the	 earthquake	 cycle	 of	 tectonic	 stress	 accumulation	 and	
release	is	unobservable	with	existing	methods.	

• We	show	that	readily	observable	small	earthquake	correlations	can	be	used	to	
nowcast	the	current	state	of	the	earthquake	cycle.	

• Machine	 learning	 techniques	 indicate	 that	 signals	 in	 a	 correlation	 time	 series	
corresponding	to	future	large	earthquakes	can	be	detected.	

Introduction	
Earthquake	 hazard	 analysis	 is	 hobbled	 by	 our	 inability	 to	 directly	 observe	 the	

accumulation	and	release	of	tectonic	stress	in	regions	of	seismic	activity	(Scholz,	2019).		As	
a	 result,	 research	 in	 this	 area	 has	 focused	 on	 several	 other	 lines	 of	 investigation.	 	 In	
forecasting,	 a	 major	 emphasis	 is	 now	 being	 placed	 on	 topologically	 realistic	 numerical	
simulations	(Tullis	et	al.,	2012).			

Alternatively,	recent	research	has	developed	the	idea	of	earthquake	nowcasting,	which	
uses	proxy	variables	to	infer	the	current	state	of	the	earthquake	cycle	(Rundle	et	al.,	2016,	
2018,	2019,	2020;	Pasari	and	Mehta,	2018;	Pasari,	2019,	2020;	Pasari	and	Sharma,	2020;		
Luginbuhl et al. 2019;  2020).	 	In	the	nowcasting	approach,	one	uses	observations	of	small	
earthquake	seismicity	to	estimate	the	conditional	probability	that	a	major	earthquake	might	
occur	after	the	current	number	of	small	earthquakes	has	occurred,	given	that	one	has	not	
occurred	since	the	last	major	event.		

A	comprehensive	review	of	the	current	state	of	earthquake	nowcasting,	forecasting,	and	
prediction	is	given	by	Rundle	et	al.	(2020).		Perez-Oregon	et	al.	(2020)	have	also	shown	that	
nowcasting	methods	can	be	extended	to	forecasting	methods	as	well.		These	methods	have	
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begun	to	be	applied	to	India	(Pasari,	2019),	Japan	(K.	Nanjo,	2020;	personal	comm.,	2020)	
and	Greece	(G.	Chouliaras,	personal	comm.	2019).	

Fundamentally,	nowcasting	has	been	based	on	the	concept	of	natural	time	(Varotsos	et	
al.,	 2001;	 2002;	 2011,	 2013;	 2014;	 2020a,b;	 Sarlis	 et	 al.,	 2018).	 	 Beginning	 with	 the	
nowcasting	idea,	Perez-Oregon	et	al.	(2020)	have	now	shown	that	nowcasting	models	can	be	
extended	into	forecasting	models	for	two	types	of	model	systems,	one	being	the	slider	block	
model	of	Olami-Feder	Christensen	(1992),	and	the	other	being	a	system	in	which	the	events	
obey	 a	 log-normal	 distribution.	 	 These	 are	 toy	 models	 as	 described	 above	 but	 may	 be	
applicable	to	real	data.		The	forecast	methods	are	tested	by	means	of	the	Receiver	Operating	
Characteristic	method	that	we	also	describe	below.	

Recently,	Rouet-LeDuc	et	al.	 (2017)	have	developed	a	 timeseries	prediction	technique	
using	machine	 learning	 for	acoustic	 emissions	 from	events	 in	 laboratory	experiments	on	
regular,	nearly	periodic	stick-slip	friction.		They	also	applied	a	similar	technique	for	Episodic	
Tremor	and	Slip	events	in	the	Pacific	Northwest	(Rouet-LeDuc	et	al.,	2019),	which	are	also	
relatively	regular	in	time.			

In	a	previous	paper,	Rundle	and	Donnellan	(2020)	showed	that	a	timeseries	resembling	
the	long-hypothesized	earthquake	cycle	could	be	constructed	from	the	analysis	of	bursts	of	
small	 earthquakes	 that	 are	 clustered	 in	 space	and	 time.	 	Here	we	present	 	 an	alternative	
method	that	yields	similar	results,	and	is	perhaps	more	robust.		We	identify	the	characteristic	
patterns	 of	 activity	 in	 a	 seismically	 active	 region,	 defined	 using	 Principle	 Component	
Analysis	(Tiampo	et	al,	2000a,b).			

To	summarize	our	results:	The	timeseries	so	defined	implies	that	regional	correlation	of	
seismic	 activity	 generally	 decreases	 prior	 to	major	 earthquakes	 in	 California.	 	 Just	 after	
occurrence	 a	major	 earthquake,	 correlation	 of	 seismic	 activity	 discontinuously	 increases.		
The	 result	 strongly	 resembles	 the	 expected	 earthquake	 cycle	 of	 stress	 accumulation	 and	
release,	 and	 is	 similar	 to	 results	 published	 earlier	 from	 the	 analysis	 of	 bursts	 of	 small-
magnitude	 seismic	 activity.	 	 We	 then	 applied	 a	 standard	 timeseries	 technique	 based	 on	
constructing	 a	 Receiver	 Operating	 Characteristic	 (ROC)	 together	 with	 a	 Shannon	
Information	metric	(e.g.,	Rundle	et	al.,	2019)	to	show	that	signals	of	future	large	earthquakes	
may	 be	 present.	 	 The	 method	 implies	 some	 level	 of	 signal	 detection	 of	 future	 large	
earthquakes,	albeit	with	errors.					

Method	
The	first	step	is	to	define	a	spatial	coarse	graining	by	assigning	an	array	of	grid	boxes	of	

given	latitude	and	longitude	Dx		(in	degrees)	to	the	area	of	interest.		Each	of	these	grid	boxes	
(tiles	or	partitions)	is	required	to	have	a	minimum	number	of	small	earthquakes	over	the	
entire	time	interval	used.			
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For	 example,	 in	 the	 results	 example	 described	 in	 this	 paper,	 a	minimum	of	 35	 small	
earthquakes	having	magnitudes	M>3.29	over	the	time	period	of	1960-2020	was	required,	or	
a	 rate	 of	 about	 1	 small	 earthquake	 every	 year.	 	 Variations	 of	 this	 value	 changes	 results	
somewhat,	but	the	general	conclusions	remain.		This	procedure	produces	a	set	of	NX	"active"	
grid	boxes.			

We	then	extract	data	from	the	seismic	catalog	as	follows.		A	catalog	is	a	group	of	values	
that	we	can	describe	as	 the	set	{ti,	Mi,	zi},	where	 i	=	1,...,	NE,	 in	which	NE	 is	the	number	of	
earthquakes	in	the	catalog.	Here	ti	is	the	origin	time	of	the	earthquake,	Mi,	is	the	magnitude,	
and	zi	is	hypocentral	location	(latitude-longitude-depth).		Note	that	zi	is	a	container	variable	
for	an	epicentral	(horizontal)	location	xi	and	depth	di.			

We	then	digitize	the	catalog	in	time	at	increments	Dt,	and	assign	a	given	earthquake	to	a	
time	 interval	 [tj-Dt,	 tj],	 j	 =	 1,...,	 JT	 and	 to	 the	 grid	 box	 centered	 at	 xn,	n	 =	 1,...,	 NX.	 	 These	
assignments	 then	 yield	 a	 collection	 of	 time	 series	 	F(𝒙", 𝑡%),	 which	 for	 convenience	 we	
designate	 as	F(𝒙", 𝑡).	 	 Thus	 we	 have	 a	 total	 of	NX	 	 time	 series,	 digitized	 at	 equidistant	
intervals	Dt,	extending	over	the	interval	t0,	...,	(t0	+	Dt	JT).		In	words,	F(𝒙", 𝑡%)	is	the	number	of	
earthquakes	in	the	grid	box	centered	on	xn, occurring between tj-Dt and tj.			

		The	next	step	is	to	compute	the	(eigen)	patterns.		To	do	so,	we	use	Principal	Component	
Analysis	 (PCA)	 of	 the	 correlation	 matrix.	 	 The	 correlation	 matrix	 involves	 centered,	
univariant	time	series	Φ*(𝒙", 𝑡).	Here	Φ*(𝒙", 𝑡)	is	obtained	from	the	timeseries	F(𝒙", 𝑡):	

𝜇",. 	= 	 (
1

𝑡 − 𝑡2
)3 Φ(𝒙", 𝑡′)	dt7

.

.8
	

(1)	

𝜎",.: 	= 	 (
1

𝑡 − 𝑡2
)3 ;Φ(𝒙", 𝑡7) 	− 	𝜇",.<

:
	dt7

.

.8
	

(2)	

Φ*(𝒙", 𝑡) 	= 	 (F(𝒙", 𝑡) 	− 	𝜇",.)/	𝜎",. 	

(3)	

The	correlation	matrix	element	Cnm(t)	is	then	given	by:	

𝐶"B(𝑡) 	= 	3 Φ*(𝒙", 𝑡′)Φ*(𝒙B, 𝑡′)	dt7
.

.8
	

(4)	

Cnm(t)	 is	 then	 diagonalized	 to	 find	 its	 eigenvectors	 (eigenpatterns)	𝒆D(𝑡),	 i	 =	 1,...,NX,	 and	
eigenvalues	𝜆D(𝑡).	 	Because	Cnm(t)	 	 is	a	positive	definite,	symmetric	matrix	of	rank	NX,	the	
eigenvalues	𝜆D(𝑡)	are	real	and	positive.	
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The	 next	 step	 is	 to	 define	 a	 sliding	 window	 seismicity	 state	 vector	 𝝍(𝑡).	 	 The	 NX	
components	of	F(𝒙", 𝑡)	are	just	the	NX		time	series	F(𝒙", 𝑡),	summed	over	a	previous	time	
interval		t	=	SDt.  The	nth	component	of 𝝍(𝑡) is then: 

𝜓"(𝑡) 	= 	3 F(𝒙", 𝑡′)	𝑑𝑡′
.

.TU
 

	(5)	

Since	the	𝒆D(𝑡)	are	orthonormal	and	complete,	we	can	expand	𝝍(𝑡)	in	the	eigenpatterns	
with	expansion	coefficients	ai(t):	

𝝍(𝑡) 	= 	V 𝑎D(𝑡)	𝒆D(𝒙, 𝑡)
D

	

(6)	

we	then	compute	the	power	spectrum	of	𝝍(𝑡),	i.e.,	ai(t)2	.		In	computing	𝒆D(𝑡),	we	use	only	
data	for	t'	£	t.			

The	weighted	correlation	of	the	seismicity	at	time	t	is	then	found	as	the	dot	product	of	
the	power	spectrum	vector	with	the	vector	of	correlation	eigenvalues.		This	dot	product	is	
then	the	weighted	correlation	value	𝜒(𝑡)	for	the	regional	seismicity:	

𝜒(𝑡) 	≡ 〈l(t)〉 	= 	V 𝜆D(𝑡)	𝑎D(𝑡):
D

	

(7)	

𝜒(𝑡)	 represents	 a	 timeseries	 containing	 (possibly)	 significant	 information	 content	 as	we	
discuss	below.		

In	computing	(7),	it	is	found	that	the	number	of	time	series	with	the	required	minimum	
number	of	events	and	therefore	active	grid	boxes,	generally	increases	with	time.		So	in	order	
to	 compute	 a	 continuous	 timeseries,	 uniformly	 valid	 for	 all	 times	 t,	 we	 adopt	 the	
normalization:	

V𝜆D(𝑡) 		= 	100	
D

	

(8)	

∑ 	𝑎D(𝑡):D 	= 	1		(L2	norm)	

(9)	

	

We	plot	c(t)	 	as	a	 function	of	time	below,	which	we	interpret	as	a	nowcasting	correlation	
timeseries.	
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Application	
We	 	 apply	 this	 method	 to	 California	 as	 an	 illustration	 of	 the	 method.	 We	 begin	 by	

partitioning	 the	 region	 centered	 on	 Los	 Angeles	 (34.0522o	 latitude,	 118.2437o	 west	
longitude)	 ,	 and	within	 5.0o	 (in	 latitude	 and	 longitude)	of	 that	 point.	 	We	 consider	 small	
earthquakes	 to	 be	 those	 having	 magnitudes	 M	 ³	 3.29	 from	 1/1/1950	 until	 present	
12/31/2020.		For	the	time	interval	Dt	as	discussed	above,	we	set	Dt	=	0.07692	year,	equal	to		
1/13	year	or	approximately	1	"lunar	month",	equal	to	4	"weeks"	of	length	1/52	year.		

As	is	often	the	case	in	these	machine	learning	methods	(see,	e.g.,	Rouet-Leduc	et	al.,	2017,	
2019),	the	state	vector	𝝍(𝑡)	consists	of	a	sliding	window	of	length	t	=	SDt,	that	advances	in	
time	by	the	successive	increment	Dt	on	each	time	step.	 	In	other	words,	small	earthquake	
activity	is	accumulated	over	the	window	length	t		and	assigned	to	the	time	t	at	the	end	of	the	
sliding	window.		As	our	sliding	window	we	set	S=	13,	thus	t	=	1	year.	

We	downloaded	the	earthquake	catalog	from	the	USGS	web	site,	collected	and	filtered	
the	data	to	construct	acceptable	timeseries	of	small	earthquakes.		Size	of	the	N	coarse	grained	
grid	boxes	was	taken	to	be	0.33o.		Requiring	a	minimum	of	35	small	earthquakes	over	the	
time	period	from	1/1/1950	to	12/31/2020,	we	find	NX	=	100	of	the	spatial	grid	boxes	can	be	
used.	 	 We	 then	 constructed	 the	 correlation	 matrix	 (1),	 and	 diagonalized	 it	 to	 find	 the	
eigenvalues	and	eigenvectors.		As	noted,	when	we	computed	the	correlation	matrix	at	time	
t,	we	used	data	only	prior	to	that	time.			

As	an	example,	we	show	in	Figure	1	the	four	orthonormal	eigenpatterns	with	the	highest	
correlation	values	in	the	correlation	matrix,	computed	for	the	entire	time	period		1/1/1950	
to	12/31/2020.		These	eigenpatterns	can	clearly	be	recognized	by	their	association	with	the	
four	largest	earthquakes	in	California	during	that	time	period.			

Signal	Detection	and	Information	Content	

We	now	turn	to	investigating	the	information	contained	in	the	correlation	timeseries	c(t)	
that	is	shown	in	Figure	2	from	1984	to	12/31/2020.		More	specifically,	we	are	interested	in	
determining	 whether	 the	 timeseries	 contains	 any	 information	 about	 future	 large	
earthquakes.		This	is	basically	a	problem	in	signal	detection	in	the	presence	of	noise,	which	
was	considered	in	the	1940's	in	association	with	the	advent	of	radar		(Green	and	Swets,	1966;	
Joy	et	al.,	2005).	 	 In	that	application,	the	problem	was	to	determine	whether	an	observed	
signal	was	actually	a	true	radar	return	or	a	random	fluctuation.			

The	 researchers	 introduced	 the	 idea	 of	 a	 decision	 threshold,	 where	 if	 the	 signal	 had	
amplitude	higher	than	the	threshold,	it	was	classified	as	a	true	return	(true	positive	=	TP).		
Of	course,	even	 if	 the	signal	was	 large	enough,	 there	was	still	 the	possibility	 that	 it	was	a	
random	 signal	 (false	 positive	 =	 FP).	 	 On	 the	 other	 hand,	 some	 returns	 might	 have	 had	
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amplitudes	 less	 than	threshold,	but	still	have	been	real	returns	(false	negative	=	FN).	 	Or	
alternatively,	they	might	have	been	random	fluctuations	(true	negative	=	TN).			

We	wish	to	determine	whether	signals	of	future	large	earthquakes	can	be	detected	by	
analysis	 of	 c(t).	 	 We	 view	 our	 problem	 as	 lying	 in	 the	 domain	 of	 classification	 via	
unsupervised	machine	 learning,	 sorting	potential	 signals	 into	the	 categories	or	 classes	of	
true	positive	(TP),	true	negative	(TN),	false	positive	(FP)	and	false	negative	(FN).			

The	 standard	method	 (Green	and	Swets,	1966;	 Joy	et	 al.,	 2005)	 is	 then	 to	 construct	 a	
Receiver	Operating	Curve	("ROC")	by	plotting	the	true	positive	rate	(TPR):	

𝑇𝑃𝑅	 = 	𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)	

(5)	

against	the	false	positive	rate	(FPR),	defined	in	terms	of	the	specificity	or	true	negative	rate	
(TNR):	

𝐹𝑃𝑅	 = 	1	 − 	𝑇𝑁𝑅 = 	𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)	

(6)	

TPR	is	also	called	the	Recall	or	Hit	Rate,	and	FPR	is	also	defined	as	1-specificity	or	the	False	
Alarm	Rate.	 	As	is	well	known,	Recall	measures	how	well	the	model	performs	at	correctly	
predicting	positive	classes.			

On	the	other	hand,	PPV	or	Precision	measures	how	well	the	model	performs	when	the	
prediction	is	positive:	

𝑃𝑃𝑉	 = 	𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)	

(7)	

Additionally,	ACC	or	Accuracy	measures	the	fraction	of	correct	predictions,	either	TP	or	TN:	

𝐴𝐶𝐶	 = 	 (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑁	 + 	𝐹𝑃	 + 	𝑇𝑁)	

(8)	

Inspection	of	the	time	series	c(t)	shown	in	Figure	2		indicates	that	the	largest	earthquakes	
having	magnitude	M	³	Ml	tend	to	occur	when	the	correlation	timeseries	c(t)	is	near	a	small	
minimum	value	(the	"floor").		To	proceed,	at	each	time	t		we	define	a	future	time	window	[t,	
t+	TW],	where	TW	 	 is	 the	duration	of	 the	window.	 	We	then	select	an	ensemble	of	decision	
thresholds	𝐷g(𝑇h)	to	test	c(t).		The	decision	thresholds	sweep	through	all	possible	values	to	
define	the	ensemble	of	values	for	TP,	FP,	FN,	TN.	

For	each	such	decision	threshold,	we	accumulate	the	following	statistics.		If	the	condition	
c(t)	£	𝐷g(𝑇h)	 exists,	we	 take	 this	 as	an	 indication	 ("prediction")	 that	 a	 large	earthquake	
having	magnitude	M	³	Ml	will	occur	during	the	future	time	window	[t,	t+	TW].		On	the	other	
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hand,	 if	c(t)	>	𝐷g(𝑇h),	 the	 "prediction"	 is	 that	no	 large	earthquake	will	 occur	during	 the	
future	time	window.	Thus:	

• If	c(t)	£	𝐷g(𝑇h)		("predicted":	yes),	and	the	future	time	window	does	contain	at	
least	1	large	earthquake	M	³	Ml,	we	increment	TP®TP+1.	i.e,	a	true	positive.	

• If	c(t)	£	𝐷g(𝑇h)	("predicted":	yes),	and	the	future	time	window	does	not	contain	
at	least	1	large	earthquake	M	³	Ml,	we	increment	FP®FP+1.	i.e,	a	false	positive.	

• If	c(t)	>	𝐷g(𝑇h)	("predicted":	no),	and	the	future	time	window	does	contain	at	
least	1	large	earthquake	M	³	Ml,	we	increment	FN®FN+1.	i.e,	a	false	negative.	

• If	c(t)	>	𝐷g(𝑇h)	("predicted":	no),	and	the	future	time	window	does	not	contain	
at	least	1	large	earthquake	M	³	Ml,	we	increment	TN®TN+1.	i.e,	a	true	negative.	

Since	these	the	quantities	TP,	FP,	FN,	TN	only	appear	in	ratios,	in	the	results	shown	here,	
we	list	the	quantities	TP,	FP,	FN,	TN	as		normalized	by	the	sum	TP+FP+FN+TN,	e.g.:	

𝑇𝑃 → 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)	

(9)	

etc.		Thus	all	the	normalized	quantities	TP,	FP,	FN,	TN	listed	here	lie	within	the	interval	[0,1].		

We	construct	the	ROC	curves	shown	in	Figure	3	for	the	time	windows	of	duration	TW	=	
0.5	years	=	6	months	and	TW	=	3	years.		These	are	the	red	curves	in	the	figures,	which	are	the	
result	of	the	decision	threshold	systematically	ranging	over	all	values,		thus	sweeping	out	the	
values	of	TPR	and	FPR.			

As	 is	 well	 known	 (Green and Swets, 1966),	 a	 random	 predictor	 (no	 information)	 is	
represented	by	the	condition	:	

𝑇𝑃𝑅	 = 	𝐹𝑃𝑅	

(10)	

shown	as	the	diagonal	black	line	from	[0,0]	to	[1,1].		To	emphasize	that	the	diagonal	line	does	
indeed	represent	the	ROC	for	a	random	predictor,	we	constructed	500	random	timeseries	by	
sampling	from	c(t)	with	replacement.		These	are	represented	by	the	mass	of	cyan	colored	
lines	 in	 the	 figures.	 	 The	 1	s	 	 confidence	 level	 is	 indicated	 by	 the	 ellipsoidal	 dotted	 line	
enclosing	the	solid	black	random	predictor	line.			

The	fact	that	the	red	line	lies	substantially	above	the	random	predictions	indicates	that	
there	are	signals	of	large	earthquakes	contained	in	c(t).		In	fact,	the	area	under	the	red	line	
corresponding	to	c(t)	is	a	measure	of	skill,	with	values	lying	between	[0,1].			

For	the	random	predictor,	(black	diagonal	line)	the	skill	score	=	0.5.		However	for	the	6	
month	TW,	the	area	under	the	red	curve,	the	skill	score	=	0.74,	indicating	skill	higher	than	



Confidential	manuscript	submitted	to	Earth	and	Space	Science	

 9 
Copyright (2021).  All rights reserved. 

 

random.		For	TW=3	years,	the	skill	score	=	0.63,	implying	that	skill	degrades	as	TW	increases,	
a	not	unexpected	result,	although	still	better	than	random.	

If	 we	 were	 to	 use	 the	 data	 in	 the	 ROC	 curve	 in	 a	 practical	 way,	 we	 would	 need	 to	
determine	 the	optimal	decision	threshold,	 corresponding	 to	an	optimal	point	on	 the	ROC	
curve	for	each	value	of	𝑇h	and	Ml,.		The	possible	presence	of	signals	for	large	earthquakes	
motivates	 us	 to	 use	 Shannon	 information	 entropy	 IS	 (Shannon,	 1948)	 as	 a	 measure	 of	
information	content	of	points	along	the	ROC	curve:	

𝐼k = 	𝑝 log: 𝑝 + (1 − 𝑝) log:(1 − 𝑝)	

(11)	

where	p	is	an	appropriately	chosen	probability.		Thus	we	are	led	to	seek	the	value	of	decision	
threshold	𝐷g(𝑇h)	that	optimizes	IS	for	a	given	value	of	𝑇h.	

As	an	example	of	this	approach,	we	show	in	Figures	3	and	4,	and	Table	1,	optimal	values	
for	TP,	FP,	FN,	TN	 that	arise	 from	using	the	equation	(11)	and	the	probability	measure	of	
precision.		In	the	figures,	the	optimal	values	are	represented	by	the	vertical	dashed	blue	lines.		
As	mentioned,	Figure	3	shows	the	ROC	curves	for	the	two	time	windows.		Figure	4	is	a	plot	
of	the	precision	as	a	function	of	the	decision	threshold	𝐷g(𝑇h)	for	the	two	time	windows	𝑇h.			

We	also	optimized	the	values	of	these	quantities	using	hit	rate	(recall)	and	accuracy,	but	
in	general	found	the	results	were	not	as	good	as	using	precision.			

Statistical	Tests	of	Significance	

To	 test	whether	 information	 is	 contained	 in	 the	 time	 series	c(t),	we	 take	 as	 our	 null	
hypothesis	the	idea	that	any	information	that	may	be	apparent	in	c(t)	is	the	result	of	a	purely	
random	process,	and	that	c(t)	might	be	a	random	time	series.	 		Definition	of	all	quantities	
considered	 is	 given	 in	 Table	 1,	 columns	 1	 and	 2.	 	 Note	 that	 TP,	 FP,	 FN,	 TN	 have	 been	
normalized	as	in	equation	(7).		

Table	1	also	contains	the	optimal	values	of	the	various	quantities	TP,	FP,	FN,	TN,	hit	rate,	
precision,	specificity,	accuracy	and	skill	 in	columns	3	and	4.	 	Columns	5	and	6	 in	Table	1	
display	 the	 means	 and	 standard	 deviations	 for	 the	 random	 set	 of	 time	 series	 {cR(t)}	
evaluated	 at	 the	 same	 particular	 decision	 thresholds	 𝐷g(𝑇h)	 defined	 previously	 by	
optimizing	the	precision	of	c(t).		Thus	columns	5	and	6	contain	the	same	quantities	listed	in	
columns	1	and	2,	evaluated	for	a	random	predictor.			

The	 random	predictor	was	 constructed	 by	means	 of	 a	 bootstrap	 approach.	 	 The	 time	
series	c(t)	was	repeatedly	sampled	randomly	with	replacement	to	construct	500	random	
time	series	that	we	can	designate	as	the	set	of	time	series	{cR(t)}.		These	random	time	series	
are	shown	as	the	mass	of	green	lines	in	Figures	3	and	4.					

For	all	of	the	statistical	quantities	identified	in	column	1,	we	then	compute	the	Z-statistic:	
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	𝑍	 = 	
𝑆 − 𝜇p
𝜎p

	

(10)	

where	S	 is	 the	statistical	quantity	(TP,	FP,	FN,	TN,	 	etc.)	obtained	by	optimizing	c(t).	 	The	
quantities	𝜇p 	and	𝜎p	are	the	means	and	standard	deviations	of	the	ensemble	of	random	time	
series	{cR(t)},	also	evaluated	at	the	same	optimized	decision	thresholds	𝐷g(𝑇h).			

From	the	Z-statistics,	we	then	calculate	the	P-values	shown	in	columns	7	and	8	in	Table	
1.		With	few	exceptions,	it	can	be	seen	that	for	the	most	part,	P	<	0.05,	a	standard	criterion	
for	rejecting	the	null	hypothesis	at	the	95%	confidence	level.		In	words,	the	observed	values	
of	 the	quantities	 in	 column	1	 listed	 in	 columns	3	and	4	are	unlikely	 to	be	 the	 result	of	 a	
random	process.		There	are	several	exceptions	to	this	general	finding	for	the	shorter	𝑇h	=	6	
months,	but	for	𝑇h	=	3	years,	all	quantities	reject	the	null	hypothesis	at	the	95%	confidence	
level	with	the	exception	of	skill	score.	

Discussion	
We	are	led	to	the	conclusion	that	there	is	evidently	information	content	embedded	within	

c(t),	and	that	there	are	optimal	decision	thresholds	that	can	be	determined	by	a	procedure	
similar	to	that	described	above.		From	a	practical	perspective,	one	might	imagine	that	these	
results	might	be	used	to	identify	signals	for	optimal	threshold	values.		These	could	be	in	the	
form	of	"alerts"	of	future	major	earthquakes	that	are	declared	when		c(t)	£	𝐷g(𝑇h)	for	pre-
defined	values	of	𝐷g(𝑇h).			

We	also	note	that	the	time	series	shown	in	Figure	2	is	very	similar	in	character	to	the	
ensemble	 time	 series	 (Figure	 6)	 shown	 in	 Rundle	 and	 Donnellan	 (2020)	 using	 a	 very	
different	 approach	 that	 considers	 seismic	 bursts.	 	 That	 paper	 showed	 that	 the	 mean	
horizontal	size	given	by	the	radius	of	gyration	RG	of	clusters	or	bursts	of	small	earthquakes	
was	 very	 large	 just	 after	 a	 major	 earthquake,	 then	 decreased	 systematically	 to	 a	 small	
relatively	constant	value	just	prior	to	the	next	large	earthquake.	

We	note	 that	 for	percolation	 clusters	 that	 are	 frequently	 studied	 in	 statistical	physics	
problems	 (e.g.,	 Stauffer	 and	 Aharony,	 2018),	 the	mean	 radius	 of	 gyration	 of	 percolation	
clusters	 is	 a	measure	of	 the	 correlation	 length.	 	Therefore	 the	 results	described	here	are	
consistent	with	the	basic	results	obtained	by	Rundle	and	Donnellan	(2020).	

Given	the	fact	that	the	time	series	c(t)	appears	to	contain	some	level	of	information	about	
the	hazard	posed	by	future	earthquakes,	its	use	in	nowcasting	applications	would	seem	to	
have	 promise.	 	 Future	 investigations	 may	 allow	 further	 refinement	 and	 clarification	 of	
whatever	information	this	and	similar	time	series	contain.	
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Figure	 1.	 	 Top	 four	 eigenpatterns	 having	 the	 highest	 value	 of	 regional	 correlation	
eigenvalues,	near	the	locations	of	the	2010	El	Mayor	Cucupah;	1992	Landers	+	1999	Hector	
Mine;	1952	Kern	County;	and	2019	Ridgecrest	earthquakes.	 	Small	earthquake	activity	at	
locations	with	 (hot=reds/cool=blues)	 color	 is	 	positively	 correlated	with	 activity	 at	 other	
(hot/cool)	color	locations	and	anticorrelated	with	activity	at	(cool/hot)	color	locations.		a)	El	
Mayor	 Cucupah	 pattern(6.22%	of	 total	 correlation).	 	 b)	Landers-Hector	 pattern	 (5.5%	of	
total	correlation).		c)	Kern	County	pattern	(5.3%	of	total	correlation).		d)	Ridgecrest	pattern	
(3.63%	of	total	correlation).				Region	of	computation	is	shown	as	the	shaded	regions	in	the	
figures,	within	5o	latitude	and	5o	longitude	of	Los	Angeles,	CA.	
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Figure	2.	 	Weighted	correlation	value	c(t)	 	as	a	function	of	time	for	the	California	region	
shown	as	the	shaded	regions	in	Figure	1.		Computed	according	to	equations	(3)-(4).		Vertical	
dashed	red	 lines	represent	 the	 four	 large	earthquakes	having	magnitudes	M>7.0		Vertical	
black	dotted	 lines	represent	 significant	magnitude	7.0	>	M	³	 6.0	earthquakes	as	 listed	 in	
Rundle	and	Donnellan	(2020)			
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Figure	3.	 	Red	curve	 is	 the	Receiver	Operating	Characteristic	(ROC)	diagram	for	 the	time	
series	c(t)	 	 shown	 in	Figure	2,	obtained	by	 systematically	varying	 the	decision	 threshold	
𝐷g(𝑇h)	 as	 described	 in	 the	 text	 for	major	 earthquakes	 having	 magnitudes	 M³6.75,	 and	
computing	the	true	positive	rate	(hit	rate	or	recall)	TPR and plotting against the false positive 
rate (1 - specificity) FPR.  The black diagonal	black	line	from	lower	left	to	upper	right	is	the	
random	predictor,	TPR	=	FPR.		To	emphasize	that	the	diagonal	line	does	indeed	represent	
the	ROC	for	a	random	predictor,	we	constructed	500	random	timeseries	by	sampling	from	
c(t)	with	 replacement.	 	 These	 are	 represented	 by	 the	mass	 of	 cyan	 colored	 lines	 in	 the	
figures.		The	1	s		confidence	level	is	indicated	by	the	ellipsoidal	dotted	line	enclosing	the	solid	
black	random	predictor	 line.	 	The	blue	dashed	vertical	and	horizontal	lines	represent	 the	
values	of	TPR	and	FPR	obtained	by	optimizing	the	precision	TP/(TP	+	FP)	for	the	optimal	
value	of	𝐷g(𝑇h).		a)	ROC	for	𝑇h	=	6	months.		b)	ROC	for	𝑇h	=	3	years. 
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Figure	4.		Similar	to	Figure	3,	the	red	curve	in	Figure	4	shows	the	precision	TP/(TP	+	FP)	as	
a	function	of	the	decision	threshold	𝐷g(𝑇h)	applied	to	the	time	series	c(t)		shown	in	Figure	
2.		The solid black 	black	line	is	the	random	predictor.		To	emphasize	that	the	solid	black	line	
does	 indeed	represent	 the	precision	 for	a	random	predictor,	we	constructed	500	random	
timeseries	by	sampling	from	c(t)	with	replacement.		These	are	represented	by	the	mass	of	
cyan	colored	lines	 in	 the	 figures.	 	The	1	s	 	 confidence	 level	 is	 indicated	by	the	ellipsoidal	
dotted	line	enclosing	the	solid	black	random	predictor	line.		The	blue	dashed	vertical	lines	
represent	 the	 optimal	 values	 of	 decision	 threshold	 obtained	 by	 optimizing	 the	 Shannon	
information	entropy,	using	precision	as	the	probability.	a)	𝑇h	=	6	months.		b)	𝑇h	=	3	years. 
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Table	1.		Comparison	of	optimal	data,	obtained	by	optimizing	the	Shannon	information	from	
entropy	 of	 the	 precision	 variable,	 	 to	 random	data.	 	 Optimal	 value	 of	 decision	 threshold	
𝐷g(𝑇h)	is	found	by	this	procedure.		The	null	hypothesis	is	that	our	optimal	precision	data	is	
generated	by	a	 random	process.	 	Thus	we	compare	our	values	 to	 those	generated	by	 the	
random	process	and	calculate	a	P-statistic	based	on	Z-values	using	standard	procedures.	

	

	

	

	

	

	

	


