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Abstract

The empirical constitutive modeling framework of Rate- and State-dependent Friction (RSF) is commonly used to describe the

time-dependent frictional response of fault gouge to perturbations from steady sliding. In a previous study (Ferdowsi & Rubin,

2020), we found that a granular-physics-based model of a fault shear zone, with time-independent properties at the contact

scale, reproduces the phenomenology of laboratory rock and gouge friction experiments in velocity-step and slide-hold protocols.

A few slide-hold-slide simulations further suggested that the granular model might outperform current empirical RSF laws in

describing laboratory data. Here, we explore the behavior of the same model in slide-hold and slide-hold-slide protocols over a

wide range of sliding velocities, hold durations, and system stiffnesses, and provide additional support for this view. We find

that, similar to laboratory data, the rate of stress decay during slide-hold simulations is in general agreement with the “Slip

law” version of the RSF equations, using parameter values determined independently from velocity step tests. During reslides

following long hold times, the model, similar to lab data, produces a nearly constant rate of frictional healing with log hold

time, with that rate being in the range of ˜0.5 - 1 times the RSF “state evolution” parameter b. We also find that, as in

laboratory experiments, the granular layer undergoes log-time compaction during holds. This is consistent with the traditional

understanding of state evolution under the Aging law, even though the associated stress decay is similar to that predicted by

the Slip and not the Aging law.
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Key Points:5

• We examined the behavior of a simulated sheared granular layer with time-independent6

contact-scale properties in slide-hold-slide protocols.7

• The slide-hold simulations with different model stiffnesses mimic the stress decay response8
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Abstract12

The empirical constitutive modeling framework of Rate- and State-dependent Friction (RSF)13

is commonly used to describe the time-dependent frictional response of fault gouge to perturbations14

from steady sliding. In a previous study (Ferdowsi & Rubin, 2020), we found that a granular-15

physics-based model of a fault shear zone, with time-independent properties at the contact scale,16

reproduces the phenomenology of laboratory rock and gouge friction experiments in velocity-step17

and slide-hold protocols. A few slide-hold-slide simulations further suggested that the granular18

model might outperform current empirical RSF laws in describing laboratory data. Here, we explore19

the behavior of the same model in slide-hold and slide-hold-slide protocols over a wide range of20

sliding velocities, hold durations, and system stiffnesses, and provide additional support for this21

view. We find that, similar to laboratory data, the rate of stress decay during slide-hold simulations22

is in general agreement with the “Slip law” version of the RSF equations, using parameter values23

determined independently from velocity step tests. During reslides following long hold times, the24

model, similar to lab data, produces a nearly constant rate of frictional healing with log hold time,25

with that rate being in the range of ∼0.5− 1 times the RSF “state evolution” parameter b. We also26

find that, as in laboratory experiments, the granular layer undergoes log-time compaction during27

holds. This is consistent with the traditional understanding of state evolution under the Aging law,28

even though the associated stress decay is similar to that predicted by the Slip and not the Aging29

law.30

1 Introduction31

The constitutive framework of Rate- and State-dependent Friction is often used for modeling tran-32

sient frictional behavior of rocks and other Earth materials (e.g., sediment, glacial till), and for33

simulating frictional instabilities relevant to earthquakes, landslides and earthflows (J. H. Dieterich,34

1992, 1978, 1979; J. H. Dieterich et al., 1981; Ruina, 1983; J. Dieterich, 1994; Marone, 1998;35

J. H. Dieterich & Kilgore, 1996; Viesca, 2016; Handwerger et al., 2016; McCarthy et al., 2017). A36

complete prescription of RSF requires an equation for the evolution of the “state variable” defining37

the “state” of the sliding interface. Existing versions of this equation are largely empirical, differ38

fundamentally in the extent to which slip or elapsed time is responsible for state evolution, and fail39

to satisfactorily match the suite of laboratory experiments they were designed to describe.40

A popular concept has been that in the absence of sliding, state evolution (frictional strength-41

ening, in such cases) is fundamentally a time-dependent process (J. H. Dieterich, 1972). This hy-42

pothesis has received support first from the observed logarithmic-with-time growth of contact area43

between transparent samples of PMMA (Polymethyl methacrylate), due to plastic deformation of44

contacting asperities (J. H. Dieterich & Kilgore, 1994), and more recently from the logarithmic-45

with-time increase in acoustic transmissivity across frictional interfaces in rock (Nagata et al., 2012).46

Log-time frictional strengthening of stationary surfaces has been shown to also result from increased47

chemical bonding (Li et al., 2011). The log-time increase in both contact area and chemical bonding48

have been shown to have a sound theoretical basis (Berthoud et al., 1999; Baumberger & Caroli,49

2006; Liu & Szlufarska, 2012). Such behavior is embodied in the “Aging” (or “Dieterich”) equation50

for state evolution (Ruina, 1983). Despite its theoretical basis, however, the Aging law accurately51

describes almost no rock or gouge friction data other than the observed increase in “static” fric-52

tion with the logarithm of hold time in laboratory slide-hold-slide experiments (as measured by the53

friction peak upon resliding).54

In contrast, a second popular equation for state evolution (the “Slip” or “Ruina” law) has no55

well-established theoretical justification, but does a remarkably good job describing the results of56

laboratory velocity-step experiments, as well as the stress decay during the hold portion of slide-57

hold-slide experiments (Ruina, 1983; Nakatani, 2001; Bhattacharya et al., 2015, 2017). The Aging58

and Slip laws are asymptotically identical for small perturbations from steady-state sliding, but59

diverge as the sliding deviates further from steady state. Notably, unlike the Aging law, the Slip60

law predicts no state evolution in the absence of slip. Nonetheless, the Slip law can still generate an61

increase in frictional strength approximately as log hold time during slide-hold-slide experiments,62
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due to the small amount of slip accompanying the stress decay during holds applied by an elastic63

testing machine (Ruina, 1983).64

The lack of a physics-based theory for transient friction of rock has motivated exploring the65

physical and chemical origins of rate-state friction in a variety of scientific communities, and has66

also brought significant attention to the contributions of the quantity (contact area) versus the quality67

(shear strength) of contact asperities to the state of a frictional interface (Li et al., 2011; Chen68

& Spiers, 2016; Tian et al., 2017, 2018; Thom et al., 2018). However, future investigations are69

needed to address the implications of asperity-scale (sometimes single-asperity-scale) observations70

for the transient frictional behavior at the macroscopic scale. In addition, more work is necessary71

to determine if any of the single-asperity-scale observations may reproduce or explain the transient72

frictional behavior of rock and gouge materials in the lab.73

In a previous study, we used the discrete element method to simulate the transient frictional74

behavior of a sheared granular gouge layer in a loading configuration that mimicked traditional rock75

friction experiments (Ferdowsi & Rubin, 2020). We intentionally implemented constant Coulomb76

friction and no time-dependence of the properties at grain-grain contacts. We then subjected this77

simulated fault gouge to a series of velocity-stepping protocols. It is noteworthy that most labo-78

ratory rock friction experiments become to some extent granular gouge experiments after a short79

shearing displacement, as a result of wear products that develop on even initially bare rock sliding80

surfaces, and that the RSF phenomenology is observed in both those experiments that start with81

bare rock surfaces and those that start with a synthetic gouge layer (Marone, 1998). We found82

that the sheared granular model, like the Slip law for state evolution, successfully reproduces the83

characteristic transient frictional response of rock and gouge observed in laboratory velocity-step84

tests. Furthermore, in that study we investigated a limited number of slide-hold and slide-hold-slide85

(SHS) tests, and found that the stress decay during the holds were consistent with the predictions86

of the Slip law, which itself is largely consistent with the stress decay observed in laboratory slide-87

hold experiments. During the reslides, on the other hand, the simulations deviated from the Slip88

law prediction, and it did so in a manner that seemed more consistent with laboratory experiments.89

Together, these results suggested that the granular flow model might do a better job of describing90

(room temperature, nominally dry) rock and gouge friction experiments than the existing, largely91

empirical RSF equations. This is surprising. By eliminating time-dependent chemical reactions and92

plasticity at grain/grain contacts, we are dispensing with what is traditionally considered to be the93

source of the rate- and state-dependence of rock friction. All the velocity-dependence and transient94

response of the granular flow model results from momentum transfer between grains, even at our95

lowest imposed sliding velocities of 10−4 m/s.96

The purpose of the present paper is to further test the granular flow model as a descriptor of97

rock friction by more thoroughly examining SHS protocols. Most importantly, for comparison to98

lab data, we explore a wider range of system stiffnesses. All the SHS simulations in Ferdowsi and99

Rubin (2020) were conducted at the highest stiffness we could achieve, that limit being set by the100

elastic stiffness of the gouge layer itself. For velocity-step tests this is desirable; a high stiffness101

ensures that the inelastic sliding velocity is always nearly the load point velocity, which allows102

one to infer the RSF parameters directly from the transient frictional response without having to103

account for a varying velocity. However, for slide-hold tests the inelastic velocity during the hold is104

always different from the (zero) load-point velocity, and this velocity is controlled to a large extent105

by the system stiffness. Because the amount of slip during the load-point hold has been used to106

help distinguish between the roles of slip and time in frictional healing (Beeler et al., 1994), in this107

paper we use two additional stiffnesses more appropriate for those laboratory experiments. We also108

employ a wider range of sliding velocities than in Ferdowsi and Rubin (2020), as low as 2 mm/s.109

This is closer to but still somewhat high by laboratory standards. We return to these points in Section110

3 of the manuscript.111

If, in the face of these more stringent SHS tests, the physics-based granular flow model con-112

tinues to perform well relative to the the empirical RSF equations, it could help further develop our113

understanding of the processes underlying rate-state friction. In addition, if by interrogating the114

model output we are also able to understand the physics underlying the transient response of the115
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model to velocity perturbations, it might allow the development of approximate equations that could116

be used in numerical simulations of fault slip as a substitute for the RSF equations currently in use.117

This provides the motivation, in Section 5, for using the SHS simulations to further explore the pos-118

sibility that the direct velocity-dependence of friction in the granular simulations can be understood119

in terms of the kinetic energy of the gouge particles (Ferdowsi & Rubin, 2020).120

We note that even if the granular model is successful in this sense, this does not imply that121

time-dependent physical and chemical processes at grain contacts are irrelevant. Indeed, numerous122

experiments have shown that chemical environment affects the transient behavior of frictional inter-123

faces (Frye & Marone, 2002, e.g.). However, at the moment we lack a physical understanding of the124

source of RSF (in the sense of also matching most lab friction data) in any system, experimental or125

numerical. If we are able to achieve this understanding for the inert granular system, this could shed126

light on the origins of similar behavior in quite different systems. For this reason the results of this127

study could be of interest to researchers in the fields of granular physics and glassy systems, as well128

as, given the ubiquity of granular material in fault zones, researchers in fault mechanics.129

This paper is organized as follows: In Section 2, we describe the relevant aspects of rate-130

state friction, including those aspects that have been seen previously in simulations of granular131

flow. Section 3 describes the computational model, and important dimensionless parameters that132

can be used to judge how closely our simulations adhere to the laboratory experiments we compare133

them to. Section 4 comprises the bulk of the paper - results of the slide-hold and slide-hold-slide134

simulations and their comparison to relevant lab experiments and models of RSF. Finally, Section 5135

looks at the energetics of the slide-hold simulations, with an eye toward further evaluating the idea136

that the granular kinetic energy can be used to understand the source of the instantaneous velocity-137

dependence of friction in these simulations.138

2 Rate- and State-Dependent Friction background139

The empirical framework of rate- and state-dependent friction describes the resistance to sliding
as a function two variables: The sliding rate, V , and “something else”, commonly referred to as the
“state variable” θ, that describes the “state” of the sliding interface. In its simplest form, RSF
consists of two equations. The first of these is the “friction equation” alluded to above:

µ = µ∗ + a log
V
V∗

+ b log
θ
θ∗

. (1)

Here µ∗ is the nominal steady-state coefficient of friction at the reference velocity V∗ and state140

θ∗. The RSF parameters a and b control the magnitude of velocity- and state-dependence of the141

frictional strength. The second equation is the “state evolution law” describing the time evolution of142

the state variable θ. The two commonly used forms are:143

Aging Law:
dθ
dt

= 1− Vθ
Dc

(2)

Slip Law:
dθ
dt

= −Vθ
Dc

ln
Vθ
Dc

(3)

where Dc is a characteristic slip distance (J. H. Dieterich, 1979; Ruina, 1983). Eq. 2 is often referred144

to as the Aging law, as state can evolve with time in the absence of slip; Eq. 3 is often referred to145

as the Slip law, as state evolves only with slip (θ̇ = 0 when V = 0). In general, more than one146

state variable might be required to adequately describe friction as observed in the laboratory (Ruina,147

1983; Ikari et al., 2016).148

Previous studies have demonstrated that neither the Aging law nor the Slip law adequately de-149

scribes the full range of laboratory velocity-stepping and slide-hold-slide loading protocols (Beeler150

et al., 1994; Kato & Tullis, 2001). Velocity-stepping experiments with a sufficiently stiff system151
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show that following a change in velocity, friction approaches its new steady-state value quasi-152

exponentially over a characteristic slip distance that is independent of both the magnitude and the153

sign of the velocity step (Ruina, 1983; Marone, 1998; Blanpied et al., 1998; Bhattacharya et al.,154

2015). This observation holds for both bare rock and gouge samples, and it is consistent with the155

Slip law prediction for state evolution because the Slip law was designed with that transient behavior156

in mind (Ruina, 1983; Nakatani, 2001). However, the Aging law predicts a strongly asymmetric and157

magnitude-dependent transient frictional response to velocity step increases and decreases, behavior158

that is completely inconsistent with laboratory data (Nakatani, 2001).159

The Aging law was introduced primarily to account for the observation that in SHS experi-160

ments, beyond a “cut-off time” that is typically of order 1 s, the peak stress upon resliding increases161

approximately as the logarithm of the hold time (J. H. Dieterich, 1979; J. H. Dieterich & Kilgore,162

1994; Marone & Saffer, 2015; Carpenter et al., 2016). However, Bhattacharya et al. (2017) rean-163

alyzed the experimental SHS data of Beeler et al. (1994), conducted using two different machine164

stiffnesses (and hence two different amounts of interfacial slip during the load-point hold, as the165

loading machine and rock sample elastically unload), and found that the log-time increase in peak166

stress upon resliding could be fit about as well by the Slip law as by the Aging law. Bhattacharya167

et al. (2017) further showed that the nearly logarithmic-with-time stress decay during the load-point168

holds could be well modeled by the Slip law, which predicts relatively little state evolution owing to169

the small amount of slip. In contrast, this log-time stress decay is completely inconsistent with the170

Aging law, which predicts too much strengthening (state evolution) during the holds, and a rate of171

stress decay that approaches zero as hold time increases (for a/b < 1, as was the case in these exper-172

iments). Despite the failure of the Aging law to fit both velocity-step tests and slide-hold tests, most173

theoretical justifications for the evolution of state presuppose mechanisms of time-dependent heal-174

ing as embodied by the Aging law (e.g., Baumberger et al., 1999). But even the Slip law is unable175

to model data from both the hold and reslide portions of SHS tests (Bhattacharya et al., 2017).176

2.1 Granular rate- and state-dependent friction177

Both the empirical nature and the inadequacies of the existing RSF equations motivated our178

previous study, in which we modeled the behavior of a granular gouge layer with no time-dependent179

plasticity or chemistry at the grain contacts (Ferdowsi & Rubin, 2020). We subjected the gouge layer180

to velocity-step numerical protocols over load-point velocities Vlp from 10−4 to 2 m/s and normal181

stresses σn from 1 to 25 MPa. We found that, in agreement with RSF and multiple previous DEM182

modeling studies, the simulated granular layer shows a “direct velocity effect” (i.e., an immediate183

change in friction of the same sign as the imposed velocity step), that is then followed by a gradual184

“state evolution effect” as friction evolves in the opposite sense toward its new steady-state value185

(Morgan, 2004; Hatano, 2009; Abe et al., 2002). We further found that the magnitudes of these186

frictional transients were proportional to the magnitudes of the logarithm of the velocity change, as187

in RSF, with values of a and b in equation 1 of ∼0.02, not far from values found in the lab.188

We also observed that the granular model appeared be very similar to lab data during slide-hold189

tests, in that the stress decay during the hold could be well-modeled by the Slip law for state evolu-190

tion when using parameter values determined independently from velocity-step tests (Bhattacharya191

et al., 2017, 2021). The results of our preliminary SHS simulations further indicated that the peak192

stress upon the reslide exceeds the prediction of the Slip law, using the same parameters that fit193

the hold well. This is similar to behavior observed in lab data (Bhattacharya et al., 2017). Note194

that some previous studies also either conceptually or qualitatively showed that frictional healing195

can occur during SHS tests as a result of compaction within the fault gouge (Sleep, 1995, 1997;196

Nakatani, 1998; Chen et al., 2020). However, as we noted earlier, the simulations of Ferdowsi and197

Rubin (2020) employed a stiffness that greatly exceeds those that can be achieved in the laboratory.198

In the current study we also use stiffnesses more similar to laboratory tests.199
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3 The computational model200

We have performed the Discrete Element Method (DEM) simulations reported in this study us-201

ing the granular module of LAMMPS (Large scale Atomic/Molecular Massively Parallel Simulator),202

a multi-scale computational platform developed and maintained by Sandia National Laboratories203

(http://lammps.sandia.gov) (Plimpton, 1995). Our model is made of a packing of 4815204

grains, of which there are 4527 in the gouge layer, and 288 in the top and bottom layers (Figure 1).205

The grains in those top and bottom layers form rigid blocks parallel to the gouge layer and are used206

to confine and shear the gouge. The grains in the rigid blocks all have a diameter d = 5 mm, whereas207

those in the gouge layer have a polydisperse, Gaussian-like particle size distribution with diameters208

(d) from 1 to 5 mm, with a mean diameter (Dmean) of 3 mm. Grain density and Young’s modulus209

are modeled after glass beads (Table S1). The model domain is rectangular with periodic boundary210

conditions applied in the x and y directions, with domain size Lx = Ly = 1.5Lz = 20 Dmean.

Figure 1. A visualization of the granular gouge simulation. Colors show the velocity of each grain in the x

direction, averaged over an upper-plate sliding distance of Dmean during steady sliding at a driving velocity of

Vi = 2× 10−4 m/s.

211

The system is initially prepared by randomly inserting (under gravity) grains in the simulation212

box with a desired initial packing fraction of ∼0.5. The system is then allowed to relax for about 106
213

time steps, after which it is subjected to confining pressures σn = 5 MPa. The confining pressure214

is applied for one minute, by which time the fast phase of compaction is completed. The confined215

gouge sample is then subjected to shearing at a desired driving velocity imposed by a linear spring216

attached to the top rigid plate, while the vertical position of the top wall is adjusted to maintain a217

constant confining pressure.218

We model grains as compressible elastic spheres that interact with each other when they are in219

contact via the Hertz-Mindlin model (Johnson, 1987; Landau & Lifshitz, 1959; Mindlin, 1949). The220

full implementation of the granular physics model used here is presented in section 1 of the Supple-221

mentary Materials. The model essentially solves the linear vector equation F = ma for each grain,222

along with its angular counterpart, with the simplification that the model does not track wave prop-223

agation through individual grains. In the simulations, slip occurs at grain contacts when the local224

shear stress exceeds the specified (constant) local friction coefficient. Energy loss at contacts is char-225

acterized by the “restitution coefficient”, which potentially varies from 0 (complete energy loss) to 1226

(zero loss). The majority of the simulations in this study were performed with a very high restitution227

coefficient of ϵn = 0.98, corresponding roughly to performing experiments on gouge saturated with228

dry air. However, we also have run a series of slide-hold simulations with a much lower restitution229

coefficient of ϵn = 0.3. Consistent with previous DEM studies at low sliding speeds, we find that the230

adopted value of the restitution coefficient appears to have very little influence on the macroscopic231

behavior of systems in the dense granular flow regime (Gaume et al., 2011; da Cruz et al., 2005;232

Silbert et al., 2001; Ferdowsi & Rubin, 2020) (see also Figure 9 of this paper). The full details of the233

granular module of LAMMPS are described in the LAMMPS manual and several references (Zhang &234
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Makse, 2005; Silbert et al., 2001; Brilliantov et al., 1996). Unless otherwise specified in this paper,235

all details of the present model, except for the values of pulling spring stiffness, are identical to the236

“default” model of Ferdowsi and Rubin (2020).237

The relation of the velocity V in equations (1)–(3) to the granular simulations merits some238

discussion. In particular, this V is not the velocity of the upper (driving) plate. In laboratory experi-239

ments, slip parallel to the frictional interface is monitored between two points on opposite sides of,240

and some distance from, that interface, and the actual (inelastic) slip δ is estimated from241

δ = δlp − δel = δlp − τ/k ;

τ = k(δlp − δ) . (4)

Here δlp is the measured “load-point” displacement, δel is the elastic distortion of the system be-242

tween the monitoring points resulting from stress changes, τ is the measured stress, and k is the243

elastic stiffness of the combined testing apparatus plus sample between the monitoring points (units244

of stress/distance). Taking the time-derivative of (4) leads to an estimate of the sliding speed as a245

function of measured quantities. Conceptually, δ in lab experiments is often treated as occurring246

on a discrete plane, but, just as in our numerical simulations, it actually occurs over a region whose247

thickness is a priori unknown.248

We treat our model output in the same way. δlp is the displacement of the end of the spring at
which the velocity is imposed, and τ is the spring force divided by the 6 cm × 6 cm surface area
of the driving plate. The effective stiffness k is given by treating the spring and gouge as being in
series:

k =
kspkH
ksp + kH

(5)

where ksp and kH are the spring and gouge stiffness, respectively, and H denotes the gouge thick-249

ness. Equivalently, we could treat the “load-point” displacement δlp as being the measured displace-250

ment of the driving plate, in which case k = kH (showing, after insertion into (4) and differentiating,251

that V is not the velocity of the upper plate if the stress is changing, as this changes the elastic252

distortion of the gouge).253

The shear modulus of the gouge layer can be estimated from the initially linear (nearly elastic)254

portion of the loading stress-strain curve at the start of a steady-sliding test. In Fig. B1 of Ferdowsi255

and Rubin (2020), we show the sensitivity of the gouge shear modulus to hold time duration in SHS256

tests, and we find that at 5 MPa GH ≈ 270 − 310 MPa regardless of hold time. From the value257

of shear modulus GH ≈ 300 MPa, the stiffness kH can be determined as kH = GH /H = 7.3 × 109
258

Pa/m, where H = 0.04 m is the gouge thickness. We can further determine ksp in Pa/m from the259

spring stiffness input, kpull , in LAMMPS in units of N/m, by dividing kpull by the sample surface260

area. We use 3 pulling spring stiffnesses: kpull = 1 × 1010,8 × 105, 2.7 × 104 N/m corresponding261

to dimensionless system stiffness k̄d ≡ kDc/(bσ ) ≈ 425, 12, 0.4, respectively, where the “≈” sign262

indicates that the values of the normalizing constants b and Dc, determined from fitting simulated263

velocity-step tests, are known only to within about 10%. The dimensionless stiffness k̄d ≈ 425 rep-264

resents the approximate upper bound for what we can achieve; kpull = 1010 N/m is large enough that265

essentially all the elastic compliance comes from the gouge. The dimensionless system stiffnesses266

of k̄d ≈ 12 and 0.4 were chosen to be close to the values of k̄ in the SHS experiments performed on267

the rotary shear apparatus of Beeler et al. (1994), to which we compare some of our granular model268

observations. After performing the granular simulations reported in this work, our estimates of k̄d269

for those lab data, based on the analysis of Bhattacharya et al. (2021), were reduced by 1/3 from270

their initial values, to k̄d ≈ 8 and 0.27, so the match with our simulations is not exact. For analysis271

of our simulation data we used values of Dc = 1.77Dmean = 0.0053 m, a = 0.0247, and b = 0.0178272

which were obtained from velocity-stepping simulations (Ferdowsi & Rubin, 2020).273

Friction in our simulations is defined as the ratio of the shear to normal force exerted on the274

upper rigid block by the gouge grains in contact with it. If accelerations of the upper plate are unim-275

portant, this shear force can be equated with the force applied by the pulling spring in (4). If the276

plate velocity suddenly changes to or from ∼1 m/s, this assumption is violated and wave propagation277
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within the gouge must be considered (Ferdowsi & Rubin, 2020, Appendix B). The SHS simulations278

reported here were run with initial steady-state velocities of Vi = Vlp = 2 × 10−3, 2 × 10−2, and279

10−1 m/s, and in most simulations we used a reslide velocity equal to the initial velocity. However,280

in a small number of cases we changed the reslide velocity to search for deviations from the pre-281

dictions of existing RSF equations; any such deviations would be relevant to models of earthquake282

nucleation. We also performed a series of slide-hold simulations at the smaller initial sliding veloc-283

ity of Vi = 2 × 10−4 m/s. In laboratory experiments, the sliding velocity is typically on the order284

of 1 − 10 µm/s; however, running simulations at such velocities is not yet possible with the DEM285

method within reasonable computational costs, provided one uses grain elastic properties and den-286

sities appropriate for quartz-like materials. Our fully parallelized simulations at sliding velocities of287

Vi = 2× 10−2, 2× 10−3 and 2× 10−4 m/s, took about a few days, two weeks, and six weeks of real288

time, respectively, to achieve steady-state friction on Princeton’s PICSciE’s computational cluster.289

The longest holds took 5 months.290

To assess the importance of our deviation from lab-like parameters, we turn to dimensionless291

ratios. The sliding velocity enters only one – the Inertial number, a critical parameter in granular292

flows, defined as In ≡ γ̇Dmean
√
ρ/P ≈ V (Dmean/H)

√
ρ/P , where γ̇ is the local shear rate, the293

approximate equality is appropriate for our loading geometry (we do not see localization in our294

system), P is the confining pressure (synonymous with the normal stress in these simulations), and ρ295

and Dmean are the density and mean diameter of grains, respectively. The inertial number measures296

the ratio of the inertial forces of grains to the confining forces acting on those grains, such that297

small values (In ⪅ 10−3) correspond to the dense, quasi-static regime of shearing that we desire to298

model (da Cruz et al., 2005; Forterre & Pouliquen, 2008). The SHS simulations reported here with299

Vi = 2×10−3 to 10−1 m/s have inertial numbers during steady sliding satisfying∼10−6 ≲ In ≲ 10−4,300

all in this quasi-static regime. Ferdowsi and Rubin (2020) explore the range ∼ 10−7 ≲ In ≲ 10−3
301

during velocity-step tests, and find no significant variation in the RSF parameter values. There is no302

a priori expectation that the RSF parameters will begin to vary at still lower In, but of course one does303

not know this, and testing for systematic changes with Vi provides the motivation for performing304

SHS tests at a range of achievable sliding velocities within the quasi-static regime.305

Confining pressure enters the Inertial number discussed above as P −1/2, and also the “dimen-306

sionless pressure” P̄ = (P /E)2/3, where E is Young’s modulus (50 GPa in our simulations). P̄ is307

a measure of the grain strain at the imposed confining pressure; the 2/3 power is appropriate for308

contacting elastic spheres (Hertzian contacts). With P = 5 MPa, P̄ = 2 × 10−3 in our simulations.309

Ferdowsi and Rubin (2020) explored values 0.7×10−3 ≲ P̄ ≲ 6×10−3 (1 < P < 25 MPa), and found310

only modest variations in the RSF parameter values. Rather than tailor our values of P̄ to individual311

experiments, we chose to maintain the default value of P = 5 MPa in Ferdowsi and Rubin (2020),312

and rely on their observation that the RSF parameters do not seem to be very sensitive to this choice.313

In contrast, there is reason to believe that the choice of system stiffness in our slide-hold and314

SHS simulations is quite important. For the longest (load-point) holds conducted by Beeler et al.315

(1994), one can estimate (from their reported stress drops and stiffnesses) that there was ∼2.4 µm316

of accumulated slip in their high-stiffness case and ∼16 µm of slip in their low-stiffness case. For317

Dc ∼ 2µm (Bhattacharya et al., 2021) this corresponds to roughly 1.2Dc and 8Dc of slip. Given the318

potential importance of slip on the order of Dc to state evolution, this difference is quite significant.319

For a complete list and discussion of the governing dimensionless variables of the model, see Ap-320

pendix A of Ferdowsi and Rubin (2020). As one last point, we note that reducing all length scales321

(the grain size and all model dimensions) by the same factor, while keeping Vi the same, results in322

simulations that are dimensionally identical.323

4 Results and discussion324

4.1 General considerations325

Before proceeding to the results of the granular simulations, it is worth considering what it326

means to “compare” our results to laboratory experiments. The ratio a/b for the granular simulations,327

–8–



manuscript submitted to JGR: Solid Earth

determined from simulated velocity steps, is ∼1.4, and may be fixed by our choice of spherical328

particles, Gaussian-like grain size distribution, and the tangential and normal contact laws we have329

adopted (for example, Ferdowsi and Rubin (2020) found that a more exponential-like grain size330

distribution gave rise to simulations with values of a/b much closer to 1; we did not pursue those here331

because they were noisier and would have required even larger system sizes and more computational332

resources to see clear signals). The value a/b ∼ 1.4 is slightly high by lab standards, and we are333

not aware of lab experiments that push surfaces with such values far enough from steady state to334

be useful for constraining models of state evolution. Therefore we do not necessarily expect our335

granular simulations to match any particular lab experiment. Nonetheless, we were able to claim that336

the simulations successfully capture the phenomenology of laboratory velocity-step experiments.337

This phenomenology entails that the amplitudes of the changes in friction with velocity and state are338

proportional to the logarithm of the velocity step (amplitudes controlled in RSF by the parameters339

a and b), and that friction evolves to its future steady state value over a characteristic slip distance340

(Dc), independent of the size or sign of the velocity step. Because, by design, these attributes of lab341

experiments are replicated by the Slip version of the RSF equations, it was convenient to use Slip342

law fits to our simulation output to determine the values of a, b, and Dc that fit our data well (note343

that absent some conceptual model for friction, we could not even have made the statement above344

that in our simulations “a/b ∼ 1.4”).345

For slide-hold tests the situation is more complicated, because it is less obvious what the “phe-346

nonomenology” of laboratory holds is. Here we made more essential use of comparisons between347

our simulations and the predictions of the Aging and Slip laws for state evolution, on the one hand,348

and comparisons between the Aging and Slip laws and laboratory experiments, on the other. Bhat-349

tacharya et al. (2017; 2021) showed that the stress decay during laboratory holds was fit reasonably350

well by Slip law simulations, using parameter values determined independently from velocity steps,351

and that the Aging law, with its time-dependent healing, predicted too little stress decay. Because352

these features of the lab data were replicated by our numerical simulations, we used this indirect353

comparison (granular simulations to RSF / RSF to lab data) to claim that the granular simulations354

also seemed to do a good job matching laboratory slide-hold experiments (although, as we noted355

previously, the comparison in Ferdowsi and Rubin (2020) was made using a system stiffness that356

exceeds those achievable in the lab). For SHS tests, the salient phenomenology is that the peak357

friction upon resliding increases nearly linearly with the logarithm of hold time. For the Aging law,358

which was designed to produce this behavior, the slope of this increase (suitably normalized) is the359

RSF parameter b, whereas in lab experiments it seems to be variable but roughly a factor of 2 smaller360

(see Section 4.3). So although in this case we could “compare” the slope in our simulations directly361

to lab data without seeming to reference the Aging law, in fact by choosing to compare the slope to362

b we are implicitly making use of the Aging law. That is, absent some moderately successful model363

prediction, it is not apparent what we should be comparing the slope of our healing relation to.364

4.2 Slide-hold simulations365

In this section we present the slide-hold (SH) behavior of the granular model. Since individual366

simulations tend to be somewhat noisy, all simulation signals presented in this manuscript are aver-367

aged over eight different realizations (initial grain arrangements) of the model, all subjected to the368

same boundary conditions. Friction is defined as the ratio of shear to normal stress τ/σ , where τ is369

the shear force per unit area exerted by the gouge particles on the upper (driving) plate, and σ is the370

normal force per unit area on the upper plate.371

Figures 2a-c show the variation of normalized friction with normalized hold time for SH tests,372

with initial sliding velocities of Vi = 2 × 10−3, 2 × 10−2, and 10−1 m/s shown by the cyan, blue,373

and black curves, respectively. Panel (a) shows the results of simulations run with system stiffnesses374

k̄d ≈ 425, while panels (b) and (c) show simulations with system stiffness k̄d ≈ 12 and kd ≈ 0.4,375

respectively. Based on the indicated reductions in friction and the system stiffnesses, the longest376

holds in these simulations correspond to total (inelastic) slips within the gouge layer of roughly377

(from most to least stiff) 0.04Dc, Dc, and 10Dc.378
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Lowering the stiffness delays the onset of stress decay because a given stress reduction then379

requires a longer slip distance; at constant sliding velocity, elasticity dictates that the normalized380

friction change ∆µ/b reaches −1 when thold /(Dc/Vi) = k̄−1, which is roughly when the stress tra-381

jectories in Figure 2 leave their initial plateau (the Slip law predictions for k̄d ≈ 12 and k̄d ≈ 0.4382

have been included in panel (a) for reference). From dimensional analysis, standard RSF (equations383

1–3 with constant parameter values) predicts that the curves for the same k̄ but different Vi overlap384

identically when plotted versus dimensionless hold time t̄hold ≡ thold /(Dc/Vi). Our simulations at385

the three sliding velocities with k̄d ≈ 425 show a stress decay response that is not exactly the same,386

but they are nevertheless similar to each other within their standard deviations. The stress decay387

response for the three velocities differ more significantly at the lower stiffnesses of k̄d ≈ 0.4 and 12.388

Figures 2a-c also include the predictions of the Aging and Slip laws for the stiffnesses used389

in the granular model. These predictions are obtained using the RSF parameter values determined390

independently from Slip law fits to simulated velocity steps performed on the identical granular391

system (Ferdowsi & Rubin, 2020). For k̄d ≈ 425, the stress decay of the granular model is in392

excellent agreement with the Slip law prediction. There is also reasonable agreement for the lower393

stiffnesses of k̄d ≈ 0.4 and 12, where the Slip law prediction generally lies between the curves for394

the different Vi (we return to the differences between the different Vi below). In contrast, for the395

two larger stiffnesses, where the Aging- and Slip-law predictions differ, the Aging-law significantly396

underestimates the stress decay at long hold times. The shallowing slope of the stress decay for397

the Aging law results from its prediction of continual state evolution, θ̇ ≈ 1 in equation 2, even at398

vanishing slip rates. Analytically, the slope of the stress decay at long hold times for the Aging law399

(with a/b > 1) is (1−a/b) when plotted vs. ln(t̄hold), and 2.3(1−a/b) when plotted vs. log10(t̄hold),400

independent of the system stiffness (Bhattacharya et al., 2017, Appendix C). For the Slip law, the401

long-time slope in general depends upon stiffness, but in the “infinite-stiffness limit” it is 2.3(−a/b)402

when when plotted vs. log10(t̄hold) (Bhattacharya et al., 2017), which for the parameter values of403

our granular simulations is 3.6 times larger. All 3 initial velocities for k̄ ≈ 425 in Figure 2a, and the404

corresponding Slip-law prediction, have this “infinite-stiffness limit” slope. For k̄d = 0.4, there is405

sufficiently little reduction in slip speed that the predictions of the Aging and Slip laws are extremely406

similar.407

Because our initial sliding velocities are higher than those typically used in laboratory slide-408

hold experiments, it is important to assess any systematic trends with Vi in the granular simulations.409

At the highest stiffness (k̄ ≈ 425), the curves for the different Vi tend to weave around the Slip-law410

prediction, but they all end up with the same (Slip-law) slope at the longest hold times. At short411

hold times for k̄ ≈ 12 and 0.4, there do not seem to be trends that are monotonic with Vi , with the412

slowest velocity (2× 10−3 m/s) plotting between the two larger velocities. However, at the longest413

hold times in Figure 2b (k̄ ≈ 12), there is a systematic trend of lower stress with lower Vi . Whether414

this trend would persist to longer hold times is not known.415

An example of frictional behavior during a laboratory slide-hold experiment on rock is shown416

in Fig. 2d, from Bhattacharya et al. (2021). The experiment was performed on a granite sample with417

initial sliding velocity Vi = 0.316 µm/s, system stiffness k̄d ≈ 8, and confining stress 25 MPa. The418

Aging and Slip law predictions for the experiment are shown with green and pink lines, respectively.419

These predictions, similar to the RSF predictions for the granular model, are obtained using the RSF420

parameter values determined independently from Slip law fits to velocity-stepping experiments on421

the same sample. Overall, as with the fits to the granular simulations, they indicate that the Aging422

law underestimates the stress decay in the lab at long hold times, while the Slip law provides a very423

good prediction of the behavior. Comparing the behavior of both the lab data and the granular model424

to the Aging and Slip law predictions, especially Figures 2b and 2d with close to the same stiffness,425

we conclude that although the stress decay in the simulations is not strictly log-linear as for the lab426

data, the granular model qualitatively captures the stress decay observed in laboratory slide-hold427

tests.428

The stress decay during slide-hold protocols clearly rules out the Aging law for the evolution429

of state in both the granular model and laboratory experiments. This is despite the fact that log-430

time fault-normal compaction is almost universally observed during laboratory holds under room-431
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Figure 2. The slide-hold behavior: The cyan, blue, and black lines in panels (a-c) show the variation of

friction coefficient, normalized by the RSF parameter b, as a function of normalized hold time, for granular

slide-hold simulations with prior sliding velocities Vi of 2 × 10−3 (cyan), 2 × 10−2 (blue), 10−1 (black) m/s.

Panels (a), (b), and (c) show the behavior of the systems with stiffness k̄d ≈ 425, 12,and 0.4, respectively.

The pink and green lines in panels (a-c) further show the predictions of the Slip and Aging laws, respectively,

using the RSF parameters (Dc = 0.0053 m, a = 0.0247, b = 0.0178) determined independently from Slip-law

fits to velocity-step tests performed on the same model (Ferdowsi & Rubin, 2020). The predictions of the Slip

and Aging laws are shown with different line styles for different system stiffnesses (the Slip law predictions

for k̄ = 12 and 0.4 are included in panel (a) only for reference). Granular simulation results in panels (a-c)

are averaged over 8 different realizations (initial grain arrangements) subjected to the same imposed loading

conditions. Black, blue, and cyan lines show the mean behavior of the realizations for each system, and the

width of the gray, blue, and cyan shades around each line shows the 2-sigma deviations. The confining pressure

in all simulations is 5 MPa. (d) The blue line shows the variation of friction coefficient, normalized by the

RSF parameter b, as a function of normalized hold time, for an experiment performed in the Tullis rotary shear

apparatus at Brown University on a granite sample with prior sliding velocity Vi = 0.316 µm/s. The system

stiffness for this experiment is k̄d ≈ 8, and the confining stress is 25 MPa. As in panels (a-c), the pink and

green lines show predictions of the Slip and Aging laws, respectively, using the RSF parameters (Dc = 2 µm,

a = 0.013, b = 0.016) obtained from Slip-law fits to velocity-step tests on the same experimental sample. We

used the same RSF parameters to calculate the dimensionless stiffness k̄ for the lab data.
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Figure 3. Gouge compaction during slide-holds: The cyan, blue, and black lines in panels (a) & (b) show

the variation of gouge compaction, normalized by the RSF characteristic slip distance Dc, as a function of

normalized hold time, for granular slide-hold simulations with prior driving velocities Vi of 2 × 10−3 (cyan),

2 × 10−2 (blue), and 10−1 (black) m/s. Panel (a) shows the behavior for stiffnesses k̄d ≈ 425 and 12, while

panel (b) shows the behavior of stiffness k̄d ≈ 0.4. The widths of the gray, blue, and cyan shades around the

mean behavior lines indicate 2-sigma deviations. (c) The pink and green lines show the evolution of log(state)

under the Slip and Aging laws, respectively, using the RSF parameters determined independently from Slip-

law fits to velocity-step simulations (Ferdowsi & Rubin, 2020). The state evolutions are scaled by the factor

−d(Hss/Dc)/d logθ ≈ 0.035 (Fig. 2c in Ferdowsi and Rubin (2020)), where the Hss is the steady-state thick-

ness of the granular layer (see text for discussion). Different line styles correspond to different system stiff-

nesses as described in the legend. The filled and empty dots in all panels show the change in gouge thickness

during hold experiments on a granite sample reported by Beeler et al. (1994), who used two different (k̄d ≈ 8

and 0.27) machine stiffnesses. The dots are filled or empty in panels (a) and (b) depending on the machine

stiffness that is most appropriate to compare the granular model behavior to in that panel. An estimated slip-

weakening distance Dc ≈ 2µm is used to normalize compaction data in laboratory experiments (Bhattacharya

et al., 2021). The lab experiments with stiffness k̄d ≈ 0.27 and 8 were performed with sliding velocities Vi = 1

µm/s and 0.32 µm/s, respectively. Both low and high stiffness laboratory experiments were performed at 25

MPa confining pressure.

humidity conditions. This compaction is thought to be consistent with an Aging law-like evolution432

of state; that is, in theoretical justifications of the Aging law, the same mushrooming of highly-433

stressed contacts that is considered to be responsible for log-time increase of true contact area and434

frictional strength, would also lead to log-time compaction (Berthoud et al., 1999; Sleep, 2006).435

The same argument would suggest that if the stress data during holds is well modeled by the Slip436

law, with its relative lack of state evolution, the fault-normal compaction would be much less. This437

potential conflict between the stress and fault-normal displacement data from laboratory holds was438

noted previously by Bhattacharya et al. (2017).439

In our previous work, we observed that in addition to matching the stress decay during labora-440

tory holds, the granular model led to log-time reduction in gouge thickness for k̄d ≈ 425 (Ferdowsi441

& Rubin, 2020). Here we examine the changes in gouge thickness during slide-holds using stiff-442

nesses more appropriate for lab experiments. Figure 3a shows the gouge compaction with hold time443

in the granular model with stiffnesses k̄d ≈ 425 and 12, in comparison to the gouge compaction444

observed in the laboratory for two system stiffnesses k̄d ≈ 8 (filled circles) and 0.27 (lab data from445

Beeler et al. (1994), as reported by Bhattacharya et al. (2017)). The lab experiments were performed446

in a rotary shear apparatus, so there is no need to correct for sample dilation/compaction due to447

a Poisson effect as the loading stress changes (Beeler et al., 1996). The gouge compaction in the448

granular model with the lower stiffness k̄d ≈ 0.4 is shown separately in Fig. 3b for clarity, where449

now the lab data for k̄d ≈ 0.4 are shown as filled circles. These plots indicate that the magnitude450
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of gouge compaction in the granular model is in general agreement with laboratory observations,451

after both are normalized by their appropriate value of Dc. For the granular simulations this is the452

sensible normalization; Ferdowsi and Rubin (2020) found that the ratio of gouge thickness changes453

to Dc was independent of the nominal gouge thickness over the range they explored. For the lab454

data, normalization by Dc is intended to account for the fact that deformation is typically localized455

over a layer of unknown thickness; inherent in this approach is the assumption that both slip and456

compaction are concentrated within this layer. Together, panels (a) and (b) show that gouge com-457

paction in the granular model is much less strongly dependent on system stiffness than is the stress458

decay, and that the normalized rate of compaction with log time is close to that of the lab data (most459

obviously for the simulation with lowest stiffness, panel (b), which is also the simulation for which460

the compaction is most nearly log-linear). The lab data show more of a stiffness-dependent offset461

along the time axis than do the simulations, although the simulations with the lowest Vi of 2×10−3
462

m/s show a modest offset of the proper sign.463

The relatively weak dependence of the compaction rate on stiffness in the granular simulations464

is reminiscent of the Aging-law prediction for the evolution of state θ, because for long Aging-law465

holds θ̇ ∼ 1, independent of all else. Fig. 3c shows the evolution of log(state) as predicted using466

the RSF Aging and Slip laws (in green and red, respectively), for the three stiffnesses used in the467

granular model. To plot log(state) on the same axis as compaction, we use the linear relation between468

steady-state gouge thickness and log velocity found by Ferdowsi and Rubin (2020), combined with469

the RSF relation that at steady state velocity is inversely proportional to state. That is, we multiply470

the computed change in log(state) by the factor −d(Hss/Dc)/d logθ, found to be ∼0.035 in Figure471

2c of their paper, where Hss is the steady-state thickness of the gouge layer. The agreement between472

this Aging law prediction and the lab data, and from comparison to Figures 3a and 3b the agreement473

between the granular simulations and the lab data, is quite remarkable. The evolution of state under474

the Slip law for the lowest stiffness is, as with the stress decay, very similar to that for the Aging law.475

However, as the system stiffness increases, the evolution of state under the Slip law significantly476

decreases because the amount of slip decreases. Translating this state evolution to fault-normal477

compaction as in Figure 3c, the prediction would be that compaction for the Slip law should be478

strongly stiffness-dependent, completely unlike compaction in the simulations and in the lab data.479

All of this serves to emphasize the point that while stress during the holds is fit well by the Slip law,480

compaction during the holds is fit much better by the Aging law prediction of state evolution.481

4.3 Slide-hold-reslide simulations482

We have thus far presented a detailed discussion of the slide-hold behavior of the granular483

simulations. A main motivation for conducting SHS experiments on rock is to better understand484

the fault healing that occurs during interseismic intervals, healing that is necessary for repeated485

earthquakes to occur on the same section of fault. This healing historically has been measured486

by the peak stress ∆µpeak upon resliding following a hold (see the inset in Figure 4a), under the487

assumption that little state evolution occurs in the short time or slip distance between the start of488

the reslide and the peak stress (we leave aside here the question of whether room temperature and489

humidity experiments are relevant to natural faults at depth). Because the Aging law embodies fault490

healing (state evolution) with time even in the absence of slip, for the same parameter values it491

generates more healing during holds than the Slip law. More diagnostically, sufficiently long hold492

times lead to Vθ/Dc≪ 1, so from equation 2 for the Aging law, θ̇ ≈ 1. This means that for long hold493

times the rate of healing with log hold time is independent of how much slip accumulates during494

the hold, and hence it is independent of the elastic stiffness of the loading system (Beeler et al.,495

1994; Bhattacharya et al., 2017). These authors further showed that the Aging law predicts that the496

reduction in log(state) between the start of the reslide and peak stress is independent of hold duration,497

and hence that the predicted change in peak friction with log hold time, d∆µpeak/d ln(t̄hold), equals498

the RSF parameter b (equation (1); note that at peak stress dτ/dt = 0, so from elasticity the sliding499

velocity equals the load-point velocity). This property was exploited by Beeler et al. (1994), who ran500

lab experiments with two loading machine stiffnesses and found that, indeed, for long hold times,501

the rate of healing was independent of stiffness. Bhattacharya et al. (2017) later showed that, for502

the two stiffnesses and hold durations of those experiments, the same stiffness-independent rate of503
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healing could be achieved by the Slip law, but over a more restricted range of RSF parameters. Those504

parameters do not include the ratio of a/b appropriate for our granular simulations.505

Figure 4. Frictional healing in the granular model: Solid circles show ∆µpeak normalized by the RSF pa-

rameter b (estimated from velocity steps), as a function of normalized hold time in granular slide-hold-slide

simulations at Vi = 2 × 10−3, 2 × 10−2, and 10−1 m/s. Panels (a), (b), and (c) show the results for system

stiffnesses of k̄d ≈ 425, 12, and 0.4, respectively. Error bars are 2-sigma deviations of 8 different realizations.

The green and pink lines in each panel show the predictions of the Aging and Slip laws, respectively, for that

specific system stiffness using the RSF parameters obtained from velocity-step tests. The inset in panel (a)

shows the schematic of a slide-hold-slide test and the definition of frictional healing, ∆µpeak . (d) Frictional

healing in the lab: Solid circles show ∆µpeak as a function of normalized hold time, in slide-hold-slide experi-

ments performed on a granite sample at 25 MPa confining pressure (Beeler et al., 1994) with machine stiffness

k̄d ≈ 0.27 and 8, at sliding velocities of Vi = 1 µm/s and 0.32 µm/s, respectively. The green dashed lines show

the evolution of frictional healing, ∆µpeak , normalized by the RSF parameter b = 0.0109 (estimated from the

slope of healing vs. time data in this figure) with a− b = −0.0027 (Bhattacharya et al., 2017) and Dc = 2 µm

(Bhattacharya et al., 2021). These parameters result in normalized stiffness values of k̄d ≈ 0.472 and 14.165

for the Aging law predictions in this plot.

It is well established from decades of laboratory experiments on rock and gouge that the peak506

friction upon resliding increases nearly linearly with log hold time (J. H. Dieterich, 1972; Beeler et507

al., 1994; Baumberger & Caroli, 2006; Marone & Saffer, 2015; Carpenter et al., 2016). The only508

study of which we are aware that compares the observed rate of increase to the Aging law prediction,509

d∆µpeak/d ln(t̄hold) = b, using values of b determined independently from velocity-step tests, is the510

combined work of Ikari et al. (2016) and Carpenter et al. (2016) on natural and synthetic gouge511

materials. Excluding their synthetic clay gouges, for which our granular simulations with spherical512
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grains are likely inappropriate, Ikari et al. (2016) found slopes mostly in the range of ∼0.3b to 0.7b.513

Beeler et al. (1994) found d∆µpeak/d ln(t̄hold) ∼ 0.01 for their granite sample, close to the expected514

value of b for granite, but a slope of ∼0.004 for quartzite, probably a factor of ∼2 lower than the515

expectation for b. Marone and Saffer (2015) found slopes of ∼0.0035, plus or minus several tens of516

percent depending upon Vi , values that seem within the range of Ikari et al. (2016).517

Beyond this, results seem to be limited to single studies. As mentioned previously, Beeler et al.518

(1994) showed that the rate of frictional strengthening d∆µp/d ln(t̄hold) was independent of system519

stiffness, and interpreted this as suggesting that frictional healing depends upon time rather than slip.520

Marone and Saffer (2015) showed that the rate of frictional strengthening in their synthetic gouge521

samples depended upon Vi , increasing by nearly a factor of 2 over the range 1–100 µm/s, indica-522

tive of a velocity-dependence of the RSF parameters or a characteristic velocity in the governing523

equations not captured by the standard RSF equations (1)–(3). However, over the same range of524

velocities Carpenter et al. (2016) found no significant dependence upon Vi .525

Here we present results of granular SHS simulations for a wide range of hold times at Vi =526

2× 10−3, 2× 10−2, and 10−1 m/s. Panels (a), (b) and (c) in Fig. 4 show the changes in peak stress527

with hold time for simulations performed with stiffnesses k̄d ≈ 425, 12, and 0.4, respectively.528

These panels show that for the longest holds, the peak stress increases nearly logarithmically with529

hold time, in qualitative agreement with laboratory rock friction data. In each panel the green and530

red lines indicate the predictions of Aging and Slip law simulations, respectively, using parameter531

values determined from Slip law fits to our velocity-step simulations. For each stiffness (each panel)532

the slope of the green Aging-law prediction is equal to b, when plotted vs. ln(t̄hold) rather than533

log10(t̄hold). Comparison to the granular simulations show that the slope of the log-time healing534

ranges from ∼0.5b to b, also in qualitative agreement with laboratory data. However, unlike the data535

of Beeler et al. (1994), the rate of healing at long hold times differs by nearly factor of 2 between536

the simulations with k̄ ≈ 12 and k̄ ≈ 0.4. In addition, unlike the data of Marone and Saffer (2015),537

but similar to that of Carpenter et al. (2016), there is not an obvious dependence of this slope upon538

Vi .539

In contrast to the Aging law, the Slip law simulations produce a strongly stiffness-dependent540

rate of frictional healing. For k̄ ≈ 425, there is so little slip that there is almost no state evolution541

(healing). For k̄ ≈ 0.4, there is so much slip that the rate of healing is not much less than that for542

the Aging law. Note that the healing in the granular simulations is more than that predicted by the543

Slip law when k̄d ≈ 425 and 12, but less than predicted when k̄d ≈ 0.4. Thus, the observation of544

Ferdowsi and Rubin (2020) that for k̄ ≈ 425 the healing in the granular model lies between the545

Aging and Slip law predictions is not generalizable to all stiffnesses.546

The laboratory rock friction data of Beeler et al. (1994) are shown in Figure 4d. Only (a − b)547

was determined in this study, so for the Aging law simulations shown we take Dc = 2µm determined548

for the same sample by Bhattacharya et al. (2021), and fix b = 0.0109 to match the slope of the549

lab healing curves. This comparison shows that while healing in the lab data leads that of the550

Aging law prediction (for the higher lab stiffness) or is in general agreement with it (for the lower551

stiffness), healing in the granular simulations generally lags the corresponding Aging-law prediction.552

This comparison should be extended to experiments where the RSF parameters were determined553

independently.554

In laboratory slide-hold-slide experiments, the reslide is accompanied by dilation of the gouge555

layer, dilation that continues monotonically beyond the moment of peak stress to the future steady-556

state thickness. We observe the same behavior in our simulations. Figures 5a to 5c show the variation557

of dilation at peak stress in the granular model for the sliding velocities Vi = 0.1, 0.02, and 0.002558

m/s, respectively, for each of the 3 stiffnesses we used. This dilation increases nearly linearly with559

log-hold time. For the simulations with Vi = 0.1 and 0.02, the magnitude of this dilation (at large560

normalized hold times) decreases with increasing system stiffness, opposite to the trend seen in the561

lab data of Beeler et al. (1994) and shown in Fig. 5d. The trend of the change in dilation at peak562

stress with system stiffness for the simulations with Vi = 0.002 m/s is in better agreement with the563

laboratory observations in Fig. 5d. We further normalize the dilation at peak stress by the amount564
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Figure 5. The variation of normalized dilation at peak stress (∆H peak stress / Dc) versus hold time, following

reslides for the granular model with sliding velocities of (a) Vi = 0.1 m/s, (b) Vi = 0.02 m/s, and (c) Vi = 0.002

m/s. The amount of dilation is defined as the change in gouge thickness between the end of the hold and the

moment of peak stress, as in Fig. B1 of Bhattacharya et al. (2017). The simulations are performed at three

different stiffnesses and 5 MPa confining stress. (d) dilation at peak stress (∆H peak stress) in the lab (data of

Beeler et al. (1994)), (e) The ratio of dilation at peak stress (∆H peak stress) to compaction at the end of the

corresponding hold in the granular model (circles) and in the lab (diamonds) (data of Beeler et al. (1994)). The

lab data shown in panels (d) and (e) are reported by Bhattacharya et al. (2017).

of compaction at the end of the corresponding hold. The ratio of dilation/compaction that results565

from this analysis is shown in Fig. 5e, plotted alongside the same quantity observed in the lab data566

of Beeler et al. (1994). Comparing the lab data to the simulations conducted at roughly the same567

stiffnesses, we find that the relative slopes of the log-linear portion of the dilation and compaction in568

both the simulations and lab (normalized hold times ≳ 101) are in the fairly narrow range ∼ 0.4−0.5,569

and are there therefore in qualitative agreement with each other. For shorter hold times, both the lab570

data and simulations show considerable scatter.571

Among other features observed in slide-hold-slide tests, Figure 5 of Marone and Saffer (2015)572

suggests that the slip-weakening distance following the peak stress upon resliding increases with573

hold duration. This feature is inconsistent with the Slip law prediction, but we see evidence of574

similar behavior in our SHS simulations. Figures 6a & b show the variation of friction coefficient575

with sliding distance in the reslide portion of SHS simulations performed after a range of hold times,576

for Vi = 0.1 and 0.02 m/s, referenced to the steady-state friction value at Vi . These signals show577

(more obviously in Fig. 6a) that the slip distance to peak friction increases with increasing hold time,578

as for the Marone and Saffer (2015) data (their Figure 12). Panels c-d in Fig. 6 also include the Slip579

law prediction for a one-order velocity-step increase, normalized to the same peak-residual value as580

the reslide friction signals. These two panels more clearly demonstrate the increase in weakening581

distance with hold time. The reslides at shorter holds have a weakening distance, Dc, roughly equal582

to the distance observed in the velocity-steps. At longer hold times, Dc further increases, although583
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Figure 6. The variation of friction (µ − µss) versus slip distance (Slip / Dc) during the reslide portion of

slide-hold-slide simulations, for different values of normalized hold time thold /(Dc/Vi ) and sliding velocities

of (a) Vi = 0.1 m/s and (b) Vi = 0.02 m/s. Panels (c) and (d) show the signals in panels (a) and (b) with values

normalized by the peak friction value in each simulation. All simulations are performed with stiffness k̄d ≈ 425

at 5 MPa confining stress. The black dashed line in panels (c) and (d) show the Slip law predictions for a one

order of magnitude velocity-step increase, using the RSF parameters that provide good fits to velocity steps of

various sizes performed with the granular model (Ferdowsi & Rubin, 2020). The Slip law prediction is scaled

to the same peak-residual scale as the granular simulation data in the panels. The lines are added to show that

the slip-weakening distance Dc increases with hold duration from a minimum value that is consistent with the

value appropriate for velocity steps.

the amount of increase in Dc in the granular model appears to be less than that observed in lab data.584

Sleep et al. (2000) proposed a model in which delocalization of slip within a granular layer during585

a hold led to an increase in the effective slip-weakening distance after a reslide, as slip gradually586

re-localized. If this explanation is correct, the relatively small increase in Dc that we observe could587

be due to the lack of obvious localization in our simulations.588

In our SHS simulations, we have also investigated whether changing the re-sliding velocity589

changes either the peak friction or the approach to the future steady-state friction. Any behavior that590

deviates from the RSF prediction is relevant to models of earthquake nucleation, as the perimeter of591

an expanding nucleation zone subjects regions that have not slipped for a long time (as in a hold) to592

successively larger velocity jumps (Ampuero & Rubin, 2008). For this purpose, we have run reslide593

simulations after a hold time t̄hold ∼ 1650, with the initial sliding velocity Vi = 0.02 m/s and reslide594

velocities Vr of 0.02, 0.05, 0.1, and 0.3 m/s. In a sense these are velocity-step tests, but run from595

a single value of state that is much larger than the steady-state value at velocity Vi . The results are596

shown in supplementary Fig. S2a, where friction is plotted relative to its future steady-state value.597

The prediction of equation (1), assuming that the change in state between the end of the hold and598

peak stress is either small or independent of the reslide velocity, is that the difference in ∆µpeak599

between two reslide velocities V2 and V1 is equal to b ln(V2/V1). The inset in Fig. S2-a shows that600
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this is very nearly the case, with ∆µpeak increasing linearly with ln(Vr /Vi) with a slope of 0.0155,601

or 87% of the value b = 0.0178 measured in velocity-steps. Furthermore, scaling the ∆µ curves by602

the value [C + ln(Vr /Vi)] in Fig. S2-b, with the value of C = 5 determined empirically (the value of603

∆µpeak/b determined for Vr = Vi), collapses the frictional response for all the reslide velocities onto604

a single curve, consistent with the Slip law prediction. In other words, within the range of velocities605

that we have explored, changing the reslide velocity does not affect the weakening distance Dc in the606

granular model, consistent with the Slip law prediction, and changes the peak friction in accordance607

with standard RSF.608

5 Energetics of granular slide-holds609

Although the exact definition of an effective thermodynamic temperature for granular materials610

is still a matter of much debate (Ono et al., 2002; Blumenfeld & Edwards, 2009; Puckett & Daniels,611

2013; Bi et al., 2015; D. Richard et al., 2021), recent research results suggest that the fluctuating612

kinetic energy in these systems can play a role similar to the effective temperature. For this rea-613

son, the fluctuating kinetic energy in granular systems (that is, the kinetic energy determined after614

subtracting from the velocity vector of each grain the average velocity vector of all the grains in its615

immediate environment) is often referred to as the “granular temperature”, and it has proven to be an616

important control on the rheological behavior of these systems (Campbell, 1990; Losert et al., 2000;617

Kim & Kamrin, 2020). In our previous work, we found that the magnitude of the RSF direct effect618

parameter a in the sheared granular gouge could plausibly be explained as the ratio of the fluctuating619

kinetic energy to the stored potential energy in the system (Ferdowsi & Rubin, 2020), although this620

proposal requires further investigation. We further showed that in the quasi-static shearing regime621

(V ≲ 1 m/s, for a normal stress of 5 MPa), the fluctuating kinetic energy becomes nearly constant,622

which would suggest a nearly constant magnitude of the direct effect, consistent with most labora-623

tory rock and gouge friction experiments (Kilgore et al., 1993; Bhattacharya et al., 2015). A nearly624

constant value of effective granular temperature in the quasi-static regime has also been previously625

reported in experimental granular physics studies (Song et al., 2005; Corwin et al., 2005), although626

more recent studies of granular systems with different loading geometries (i.e., other than tabular627

gouge layers between parallel plates) shows that this behavior could be influenced by localized de-628

formation close to driving boundaries (Gaume et al., 2020; Kim & Kamrin, 2020; P. Richard et al.,629

2020).630

In this work, we further examine the evolution of fluctuating kinetic energy in granular slide-
hold simulations. The instantaneous per-grain fluctuating kinetic energy is defined in the tensorial
form,

δEk(t) =
1
N

N∑
i=1

δv⃗i(t)⊗ δv⃗i(t), (6)

where δv⃗i(t) = v⃗i(t) − v⃗i(zk , t). In these calculations, v⃗i(zk , t) is the instantaneous linear velocity631

field, calculated with coarse-graining of the granular model data, according to v⃗i(zk , t) = (1/Nk)
∑Nk

i=1 v⃗i(t),632

in which vi(t) is the linear velocity of the ith particle within the rectangular cuboid with dimensions633

(Lx, Ly , ∆z = 1.37Dmean), and Nk is the total number of grains within each cuboid.634

The variation of per grain fluctuating energy δEk with hold time for slide-holds with initial635

sliding velocities Vi = 0.1 and 0.02 m/s and three different system stiffnesses are shown in Figs. 7a636

and 7b, respectively. The curves appear somewhat noisy because the individual data points are637

snapshots and not averages over some time window. The results show that with these two initial638

velocities, for moderate hold times δEk decreases log-linearly over about 4 orders of magnitude in639

hold time, and then plateaus at roughly 50% of its initial steady-state value. Decreasing the system640

stiffness delays the onset of the reduction in δEk , presumably because this allows stresses and sliding641

velocities near the prior steady state to persist for longer times, but does not otherwise change the642

shape of the energy reduction curves. This is shown by Fig. 7c, where for both Vi we further multiply643

the normalized hold time t̄hold by k̄2/3
d , resulting in the collapse of all the simulation results for each644

initial velocity (at this point the choice of 2/3 for the power is strictly empirical). Plotting the change645
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Figure 7. The variation of per grain fluctuating kinetic energy (δEk) with hold time in slide-hold simulations

performed with three system stiffnesses k̄d ≈ 425, 12, and 0.4, at two sliding velocities of (a) Vi = 0.1 m/s

and (b) Vi = 0.02 m/s. (c) The variation of δEk with (hold time)× (system stiffness, k̄d )
2
3 for all data shown

in panels (a) and (b). (d) same as panel (c) with δEk referenced to its initial value (δEk,0) for each simulation.

The green lines in panels (c) and (d) show the variation of δEk and δEk − δEk,0 for simulations with sliding

velocity Vi = 2× 10−4 m/s and stiffness k̄d ≈ 425. All simulations are performed at 5 MPa confining stress.

in δEk from its initial steady state value further shows that the onset of the kinetic energy reduction646

is similar for both values of Vi (Figure 7d).647

Figure 7c also shows that although the curves for the lower Vi have a slightly smaller δEk at648

steady state (δEk,ss), for all stiffnesses both Vi appear to plateau to the same value of δEk at large649

hold times. This raises the question of whether there would be any reduction in δEk during the hold650

for values of Vi small enough for δEk,ss to be at or below this plateau value. Ferdowsi and Rubin651

(2020) found that the steady-state value of δEk decreased from about 1.7× 10−5 J at V = 10−1 m/s652

to slightly below 10−5 J at V = 10−4 m/s (triangles in Figure 8b), close to the plateau value of δEk653

in Figure 7c. For this reason we ran slide-hold simulations with V = 2×10−4 m/s, about the lowest654

value that could reach moderate values of t̄hold in a reasonable amount of computation time (about655

1.5 months). For the same reason the simulations were run only at the largest stiffness; this leads656

to the largest reduction in δEk for a given t̄hold . We find that, indeed, δEk for these simulations657

starts near the plateau value for the larger Vi in Figure 7c, and undergoes very little decay during the658

hold. Despite this, the stress decay, when plotted vs. dimensionless hold time, appears very similar659

to that for Vi = 2 × 10−2 and 10−1 m/s (supplementary Fig. S1). This result raises the possibility660

that the value of 0.8 × 10−5 J for δEk represents something of a floor for this granular system, as661

long as stresses are large enough to drive inelastic deformation. Because of the long computation662

times required we have been unable to explore this under conditions of steady-state sliding, but for663

the largest-stiffness holds in Figure 7, the velocities at the end of the simulations were ∼ 10−8−10−7
664

m/s for the different Vi (Fig. 8a). The variation of per grain fluctuation energy versus sliding velocity665
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during holds follows closely the trend we have observed in the steady-state simulations, although it666

extends that trend to much lower velocities (Fig. 8b), and this suggests the sliding velocity is likely667

a primary factor in controlling the fluctuating energy, whether or not the system is at quasi-steady668

state.669

Figure 8. (a) Estimated sliding velocities during the slide-hold simulations with k̄ ≈ 425 and initial sliding

velocities Vi = 0.02 m/s and 0.1 m/s in Figure 2a (solid lines), and the times at which measurements of the

per grain fluctuating kinetic energy (δEk) were made (open circles), as functions of dimensionless hold time.

Determining the slip speed directly from the simulations by taking the time-derivative of equation (4) (with

δlp = 0) results in very noisy velocity histories. Instead, we estimate the slip speed from the Slip law fit to

these data. These estimated velocities equal the actual velocities whenever the simulations and the Slip law

fit (solid red line in Figure 2a) have the same slope at the same value of thold . (b) The variation of per grain

fluctuating kinetic energy with sliding velocity in the slide-hold simulations of panel (a) (magenta and brown

circles) and in steady-state simulations reported in Ferdowsi and Rubin (2020) (blue triangles; the break in slope

just below 1 m/s marks the boundary between the quasi-static and inertial regimes of flow). All simulations are

performed at 5 MPa confining stress.

We do not yet understand what controls the nearly fixed value of the fluctuating kinetic energy670

at long hold times or low steady-state sliding speeds in our simulations. For as long as δEk is nearly671

constant, the energy loss from grain-grain friction and inelastic collisions must be balanced by work672

done on the gouge by the moving upper plate (or a reduction in elastic potential energy, but this is not673

an option during steady sliding, and even during holds, at constant confining pressure this strikes us674

as a less likely source). During load-point holds this work comes from both shearing (equivalent to675

the potential energy loss of the attached spring) and compaction. In these high-stiffness simulations676

the shearing and compaction velocities are of the same order of magnitude. As both decay roughly677

logarithmically with time during the hold, the rate of energy loss must also decay logarithmically678

with time. For our default restitution coefficient ϵ of ∼0.98, collisions are nearly perfectly elastic679

and we presume that most of the energy loss is due to grain-grain friction. To explore the effect of680

increasing the collisional energy loss, we ran simulations with ϵ ∼ 0.3, for k̄d ≈ 12. The results681

of these highly damped simulations are shown in Fig. 9. We find that the stress decay is nearly682

indistinguishable from that with the higher restitution coefficient (Figure 9a), and that while δEk for683

the lower restitution coefficient is offset to lower values, the shape of the curve of fluctuating energy684

with hold time is not much different (Figure 9b). We conclude that within the range explored, the685

choice of restitution coefficient does not significantly influence the mechanical behavior of these686

systems at such low strain rates, consistent with previous results (MiDi, 2004; Ferdowsi & Rubin,687

2020).688

If, as was proposed by Ferdowsi and Rubin (2020), the RSF direct effect parameter a is pro-689

portional to δEk , then Figure 7 suggests that a might vary by a factor of ∼2 over the duration of690
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Figure 9. (a) The variation of friction coefficient, normalized by the RSF parameter b, as a function of

normalized hold time, for granular slide-hold simulations with sliding velocity 10−1 m/s and two restitution

coefficients of ϵ ∼ 0.98 and ϵ ∼ 0.3. (b) The variation of fluctuating kinetic energy with normalized hold time

for the simulations in panel (a). The shaded regions indicate 2-σ standard deviations of 8 different realizations.

The gray curve shows the fluctuating kinetic energy for the simulation with ϵ ∼ 0.98 shifted vertically.

the holds with the larger Vi . One could then ask if the generally good fit of the Slip law, using691

constant parameter values, to the decay of friction during these same holds and to laboratory data,692

as in Figure 2, is really supportive of the Slip law for state evolution (that is, supportive of a model693

in which healing does not occur in the absence of slip). For example, is it possible that the friction694

data could be well fit by the Aging law (that is, by a model in which healing occurs with time even695

in the absence of slip), given the proper velocity-dependence of a? However, we note that for the696

highest-stiffness simulations in Figures 2 and 7, the continual log-linear stress decay continues to be697

well fit by the Slip law with constant parameter values even for dimensionless hold times larger than698

∼100.5, where δEk is essentially constant. In addition, for the simulation with Vi = 2×10−4 m/s in699

supplementary Figure S1, δEk is roughly constant and thold is arguably large enough to show that700

the friction data are more consistent with slip-dependent rather than time-dependent healing. We701

leave further investigation of the potential relation between measures of effective temperature and702

the value of a in granular simulations for future work.703

6 Conclusions704

In this work, we investigated the behavior of a sheared granular layer subjected to loading705

conditions designed to mimic laboratory slide-hold-slide experiments, for a range of sliding veloc-706

ities and system stiffnesses We compared the transient frictional behavior of the model to existing707

rock friction data, as well as to the predictions of standard rate-state friction (RSF) constitutive708

equations. For the past few decades it has been common in the rock deformation and earthquake709

physics communities to interpret the direct rate dependence of RSF as resulting from a thermally-710

activated process involving the breaking of chemical bonds at contacting asperities, and to interpret711

state evolution as due to time-dependent plasticity (or perhaps time-dependent bond strengthening)712

at those asperities. We have removed this basic ingredient from our simulations, and instead ex-713

plored whether transient friction as observed in the laboratory could arise simply from momentum714

transfer in a granular layer with constant friction at grain/grain contacts. Such a granular layer might715

represent a natural fault gouge, or, in the laboratory context, a synthetic gouge layer, a powder that716

arises during slip on initially bare rock surfaces, or, owing to similarities in behavior between gran-717

ular systems and disordered solids (Manning & Liu, 2011; Cubuk et al., 2017), perhaps amorphous718

wear products on those surfaces. Simulated velocity steps in the same granular model have already719

shown a direct velocity-dependence and an opposing state evolution-dependence of friction, each720

proportional to the logarithm of the velocity jump, with magnitudes (the RSF parameters a and b) of721
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∼0.02, not far from lab values. In addition, state evolution following the velocity jumps occurs over722

a slip distance that is independent of the size and sign of the velocity step, consistent with laboratory723

experiments and the Slip law for state evolution. A final motivation for our simulations is that while724

the RSF equations are largely empirical, the granular model is physics-based, and its output allows725

us to investigate and perhaps understand why it behaves as it does.726

The behavior of the granular flow model in slide-hold simulations appears to closely resem-727

ble laboratory experiments in two important respects. First, the continual stress decay during the728

hold is reasonably well modeled by the Slip version of the RSF equations, using parameter values729

determined independently from velocity step tests on the identical system. This is consistent with730

lab data, as is the result that for both the granular simulations and lab data, the Aging version of731

the RSF equations predicts too little stress decay. This is because it predicts too much healing, i.e.732

state evolution, which for the Aging law progresses with time rather than slip (Bhattacharya et al.,733

2017, 2021). Under standard RSF, with no intrinsic velocity scale, the stress decay as a function734

of normalized hold time thold /(Dc/Vi) must be independent of the initial sliding velocity Vi . This735

is approximately the case for our stiffest simulations (k̄ ∼ 425), but larger differences arise for the736

stiffnesses more appropriate for lab experiments (k̄ ∼ 12 and 0.4), where the prediction of the Slip737

law falls roughly between the simulation results. There is not much lab data investigating this ques-738

tion. The experiments of (Marone & Saffer, 2015) on simulated gouge show a modest dependence739

on Vi , when plotted vs. normalized hold time, but the sign of that dependence seems to be opposite740

from our granular simulations. The experiments of Carpenter et al. (2016), however, do not show741

this dependence. The source of the Vi-dependence in the granular simulations, and whether it might742

be related to the variation of δEk for 10−4 ≲ V ≲ 10−1 m/s in Figure 8b, is unknown.743

Second, in both the granular simulations and laboratory experiments, the fault layer undergoes744

compaction roughly linearly with log time. Even the rates are roughly comparable, at ∼ 0.05Dc745

per decade of hold time in Figure 4. Log-time compaction is consistent with standard interpreta-746

tions of the time-dependent Aging law for state evolution (compaction being a proxy for growth747

of true contact area), even though in both the granular simulations and lab experiments the stress748

decay is consistent with the Slip law and not the Aging law. As with the large velocity-step de-749

creases described by Ferdowsi and Rubin (2020), this suggests a decoupling between state evolution750

and changes in fault or gouge thickness, in both the lab and the granular simulations, that seems751

inconsistent with traditional interpretations of RSF (Sleep, 2006, e.g.).752

The reslide portions of our granular slide-hold-slide simulations share with laboratory experi-753

ments the result that, for sufficiently long holds, the peak friction upon resliding (“frictional healing”,754

∆µpeak) increases nearly linearly with the logarithm of hold time (J. H. Dieterich, 1972; Marone et755

al., 1990). For our maximum stiffness and larger lab-like stiffness (k̄ ≈ 12), the long-time healing756

rate d∆µpeak/d ln(t̄hold) is very close to the RSF evolution-effect parameter b, as predicted by the757

Aging law for all stiffnesses, but for our smaller lab-like stiffness (k̄ ≈ 0.4) it is only half that value.758

The range of slopes we find is close to the range ∼ 0.3 − 0.7b seen in a study where the value of759

b was determined independently from velocity-step tests (Ikari et al., 2016; Carpenter et al., 2016).760

However, unlike the lab data of Beeler et al. (1994), we find this slope to be dependent upon the761

stiffness of the testing apparatus, by a factor of 2. System stiffness is potentially important because762

it controls the amount of interfacial slip during the load-point hold; for our longest hold durations763

this slip is ∼Dc for our larger lab-like stiffness, and ∼10Dc for our smaller. However, the effect of764

stiffness on healing rates in our simulations and in lab data seems to be at most rather modest.765

There also appears to be no influence of the initial sliding velocity Vi on the rate of frictional766

healing at long hold times in our SHS simulations. In this respect they are similar to the laboratory767

experiments of Carpenter et al. (2016), but not Marone and Saffer (2015), both conducted in the768

range Vi = 1− 100 µm/s, somewhat below to far below the velocities we could achieve.769

To summarize, the granular model mimics laboratory slide-hold experiments in that the stress770

decay during the hold is well approximated by the Slip law for state evolution, using parameter val-771

ues determined from velocity steps on the same sample. In addition, both the granular simulations772

and laboratory experiments undergo roughly log-time compaction at comparable rates, when those773
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rates are normalized by the appropriate value of Dc. For slide-hold-slide protocols, the granular774

model mimics laboratory experiments in that the rate of healing at sufficiently long hold times is775

roughly linear with log time, with a slope that is near to that observed in the lab (a modest fraction776

of b). Thus, despite several shortcomings, including the use of spherical grains with a geologi-777

cally narrow size distribution, and a range of sliding velocities that, due to computational expense,778

are very high by lab standards, it can still be argued that the granular model does a better job of779

matching laboratory experiments than existing, and empirical, rate-state friction equations. Unlike780

the comparison of velocity-step simulations to lab experiments emphasized by Ferdowsi and Rubin781

(2020), for the SHS protocols there are clearly some failures as well as successes of the granular782

model. It is entirely possible that some of these failures are due to time-dependent contact-scale783

processes in lab experiments that we specifically excluded from our simulations.784

Researchers in the fields of granular physics and granular rheology have previously found that785

the fluctuating kinetic energy, δEk , sometimes referred to as the “granular temperature”, in part786

controls the rheology of these materials in steady-state and some transient regimes (Kim & Kamrin,787

2020; Gaume et al., 2020; Campbell, 1990). In our previous study, we found that although δEk788

varied with confining pressure, the ratio of δEk to elastic strain energy within the gouge varied only789

slightly with pressure and steady-state sliding speed, and was close to the (also nearly constant) value790

of the the direct velocity effect parameter a of the granular layer (Ferdowsi & Rubin, 2020). In that791

paper we evaluated the variation in fluctuating kinetic energy at steady-state shear velocities as low792

as 10−4 m/s. In the slide-hold simulations reported here, we find that δEk becomes even more nearly793

constant down to transient sliding velocities below 10−7 m/s. We also find here that changing the794

damping (energy loss) for grain-grain interactions does not substantially alter the variation of δEk ,795

or the stress decay during holds, for the range of parameters explored. Further understanding what796

controls the changes in fluctuating kinetic energy, its near-constant value in the quasi-static limit,797

and its relation to the direct effect parameter a, may guide future studies of the proper formulations798

of rate-and-state friction laws for describing the transient frictional response of granular layers, and799

for connecting the RSF framework to more physics-based models.800

Additional future research may explore recent definitions of state variable for amorphous ma-801

terials (e.g., D. Richard et al. (2021)) in the context of elastoviscoplastic rheology for soft glassy802

materials (e.g., Fielding (2020)). These works may also address the applications of some of the803

latest developments in constitutive modeling of complex fluids with potentially similar (but as-yet804

unexplored in the context of rock and sediment friction) rate-dependent rheological response and805

hysteresis to rate- and state-dependent behavior of Earth materials. Also, our study here has been806

focused on the stress relaxation and healing behavior of a sheared granular layer that shows velocity-807

strengthening frictional behavior. It has been recently observed that, even without implementing808

any sophisticated or time-dependent grain-contact scale processes in granular simulations, granular809

models that use certain grain shapes (Salerno et al., 2018), or grain-grain contact potentials/laws in810

certain regions of normal pressure and grain stiffness (such as the Hookean contact law, in the grain811

strain range smaller than 10−3 (Kim & Kamrin, 2020; DeGiuli & Wyart, 2017)) show velocity-812

weakening friction in the dense quasi-static flow regime. Exploring the transient rheology of such813

velocity-weakening systems in velocity-step and slide-hold-slide protocols, may provide more in-814

sights into the physics of granular rate-state behavior, and additional opportunities for comparing815

the behavior of the granular model to lab data when both are in the velocity-weakening regime of816

friction.817
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1. Background of the Discrete Element Method (DEM) used in this study

For two spheres {i, j} in contact with each other that have the positions {ri, rj}, and diameters

di and dj, the normal (Fnij
) and tangential (Ftij) forces on particle i in its interaction with particle

j can be calculated from the following equations:

F nij
=
√
δij

√
didj

2(di + dj)
(knδijnij −meffγnvnij

) (1)

F tij =
√
δij

√
didj

2(di + dj)
(−ktutij −meffγtvtij) (2)

in which kn and kt are the normal and tangential stiffness, and are defined as kn = (2/3)E/(1−ν2)

and kt = 2E/(1 + ν)(2 − ν) (Mindlin, 1949). In the relations for the normal and tangential

stiffnesses, E and ν are the Young’s modulus and Poisson’s ratio, respectively, and meff =

mimj/(mi +mj) is defined as the effective mass of the two interacting spheres that have masses

mi and mj. The relative normal and tangential velocities, vnij
and vtij , of the grains used in

Eqs. 1 and 2 are defined as:

vnij
= (vij · nij)nij (3)

vtij = vij − vnij
− 1

2
(ωi + ωj)× rij (4)

in which {vi,vj} are the linear, and {ωi,ωj} are angular components of grain velocities, and

rij = ri − rj , nij = rij/rij, with rij = |rij|, and vij = vi − vj. Additionally, δij is the normal

compression of the grain and is defined as
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δij = 1
2
(di + dj)− rij (5)

In Eqs. 1 and 2, the parameters γn and γt are the normal and tangential damping (viscoelastic)

constants of the grain-grain interaction, respectively; For the choices of these two damping con-

stants, we use the default lammps option where γt = 0.5γn (it has been shown that the choices

of the ratio have little impact on the rheology of granular materials in the dense and quasi-static

regime of shearing of hard particles we explore in this work (Ferdowsi & Rubin, 2020; Gaume

et al., 2011; da Cruz et al., 2005; Silbert et al., 2001)). In the granular module of lammps, the

damping is implemented as a spring and dashpot in parallel for both the normal and tangential

contacts.

Having defined the equations for contact forces and torques on each particle, i, we solve the

Newton’s second law to find the translational and rotational accelerations of particles located in

a gravitational field g,

F tot
i = mig +

∑
j

(
F nij

+ F tij

)
(6)

τ toti = −1

2

∑
j

F tij × rij (7)

Slip occurs at grain contacts when the local shear stress exceeds the specified (constant) local

grain-grain friction coefficient, µg. The value of µg determines the upper limit of the tangential

force between two grains from the Coulomb criterion Ft ≤ µgFn. This tangential force grows

according to the non-linear Hertz-Mindlin contact law up to the point where Ft/Fn = µg. After

this point, the tangential force is held at Ft = µgFn until the point that due to rearrangement

of grains either Ft ≤ µgFn or the contact between grains is lost. While the model solves the
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Newton’s second law for each particle, it does not take into account wave propagation inside the

grains.

Energy loss at contacts in the granular model is characterized by the “restitution coefficient”,

which potentially varies from 0 (complete energy loss) to 1 (zero loss). At the low sliding speeds

of interest the adopted value of “restitution coefficient” appears to have very little influence on

the macroscopic behavior of the system (Gaume et al., 2011; da Cruz et al., 2005; Silbert et al.,

2001). The values of restitution coefficients, εn and εt for the normal and tangential directions

respectively, are controlled by the choices of the damping coefficients γn,t and contact stiffness

kn,t. For Hertzian contact law at the grain-grain scale, the restitution coefficient in the normal

direction is obtained from the equation of relative motion of two spheres in contact:

δ̈ +
E
√

2deff

3meff (1− ν2)

(
δ3/2 +

3

2
A
√
δδ̇

)
= 0 (8)

with the the initial condition δ̇(0) = vn and δ(0) = 0. Further, the variable A is defined as

A = 1
3
(3γt−γn)2
(3γt+2γn)

(
(1−ν2)(1−2ν)

Eν2

)
, and deff = didj/(di + dj) is the effective diameter for spheres of

diameters di and dj. From solving this equation, the normal component of the coefficient of

restitution is defined as the ratio of normal velocity of grains at the end of the collision, defined

as δ̇(tcol), to the initial normal impact velocity of the grains: εn = δ̇(tcol)/δ̇(0). Solving the same

equation also gives the collision time tcol for given choices of the physical properties of grains and

initial velocities that two grains collide. The restitution coefficient in the tangential direction

can be obtained from a similar procedure but with implementing tangential damping coefficient

(Brilliantov et al., 1996). The time step of our simulations is defined as ∆t = tcol/100 , with tcol

evaluated here with the assumption of an impact velocity δ̇(0) of 25 m/s (to be on the safe side for

the choice of the simulation time-step and solve the equations of motions accurately; grain-grain

impact velocities are highly unlikely to achieve 25 m/s at a given time-step in the quasi-static
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simulations reported in this work). The time-step criteria ∆t = tcol/50 is based on previous

values used and recommended by Silbert et al. (2001). The majority of the simulations in this

study were performed with a very high restitution coefficient of εn = 0.98, such that the system

is damped minimally. However, we also have run a series of slide-hold simulations with a much

lower restitution coefficient of εn = 0.3. It can be argued that damping introduces some time-

dependence at the contact scale. However, we have previously tested the transient behavior of the

model considered here using the restitution coefficients that varied from nearly zero (complete

damping) to nearly 1 (no damping) and found that the choice of the restitution coefficient exerted

no significant influence on the system’s behavior in the slow-sliding regime that we have been

interested in exploring here and in the previous work (Ferdowsi & Rubin, 2020). With the very

high choice of the restitution coefficient (εn = 0.98), we refer to the model as practically having

no time-dependence at the contact scale. Further information about the granular module of

lammps can be found in the lammps manual and several references (Zhang & Makse, 2005;

Silbert et al., 2001; Brilliantov et al., 1996). For more details about the implementation of

the model in this manuscript, and a complete list of the governing dimensionless variables, we

refer the reader to the “Computational Model” section and Appendix A of Ferdowsi and Rubin

(2020). All details of the present model, except for the values of pulling spring stiffness or unless

otherwise specified in the following, are identical to the “default” model of our previous paper.

It can be argued that damping introduces some time-dependence at the contact scale. However,

we have previously tested the transient behavior of the model considered here using the restitution

coefficients that varied from nearly zero (complete damping) to nearly 1 (no damping) and found

that the choice of the restitution coefficient exerted no significant influence on the system’s

behavior in the slow-sliding regime that we have been interested in exploring here and in the
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previous work (Ferdowsi & Rubin, 2020). With the very high choice of the restitution coefficient

(εn = 0.98), we refer to the model as practically having no time-dependence at the contact scale.
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Table S1. DEM simulation parameters. If in some limited simulations, different parameter

values are used, they are explicitly mentioned in the text.

Parameter Value

Grain density, ρ 2500 [kg/m3]

Young’s modulus, E 50 [GPa]

Poisson ratio, ν 0.3

Grain-grain friction coefficient, µg 0.5

Confining pressure, σn 5

Coefficient of restitution, εn 0.98

Time step, ∆t 2 × 10−8 [s]
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Figure S1. The variation of friction coefficient in slide-hold simulations with prior sliding

velocities Vi of 2 × 10−4, 2 × 10−3, 2 × 10−2, and 10−1 m/s. All simulations are run with

system stiffness k̄d ≈ 425 at the confining stress 5 MPa. The lines show the mean behavior of

8 realizations for each system, and the width of the shades regions around each line shows the

2-sigma deviations. The pink and green lines in panels (a) & (b) further show the predictions of

the Slip and Aging laws, respectively, using the RSF parameters (Dc = 0.0053 m, a = 0.0247,

b = 0.0178) determined independently from Slip-law fits to velocity-step tests performed on the

same model (Ferdowsi and Rubin, 2020).

References

Brilliantov, N. V., Spahn, F., Hertzsch, J.-M., & Pöschel, T. (1996). Model for collisions in
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,  m/s t̄hold = 1650 Vi = 0.02(a)

,  m/s t̄hold = 1650 Vi = 0.02(b)

Vr /Vi
Δμ

pe
ak

b = 0.0178Slope = 0.0155

Figure S2. The variation of (a) friction (µ − µss) versus slip distance (Slip / Dc), and (b)

normalized friction (µ − µss)/(C + ln(Vr/Vi)) versus slip distance (Slip / Dc), during reslide

portion of slide-hold-slide simulations for normalized hold time t̄hold ≈ 1650, with the initial

sliding velocity, Vi = 0.02 m/s, and different reslide velocities, Vr = 0.05 m/s, 0.1, and 0.3 m/s.

The value of C ∼ 5 is chosen empirically. The inset in panel (a) shows the variation of peak

friction (µ− µss)peak versus the ratio of reslide to initial velocity, Vr/Vi. All simulations are run

with system stiffness k̄d ≈ 425 at the confining stress 5 MPa.
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