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Abstract

Land use change driven by human activities plays a critical role in terrestrial carbon budget through habitats loss and vegetation

change. Despite projections of global population and economic growth under the framework of the shared socioeconomic

pathways (SSPs) have been analyzed, little is known about land use /cover change (LUCC) at a fine spatial resolution and

how carbon pools respond to LUCC under different SSP scenarios. Here, we projected the future global LUCC at 1-km spatial

resolution and 10-year time step from 2010 to 2100, after which its direct impacts on aboveground biomass carbon (AGB)

under SSP scenarios were explored. We found that scenario SSP3 yields the highest global cropland expansion, among which

about 48% is expected to locate in current forest land and 46% locate in current grassland. Scenario SSP1 has the largest

forest expansion, and it is mainly converted from the grassland (54%) and cropland (30%). Due to the spatial change of land

use/cover, global AGB loss is expected to reach about 9.16 Pg C in 2100 under scenario SSP3 while increase about 1.75 Pg

C under scenario SSP1. Africa is expected to undergo 58% loss of AGB under scenario SSP3. Aboveground biomass in Asia

will fix 3.05 Pg C to reverse the AGB loss in 2100 under scenario SSP1. These findings suggest land use development and

management is one of key measures to mitigate negative impacts of LUCC on biomass carbon pool.
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Key Points: 20 

 We propose a land use /cover change (LUCC) assessment framework combines 21 

the Global Change Assessment Model with the Future Land-Use Simulation 22 

model 23 

 We predict the global LUCC at 1‐km spatial resolution and 10‐year time step 24 

from 2010 to 2100, and explore its direct impacts on aboveground biomass 25 

carbon (AGB) 26 

 Africa is expected to undergo 58% loss of AGB under scenario SSP3. 27 

Aboveground biomass in Asia will fix 3.05 Pg C to reverse the AGB loss in 28 

2100 under scenario SSP1 29 

 30 
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Abstract  40 

Land use change driven by human activities plays a critical role in terrestrial carbon 41 

budget through habitats loss and vegetation change. Despite projections of global 42 

population and economic growth under the framework of the shared socioeconomic 43 

pathways (SSPs) have been analyzed, little is known about land use /cover change 44 

(LUCC) at a fine spatial resolution and how carbon pools respond to LUCC under 45 

different SSP scenarios. Here, we projected the future global LUCC at 1‐km spatial 46 

resolution and 10‐year time step from 2010 to 2100, after which its direct impacts on 47 

aboveground biomass carbon (AGB) under SSP scenarios were explored. We found 48 

that scenario SSP3 yields the highest global cropland expansion, among which about 48% 49 

is expected to locate in current forest land and 46% locate in current grassland. Scenario 50 

SSP1 has the largest forest expansion, and it is mainly converted from the grassland 51 

(54%) and cropland (30%). Due to the spatial change of land use/cover, global AGB 52 

loss is expected to reach about 9.16 Pg C in 2100 under scenario SSP3 while increase 53 

about 1.75 Pg C under scenario SSP1. Africa is expected to undergo 58% loss of AGB 54 

under scenario SSP3. Aboveground biomass in Asia will fix 3.05 Pg C to reverse the 55 

AGB loss in 2100 under scenario SSP1. These findings suggest land use development 56 

and management is one of key measures to mitigate negative impacts of LUCC on 57 

biomass carbon pool. 58 

1 Introduction 59 

Ecosystem service losses driven by land use/cover change (LUCC) are increasing as 60 

population and economic growth (Venter et al., 2016; Marques et al., 2019; Ecosystems 61 

and human well-being, 2005). As one of key ecosystem services, biomass carbon 62 

sequestration is also impacted by LUCC. According to previous research, the terrestrial 63 

biosphere has fixing average approximately 2.5 petagrams of carbon per year (Pg C 64 

yr
−1

) which is equal to offset 25% of fossil fuel emissions
4–6

. However, the global net 65 

sink in forest land has reduced approximately 1.3 ± 0.7 Pg C yr
−1

 for 1990 to 2007 due 66 

to tropical land use change (Pan et al., 2011). The expansion of agricultural area and the 67 

change of crop type or agricultural management level lead to the loss of natural 68 

vegetation and further results in losses of biomass carbon in local areas (Lawler et al., 69 

2014; van der Hilst et al., 2014; van der Hilst et al., 2018). Biomass carbon includes 70 

aboveground biomass carbon (hereinafter referred to as AGB) and belowground 71 

biomass carbon (Eggleston, 2006). In this paper, we focus on the AGB as it is directly 72 

influenced by LUCC. For both forest and non-forest biomes, over the period 1993–73 

2012, global AGB is estimated to lose average approximately −0.07 Pg C yr
−1

 globally, 74 

mostly resulting from the loss of tropical forests (Liu et al., 2015). Over the period 75 

2000–2030, urban expansion will result in 1.38 Pg C (0.05 Pg C yr−1) loss of AGB 76 
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within the pan-tropics (Seto et al., 2012). Therefore, it is necessary to estimate the 77 

impacts of LUCC on AGB for a better guidance of future carbon management and land 78 

use policy development. 79 

To reverse the loss of AGB, the selection of future development pathways, which 80 

determine the land use demands, is very important. The shared socioeconomic 81 

pathways (SSPs) describe the potential pathways and uncertainties of policy 82 

assumptions and the socio-economic storylines based on future global society, 83 

population and economic development in the coming century (Riahi et al., 2017; 84 

Kriegler et al., 2014). Relative studies on land use demands and LUCC assessment 85 

framework under SSPs at a global scale are important but still limited, even though 86 

some recent studies have predicted LUCC under SSPs at local-scale (Zhang et al., 2017; 87 

Dong et al., 2018). Although global projections of land use demands under SSPs are 88 

available, they lack of spatial details for biodiversity assessments (Popp et al., 2017) 89 

and climate model projections assessments (Preston et al., 2011). Chen et al. (2020a) 90 

estimated the urban land distribution under SSPs, but the other spatially explicit land 91 

use types are not included. The Land-Use Harmonization (LUH2) project estimates 92 

annually land use fractional patterns for the time period 850-2100 at 0.25° spatial 93 

resolution (Hurtt et al., 2020). However, Li et al. has reported that the land use product 94 

even at a 10-km resolution is not enough to express sufficient spatial details and may 95 

further cause uncertainties in assessing its impacts to environment (Li et al., 2017; 96 

Verburg et al., 2006). Therefore, the spatial explicit LUCC at a fine resolution under 97 

SSPs are important to manifest the impacts of LUCC on AGB.  98 

Here, we presented global LUCC spatially with a resolution of 1-km under SSPs and 99 

explore the direct impacts on AGB. First, the global future land use demands were 100 

estimated based on the Global Change Assessment Model (GCAM) with global land 101 

use in 2010 and projections of population and economics under SSPs. Then, the Future 102 

Land-Use Simulation (FLUS) model was employed to simulate global land use pattern 103 

changes at 1-km spatial resolution and 10‐year time step from 2010 to 2100 based on 104 

land use demands and the driving factors about location and transportation, natural 105 

conditions, global land use and social economic. Finally, we estimated the direct 106 

impacts of LUCC on AGB with available sources from Liu et al. (2015) under different 107 

SSPs.  108 

2 Methods 109 

2.1 The scenario-based LUCC assessment framework 110 

GCAM is an integrated, multisector model reflects the behavior of, and interactions 111 

between five systems: energy, agriculture and land use, water, climate, and economy 112 

(Shi et al., 2017). Among the global assessment models, GCAM model is able to 113 
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express the spatial heterogeneity of land use/cover. Because it can predict the land 114 

use/cover demands of 283 world regions, which combine 32 socioeconomic and 115 

geopolitical regions with 18 agroecological zones (AEZs) (Calvin et al., 2017; Le Page 116 

et al., 2016). It can be coupled to other models for predicting LUCC datasets with 117 

greater resolution and reflect the spatial heterogeneity (Cao et al., 2019; Chen et al., 118 

2020b).  119 

In this paper, by integrating GCAM and the LUCC simulation model FLUS, we 120 

proposed a scenario-based LUCC assessment framework (GCAM-FLUS) (a detailed 121 

flowchart is presented in Figure 1). To accurately estimate the influences of social and 122 

economic development on LUCC, first, we input the factors (urbanization rate, 123 

population and gross domestic product (GDP) under five SSPs) into GCAM. 124 

According to complex socioeconomic assumptions, five systems in GCAM estimate 125 

the impacts of global economy and technology on future land use demands. Based on 126 

geographic location and income level, GCAM model 127 

(http://jgcri.github.io/gcam-doc/overview.html)) aggregates the countries of the world 128 

into 32 macro regions (Fig.S1 in Supplemental Material 2). Therefore, the land use 129 

demands in different macro regions are obtained from GCAM. Second, through the 130 

spatial explicit LUCC model FLUS, the framework realizes the transformation 131 

probabilities predictions of land use types and spatial pattern simulation of future 132 

LUCC in different macro regions with the quantity constraint of land use demands from 133 

GCAM. 134 

 135 

Figure 1. Flowchart of LUCC simulation under SSP scenarios using GCAM-FLUS model. 136 

Specifically, FLUS employs the artificial neural networks (ANNs) to calibrate and 137 

http://jgcri.github.io/gcam-doc/overview.html
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estimate land use suitability probabilities ( ,p ksp
) using a set of spatial driving factors 138 

(e.g., elevation, slope, population, GDP, distance to city center, distance to roads, soil 139 

quality, annual mean temperature, temperature seasonality, annual precipitation, and 140 

precipitation seasonality, listed in Table 1) and land use pattern in 2010. Adaptive 141 

inertial competition mechanisms and roulette selection mechanisms are designed in 142 

FLUS to analyze the influence of the neighborhood land and uncertainty of LUCC (Liu 143 

et al., 2017). Adjustment factor (
t

kInertia
) is the core content of adaptive inertial 144 

competition mechanisms. It is determined according to the difference between the 145 

current land use quantity and the land use demand, and adjusted adaptively in the 146 

iteration, so that the quantity of each type of land is gradually close to the target 147 

quantity in the simulation process: 148 
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where t

kInertia  is adjustment factor of the land use type k  in iteration time t ; 150 

-1t

kD ， -2t

kD  refer to the difference of land use type k  between the current and the 151 

demand number of pixels in iteration time -1t  and iteration time -2t , respectively. 152 

The land use suitability probabilities ( ,p ksp
), neighbourhood effect (  ) factor, 153 

adjustment factor (
t

kinertia
) and development restriction ( c ksc  ) are used to calculate 154 

total probabilities ( ,

t

p kTProb
): 155 

, , , (1 )t t t

p k p k p k k c kTProb sp inertia sc     
      (2) 156 

where ,

t

p kTProb
 is the total probability that pixel p  is transformed into land use 157 

type k  in iteration time t ; 
,

t

p k  is the fraction of existing land use type k  in a 158 

neighborhood consisting of 5 × 5 grids in iteration time t ; c ksc   refers to the 159 

difficulty of transformation. 160 

After the roulette selection, the future spatial pattern of land use in 32 macro regions 161 

can be simulated at a 1‐km spatial resolution and a 10‐year time step from 2020 to 2100 162 

under SSP scenarios. To justify the reliability of the calibrated FLUS model, we 163 
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simulated the land use pattern from 2001 to 2010 and compared it to the actual pattern. 164 

Figure of Merit (FoM) is employed to assess the model capability for identifying LUCC 165 

from 2001 to 2010. The indicator does not have the drawback of overestimation of 166 

accuracy like other traditional verification indicators (such as Kappa coefficient) 167 

(Pontius et al., 2008; Pontius et al., 2011): 168 

/ ( )FoM B A B C D                        (3) 169 

where A  is the area that is observed change while predicted as unchanged; B  is 170 

the area that is observed change and also predicted as changed; C  denotes the area 171 

that is observed change while differs from predicted change; D  refers to the area 172 

that is observed unchange while predicted as changed. 173 

Table 1 174 

Driving factors for estimating land use suitability probabilities in FLUS 175 

Factors Name Year Resolutio

n 

Source 

National 

conditions 

DEM 2000 0.5' Hijmans et al. (2005) 

Slope 2000 0.5' Retrieved from DEM 

 Soil quality 

(nutrient 

availability) 

2008 5' Fischer et al. (2008) 

Soil quality 

(oxygen 

availability to 

roots) 

2008 5' 

Soil quality 

(excess salts) 

2008 5' 

Soil quality 

(workability) 

2008 5' 

 Annual mean 

temperature 

2000 0.5' Hijmans et al. (2005) 

Annual 

precipitation 

2000 0.5' 

Temperature 

seasonality 

2000 0.5' 

Precipitation 

seasonality 

2000 0.5' 

Social 

economic 

GDP 2006 1 km Ghosh et al. (2010) 

 Population 2010 0.5' Landscan 2010 Global 

Population Project 

Location and 

transportation 

Distance to 

city center 

2014 1 km United Nations 

Department of Economic 
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and Social Affairs, 

Population Division 

(2014) 

 Distance to 

roads 

1980-201

0 

1 km NASA, Socioeconomic 

Data and Applications 

Center, Global Roads 

Open Access Data Set, 

version 1 

 176 

2.2 Calibration of initial land amounts for GCAM and estimation of future urban land 177 

demands  178 

In the GCAM, historical land use data are from FAO/GTAP (2010; 2006), SAGE 179 

(Ramankutty and Foley, 1999), and HYDE (Goldewijk, 2001), and they are classified 180 

into 10 types, including urban land, forest, shrub, rock, pasture, grassland, tundra, 181 

desert, ice, and biomass (Kyle et al., 2011). To guarantee data consistency over the land 182 

use simulation framework, we used the MODIS Land Cover Type Product (Friedl et al., 183 

2010) (MCD12Q1; https://lpdaac.usgs.gov/) in 2010 to calibrate the land use types in 184 

GCAM, including eliminate the inconsistencies between those two land use 185 

classification schemes and the discrepancies of land amounts. First, the land use data 186 

are reclassified into six types in harmony with two datasets (see Table 2). Detailed crop 187 

types in GCAM are unified to cropland. Managed and unmanaged pasture, protected 188 

grassland and grassland are reclassified into Grassland. Second, we calibrate the initial 189 

land use data using MCD12Q1 data to establish a series of new GCAM land use inputs. 190 

Based on the unification of classification in Table 1, the land amounts in 2010 of 191 

MODIS data are divided to initial land amounts of detailed types according to the 192 

original proportion of each type in GCAM. 193 

  As a constraint condition, the land use demands estimated by GCAM help to simulate 194 

the spatial distribution of future LUCC and further investigate potential impacts on 195 

global ecosytem and environment. However, the future urban land demands always 196 

remain unchanged in GCAM (Kyle et al., 2011), therefore, calibration should be carried 197 

out accordingly before the land use spatially allocation. Here, the future urban land 198 

demands are derived from the results in our previous study (Chen et al., 2020a), which 199 

adopted the panel data regression to calculate future urban land demands.  200 

Table 2 201 

Reclassification for land use types among GCAM, MODIS and FLUS model in this 202 

research 203 

GCAM land types MODIS FLUS land 

types 

Crop Cropland/natural vegetation Cropland 

https://lpdaac.usgs.gov/


Earth's Future 

Other arable land mosaics 

Biomass 

Managed/unmanaged forest 

 

Evergreen needleleaf forests Forest 

Evergreen broadleaf forests 

Deciduous needleleaf forests 

Deciduous broadleaf forests 

Mixed forests 

Protected shrub/shrub Closed shrublands 

Open shrublands 

Managed/unmanaged 

pasture 

Woody savannas Grassland 

Protected 

grassland/grassland 

Savannas 

Grasslands 

Urban land Urban and built-up lands Urban 

Tundra, ice, rock, desert Snow and ice Barren 

Barren or sparsely vegetated 

None Water bodies Water 

Permanent wetlands 

 204 

2.3 Impacts of LUCC on AGB 205 

In this study, the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) 206 

model was used to estimate the impacts of LUCC on AGB. InVEST model was jointly 207 

designed, developed and maintained by three organizations: the Nature Conservancy, 208 

Stanford University and the World Wide Fund for Nature. It aims to simulate the 209 

changes in the quantity and value of ecosystems services under different land use 210 

scenarios. The Carbon module in the InVEST model directly estimates the impacts of 211 

LUCC on the carbon storage (including AGB, belowground biomass carbon, soil 212 

organic carbon and litter carbon) of terrestrial ecosystems based on carbon density and 213 

land use. Here, the method is introduced to estimate the impacts of LUCC on AGB. 214 

First, we employ the overlay analysis among the Global Ecological Zone map (GEZ, 215 

available at: http://foris.fao.org/static/data/fra2010/ecozones2010.jpg), AGB in 2010 216 

(Liu et al., 2015) and land use in 2010 to calculate the average carbon density of each 217 

land use type in different climate zones. Then, LUCC datasets between 2010 and each 218 

SSP scenario are multiplied by carbon density, respectively (see in fomula (4)). Finally, 219 

the loss of AGB due to LUCC under five SSPs scenarios are estimated in each continent 220 

every 10 years from 2010 to 2100: 221 

                 ,
1 2 , , , 2 , 11 , 1 / ( )m n

t t ik t ik t ik t ik ti kC C N N N                  (4) 222 

where 1 2t tC   denotes the loss of AGB between 2t  and 1t ; ,ik tC  is the known 223 

http://foris.fao.org/static/data/fra2010/ecozones2010.jpg


Earth's Future 

total AGB of land use type k  in ecozone i  when time t ; ,ik tN , , 1ik tN  and , 2ik tN224 

refers to the pixels’ number of land use type k  in ecozone i  when time t , 1t  and 225 

2t , respectively. 226 

3 Results 227 

3.1 Projection of future land use area demands  228 

Our results show that there are distinctive differences of the global land use demands 229 

among the five SSP scenarios (Figure 2). Turning points of land use demands are 230 

observed during the 2060s and 2080s, after which urban and cropland demands are 231 

expected to decline while forest and grassland demands are rising. The cropland 232 

demand is increased by about 30% in 2100 compared with 2010 under scenario SSP3. 233 

For the other scenarios, the demands for cropland are likely to rise before 2070s and 234 

then fall. It shows a significant downward trend and the smallest forest demand 235 

(4.4×10
7 

km
2
) under scenario SSP3, while scenario SSP2 yields the smallest grassland 236 

demand (3.6×10
7 

km
2
). The urban demands under scenarios SSP2, SSP3, and SSP5 237 

show monotonically increasing trends, among which scenario SSP5 is the most 238 

distinctive one with almost twice urban area demand (1.3×106 km2) by the end of this 239 

century compared with that in 2010 (6.7×10
5 
km

2
).  240 

 241 

Figure 2. Projections of land use demands globally for 2010–2100 under SSP 242 

scenarios. 243 

We also found large gap of the land use demands among different regions worldwide. 244 

Three representative regions, namely China, the USA and Brazil, are selected to show 245 
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their distinctive development paths for 2010–2100 (Fig.S2-S4 in Supplemental 246 

Material 2) , respectively. In China, unlike the global and the other two regions, the 247 

demand for forest land shows an upward trend and highly reach 2.3×10
6 

km
2
 under 248 

scenario SSP1 by the end of the century, while urban demand shows a trend of first 249 

growth and then decline, with the turning point in the 2040s or 2050s. In the USA, the 250 

trend of LUCC under each scenario is roughly similar to that of the world. In Brazil, it 251 

is notable that the continual growth of urban demand and the largest demand (3.9×10
4 

252 

km
2
) area are found under scenario SSP3. Scenario SSP3 also yields the dramatic 253 

decline of grassland demand and the smallest demand area (3.5×10
6 
km

2
). 254 

3.2 Global LUCC simulations during 2010 - 2100 255 

  To highlight the change of land use between 2010 and 2100, we employ focal 256 

summation statistics on the results of the simulated LUCC maps with a radius of 15 km. 257 

Figure 3 shows the transition of cropland area in 2100 under scenarios SSP3 and SSP5 258 

in the selected representative regions of China, the USA and Brazil. Results show that 259 

these three regions experience more cropland expansion under scenario SSP3 than that 260 

in SSP5. One potential reason maybe that scenario SSP3 is a regional development 261 

trajectory and has a higher population increasement and larger amount of food demand. 262 

Maps of global LUCC (including cropland, forest, grassland and urban) for each SSP 263 

scenario are shown in Fig.S5-S8 (Supplemental Material 2), respectively. The detailed 264 

information about simulated LUCC between 2010 and 2100 under each SSP are shown 265 

in Fig.S9 (Supplemental Material 2) and statistical analysis for the results within 266 

continental regions are listed in Table S1 (Supplemental Material 1). We find that 267 

scenario SSP3 yields the highest global cropland expansion. Cropland expansion area 268 

mainly distribute in Africa, increased by 33.5%-68.7% in 2100 compared with 2010. 269 

The global forest land area decreases the most under scenario SSP3 while increase 270 

under scenario SSP1. The decrease of forest land in Africa is very obvious, ranging 271 

from -6.5% (SSP1) to -38.6% (SSP3) in 2100 compared with 2010. However, forest 272 

land in Asia and Europe under scenario SSP1 has increased by 5.4% and 6.5%, 273 

respectively. The area of grassland has reduced the most under scenario SSP2. The 274 

grassland area in Africa has a large change which ranges from -14.2% under scenario 275 

SSP2 to 7.9% under scenario SSP3. The global urban area has expanded the most under 276 

scenario SSP5. Among them, North America has the largest expansion area at 272,651 277 

km
2
, and the largest expansion intensity is in Oceania, which is an increase of 178.3% 278 

compared with 2010.  279 

In addition to the spatiotemporal pattern of LUCC, the transfer between land use 280 

types is also very important to assess the AGB budget. In order to facilitate the 281 

following assessment of the impact of LUCC on AGB, we draw a pixel map to describe 282 

land use transfer. Each pixel represents the maximum area of land use transfer that may 283 

occur during 2010-2100 and its corresponding area (Figure 4). In the vertical direction, 284 

we can find that scenario SSP3 will occur the largest cropland expansion, and the 285 
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expansion is mainly due to the occupation of the current forest (48%) and grassland 286 

(46%). Scenario SSP1 has the largest expansion of forest, and it is mainly from the 287 

current grassland (54%), followed by cropland (30%). Scenario SSP5 yields the largest 288 

urban expansion and 60% of the expansion was due to the occupation of cropland. In 289 

the horizontal direction, we can find that the degradation of forest is more obvious 290 

under scenario SSP3, and most of them degenerate into cropland and grassland. 291 

 292 

Figure 3. Global projections of cropland transition between 2010 and 2100 under 293 

scenario SSP3 and SSP5 in representative regions. a China, b the USA, c Brazil. We 294 

adopt focal statistics to deal with the simulated maps for better visualization. The 295 

results show that these three regions experience more cropland expansion under 296 

scenario SSP3 than in SSP5. Cropland area in China are dramatically decrease in SSP5. 297 
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 298 

Figure 4. The maximum area and its interrelated scenario of land use conversion 299 

during 2010 – 2100 under SSP scenarios. 300 

We adopted FoM to quantitatively evaluate the performance of FLUS simulation 301 

model. The range of FoM is between 0 and 1. The higher value means less differences 302 

between the simulation and the observed change. By comparing our simulation land use 303 

patterns with MCD12Q1 land use product in 2010, we estimated the FoM indicator in 304 

32 macro regions (Table 3). The values of FoM in 32 macro regions range from 12% to 305 

37% and their average value is 22%, which is similar to or even higher than other land 306 

use simulation studies. For example, Liu et al. (2017) has simulated multiple LUCC 307 

between 2000 and 2010 in China and the FoM is 19.62 percent. Li et al. (2017) reported 308 

their values of FoM in global 17 regions are about 10- 29 percent. It means the model 309 

has good fit between the simulation and the observed change and has enough accuracy 310 

to simulate future LUCC.  311 

Table 3 312 

The values of Figure of Merit of the GCAM regions for global land use simulation from 313 

2001 to 2010 314 

Region 
Abbreviation FoM 

(%) 
Region 

Abbreviation FoM 

(%) 

Africa_Eastern 

EAF 

24.2  

European Free 

Trade 

Association EFTA 

26.6  

Africa_Northern NAF 23.6  India INDI 27.5  

Africa_Southern RSAF 16.2  Indonesia INDO 12.2  

Africa_Western WAF 29.8  Japan JAP 12.2  

Argentina ARG 12.7  Mexico MEX 23.6  

Australia_NZ ANZ 30.3  Middle East ME 24.6  
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Brazil BRA 30.9  Pakistan PAKI 29.6  

Canada CAN 13.6  Russia RUS 13.6  

Central America 

and Caribbean CAC 
17.9  South Africa 

SAF 
28.7  

Central Asia 

CTA 

36.8  

South 

America_Nort

hern SAN 

11.9  

China 

CHN 

26.3  

South 

America_Sout

hern SAS 

23.2  

Colombia CLM 23.4  South Asia SA 26.1  

EU-12 EU-12 18.1  South Korea KOR 31.7  

EU-15 EU-15 15.0  Southeast Asia SEA 18.6  

Europe_Eastern EURE 21.1  USA USA 21.8  

Europe_Non_EU EURN 20.5     

Note. Region names follow the definition of GCAM4 model region in documentation 315 

for GCAM (http://jgcri.github.io/gcam-doc/overview.html).  316 

Different from other land use products with coarse resolution, the resolution of our 317 

products is 1 km, which can reflect more details of LUCC. In order to intuitively 318 

compare the spatial differences of land use products with different resolutions, we 319 

resampled land use in 2050 under scenario SSP1 to 10km based on the majority values 320 

of the original land use in 10 km
2
-grid. Comparing the land use patterns of three 321 

representative regions: Pearl River Delta in China, California in the United States and 322 

Rio de Janeiro in Brazil (Figure 5), it can be found that the 1-km resolution image can 323 

better express the real distribution of cities, while the 10-km resolution image has 324 

obvious patch effects. This is owing to the scattered pixels around the city are classified 325 

as other land and the final urban area of 10-km resolution will less than that of 1-km 326 

resolution. 327 

 328 

http://jgcri.github.io/gcam-doc/overview.html
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Figure 5. The spatial differences between land use products with 1-km and 10-km 329 

resolution in three representative regions. 330 

3.3 Spatial-explicit AGB loss driven by LUCC 331 

Based on average carbon density of each land use type in different climate zones (see 332 

Methods), the loss of AGB due to LUCC under five SSPs scenarios are mapped in 333 

Figure 6. We find the loss are mainly located in central Africa where is around Congo 334 

Rainforest (approximately 4.58 Pg C loss from 2010 to 2100 under scenario SSP3), 335 

which is consistent with results in Liu et al (Liu et al., 2015) . The changes of AGB 336 

within continents over the period 2010-2100 for the SSP scenarios are shown in Table 4. 337 

The greatest losses of AGB are most likely in Africa, with estimates from 1.22 Pg C 338 

(SSP1) to 5.35Pg C (SSP3) across five SSP scenarios. This may be due to the 339 

substantial forest land losses which hava a higher carbon density (Table S1 in 340 

Supplemental Material 1). North America and South America are also suffered, 341 

particularly under scenario SSP3, losing about 1.73 Pg C and 1.41 Pg C, respectively. 342 

What stands out in the table is the high growth of AGB in Asia, which has increases of 343 

1.55-3.05Pg C except under scenario SSP3. According to the simulated LUCC in Asia, 344 

we find that the AGB increase in Asia may be related to the expansion of forest in this 345 

area. Under scenario SSP3, the forest area in Asia loses 8.49×10
5 

km
2
 in 2100 346 

compared with 2010, far more than that under scenario SSP2 (5.83×10
4 
km

2
), while it 347 

increases under scenarios SSP1, SSP4 and SSP5, highly reaching 8.61×10
5 
km

2
 (SSP1) 348 

at most (Table S1 in Supplemental Material 1). We further estimated the global change 349 

of AGB over the period of 2010-2100 across five SSP scenarios. The global AGB 350 

increases by 1.75 Pg C and 0.79 Pg C under scenario SSP1 and scenario SSP5, 351 

respectively, while decreases in the rest three scenarios, among which AGB loss under 352 

scenario SSP3 is the most significant, reaching 9.16Pg C by the end of the century.  353 

Table 4 354 

The change of aboveground biomass carbon (Pg C) within continents and the whole 355 

world over the period 2010 to 2100 under SSP scenarios 356 

Scenari

o 

Continents 

Global Afric

a 
Asia 

Europ

e 

North 

America 

Oceani

a 

South 

America 

SSP1 -1.22  3.05  0.30  -0.73  -0.02  0.37  1.75  

SSP2 -2.32  1.55  -0.50  -1.36  0.06  -0.67  -3.24  

SSP3 -5.35  
-0.4

7  
-0.38  -1.73  0.18  -1.41  -9.16  

SSP4 -4.70  2.20  0.32  -0.93  0.08  0.05  -2.99  

SSP5 -1.20  2.72  0.20  -0.98  0.00  0.04  0.79  
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 357 

Figure 6. Spatial explicit change of AGB caused by LUCC over the period 2010 to 358 

2100 across SSP scenarios. 359 

In addition to the large-scale statistics of AGB change under SSP scenarios in the 360 

future, we discuss the importance of high-resolution land use products on the fine 361 

spatial assessment of future AGB for regional scale. Taking central Africa as an 362 

example, we compare the land use pattern and the corresponding AGB changes 363 

between 2010 and 2100 under scenario SSP1 and SSP3 (Figure 7). We find the 364 

high-value regions of AGB change mainly locate in area where grassland converts to 365 

cropland. The low-value regions of AGB change mainly occurred in area where forest 366 

coverts to cropland and to grassland. LUCC from 2010 to 2100 in central Africa are 367 

highlighted by cropland growth and forest degradation. The density of AGB of forest 368 

and cropland in central Africa are higher than other land use types. As a result, the 369 

change of AGB in this area is mainly due to the location of cropland growth and forest 370 

degradation.  371 

The spatial difference between scenario SSP1 and SSP3 mainly locates around the 372 

Congo Basin. Under scenario SSP1, grassland is replaced by cropland, while under 373 

scenario SSP3, forest is replaced by cropland and grassland. Therefore, the loss of AGB 374 

under scenario SSP3 is larger than that under scenario SSP1.  375 

In the change evaluation of AGB for different scenarios, the resolution of land use 376 

products is very important. Because the grids of 1×1 km may contain different ages of 377 

forests, and their respective carbon density are also different. High-resolution land use 378 

provides the possibility to identify the specific degradation location of forest and its 379 

impact on AGB change. 380 
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 381 

Figure 7. Land use/cover in 2010 (a) and in 2100 under scenario SSP1 (b) and scenario 382 

SSP3 (c) in central Africa. Spatial explicit change of AGB caused by LUCC over the 383 

period 2010 to 2100 under scenario SSP1 (e) and SSP3 (f). 384 

4 Discussion 385 

In this paper, we proposed a GCAM-FLUS model to simulate future LUCC with a 386 

fine spatial resolution of 1 km for the latest SSP scenarios. The uncertainties of model 387 

include stochastic uncertainty, heterogeneity and structural uncertainty (Briggs et al., 388 

2012). To quantify the stochastic uncertainty, we adopted kernel density analysis with 389 

5-km-radius to evaluate the likelihood of land to become cropland, forest, grassland 390 

and urban land. Taking the results of SSP2 scenario in 2100 as an example, Figure 8 391 

shows that each land use type has a high likelihood with its main patches while a lower 392 

likelihood at the edge of patches. It suggests that the spatial stochastic uncertainties 393 

exist but stable and acceptable. To solve heterogeneity uncertainty, we predicted the 394 

land use demand and simulated the long-term spatial pattern of LUCC within different 395 

macro regions separately (follow the definition of GCAM model region 396 

(http://jgcri.github.io/gcam-doc/overview.html)). To estimate structural uncertainty of 397 

our model, we compared our land use products with Min Chen’s work (Chen et al., 398 

2020b) in GCAM4 model regions (Figure 9). It provides a new global gridded land use 399 

dataset for 2015–2100 at 0.05° resolution using GCAM and Demeter (Vernon et al., 400 

2018) (a land use spatial downscaling model), under SSP scenarios and Representative 401 

http://jgcri.github.io/gcam-doc/overview.html
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Concentration Pathway (RCP) scenarios. We find that the cropland area simulated by 402 

our model in GCAM4 model regions have a high consistency with Chen’s results by a 403 

significant Pearson correlation coefficient of 0.95. The consistency is also high with 404 

forest area between our results and Chen's results (Pearson correlation coefficient is 405 

0.92). The Pearson correlation coefficient of grassland area, barren area and water 406 

area are 0.84, 0.88 and 0.87, respectively. 407 

 408 

Figure 8. Uncertainty in the simulation results of (a)cropland, (b)forest, (c)grassland 409 

and (d)urban in the SSP2 scenario in 2100. 410 
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 411 

Figure 9. Comparison of cropland area (top) and forest area (bottom) of 2050 in 412 

different regions simulated by Chen’s GCAM-Demeter model and our GCAM-FLUS 413 

model. 414 

In InVEST model, the carbon density of a land use type is equal to the average of the 415 

whole carbon pools of the land use type in unit area, which keeps static during the study 416 

period. In other words, each land use type is assigned with a fixed and unique carbon 417 

density value. It makes the InVEST model stable and is suitable for estimating the 418 

change of AGB impacted by LUCC. However, at the same time, it also results in 419 

difficulties of capturing small changes of AGB for the same land use type. For example, 420 

felling old forests or young forests, resulting in different losses of AGB and the former 421 

loses more than the latter. In the future research, we will try to subdivide the forest by 422 

vegetation function type and tree age, so as to capture the changes of AGB during forest 423 

felling and restoration. Another shortcoming of InVEST model is that it ignores the 424 

process of carbon flow between AGB pool and other carbon pools. When forest is 425 

replaced by barren land, the trunk may be taken away for use or become dead wood and 426 

the residues such as branches and leaves will be transferred to the dead organic carbon 427 

pool. However, this part of carbon is considered to lose from pools and emission to the 428 

atmosphere in the model. As a result, the carbon emissions caused by LUCC may be 429 

overestimated. 430 

Except the uncertainties of models, there are several other limitations. First, spatial 431 

driving factors keep unchanged for all SSP scenarios and are same with in 2010. 432 

Because it’s hard to acquire the reliable predictions of future urban infrastructure. 433 

Second, we don’t calibrate the errors of misclassification in history land use products 434 

and it may be retained into our final results. Third, the impacts of climate to LUCC are 435 
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not considered in this research. We may take it account in future work by incorporating 436 

RCP scenarios with SSP scenarios. 437 

5 Conclusions 438 

The change of land use caused by human activities is not only a local issue, but also 439 

has significant impacts on global biomass carbon. In this paper, we presented the 440 

long-term land use pattern predictions with a finer spatial resolution (1 km) under SSP 441 

scenarios. High-resolution LUCC helps us to identify the specific spatial location of 442 

land use types interrelated with high carbon density and evaluate its impact on AGB 443 

change accurately. We find the global AGB increases by 1.75 Pg C and 0.79 Pg C under 444 

scenario SSP1 and scenario SSP5, respectively, while decreases in the rest three 445 

scenarios, particularly under scenario SSP3, reaching 9.16Pg C by the end of the 446 

century. The losses of AGB are mainly located in central Africa where is around Congo 447 

Rainforest with estimates of 5.35Pg C under scenario SSP3. This may be due to the loss 448 

of substantial forest land with a higher carbon density. On the contrary, AGB in Asia 449 

occurs a high growth of 3.05Pg C under scenario SSP1. Therefore, LUCC under 450 

scenario SSP1 gives a better development example to alleviate AGB loss which is focus 451 

on forest restoration and protection under a green and sustainable pathway. Moreover, 452 

the LUCC dataset is based on the latest SSP scenarios under CMIP6, which lay the base 453 

for research in other associated disciplines, such as ecological assessment (Li et al., 454 

2020), biodiversity protection (Jantz et al., 2015), global environmental change 455 

analyses (Thuiller et al., 2008) and sustainable development planning (Nobre et al., 456 

2016).  457 

Code availability 458 

We used the FLUS software for generating modelling results in this manuscript. FLUS 459 

is freely accessible to all users can be downloaded at 460 

http://www.geosimulation.cn/flus.html.  461 
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