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Abstract

Satisfying global food demand places a significant burden on finite resources like water, energy, and land across the world.

Ensuring sustainable food production requires an understanding of water, energy, and land at local scales, which is often

hampered by the lack of detailed data. Taking advantage of several large datasets, this study focused on the interactions

between groundwater, energy, land, and food (WELF) at multiple spatial scales in the Indian state of Andhra Pradesh. Using

FAO’s CROPWAT model, MODIS evapotranspiration data, and a detailed multiscale agricultural database, we estimated the

irrigation water requirements at multiple spatial scales. A detailed estimate of groundwater and energy consumption was

obtained, which was used to infer the interactions between WELF. The results from our study allow us to identify local and

regional hotspots of groundwater and energy consumption. Our results indicate that regional estimates of groundwater or energy

consumption, while indicative of local conditions, are unable to capture the variations at finer scales. The interactions between

WELF at multiple scales also indicate that the efficiency of groundwater and energy consumption for various crops varies

widely across and within regions. Our study highlights the need to more effectively manage the cultivation of water-intensive

crops such as paddy and sugarcane to optimize groundwater consumption. Policy-makers must focus on transitioning towards

sustainable agriculture that prioritizes food and water security. Future research must take advantage of extensive datasets to

better evaluate the adverse effects on water and energy resources to ensure sustainable food production.
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Key Points: 9 

 Developed quantitative metrics for evaluating Water-Energy-Land-Food nexus across 10 

multiple scales 11 

 Local estimates of groundwater consumption are considerably higher than regional 12 

estimates (~21%) 13 

 Local nexus among WELF may help tailor the policies for global sustainable food 14 

production.  15 
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Abstract  16 

Satisfying global food demand places a significant burden on finite resources like water, energy, 17 

and land across the world. Ensuring sustainable food production requires an understanding of 18 

water, energy, and land at local scales, which is often hampered by the lack of detailed data. 19 

Taking advantage of several large datasets, this study focused on the interactions between 20 

groundwater, energy, land, and food (WELF) at multiple spatial scales in the Indian state of 21 

Andhra Pradesh. Using FAO’s CROPWAT model, MODIS evapotranspiration data, and a 22 

detailed multiscale agricultural database, we estimated the irrigation water requirements at 23 

multiple spatial scales. A detailed estimate of groundwater and energy consumption was 24 

obtained, which was used to infer the interactions between WELF. The results from our study 25 

allow us to identify local and regional hotspots of groundwater and energy consumption. Our 26 

results indicate that regional estimates of groundwater or energy consumption, while indicative 27 

of local conditions, are unable to capture the variations at finer scales. The interactions between 28 

WELF at multiple scales also indicate that the efficiency of groundwater and energy 29 

consumption for various crops varies widely across and within regions. Our study highlights the 30 

need to more effectively manage the cultivation of water-intensive crops such as paddy and 31 

sugarcane to optimize groundwater consumption. Policy-makers must focus on transitioning 32 

towards sustainable agriculture that prioritizes food and water security. Future research must take 33 

advantage of extensive datasets to better evaluate the adverse effects on water and energy 34 

resources to ensure sustainable food production.  35 

Plain Language Summary 36 

 37 

1. Introduction 38 

Agriculture is the world’s largest freshwater consumer, accounting for 70% of global 39 

withdrawals (FAO, 2011), which is projected to increase further in the coming decades to satisfy 40 

rising global food demand (Alexandratos & Bruinsma, 2012). As the world population is 41 

expected to hit 9.7 billion by 2050 (UN, 2019), there will be substantial stresses on finite 42 

resources like water, energy, and land (Marris, 2008; FAO, 2011; Ringler et al., 2013). 43 

Groundwater is one of these finite resources, which has been persistently overexploited for 44 

agriculture worldwide, particularly in South Asia (Siebert et al., 2010; Wada et al., 2010; 45 

Gleeson et al., 2012; Bierkens & Wada, 2019). Though groundwater irrigation has improved 46 

farmers’ economic stability, several aquifers in the world have been overstressed (Scott and 47 

Shah, 2004; Zaveri et al., 2016). Groundwater overdraft has several adverse effects, such as 48 

declines in groundwater levels, soil infertility, land subsidence, and damage to riparian 49 

ecosystems (Konikow and Kendy, 2005; Sophocleous, 2005; Giller et al., 2009; Perrone and 50 

Jasechko, 2019). Declining groundwater levels intensify the energy consumption for agriculture 51 

as the energy use depends principally on the depth to the groundwater level. Additionally, the 52 

provision of subsidized electricity has accelerated the decline of groundwater levels to as high as 53 

0.3 m/year in countries like India (Rodell et al., 2009;  World Bank, 2015). Consequently, such 54 

regions will likely increase greenhouse gas emissions and associated energy costs, thereby 55 

enlarging the carbon footprint from agriculture (Mishra et al., 2018). For example, the Indian 56 

state of Punjab has witnessed a drop of 5.47 m in groundwater levels over 14 years (1998 – 57 

2012), resulting in increased energy requirements and carbon emissions by 67% and 110%, 58 

respectively (Kaur et al., 2016).  59 
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The introduction of bore wells to cultivate staple crops like paddy and wheat acted as an 60 

engine of growth for irrigated agriculture (Pingali, 2012; Zaveri & B. Lobell, 2019; Dangar et al., 61 

2021). The chronic over-exploitation has pushed groundwater out of reach for millions of 62 

farmers in countries like India and Pakistan (Shah et al., 2003). Tube wells, particularly in the 63 

arid and semi-arid regions, are no longer able to sustain water for the cultivation or for drinking 64 

water supply (Hora et al., 2019). Dwindling groundwater quality, due to the upwelling of salt 65 

from deep groundwater, is another indicator of unsustainable pumping (Bhatt et al., 2016). Many 66 

studies have demonstrated the difficulty in recovering lost groundwater storage (Udmale et al., 67 

2014; Barik et al., 2017). Furthermore, in agrarian countries like India, the energy consumption 68 

for agriculture has increased considerably at a compound annual growth rate of 5.6% (Kaur et 69 

al., 2016). Green House Gases (GHG) emissions due to the energy utilized from agriculture 70 

account for roughly 6% of India’s emissions (Shah, 2009). In India, the depleting groundwater 71 

levels are widespread in these states: Punjab, Rajasthan, Maharashtra, Gujarat, Andhra Pradesh, 72 

and Telangana (Shah, 2009; Rosa et al., 2019). Official data (Ministry of Jal Shakti, 2020) on the 73 

numbers of deep tube wells across India show an alarming increase since the 1990s (Figure 1). 74 

The importance of limiting the extraction of deep groundwater can hardly be overemphasized.  75 

 76 

Figure 1: Spatiotemporal trend of increase in numbers of deep tube wells (in 1000s) across India. 77 

Climate change further exacerbates the current situation in the form of higher water 78 

demands and reduced crop efficiencies (FAO, 2011; Mancosu et al., 2015; Jain et al., 2021). In 79 

tropical countries, the predominant smallholder farming is likely to be highly vulnerable to 80 

climate change (Morton, 2007). Additionally, with growing urbanization, and declining soil 81 

fertility, there is enormous pressure on the preservation of existing agricultural land (Konikow & 82 

Kendy, 2005; Giller et al., 2009; Di Baldassarre et al., 2019). Recent approaches such as 83 

conservation agriculture, sustainable intensification, and nutrition-sensitive agriculture are 84 

helping to address these multisectoral challenges by improving water management, enhancing 85 

soil fertility, and increasing food production (Hobbs et al., 2008; Garnett et al., 2013; FAO, 86 

2014; Cassman & Grassini, 2020;  Sampath et al., 2020). However, rates of adoption of these 87 

agricultural techniques are rather slow in Asian and African countries (Kassam et al., 2019). 88 

Consequently, high levels of undernourishment and hunger are prevalent in these countries 89 

(FAO, 2019). Therefore, there is a need to address these multiple challenges cutting across water, 90 

energy, land, and food in a holistic manner to make agriculture more sustainable. 91 

1.1. WELF nexus 92 
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United Nations has formulated sustainable development goals (SDGs) to address 93 

humanity's global challenges (UN, 2015). An integrated approach based on how water resources 94 

are connected to other sectors is essential to achieve these goals (Di Baldassarre et al., 2019). 95 

However, the inability to quantify connections between different sectors and scales remains a 96 

challenge in ensuring resource security and often threatens the equitable distribution of resources 97 

among various stakeholders (Hoff, 2011; Bazilian et al., 2011; Endo et al., 2020). Hence, 98 

understanding the inter-linkages through the nexus lens has become necessary for enhancing 99 

overall sustainability (Ringler et al., 2013; Biggs et al., 2015; Kurian, 2017; Shannak et al., 2018; 100 

Nhamo et al., 2018). The synergies and trade-offs between these sectors have been studied in 101 

many parts of the world. For example, a study carried out in the Mediterranean region identified 102 

hotspots using water and energy productivity, and it was illustrated that irrigation modernization 103 

in this region could reduce 8 km
3
, but at an increase of 135% in CO2 emissions (Daccache et al., 104 

2014). Likewise, a case study in Qatar demonstrated that the explicit quantification of 105 

connections among WELF guides the decision-making process, and shown that food self-106 

sufficiency strategies are highly sensitive to WELF interactions (Daher & Mohtar, 2015). 107 

Despite such studies, the synergies among WELF resource sectors in South Asia have not yet 108 

been fully harnessed (Rasul et al., 2019). For instance, India, despite being the world’s leading 109 

groundwater consumer and the country with the largest area equipped for irrigation (Siebert et 110 

al., 2010; Margat & Van der gen, 2013), is also home to almost 200 million malnourished people 111 

and 820 million people that live in water-scarce regions (FAO, 2019; CWMI (NITI Aayog), 112 

2019). A recent report warned that India is facing its worst water crisis in history, with 113 

groundwater resources diminishing at unsustainable rates (CWMI (NITI Aayog), 2019).  114 

Studies have shown that the net global groundwater consumption is driven by a few 115 

heavily exploited hotspots like the Upper Ganges, High Plains, and North China Plain (Gleeson 116 

et al., 2012). Intensive cultivation of staple cereals, such as rice and wheat, drives the 117 

groundwater consumption at these hotspots (Davis et al., 2019). A few potential improvements in 118 

these hotspots can help reduce global groundwater consumption, thereby achieving local, 119 

regional, and global sustainability. Though many efforts have been made to understand the inter-120 

linkages between global resources, it is often challenging to capture nexus at smaller scales 121 

(Endo et al., 2015). A lack of coordination between multiple levels due to “silo” approaches 122 

results in unsustainable resource management (IRENA 2015; Nhamo et al., 2018). Many studies 123 

have stressed the need to understand and quantify connections between multiple scales (Ringler 124 

et al., 2013; Garcia and You, 2016; Endo et al., 2017; Gaddam & Sampath, 2020). However, data 125 

are usually aggregated at national levels (Perrone et al., 2011), making it challenging to tailor 126 

policies to local realities (Biggs et al., 2015; Conway et al., 2015). Local-scale data, when 127 

available, usually lacks spatiotemporal resolution, and thus limits fine-scale analysis, resulting in 128 

a ‘black-box’ perspective (Mcgrane et al., 2018). Recent advances in geospatial data collection 129 

are making multiscale analyses possible, which allows for a better understanding of WELF 130 

interactions across spatial scales.  131 

This study's main objective is to adopt a multiscale approach to assess the interactions 132 

between WELF using detailed agricultural data. The Indian State of Andhra Pradesh is selected 133 

for this study due to the availability of vast datasets in this region. The specific objectives of the 134 

current study are: 135 

1. To estimate the groundwater and energy consumption at multiple spatial scales from 136 

2014-2019. 137 
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2. To quantify the interactions between groundwater consumed (W), energy utilized (E), 138 

land cultivated (L) and food produced (F), and identify the vulnerable hotspots pertaining 139 

to various interactions at multiple scales. 140 

3. To compare the multiscale estimates of groundwater and energy consumption and 141 

interactions among WELF for multiple years. 142 

 143 

This study's findings will be of significance to researchers and policy-makers in 144 

understanding and managing scarce natural resources across multiple spatial scales. It is 145 

envisaged that this study will help in quantifying the vital role of detailed local scale information 146 

in estimates of groundwater and energy consumption in food production.  147 

2. Materials and Methods 148 

2.1. Groundwater and energy consumption 149 

We selected the South Indian state of Andhra Pradesh as our study area for this analysis 150 

(Figure 2). The state covers more than 160,000 km
2
 (DES-AP, 2017) and has thirteen districts, 151 

which are further subdivided into several blocks. Agriculture is the state's primary occupation, 152 

employing 60% of the population and accounting for almost 40% of the total geographical area 153 

(DES-AP, 2017). The state receives, on average, 970 mm of rainfall annually, mostly between 154 

June and December from the southwest and northeast monsoons (DES-AP, 2017). The 155 

agricultural year is primarily divided into two seasons - Summer/Kharif (June to September) and 156 

Winter/Rabi (October to March). For the current analysis, Kharif season was selected to evaluate 157 

the WELF interactions for all districts in the state (district-scale), and all blocks in a district 158 

(block-scale). While the district scale analysis was carried out for six years (2014-19), the block-159 

scale analysis was studied only for one year (2017-18) due to the unavailability of detailed data.  160 



Water Resources Research 

 

 161 
Figure 2: Study area at multiple scales: (a) State of Andhra Pradesh and (b) Chittoor district  162 

This study uses the CROPWAT 8.0 model (Smith, 1992) to estimate irrigation water 163 

requirements for various crops at multiple scales. CROPWAT 8.0 implements a soil water 164 

balance approach to assess each crop's crop water requirements using the following information: 165 

rainfall, reference evapotranspiration (ETo), soil, and crop characteristics. At both district and 166 

block scales, these variables were inferred appropriately from the available data. 167 

Table 1: Data availability at district and block scales 168 

S 

No Data Resolution Scales Attributes Source 

1 Agriculture Farm level 

(2014-19) 
Block-scale 

District-scale 

Crop type, 

acreage, sowing 

date, source of 

irrigation, location 

of the farm 

(CORE, 2018) 
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2 Production 
District-

level 

(2014-19) 
District-scale 

Crop-wise 

production and 

productivity data 
(DES-AP, 2020) 

3 
MODIS 

Evapotranspiration 

(ET) 
500 m  

(2014-19) 
Block-scale 

District-scale 
Potential 

Evapotranspiration 

(PET) 
(Running et al., 

2017) 

4 Long-term PET 
District-

level 

(1901-

2002) 

Block-scale 
District-scale 

Potential and 

reference ET 
(India Water 

Portal, 2020) 

5 Rainfall 
Station-

wise 

(2014-19) 
Block-scale 

District-scale Rainfall data (WRIS, 2020) 

6 Groundwater 

levels 
Station-

wise 

(2014-19) 
Block-scale 

District-scale 

Observed Depth to 

Groundwater 

Level (DGWL) 

data 
(WRIS, 2020) 

7 Borewell depth 

Farm-

level 

(2017-18) 

Block-scale 
District-scale 

Bore depth, 

location of well 
(GWAD, 2020) 

To gather the ET0 information, we used the long-term ET data that was derived from 169 

long-term weather parameters (India Water Portal, 2020) to calculate the minimum, average, and 170 

the maximum ratios of ETo to PET. These ratios were then multiplied with MODIS PET data to 171 

estimate minimum, average, and maximum ETo data for district and block scales. The purpose of 172 

generating three ETo estimates was due to the unavailability of weather data at finer scales, 173 

which is typically used to calculate ETo. The comparisons of the available long-term PET and 174 

MODIS PET are available in the supplementary information (Figure S1). These two datasets 175 

compare reasonably well with an R
2
 of 0.76. 176 
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 177 
Figure 3: Annual rainfall, annual ETo, and average depth to GWL data at district and block 178 

scales. 179 

The rainfall, ET0, and depth to GWL plots are shown in Figure 3, which denotes their 180 

variation across and within districts. At every spatial scale, the arithmetic average of recorded 181 

rainfall/ETo/GWL was considered to be representative of that scale. For instance, if a district 182 

contains N rainfall gauges, its rainfall was simply the arithmetic average of the rainfall recorded 183 

in all those gauges. Further, district-level agricultural data was collected, along with the block-184 

level crop data that involves crop type, cultivated area, sowing date, and source of irrigation, was 185 

aggregated using an intensive farm-scale database (> 6.6 million farms) (CORE, 2018). This 186 

exhaustive local-scale information facilitated the assessment of groundwater and energy 187 

consumption at finer scales. These data were incorporated into the CROPWAT model, and the 188 

resulting water requirements (mm) for each crop were calculated. Further, the water 189 

requirements were multiplied with the acreage under groundwater irrigation for the 190 

corresponding crop, to estimate the volume (m
3
) of groundwater consumption. Table 2 lists the 191 

area under cultivation for 14 major crops grown in the study area. Note that not all crops are 192 

grown in a given block within the district. 193 
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Table 2: Major crops grown in the study area in the Kharif season. Note that the value for the 194 

entire state of Andhra Pradesh refers to the average of crop acreage across 6 years (2014-19), and 195 

the values for Chittoor district are for the year 2017-18. Both columns correspond to areas under 196 

groundwater irrigation. 197 

Crop 

Groundwater-fed acreage (ha) 

State of Andhra 

Pradesh 

Chittoor 

District 

Bajra (Pearl millet) 4906 2049 

Bengal gram 21166 - 

Black gram 18176 139 

Chilies 50946 - 

Cotton 40868 - 

Green gram 1978 23 

Groundnut 31657 8216 

Horse gram 124 58 

Jowar (Sorghum) 641 - 

Maize 15946 598 

Paddy 248494 12532 

Raagi (Finger millet) 600 243 

Red gram 5750 108 

Sugarcane 47003 17075 

Crop water requirements were estimated using the minimum, average, and maximum ETo 198 

data for the Kharif season of the year 2017-18. The final crop water requirements were estimated 199 

from the average of these three simulations. Consequently, the energy utilized to extract this 200 

quantum of water from the groundwater level was computed using the following equation: 201 

𝐸 =  
𝜌𝑔𝑉𝐻

𝜂
− − − [1] 

where, E = Energy consumed [ML
2
T

-2
]; ρ = density of water [ML

-3
]; g = acceleration due to 202 

gravity [LT
-2

]; V = volume of groundwater consumption [L
3
]; H = Depth to groundwater level 203 

[L]; η = Pumping efficiency, assumed at 30% (Shah et al., 2007; Mishra et al., 2018).  204 

2.2. WELF Interactions 205 

Using the estimated groundwater (W) and energy (E) consumption estimates along with the 206 

land under cultivation (L) and the production (F) of each crop, the following three metrics were 207 

developed to quantify the interactions between WELF (Figure 4). They include 1. Food-Water, 208 

2.  Land-Water,  and 3. Water-Energy. Each metric quantifies the interactions and analyzes the 209 

nexus between the various parameters as follows: 210 

Food − water (F − W) interaction (
kg

𝑚3
) =

Crop produced (kg)

GW consumed (𝑚3)
− − − [2]       
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Land − Water (L − W) interaction (
ha

𝑚3
) =

Crop acreage (ha)

GW consumed (𝑚3)
− − − [3]       

Water − Energy (W − E) interaction (
𝑚3

kWh
) =

GW consumed (𝑚3)

Energy used (kWh)
− − − [4] 

 211 

Figure 4: Conceptual workflow for formulating WELF nexus; W: Groundwater consumed, E: 212 

Energy used, L: Land utilized, and F: Food produced. 213 

These metrics employ the commonly-used ‘two at one-time’ analysis (Taniguchi et al., 214 

2017) to evaluate two-way interactions among WELF. The developed metrics assess the 215 

productivity of a resource with respect to another resource. For example, the Food – Water 216 

interaction metric measures the efficiency of crop production corresponding to the total volume 217 

of groundwater consumed in its crop period. Larger values indicate better performance of that 218 

interaction in a particular region. These metrics can be applied across multiple scales, thereby 219 

also allowing comparison across scales. Further, the estimated metrics at multiple scales can help 220 

identify vulnerable hotspots, where policies can be customized to the local challenges. Due to the 221 

unavailability of food production data at block scales, the interactions involving food were 222 

calculated at the district level only.  223 

To develop further insights into the WELF interactions, the three WELF metrics were 224 

compared to three indices: 1. Aridity index (UNDP, 1992),2. Groundwater Irrigation Index (GII), 225 

and 3. Groundwater Sustainability Index (GSI). Aridity index is defined as the ratio of annual 226 

precipitation to annual PET, which is used to identify the extent of dryness of climate. We define 227 

GII as the ratio of area irrigated by groundwater to the total area under cultivation in a given 228 

region, which can identify the extent of dependence on groundwater for cultivation. We also 229 

define GSI, which was the ratio of number of shallow wells (defined as those wells of depth less 230 

than 100 feet) to the total number of wells in a region. This index is hypothesized to indirectly 231 

infer the sustainability of groundwater irrigation, i.e., a region with a larger fraction of shallow 232 

wells uses groundwater more sustainably than a region with a smaller fraction. Comparing these 233 
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indices to the WELF metrics may help derive insights at both district and block-scales and 234 

provide a theoretical framework for understanding and managing the vulnerable hotspots. 235 

3. Results 236 

3.1. Groundwater and energy consumption 237 

Irrigation water requirements (IWR) of each crop in all districts were calculated for six 238 

years, from 2014 to 2019 (see Figure S2). The spatial distribution of IWR for three major crops 239 

at both block and district scales – groundnut, paddy, and sugarcane are shown in Figure 5. As 240 

shown in Figure 3, the southern regions receive less rainfall, and as a result, the IWR in these 241 

districts were consistently higher than in the northern districts. Consequently, the number of 242 

borewells in the southern districts is much larger.  243 

 244 

Figure 5: Average of irrigation water requirements (mm) for three major crops – groundnut, 245 

paddy, and sugarcane from 2014 to 2019 246 

The estimated IWR values were multiplied by groundwater-fed irrigation area to estimate 247 

the groundwater volume consumption for each district from 2014 to 2019 (See Figure S3). 248 

Figures 6b and 6c shows the spatial distribution of average groundwater and energy consumption 249 

across the study area. Note the higher groundwater consumption in the southern districts 250 

compared to the northern districts. At this relatively large scale, these southern districts are 251 

hotspots of high groundwater consumption. Though the northern coastal districts largely 252 

cultivate paddy, their dependence on surface water sources and rainfall, as shown in Figure 6a, 253 

results in low groundwater use.   254 

Overall, paddy, maize, and sugarcane account for more than 80% of total groundwater 255 

and energy consumption. As shown in Figure 6c, southern districts consume a higher proportion 256 

of the total energy as compared to the proportion of groundwater due to deeper groundwater 257 

levels in these regions. Further, West Godavari and Chittoor districts are “energy hotspots” as 258 

they account for more than 40% of total energy consumption. To escape from the downward 259 

spiral of higher groundwater use and corresponding higher energy costs, it is imperative to 260 

drastically reduce the cultivation of water-intensive crops like paddy and sugarcane in the 261 

southern districts. Such regions have the potential to reduce the carbon footprint of the overall 262 

state by optimizing cropping patterns to minimize groundwater consumption.  263 
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 264 

Figure 6: District-wise: (a) Proportion of groundwater-fed, surface water-fed, and rainfed 265 

acreage (b) Groundwater consumption estimates (Mm
3
), (c) Energy consumption estimates 266 

(GW-h), and (d) Crop-wise estimates of groundwater (Mm
3
) and energy consumption (GW-h) 267 

 Chittoor district, a regional hotspot of high groundwater and energy consumption, was 268 

considered for further detailed analysis, and the corresponding results are presented in Figure 7. 269 

The district has 66 blocks, out of which 12 blocks consumed more than half of the total 270 

groundwater in the district. Interestingly, these blocks accounted for more than half of the 271 

sugarcane acreage in the district. This result exemplifies the prominence of sugarcane in 272 

understanding the groundwater consumption patterns within the district. Indeed, Chittoor district 273 

ranks first in groundwater-fed sugarcane production in the state. On closer examination of the 274 

results, paddy and sugarcane accounted for 72% of total groundwater-fed acreage but consumed 275 

91% of all the groundwater in the district. As seen in Figure 7, paddy and sugarcane were 276 

predominant in the eastern part of the district, and accordingly, the magnitudes of groundwater 277 

and energy draft were higher in these regions. In Figure 7, a clear demarcation of groundwater 278 

consumption zones can be observed between the western and eastern parts. In spite of relatively 279 

low groundwater use in the western part of the district, groundwater levels are almost 80 – 100 m 280 

below ground level in some parts, which can be attributed to a combination of low annual 281 
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rainfall and high evapotranspiration. Rather than developing policies for the entire district as a 282 

whole, it is important to tailor policies to account for such variability at finer scales.  283 

 284 
Figure 7: Groundwater-fed acreage, groundwater and energy consumption in Chittoor district. 285 

Panel a shows the total groundwater-fed acreage at the block scales, with pie charts indicating 286 

proportions of groundnut, paddy, and sugarcane. Panel b shows the groundwater (Mm
3
) and 287 

energy (GWh) consumption at the block scales. 288 

3.2. WELF interactions 289 

After estimating the groundwater and energy consumption at the block and district-scales, 290 

we focused on the interactions among groundwater consumption, energy use, land utilized, and 291 

food produced. District scale interactions among WELF were calculated using the three metrics 292 

mentioned in Section 2.2. The metrics were computed for each year from 2014 to 2019 (see 293 

Figure S4), and then averaged to represent the entire duration. Figure 8 shows the three metrics 294 

for the major crops: groundnut, paddy, and sugarcane. Overall, the different metrics highlight 295 

various aspects of productivity. As depicted in Figure 8, two districts (Ananthapur & Y.S.R. 296 
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Kadapa) showed poor performance in all metrics. All other districts showed varying levels of 297 

performance in one or other metrics, indicating that groundwater consumption efficiency with 298 

respect to the other three elements – energy, land, and food changes across regions. 299 

Quantitatively, the groundwater consumption in Krishna district is 1.3 times higher than in 300 

Guntur district. However, the amount of groundnut produced in kg per unit volume of water in 301 

Krishna district is 2.2 times higher than Guntur. This shows that Krishna district is utilizing its 302 

groundwater more efficiently than Guntur. Nonetheless, the energy consumption in Krishna 303 

district is 1.4 times more than that in Guntur. Such insights demonstrate that the conventionally-304 

used ‘silo’ approaches may not be sufficient to design policies that ensure overall sustainability. 305 

In the case of the most-grown crop - paddy, the performance of interactions in the 306 

southern districts was quantitatively poorer than the northern coastal districts, as shown in Figure 307 

8. Srikakulam district was the most productive on all fronts, signifying that abundant rainfall 308 

brings about the scope to cultivate more water-intensive crops. East and West Godavari districts, 309 

although adjacent to each other, are markedly different in their energy efficiencies for paddy 310 

cultivation (the latter performs poorly compared to the former). This variation can be attributed 311 

to the deeper groundwater levels in the West Godavari district. Despite performing poorly in 312 

terms of energy, West and East Godavari districts’ performance in other interactions was alike 313 

since both districts received similar rainfall levels. These key messages indicate that West 314 

Godavari district is more vulnerable from an energy perspective, which may require attention for 315 

policy-makers. While Chittoor district is among the better performing districts with respect to the 316 

F-W metric for paddy, it is among the worst performers in the W-E metric for the same crop. 317 

Several southern districts also had greater depths to groundwater and consequently are 318 

vulnerable from the point of view of energy consumption. Policy-making in these regions must 319 

focus on promoting crops that require less water like millets and groundnut (Sampath et al., 320 

2020) to reduce the energy footprint as well as improving groundwater recharge measures. 321 

For sugarcane, the performance of most districts is similar to that of paddy. In general, 322 

the northern districts have higher productivities than the southern districts due to higher rainfall 323 

amounts and shallower groundwater levels in the north. As explained earlier, sugarcane 324 

cultivation in Chittoor district has a drastic impact on groundwater and energy consumption. 325 

Similar adverse effects due to excessive sugarcane cultivation have been observed in other 326 

Indian states as well (Krishan et al., 2016; Shah et al., 2018). Clearly, a more robust policy on 327 

sugarcane cultivation in the context of groundwater and energy costs is required.  328 
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 329 
Figure 8: Plots depicting the crop-wise WELF interactions at the district-scale: (a-c) F-W, (d-f) 330 

L-W, and (g-i) W-E 331 

To illustrate the significance of each of the metrics for the considered three crops, we 332 

chose two climatically distinct districts: 1. Visakhapatnam, and 2. Chittoor. Visakhapatnam is a 333 

Northern district with an average rainfall of 1034 mm between 2014 and 2019, while Chittoor, a 334 

relatively drier district, received 666 mm. Chittoor was one of the high groundwater consuming 335 

districts, accounting for 13% and 19% of total groundwater and energy consumption, while 336 

Visakhapatnam accounts for only 3.9% and 2.1%, respectively. Visakhapatnam district, on 337 

average, has F-W productivity ten times better than Chittoor district. In other words, 338 

Visakhapatnam produces the same quantity of groundnut using ten times lesser groundwater than 339 

Chittoor district. Obviously, the heavy rainfall received in Visakhapatnam is the driving factor 340 

for this performance. Indeed, a comparison of the GII index with the F-W metric for groundnut 341 

shows a weak negative trend (Figure 9a), which indicates that that the F-W productivity of 342 

groundnut depends more on rainfall than on supplemental groundwater irrigation.  Surprisingly, 343 

in the case of paddy (Figure 9b), a similar negative trend between GII and F-W was observed. 344 

However, in the case of sugarcane, a weak positive trend was seen, which indicates that 345 

sugarcane is the crop that is most dependent on groundwater for supplemental irrigation. 346 

All three crops showed a positive correlation between L-W productivity and aridity 347 

index, although it was most prominent in the case of sugarcane (Figure 9d-f).  This indicates that 348 

in dry sub-humid regions (0.5<AI<0.65), it is possible to cultivate more acres of sugarcane with 349 

the same volume of groundwater as compared to arid (0.05<AI<0.2) or semi-arid regions 350 

(0.2<AI<0.5). It is projected that climate change will cause significant variations in rainfall, 351 

thereby enlarging the area of semi-arid regions (Ramarao et al., 2019). This may force farmers in 352 
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these regions to rely further on supplemental irrigation, which could negatively affect L-W 353 

productivity.  354 

Figure 9g-i showed a strong positive correlation between the Groundwater Sustainability 355 

Index (GSI) and the W-E metric for all three crops. Clearly, those districts with more shallow 356 

wells were able to extract more groundwater per unit energy consumed. Shallower wells are 357 

more sustainable in the sense that shallower aquifers can be recharged relatively easily as 358 

compared to the deeper aquifers. Dependence on deep aquifers for irrigation causes increased 359 

CO2 emissions, further exacerbating global warming, thereby causing higher irrigation water 360 

requirements. Getting out of this downward spiral will require rejuvenation of shallow aquifers 361 

by supply-side (improving recharge) and demand-side (reducing water-intensive crops) 362 

measures. 363 

 364 

Figure 9: Comparison of WELF metrics with indices for all districts: (a-c) Groundwater 365 

Irrigation Index (GII) with F-W metric; (d-f) Aridity index with L-W metric, and (g-i) 366 

Groundwater Sustainability Index (GSI) with W-E metric. 367 
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At the block scale, interactions were estimated using the aforementioned methodology 368 

and are shown in Figure 10. The higher rainfall in western regions in the year 2017-18 reduced 369 

the groundwater consumption, which further enhanced the productivity (Figure 10 (a-c)). 370 

However, in other years where the rainfall in the western regions was lower, the L-W 371 

productivity for Chittoor district was lower than that seen in 2017-18 (see Figure S4). It was 372 

interesting that the L-W productivity for sugarcane exhibited much less variability within the 373 

district than the other crops. This can be attributed to the higher total water requirement for 374 

sugarcane, which cannot be necessarily offset by annual rainfall variations. Additionally, it was 375 

noted that blocks in the central and eastern part of the Chittoor district had higher energy 376 

productivity (W-E) as the water tables in these regions were relatively shallower. This higher W-377 

E productivity was observed irrespective of the crop cultivated.  378 

 379 
Figure 10: Interactions among WELF for groundnut, paddy, and sugarcane: (a-c) L-W 380 

interaction and (d-f) W-E interaction 381 

The comparison between the aridity index and the L-W metric at the block scale (Figure 382 

11 a-c) was similar to that observed at the district scale. Particularly in the case of paddy and 383 

sugarcane, the positive correlation between L-W productivity and aridity index was more marked 384 

than for gorundnut, as both water-intensive crops are better suited for cultivation in sub-humid 385 

and humid regions. The correlation between the W-E metric and the GSI (Figures 11 d–f), was 386 

weaker than that observed at the district scale. Nevertheless, regions with higher GSI, i.e., greater 387 

number of shallow wells, were seen to have better W-E productivity,  388 
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 389 
Figure 11: Indices at block-scale: Aridity index and GSI representing the relationships between 390 

three interactions – (a-c) L-W, and (d-f) W-E, respectively 391 

3.3. Multiscale comparison 392 

While the metrics at the district level capture, in some aggregated sense, the variations 393 

across the district, for policy-making to be truly effective, there needs to be a hierarchy of 394 

strategies across scales for sustainable agriculture. The comparison across multiple scales yielded 395 

interesting results regarding IWR (mm), groundwater and energy consumption, and the WELF 396 

interactions. Table 3 shows the average crop water requirements for the Kharif season at block 397 

and district scales. For the year 2017-18, where both district and block scale information was 398 

available, it was found that the IWR for most crops was underpredicted at the district scale 399 

compared to the block scale. The underprediction varies from around 10% to as high as 130%. 400 

Clearly, this indicates the importance of detailed local scale data (rainfall and ET) for estimating 401 

groundwater pumping. Besides, the variability of IWR across multiple years at the district scale 402 

is lesser than the variability across blocks in a single year. For example, in 2017-18, a block in 403 

Chittoor district can consume anywhere between 886 and 1480 mm of water for sugarcane, while 404 

at the district scale, the variability across six years ranges from 998 to 1213 mm. Therefore, the 405 

multiscale analysis highlights the drawbacks of using aggregated information at larger scales, as 406 

is typically done for decision-making.  407 
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Table 3: Irrigation water requirements for various crops in Chittoor district from 2014 to 2019, 408 

and for 2017-18 at block scale. Note that the district values correspond to the district’s water 409 

requirements for each year. Block values indicate the minimum and maximum of all blocks’ 410 

water requirements for the year 2017-18  411 

Crop 

Irrigation water requirement (mm) 

District Block (17-18) 

Min - Max 2014-15 15-16 16-17 17-18 18-19 19-20 

Bajra (Pearl millet) 107 80 113 45 117 46 0.2 - 250 

Black gram 147 126 181 106 178 87 10 - 339 

Green gram 141 113 156 78 161 74 3 - 284 

Groundnut 185 151 204 102 226 88 14 - 444 

Horse gram 174 101 244 130 248 117 3 - 368 

Maize 159 130 194 88 201 69 9 - 354 

Paddy 541 481 583 446 593 415 286 - 915 

Raagi (Finger millet) 82 66 119 41 113 30 2 - 248 

Red gram 133 109 162 68 170 53 10 - 284 

Sugarcane 1170 1134 1213 1061 1180 998 886 - 1480 

The total groundwater and energy consumption were estimated at the district and block 412 

scales for the year 2017-18. By summing up the values obtained from each block, the total 413 

consumption for the district was again estimated. Comparing these two estimates provided 414 

several insights. For example, the groundwater consumption for paddy estimated at the district 415 

scale for the year 2017-18 was 44.24 Mm
3
; however, the comparable number from the block 416 

scale analysis was 69.29 Mm
3
 – a difference of almost 57%. Our results indicate that the 417 

aggregated groundwater consumption from the block scale was 22% higher than the district-scale 418 

(see Figure 12). Interestingly, while aggregated groundwater consumption at the block scale was 419 

22% higher than the district scale, the block scale's total energy consumption was around 9% 420 

lower than the district scale value. The variation between estimates at the district scale and the 421 

block scale also extends to WELF interactions. For instance, the value of Water-Energy 422 

interaction for sugarcane in the year 2017-18 in Chittoor district was 6.7, while the same metric 423 

at the block scale varied between 1.7 and 26.7 (in Mm
3
/GWh). Likewise, for the L-W interaction 424 

for paddy crop, the value at the district-scale was 0.29; however, at block-scale, it varied 425 

between 0.11 to 0.35 (in 1000 ha/Mm
3
). These results highlight the need for multi-scale holistic 426 

approaches to help understand issues related to resource exhaustion. The wide variability in 427 

results from the local scale further drives home the positive role that detailed data-driven analysis 428 

can play in evidence-based policy-making. 429 

 430 
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 431 

Figure 12: GW and Energy consumption across multiple scales for the year 2017-18   432 

4. Conclusions 433 

The growing global food demand is pressurizing land, water, and energy resources at 434 

multiple scales. This study demonstrated a WELF nexus-based approach in the Indian state of 435 

Andhra Pradesh to address these concerns. We identified hotspots of high groundwater and 436 

energy consumption in the study area at multiple scales. The results from this study helped to 437 

understand the interactions between the various resources. For example, in the district of 438 

Chittoor, for the same volume of groundwater, almost three times as many hectares of paddy can 439 

be cultivated as can be of sugarcane. Such an analysis succinctly conveys the efficiency of the 440 

cultivation of each crop in relation to other crops. This metric also indicates that the cultivation 441 

of water-intensive crops must be shifted to regions with relatively abundant rainfall. The 442 

correlations between aridity index and L-W interaction have shown that the water consumed to 443 

irrigate land was better managed in the sub-humid regions. Likewise, the GSI and W-E 444 

interaction’s relationship depicted that the high energy productivity is strongly correlated with 445 

regions where shallower tube wells are predominant. 446 

While the district-scale information is indeed beneficial, it is worth noting that there is 447 

considerable variation between the district-scale and block-scale estimates. Although the district-448 

scale information is representative of the entire district, it conceals the variability across the 449 

district. While decision-making is primarily driven by aggregated statistics at regional or national 450 

scales, such local realities should also be considered in developing policies for sustainable 451 

agriculture. These insights may help policymakers devise effective policies, which could sustain 452 

food production without adversely affecting available resources. Our results indicate that a few 453 

improvements made at local hotspots may reduce groundwater consumption in the entire region. 454 

Therefore, bridging the gap between global and local sustainability will require a hierarchy of 455 

strategies across all relevant spatial and temporal scales. Future work must focus on using such 456 

data-intensive approaches to quantify the interactions between water-energy-land-food so that 457 

diminishing global resources can be managed effectively. This study only accounted for water, 458 

energy, land, and food; other significant elements like labor, climate, and economy also play a 459 

role in agricultural systems, whose inclusion may further improve the understanding gained by 460 

this study. 461 
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