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Abstract

Brazilian tropical woodlands, such as the wooded Cerrado, perform hydrological functions that need to be well understood by

field data acquisition and mathematical modeling. Here, we aimed to assess the water partitioning behavior and variability

of a wooded Cerrado fragment located in Southeastern Brazil by (i) measuring fluxes using eddy covariance; (ii) applying

machine learning techniques to obtain a model to estimate the evapotranspiration (ET) using meteorological data as input:

solar radiation (Rg), wind speed (WS), temperature (T), relative humidity (RH), and rainfall (P); and (iii) simulating a long-

term water balance using stochastic climate generator inputs and the previously calibrated ET model. The average observed

ET was 3.12±0.93 mm d) and P (1227±208 mm yr-1) have similar standard deviations; differently from the ET (1054±46 mm

yr-1), which presented higher annual rates with a small variability throughout the simulation.
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Key Points: 10 

• Water fluxes of a tropical woodland measured using eddy covariance are reproduced 11 

using machine learning for long-term simulations. 12 

• The soil water in the wooded Cerrado helps to maintain the moisture cycling over the dry 13 

season for the ecosystem and surroundings.  14 

• The probability of a dry year in the wooded Cerrado is close to 20%, revealing a return 15 

period of approximately 5 years to droughts.     16 



manuscript submitted to Water Resources Research 

 

Abstract 17 

Brazilian tropical woodlands, such as the wooded Cerrado, perform hydrological functions that 18 

need to be well understood by field data acquisition and mathematical modeling. Here, we aimed 19 

to assess the water partitioning behavior and variability of a wooded Cerrado fragment located in 20 

Southeastern Brazil by (i) measuring fluxes using eddy covariance; (ii) applying machine 21 

learning techniques to obtain a model to estimate the evapotranspiration (ET) using 22 

meteorological data as input: solar radiation (Rg), wind speed (WS), temperature (T), relative 23 

humidity (RH), and rainfall (P); and (iii) simulating a long-term water balance using stochastic 24 

climate generator inputs and the previously calibrated ET model. The average observed ET was 25 

3.12±0.93 mm d-1, and the uncertainties were close to ±20%. We found that the k-nearest 26 

neighbors (KNN) presented the best performance to obtain a ET model, when compared to other 27 

machine learning techniques: decision trees (DTR), neural network multilayer perceptron (MLP), 28 

and ensemble based AdaBoost (ADA). The simulated long-term water balance at a daily basis 29 

was more sensitive to variations in P than ET and presented a resilient behavior to droughts, 30 

showing the importance of tropical woodlands to maintain the moisture cycling throughout the 31 

year with the water stored in the subsurface. Finally, the water balance in the long-term relies on 32 

the rainfall stochasticity, as the average annual dS/dt (water balance residual) (172±211 mm yr-1) 33 

and P (1227±208 mm yr-1) have similar standard deviations; differently from the ET (1054±46 34 

mm yr-1), which presented higher annual rates with a small variability throughout the simulation.   35 

 36 

Keywords: Water balance, wooded Cerrado, regression tree, neural networks, K-nearest 37 

neighbors, AdaBoost, weather generator.  38 
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1 Introduction 39 

Globally, evapotranspiration is commonly estimated using mass conservation approaches, 40 

however the distribution of this variable along the Earth’s surface still needs site specific 41 

monitoring and modeling (Wang & Dickinson, 2012). Eddy covariance instrumentation and 42 

processing techniques are the actual backbone of evapotranspiration (ET) measurements 43 

worldwide, as a reference to provide more reliable hydrological models in multiple scales and 44 

principles: remote sensed (Bastiaanssen et al., 1998; Martens et al., 2017; McCabe & Wood, 45 

2006; Mu, Zhao, & Running, 2011; Talsma et al., 2018); and ground based  (Allen, Pereira, 46 

Raes, & Smith, 1998; Priestley & Taylor, 1972). Eddy covariance instruments generate complex 47 

flux measurements that can be better reproduced using new advanced machine learning 48 

techniques (Baldocchi, 2020), outperforming traditional evapotranspiration estimation methods 49 

(Goyal, Bharti, Quilty, Adamowski, & Pandey, 2014). Thus, machine learning has become a 50 

popular approach to estimate hydrological or environmental variables, enhancing data processing 51 

and interpretation (Yamaç & Todorovic, 2020).  52 

Brazil is recognized as a huge biodiversity hotspot, as its biomes contain resources that 53 

are useful for many economic activities, and regulate global climate, supplying Earth with a 54 

number of ecosystem services (Levis et al., 2020). Regarding the landscapes that form the 55 

Brazilian Cerrado, a better understanding of evapotranspiration is necessary to improve 56 

estimation techniques, which would be useful for developing unbiased hydrological models for 57 

more effective water resources management (Valle Júnior et al., 2020), in order to sustain 58 

economic activities, such as agriculture and livestock production.  59 

Many efforts were made for a better understanding of the water cycle in Brazil on 60 

multiple scales (Melo et al., 2020; P. T. S. Oliveira et al., 2014). These studies contain valuable 61 

water partitioning data from tropical regions, but this type of information is still scarce for these 62 

regions (Burt & McDonnell, 2015; Wohl et al., 2012). Nevertheless, evapotranspiration can be a 63 

significant source of uncertainty, presenting more than 50% of bias among the estimates and 64 

observations (Anache, Wendland, Rosalem, Youlton, & Oliveira, 2019). The Large-Scale 65 

Biosphere-Atmosphere Experiment in the Amazon (da Rocha et al., 2009) and individual efforts 66 

to measure evapotranspiration in undisturbed Cerrado areas have been carried out recently 67 

(Cabral, da Rocha, Gash, Freitas, & Ligo, 2015; Giambelluca et al., 2009; Nobrega et al., 2017). 68 

These studies revealed some important results that led to the validation of many 69 



manuscript submitted to Water Resources Research 

 

evapotranspiration estimates in the region (Oliveira  et al., 2015; A. L. Ruhoff et al., 2013; 70 

Anderson L. Ruhoff et al., 2012).  71 

Considering the Twenty-three unsolved problems in hydrology (UPH) (Blöschl et al., 72 

2019), an important question arises in this study: “How can hydrological models be adapted to be 73 

able to extrapolate changing conditions, including changing vegetation dynamics?” In order to 74 

solve this UPH, weather generators are commonly used to assess the impact of climate 75 

variability on previously calibrated hydrological models (King, McLeod, & Simonovic, 2015; 76 

Kwon, Sivakumar, Moon, & Kim, 2010). Synthetic data generated by these models provide 77 

significant information to decision makers in places with a coarse spatiotemporal resolution of 78 

the observed data. These stochastic tools can reinforce the available data as they can fill the gaps 79 

of missing data or provide long-term series with the same characteristics observed in the input 80 

variables, such as variances, correlations and spatiotemporal dynamics (Allard, Ailliot, Monbet, 81 

& Naveau, 2015; King et al., 2015). Moreover, weather generators can simulate extreme 82 

conditions expected in the location but not observed in the historical series, providing a wider 83 

range of feasible situations (Herrera et al., 2017; Semenov, Brooks, Barrow, & Richardson, 84 

1998). 85 

These stochastic tools can be classified into parametric, semi-parametric and non-86 

parametric ones. Traditional models, also known as parametric models, require assumptions 87 

about statistical distributions of the input weather variables, involving a careful analysis of the 88 

suitability of the output data to the location (Herrera et al., 2017). Some of parametric weather 89 

generators widely used are the CLIGEN model (Nicks, Lane, & Gander, 1995) and the WGEN 90 

(Richardson & Wright, 1984). Non-parametric weather generators do not require any statistical 91 

assumption of the observed data, creating climate simulations based on resampling methods. 92 

Semi-parametric ones, such as LARS-WG (Semenov & Stratonovitch, 2010), were developed 93 

considering both parametric and non-parametric components, designed to overcome possible 94 

limitations of using parametric generators (Apipattanavis, Podestá, Rajagopalan, & Katz, 2007). 95 

There is a great need to reduce uncertainties of evapotranspiration observations and 96 

estimates performed for tropical woodlands such as the Brazilian wooded Cerrado (Anache et al., 97 

2019). Additionally, few studies in Brazil and in South America have endeavored to represent a 98 

hydrological phenomenon such as evapotranspiration using machine learning techniques 99 
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(Tyralis, Papacharalampous, & Langousis, 2019). Finally, the extrapolation of climate conditions 100 

should be more included in hydrological models that can catch the behavior of undisturbed 101 

ecosystems in the outcomes. Thus, the purpose of this study was to assess the water partitioning 102 

variability in the critical zone of a wooded Cerrado fragment due to climate stochasticity. Firstly, 103 

we performed flux measurements over a wooded Cerrado area located in Southeastern Brazil 104 

using eddy covariance; secondly, we explored the data using machine learning to obtain a model 105 

to calculate the evapotranspiration of the wooded Cerrado area using meteorological data 106 

feasible to be estimated or measured; finally, we simulated a long-term water balance using 107 

stochastic climate generator inputs and the previously calibrated model. 108 

2 Material and Methods 109 

2.1 Site description 110 

The experimental site (Figure 1) was built inside a tropical woodland fragment of 111 

approximately 330 ha commonly known as wooded Cerrado (or Cerrado stricto sensu, in 112 

Portuguese). The area is in the central region of the state of São Paulo, in Brazil, where 113 

pastureland and sugarcane fields are the most common land covers in the surroundings. The site 114 

is located inside the Cerrado ecoregion, which is part of Tropical and Subtropical Grasslands, 115 

Savannas and Shrubland biomes (Olson et al., 2001). The average rainfall is 1486 mm (Cabrera, 116 

Anache, Youlton, & Wendland, 2016) and the climate is humid subtropical (Cwa) according to 117 

Köppen’s classification system (Peel, Finlayson, & McMahon, 2007).  118 

2.2 Instrumentation and monitoring 119 

Micrometeorological variables were monitored using low (rainfall, relative humidity, 120 

temperature, net radiation, soil heat flux, soil moisture) and high (wind speed and direction, H2O 121 

molar fraction) frequency instrumentation.  The instruments (Table 1) were deployed in a 24-122 

meter height metallic tower, which was equipped with a data acquisition and storage system. 123 

However, the main pieces of equipment were positioned below the maximum tower height due 124 

to footprint requirements and lightning protection.   125 

 126 
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 127 

Figure 1. Site regional context (a) and location (b); wind direction and flux footprint (c); canopy, 128 

instruments, and tower height (c); and eddy covariance sensors above canopy (e). 129 

  130 
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Table 1. Monitoring site instrumentation features. 131 

Variable Sensor 
Height or 

depth* (m) 

Measurement 

range 

Maximum 

error 

Temperature (°C) HMP155A 16 -80 to +60 °C ±0.45 °C 

Relative humidity (%) HMP155A 16 0 to 100 % ±1.7 % 

Rainfall (mm) 
Hydrological 

Services TB4 
16 0 to 700 mm h-1 ±3 % 

Atmospheric pressure (mbar) Vaisala CS106 16 
500 to 

1100 mbar 
±1.5 mbar 

Wind speed (m s-1) and 

direction (°) 

Irgason sonic 

anemometer 
16 

0 to 30 m s-1 

0 to 360° 

±1.8 m s-1 

±0.7° 

H2O molar fraction Irgason gas analyzer 16 
0 to 72 

mmol/mol 
2% 

Soil moisture (%) 
FDR EnviroSCAN 

Sentek 
−0.3* 0 to ∼65 % ±3 % 

Net solar radiation (W m-2) Kipp & Zonen CNR4 10 ±2000 W m-2 ±20 W m-2 

Soil heat flux (W m-2) Hukseflux HFP01 −0.1* ±2000 W m-2 −15 % to +5 % 

 132 

2.3 Observed data processing and analysis 133 

The raw data of observed evapotranspiration (latent heat flux) and sensitive heat were 134 

corrected by using EasyFlux-PC (Campbell Scientific Inc.). The main corrections steps were: (i) 135 

peak removals and filtering throughout the time series, considering signal strength and 136 

equipment detection limits; (ii) correction of the horizontal winds using the double rotation 137 

method (Tanner & Thurtell, 1969); (iii) lag removal between concentration and wind 138 

measurements (Foken, Leuning, Oncley, Mauder, & Aubinet, 2012; Horst & Lenschow, 2009); 139 

(iv) averaging and frequency corrections (Dijk, 2002; Foken et al., 2012; Horst & Lenschow, 140 

2009; Kaimal, Clifford, & Lataitis, 1989; Moncrieff et al., 1997; Montgomery, 1947; Moore, 141 

1986; Shapland, Snyder, Paw U, & McElrone, 2014); (v) conversion of the sonic sensible heat 142 

flux to sensible heat flux (Dijk, 2002; Schotanus, Nieuwstadt, & De Bruin, 1983); (vi) air density 143 

fluctuation correction (Webb, Pearman, & Leuning, 1980); (vii) data quality control (Foken et 144 

al., 2012).  145 

Finally, the fluxes were filtered using the wind direction as the main criteria to select 146 

measurements that represent the target area (a tropical woodland). Fluxes that came from 147 

directions outside the woodland fragment or without the required fetch were considered as gaps 148 

throughout the series. Thus, we filled the gaps using the ReddyProc webtool developed by Max-149 

Planck Institute for Biogeochemistry (Wutzler et al., 2018) to obtain a consistent time series. 150 
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2.4 Modeling phase 151 

Observed micrometeorological data collected through the eddy covariance approach was 152 

used as input data to calibrate and validate several modeling strategies using machine learning to 153 

model evapotranspiration. After choosing the best modeling strategy, we performed a long-term 154 

water balance simulation using a weather generator to provide a huge variety of input data to run 155 

the previously calibrated ET model, and also calculated overland flow with the simulated rainfall 156 

data (Figure 2). The evapotranspiration is a key variable in the water balance to represent the 157 

hydrological response of an ecosystem, as well as the overland flow, which can be easily 158 

estimated by using a literature runoff coefficient.  159 

 160 

 161 

Figure 2. Workflow chart containing the modeling phases of the study.2.4.1 Machine learning 162 

for ET estimation. 163 

 164 

Half-hourly data obtained after processing the high frequency eddy covariance 165 

measurements were downscaled to daily data (Anache et al., 2021). We defined as the 166 

evapotranspiration (ET) the target (response) variable, which can be explained by selected 167 

explanatory variables also monitored in the same site: incoming solar radiation (Rg), wind speed 168 

(WS), temperature (T), relative humidity (RH), and rainfall (P). In addition, these variables were 169 

ranked according to their importance in estimating ET using a recursive feature elimination 170 

algorithm. The whole dataset, which has 235 days in total was randomly and equally divided into 171 

training (calibration) and testing (validation) datasets. We included all seasonal conditions in 172 
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both training and testing datasets: 117 observed points (days) were used for training, and the rest 173 

(118) were used for testing.  The subsets were created randomly and interspersed throughout the 174 

235 days of the data collection period.  175 

We tested four machine learning techniques available in the scikit-learn machine learning 176 

open-source library (Pedregosa et al., 2011), which works using Python. We also adopted 177 

unsupervised learning to fit the tested models.   The tested learning techniques were regressions 178 

based on decision trees (DTR), neural network multilayer perceptron (MLP), k-nearest neighbors 179 

(KNN), and ensemble based AdaBoost (ADA). The machine learning techniques performances 180 

were evaluated by using statistical metrics: coefficient of determination (R²), mean squared error 181 

(MSE), percent bias (PBIAS), and Kling-Gupta efficiency (KGE).  182 

2.4.2 Overland flow estimation 183 

We used a runoff coefficient (0.001) previously calculated for the same location and land 184 

cover (Anache et al., 2019) to simulate the overland flow generation. A previous study in the 185 

same site recommends the rational method as the most feasible technique to estimate the 186 

overland flow (P. T. S. Oliveira et al., 2016) due to the higher uncertainties of other methods. 187 

Additionally, in forested conditions, the overland flow is not significantly as high as the other 188 

water balance components (Anache et al., 2019; Anache, Wendland, Oliveira, Flanagan, & 189 

Nearing, 2017; Guo, Hao, & Liu, 2015; Nacinovic, Mahler, & Avelar, 2014).  190 

2.4.3 Weather generator for long-term water balance simulation 191 

We used the KnnCADv4 model (King et al., 2015) to generate a synthetic daily series of 192 

rainfall, maximum, average, and minimum temperature, solar radiation, wind speed, and relative 193 

humidity. These variables are important inputs for ET models. This weather generator is 194 

typically used to simulate temperature and precipitation data considering climate stochasticity. 195 

These outcomes can be used as input parameters to run previously calibrated models to obtain 196 

other specific variables and transfer the variability from the input series (Herrera et al., 2017). 197 

We used the climate dataset from the Luiz de Queiroz College of Agriculture (ESALQ-USP) 198 

climate station in Piracicaba, Brazil, established in 1917 (latitude 22°42′30″ S, longitude 199 

47°38′30″W, elevation 546 m a.m.s.l.) (Marin, Pilau, & Sentelhas, 2021) to set up the 200 

KnnCADv4 model and obtain a long-term synthetic series. This station represents the regional 201 
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climate of the study site due to its long-term characteristic and location (Anache, Flanagan, 202 

Srivastava, & Wendland, 2018). 203 

The modified algorithm of the KnnCADv4 model (King et al., 2015; Mandal, 204 

Arunkumar, Breach, & Simonovic, 2019) is a non-parametric weather generator that uses a 205 

resampling strategy for generating data based on the K-Nearest Neighbor (K-NN) procedure. We 206 

opted for a non-parametric model due to its greater applicability than parametric and semi-207 

parametric ones (Herrera et al., 2017). The KnnCADv4 generates simulated daily data based on 208 

the similarity with the historical data (Yazd, Salehnia, Kolsoumi, & Hoogenboom, 2019). 209 

Considering this, the model selects the possible nearest neighbors of a given day of the year, 210 

based on a temporal window with a predefined length, centered on that day for all years of the 211 

input record. These potential neighbors are then ranked, based on their Euclidean distance from 212 

the current day, and the first K observed data of them are selected. To preserve temporal 213 

correlation, resamples on KnnCADv4 are made based on a block with Y days as opposed to a 214 

single day (Mandal et al., 2019). The model also permits perturbing the resampled values, 215 

allowing values not observed in the input data in the generated series. More details about this 216 

tool can be seen in King et al. (2015) and Mandal et al. (2019). 217 

The water balance variables were simulated using KnnCADv4 outcomes at a daily basis:  218 

Rg, WS, T, RH, and P were the inputs to calculate ET using the machine learning technique that 219 

presented the best model performance metrics; the OF was calculated using simulated P and the 220 

wooded Cerrado runoff coefficient (0.001) (Anache et al., 2019); and the P used in the water 221 

balance simulation was the same as the KnnCADv4 outcomes. Thus, these variables were 222 

combined in Equation 1, to obtain the water balance residual (dS/dt), which includes subsurface 223 

flow, soil water storage, deep percolation, and groundwater recharge.  224 

 225 

𝑑𝑆

𝑑𝑡
= 𝑃 − 𝐸𝑇 − 𝑂𝐹         (1) 226 

 227 

Where: P is the rainfall (mm d-1); ET is the evapotranspiration (mm d-1); OF is the overland flow 228 

(mm d-1); and dS/dt is the water balance residual (mm d-1).  229 
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2.5 Data analysis and uncertainties 230 

We tested the normality assumption for the daily basis datasets (observations and 231 

simulations) considering a 95% confidence interval. The observed data (P, ET, and soil water 232 

content) and observed derived data (OF and dS/dt) were plotted using a daily timescale. The soil 233 

water content (SWC) monitoring throughout the observational period was useful to validate the 234 

water balance assumption.  235 

The uncertainties were assessed for the main observed hydrological outputs (P, ET, OF, 236 

and dS/dt). The flaws considered for P were derived from the instrument relative error (Table 1),  237 

and the OF error was calculated according to the relative error reported with the runoff 238 

coefficient study (Anache et al., 2019) and it is ± 10 %. The error from ET measurements were 239 

calculated by EasyFlux-PC (Campbell Scientific Inc.) as random errors accumulated throughout 240 

the measurements and data processing. Hence, the water balance residual (dS/dt) uncertainty 241 

could be calculated as a propagation of errors (Equation 2). Then, the errors of the water balance 242 

components were accumulated throughout the period and expressed at a daily basis as dS/dt 243 

uncertainty.  244 

 245 

𝜎𝑑𝑆

𝑑𝑡

= (𝜎𝑃
2 + 𝜎𝐸𝑇

2 + 𝜎𝑂𝐹
2 )0.5        (2) 246 

 247 

Where: σ is the standard error (mm d-1); dS/dt is the water balance residual; P is rainfall; OF is 248 

surface runoff; and ET is evapotranspiration.  249 

The simulated data was represented using annual, monthly, and daily timescales. The 250 

graphical representation included shaded areas representing the range of possible values 251 

(standard deviations) due to climate stochasticity and the ecosystem response to it.  In addition, 252 

boxplots were also used to show the simulated value distributions.  253 

3 Results and discussion 254 

3.1 Observed flux data for a tropical woodland 255 

The flux tower has been operated since October 2018, however in this study, we are 256 

considering the first phase of data collection, which corresponds to 235 days, between October 257 

2018 and June 2019. The energy balance component daily dynamics for the study site is 258 
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presented on an hourly-basis (Figure 3a) agreeing with other energy partitioning observations 259 

from similar land covers in a tropical environment (Cabral et al., 2015; da Rocha et al., 2009; 260 

Giambelluca et al., 2009). The energy balance evaluated here (Figure 3b) showed a higher Rn – 261 

G component than H + LE as we did not consider the storage flux and the biomass energy 262 

storage. In addition, the instruments used to measure H + LE are different from the ones used for 263 

Rn – G. 264 

 265 

 266 

Figure 3. (a) energy partitioning throughout a 24-hour period, including net radiation (Rn), soil 267 

heat flux (G), sensible (H) and latent (LE) heats, the shaded areas that represent the standard 268 

deviations of the average calculated every 30 min using the whole dataset; (b) scatter plot 269 

between the sum of turbulent fluxes (daily averages) of sensible (H) and latent (LE) heat versus 270 

the available energy (Rn – G) (gap filled data included).    271 

 272 

The average daily values for the water balance components presented the highest 273 

standard deviations for P measurements (a discrete variable), which reflected on dS/dt and Q 274 

standard deviations (Table 2). However, ET presented a lower standard deviation due to its 275 

continuity over time. The time series for the main water balance components are presented in 276 

Figure 4. The dynamics is similar to what was observed using compatible micrometeorological 277 

techniques (Cabral et al., 2015; Valle Júnior et al., 2020). The eddy covariance ET measurement 278 

uncertainties were computed (Table 2 and Figure 4a) and their values were close to the typical 279 

error range for this method (Allen, Pereira, Howell, & Jensen, 2011).  A low runoff coefficient 280 
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led to a small overland flow computed for the monitoring period (Figure 4a) as observed in other 281 

hillslope scale studies (Anache et al., 2019; Anache et al., 2017; Guo et al., 2015; Nacinovic et 282 

al., 2014). The ET measurement flaws are mainly responsible for the water balance uncertainty, 283 

followed by rainfall and overland flow. Previous studies in the same site computed uncertainties 284 

higher than 100% for the water balance due to poor ET estimates (relative error of 53%) (Anache 285 

et al., 2019). Due to reduced errors from eddy covariance ET measurements (Table 2), we found 286 

more reliable results for water partitioning in the wooded Cerrado. This first phase dataset is 287 

available at a daily time resolution (Anache et al., 2021).  288 

Throughout the monitoring period, the average observed ET was 3.12±0.93 mm d-1 
289 

(Table 2), ranging between 0.93 mm d-1 and 5.05 mm d-1(Figure 4c). Other flux measurements 290 

performed in  similar land cover conditions found values ranging between 1.0 mm d-1 and 7.1 291 

mm d-1 (Cabral et al., 2015); averaging 2.25 ± 0.45 mm d-1 (Giambelluca et al., 2009); and 292 

averaging 1.36 mm d-1 on dry periods and 3.08 mm d-1 on wet periods (da Rocha et al., 2009). 293 

The evapotranspiration dynamics reflected on the water balance residuals (Figure 4d) similarly to 294 

previous studies in the same area (Anache et al., 2019; Oliveira  et al., 2015), and it is confirmed 295 

by the soil water content (Figure 4e), which presents a similar variation pattern. Additionally, 296 

soil water content maintains evapotranspiration rates continuous throughout the dry period 297 

(starting in April), agreeing with what was observed by previous field observations in similar 298 

ecosystems (Cabral et al., 2015; Giambelluca et al., 2009). 299 

 300 
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 301 

Figure 4. Accumulated (a) water balance variables and non-accumulated outcomes: (b) rainfall 302 

(c) evapotranspiration, (d) water balance residual, and (e) soil water content for a tropical 303 

woodland.  304 

  305 
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Table 2. Summary of observed average daily fluxes in the wooded Cerrado. 306 

Variable Average value Standard deviation Error 

Unit mm d-1 mm d-1 mm d-1 % 

P 4.51 9.78 0.14 3 

ET 3.12 0.93 0.64 21 

Q 0.004 0.001 0.0004 10 

dS/dt 1.46 10.10 0.66 45 

 307 

3.2 Modeling phase 308 

3.2.1 Calibration and validation of models 309 

We ran four machine learning algorithms with training and testing subsets for a 235-day 310 

dataset obtained throughout 2018 and 2019. The datasets were composed of a target variable 311 

(observed ET, derived from latent heat flux) and explanatory variables, which were used to serve 312 

as input to the model: solar radiation (Rg), wind speed (WS), temperature (T), relative humidity 313 

(RH), and rainfall (P). These input variables were chosen according to the machine learning 314 

modeling strategies discussed by Granata (2019), and we also ranked the input variables 315 

according to their importance on estimating ET. Although we were expecting to find radiation as 316 

the most relevant variable to model ET (Maček, Bezak, & Šraj, 2018) using machine learning 317 

techniques based on linear approaches, we found that T is the most important one, followed by 318 

WS, RH, Rg, and P, respectively.  We compared the observed data for training and testing 319 

subsets (Figures 5b and 5c, respectively) for each machine learning technique. The dispersion is 320 

increased on the testing (validation) and all data subsets, as expected, and observed by similar 321 

modeling exercises (Dou & Yang, 2018; Goyal et al., 2014; Yamaç & Todorovic, 2020). This 322 

behavior is confirmed by the model performance evaluation metrics (Table 3).   323 

The observed evapotranspiration dynamics and range (Figure 5a) were reproduced by all 324 

four tested machine learning algorithms throughout the observed period, which included both 325 

wet (between October and March) and dry (between April and June) seasons. In general, all 326 

models (except ADA) underestimated ET throughout the calibration phase. However, all of them 327 

overestimated ET throughout the validation. DTR presented an overfitted calibration (Figure 5b-328 

i), which could not be well reproduced throughout the validation phase (Figure 5c-i), revealing 329 

the technique inadequacy to reproduce continuous floating data. Although neural networks are a 330 

feasible alternative to model ET (Liu et al., 2012; Yamaç & Todorovic, 2020), KNN and ADA 331 
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presented the best performances throughout all the model evaluation phases. The KNN model 332 

has been chosen to reproduce ET data throughout the water balance simulation phase.  333 

 334 

 335 

Figure 5. Comparison between observed and estimated ET values: (a) along monitoring time; 336 

and using scatter plots for (b) calibration and (c) validation datasets. Machine learning 337 

techniques used to estimate ET: (i) decision trees, (ii) neural networks, (iii) k-nearest neighbors, 338 

and (iv) AdaBoost predictoros.  339 

  340 
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Table 3. Performance evaluation of machine learning techniques to predict evapotranspiration 341 

for a tropical woodland. 342 

Model Metrics Calibration Validation All data 

DTR 

R2 1.00 0.65 0.81 

MAE 0.00 0.44 0.22 

KGE 1.00 0.83 0.91 

PBIAS 0.00 -1.51 -0.77 

MLP 

R2 0.77 0.74 0.75 

MAE 0.36 0.40 0.38 

KGE 0.66 0.70 0.69 

PBIAS 0.09 -0.98 -0.45 

KNN 

R2 0.85 0.77 0.81 

MAE 0.29 0.38 0.34 

KGE 0.86 0.84 0.85 

PBIAS 0.37 -0.78 -0.22 

ADA 

R2 0.92 0.77 0.84 

MAE 0.23 0.36 0.30 

KGE 0.85 0.83 0.84 

PBIAS -0.27 -1.36 -0.82 

DTR: decision trees; MLP: neural network multilayer perceptron; KNN: k-nearest neighbors; 343 

and ADA: ensemble based AdaBoost. R²: coefficient of determination; MSE: mean squared 344 

error; PBIAS: percent bias; KGE: Kling-Gupta efficiency. All metrics are dimensonless exept 345 

MAE (mm d-1). 346 

 347 

3.2.2 Long-term water balance simulation 348 

The long-term simulated water balance presented similar periods of water deficit and 349 

surplus at a daily basis (Figure 6a and 6b).  Thus, by observing the outcomes, we may identify 350 

more periods of water surplus. The simulated ET throughout replicated years representing the 351 

local climate stochasticity ranged from 1.25 mm d-1 to 4.69 mm d-1, and the average was 2.91 352 

mm d-1.  353 

 354 
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   355 

Figure 6. Long-term averages for (a) daily rainfall (P), evapotranspiration (ET), overland flow 356 

(OF); (b) water balance residual (dS/dt); shaded areas with the variable color represent its 357 

standard deviations; boxplots containing (c) monthly, and (d) annual long-term water balance 358 

components distributions: rainfall (P), evapotranspiration (ET), overland flow (OF), and water 359 

balance residual (dS); all figures (a, b, c and d) represent the same time series calculated using a 360 

stochastic weather generator (KnnCADv4) as input for calibrated OF and ET predictors. 361 

 362 

 The monthly total average for the water balance components ranged differently between 363 

the dry and wet periods (Figure 6c), except for the overland flow, which is not significant (close 364 

to zero) compared with the other variables. The driest periods occur between April and 365 
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September; and the wet season happens between October and March. Additionally, there is a 366 

dependency of the wooded Cerrado water balance in the long term on the rainfall stochasticity. 367 

This dependency reflects on the average simulated annual dS/dt (172±211 mm yr-1) and P 368 

(1227±208 mm yr-1), which have similar standard deviations (around 200 mm yr-1) (Figure 6d). 369 

However, the ET (1054±46 mm yr-1) presented high annual rates but a small variability 370 

throughout the simulated year, confirming that it depends more on soil water availability than on 371 

the rainfall events. This corroborated with the expected moisture cycling dynamics typical from 372 

the tropics (Wohl et al., 2012). In addition, it is typical from tropical woodland sites that the ET 373 

continues throughout dry periods without rainfall due to the steady transpiration process 374 

supported by soil water content (Wang-Erlandsson, van der Ent, Gordon, & Savenije, 2014). 375 

Such a steady condition of ET in tropical woodlands is important to maintain regional water 376 

balance and moisture cycling between tropics and subtropics in Brazil (aerial rivers) (Nobre, 377 

Arraut, Barbosa, Obregon, & Marengo, 2012; Spangler, Lynch, & Spera, 2017; Spera, Galford, 378 

Coe, Macedo, & Mustard, 2016), and is supported by an increased soil water retention capacity 379 

combined with a deeper root system provided by woody and undisturbed vegetation cover (Dias, 380 

Macedo, Costa, Coe, & Neill, 2015; R. S. Oliveira et al., 2005; Tseng, Alves, & Crestana, 2018).  381 

3.3 Water partitioning behavior and variability of a tropical woodland 382 

The long-term water balance was averaged in multiple time resolutions (annual, monthly, 383 

and daily) (Table 3). This multiple time-scale visualization approach reveals that the climate 384 

variability may cause a sort of surplus and scarcity situations. The resilience of the wooded 385 

Cerrado to maintain ET throughout the dry periods may cause negative dS/dt values at multiple 386 

timescales. However, the probability of having a dry year (dS/dt < 0 mm yr-1) is approximately 387 

20%, corresponding to the return period of 5 years, agreeing with previous predictions for 388 

drought occurrences in Brazil (Awange, Mpelasoka, & Goncalves, 2016). The probability of a 389 

negative dS/dt increases when considering monthly (~ 50%) and daily (> 90%) timescales. This 390 

information reveals the importance of managing the water resources better, as the study site is 391 

located above the Guarani Aquifer System (GAS) outcrop zone, where the infiltrated water that 392 

percolates the unsaturated zone may potentially recharge the aquifer (Anache et al., 2019; Lucas 393 

& Wendland, 2015; P. T. S. Oliveira et al., 2017).  394 

  395 
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Table 4. Summary of the simulated average annual, monthly, and daily fluxes in the wooded 396 

Cerrado. 397 

Timescale Unit Variable Average value Standard deviation 

Annual mm yr-1 

P 1227.16 207.63 

ET 1054.01 46.30 

Q 1.23 0.21 

dS/dt 171.93 211.04 

Monthly mm month-1 

P 102.26 82.46 

ET 87.83 16.30 

Q 0.10 0.08 

dS/dt 14.33 76.71 

Daily mm d-1 

P 3.39 8.96 

ET 2.91 0.91 

Q 0.003 0.008 

dS/dt 0.47 9.11 

 398 

4 Conclusions 399 

This paper presented new water flux measurements in an undisturbed environment of the 400 

Brazilian Cerrado: a tropical woodland, also known as wooded Cerrado. We enhanced 401 

experimental data visualization and exploration using computational and modeling techniques. 402 

The long-term hydrological simulation to compute the water balance components was necessary 403 

to better explore and expand the possibilities for a window of flux measurements in the field. 404 

These experimental data alone provide us with particularly important information about the 405 

water partitioning on tropical woodlands, nevertheless, they do not reveal the whole story. 406 

Consequently, using machine learning and stochastic simulations were necessary to complete the 407 

information to understand the system better, by analyzing the flux variabilities on multiple 408 

timescales and including climate stochasticity.   409 

The daily water balance of the wooded Cerrado in both observed and long-term 410 

prediction datasets presented high dependence on daily rainfall occurrence, as it is a discrete 411 

variable and varies significantly throughout the days. Conversely, evapotranspiration has a 412 

continuous characteristic, leading to a smaller variation throughout time, smoothing the 413 

ecosystem responses written in the water balance residuals and soil water content variations. In 414 

addition, here we confirmed that wooded Cerrado vegetation supports the evapotranspiration by 415 
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transferring water from soil moisture to the atmosphere, and rainfall variation has a low impact 416 

on this variable.  417 

Considering the long-term simulated water balance series, a resilient behavior to droughts 418 

could be identified in the wooded Cerrado, as it tends to have 6 months of water surplus and 6 419 

months of water deficit throughout the simulated years, and the latter was slightly lower. This 420 

shows the importance of water storage in the subsurface throughout the dry season, which helps 421 

to maintain the moisture cycling over the whole year for this ecosystem and surrounding areas. 422 

The wooded Cerrado water balance in the long term also relies on the rainfall stochasticity. This 423 

dependency can be observed on the average simulated annual dS/dt (water balance residual) 424 

(172±211 mm yr-1) and P (1227±208 mm yr-1), which have similar standard deviations (around 425 

200 mm yr-1); different from the ET (1054±46 mm yr-1), which presented high annual rates but a 426 

small variability throughout the simulated years, not significantly reflecting the water balance 427 

residual. In addition, the probability of occurrence of a dry year (dS/dt < 0) is close to 20%, 428 

revealing a return period of approximately 5 years to droughts.    429 
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