Fossil vs. non-fossil CO sources in the US: New airborne constraints from ACT-America and GEM

Andres Gonzalez¹, Dylan B. Millet¹, Xueying Yu¹, Kelley C. Wells¹, Timothy J. Griffis¹, Bianca C. Baier², Patrick Campbell³, Yonghoon Choi⁴, Joshua Paul DiGangi⁵, Alexander Gvakharia⁶, Hannah Selene Halliday⁷, Eric A. Kort⁶, Kathryn McKain⁸, John B. Nowak⁵, and Genevieve Plant⁹

¹University of Minnesota
²University of Colorado Boulder
³George Mason University
⁴Science Systems and Applications, INC.
⁵NASA Langley Research Center
⁶University of Michigan-Ann Arbor
⁷EPA
⁸National Oceanic and Atmospheric Administration (NOAA)
⁹University of Michigan

November 24, 2022

Abstract

Carbon monoxide (CO) is an ozone precursor, oxidant sink, and widely-used pollution tracer. The importance of anthropogenic versus other CO sources in the US is uncertain. Here we interpret extensive airborne measurements with an atmospheric model to constrain US fossil and non-fossil CO sources. Measurements reveal a low bias in the simulated CO background and a 30% overestimate of US fossil CO emissions in the 2016 National Emissions Inventory. After optimization we apply the model for source partitioning. During summer, regional fossil sources account for just 9-16% of the sampled boundary layer CO, and 32-38% of the North American enhancement-complicating use of CO as a fossil fuel tracer. The remainder predominantly reflects biogenic hydrocarbon oxidation plus fires. Fossil sources account for less domain-wide spatial variability at this time than non-fossil and background contributions. The regional fossil contribution rises in other seasons, and drives ambient variability downwind of urban areas.

1 2 3 4	Fossil vs. non-fossil CO sources in the US: New airborne constraints from ACT- America and GEM
5 6 7 8	Andres Gonzalez ¹ , Dylan B. Millet ¹ , Xueying Yu ¹ , Kelley C. Wells ¹ , Timothy J. Griffis ¹ , Bianca C. Baier ^{2,3} , Patrick C. Campbell ^{4,5,6} , Yonghoon Choi ⁷ , Joshua P. DiGangi ⁷ , Alexander Gvakharia ⁸ , Hannah Halliday ⁷ , Eric A. Kort ⁸ , Kathryn McKain ^{2,3} , John Nowak ⁷ , and Genevieve Plant ⁸
9 10 11 12 13 14 15 16 17 18 19 20	 ¹Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA. ²Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA. ³Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA. ⁴Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA, USA. ⁵Cooperative Institute for Satellite Earth System Studies (CISESS).⁶Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA. ⁷NASA Langley Research Center, Hampton, VA, USA. ⁸Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA. Corresponding author: Dylan Millet (<u>dbm@umn.edu</u>)
21 22 23 24 25 26 27 28 29 30	 Key Points: We interpret an ensemble of airborne measurements with the GEOS-Chem model to constrain US fossil fuel and non-fossil CO sources Measurements reveal an approximate 30% overestimate of US fossil fuel CO emissions in the National Emissions Inventory During summer regional fossil fuel sources account for just 9-16% of total boundary layer CO over eastern North America

31 Abstract

- 32 Carbon monoxide (CO) is an ozone precursor, oxidant sink, and widely-used pollution tracer.
- 33 The importance of anthropogenic versus other CO sources in the US is uncertain. Here we
- 34 interpret extensive airborne measurements with an atmospheric model to constrain US fossil and
- 35 non-fossil CO sources. Measurements reveal a low bias in the simulated CO background and a
- 36 30% overestimate of US fossil CO emissions in the 2016 National Emissions Inventory. After
- optimization we apply the model for source partitioning. During summer, regional fossil sources
 account for just 9-16% of the sampled boundary layer CO, and 32-38% of the North American
- account for just 9-10% of the sampled boundary layer CO, and 52-38% of the North American
 enhancement—complicating use of CO as a fossil fuel tracer. The remainder predominantly
- 40 reflects biogenic hydrocarbon oxidation plus fires. Fossil sources account for less domain-wide
- 41 spatial variability at this time than non-fossil and background contributions. The regional fossil
- 42 contribution rises in other seasons, and drives ambient variability downwind of urban areas.
- 43
- 44

45 Plain Language Summary

46 Carbon monoxide (CO) is an air pollutant that is emitted from fossil fuel combustion and from

47 forest and agricultural fires. CO is also produced in the atmosphere through the oxidation of

- 48 hydrocarbons from both natural and human-caused sources. US fossil fuel CO emissions have
- 49 been declining in recent years, and their current importance relative to other regional sources is
- 50 uncertain. Here, we interpreted a large group of aircraft-based CO measurements with a high-

51 resolution atmospheric model to better quantify US fossil and non-fossil fuel CO sources over

- 52 the eastern half of the US. We find that US fossil fuel CO emissions in the 2016 National
- 53 Emissions Inventory are overestimated by approximately 30%. Furthermore, during summer 54 regional fossil fuel sources account for only a small fraction of the CO over North America
- 55 compared to the background concentrations already present in air entering North America, and

56 compared to the regional source from natural hydrocarbon oxidation. This complicates the use of

57 CO as a tracer for estimating fossil fuel sources of other pollutants such as carbon dioxide.

- 58
- 59

60

61

62

63

64

65 66

67 **1 Introduction**

68 Carbon monoxide (CO) is the largest sink of atmospheric hydroxyl (OH) radicals 69 (Müller et al., 2018) and a major tropospheric ozone precursor (Hu et al., 2017). It is emitted

70 from fossil fuel and biomass combustion and is also indirectly produced from the oxidation of

70 moth rossn ruler and biomass combustion and is also indirectly produced non-interesting of 71 methane and non-methane volatile organic compounds (VOCs). CO removal occurs mainly via

- reaction with OH, forming atmospheric carbon dioxide (CO₂) at an annual rate equivalent to
- ~10% of the global fossil fuel source (Duncan et al., 2007; Friedlingstein et al., 2019). As a
- result of its oxidative effects and their feedbacks, CO has a global warming potential
- approximately $5 \times$ that of CO₂ on a 100-year timescale (Shindell et al., 2009).

76 According to the National Emissions Inventory Collaborative (NEIC) Emissions 77 Modeling Platform, based on the US Environmental Protection Agency (EPA) National 78 Emissions Inventory (NEI), US CO emissions totaled ~55 Tg in 2016, with fossil fuel and 79 biomass burning emissions accounting for 41 Tg and 14 Tg, respectively (NEIC, 2019). Fossil 80 fuel sources in the inventory are predominantly mobile (on-road: 18 Tg; non-road: 10 Tg) and in 81 the case of on-road emissions, mainly (90%) due to non-diesel light-duty vehicles. Gasoline 82 combustion similarly accounts for the majority (80%) of the estimated non-road mobile source 83 (NEI, 2014). Annual fossil fuel CO emissions in the NEI decreased by approximately 50 Tg/year 84 from 2000-2016, driven by a nearly 70% drop in the estimated mobile source (EPA, 2019).

85 CO has traditionally been used as a fossil fuel tracer to diagnose anthropogenic sources of 86 CO₂ and other species (e.g., Cheng et al., 2018; Halliday et al., 2019; Nathan et al., 2018; Super 87 et al., 2017). In the US, however, the dramatic decline in transportation-related emissions 88 (Gaubert et al., 2017; NEI, 2018; Parrish, 2006) means that non-fossil fuel CO sources are 89 increasingly important. For example, Hudman et al. (2008) estimated that VOC oxidation 90 (predominantly from biogenic precursors) was a two-fold larger CO source than direct 91 combustion emissions over the US during summer 2004. Furthermore, previous NEI versions 92 have been shown to overestimate US anthropogenic CO emissions by as much as 60% (Fujita et 93 al., 2012; Kim et al., 2013; Salmon et al., 2018; Brioude et al., 2011; Brioude et al., 2013; Plant 94 et al., 2019), so the non-fossil fuel CO fraction may be even greater than suggested by current 95 inventories.

96 Together, the large recent emission trends and demonstrated inventory biases imply 97 significant uncertainty in the current CO budget over North America. Two airborne measurement 98 campaigns conducted from 2016-2019 with widespread, multi-seasonal coverage over the 99 eastern half of the US provide new constraints for addressing this issue: the Atmospheric Carbon 100 and Transport (ACT)-America mission, with 5 dual-aircraft deployments across three US regions 101 (Davis et al., 2021), and the Greenhouse Emissions in the Midwest (GEM) mission with 3 102 deployments across the US Upper Midwest (Yu et al., 2020; 2021). Here, we employ the GEOS-103 Chem chemical transport model (CTM) to interpret these datasets in terms of their implications 104 for fossil fuel versus non-fossil and primary versus secondary CO sources over the US.

105

106 2 Methods

107 2.1 Aircraft Measurements

108 Figure 1 shows flight-tracks for the ACT-America and GEM airborne deployments used 109 here. ACT-America took place during summer 2016 (ACT1; see Table S1), winter 2017 (ACT2), 110 fall 2017 (ACT3), spring 2018 (ACT4), and summer 2019 (ACT5) (Davis et al., 2018; Davis et 111 al., 2021). Each deployment featured measurements aboard two aircraft (C-130 Hercules: 487 112 flight hours; Beechcraft B200 King Air: 513 flight hours) across the US Midwest, Northeast, and South. Sampling altitudes ranged from 0.1-8.7 km above ground level (AGL); only data below 8 113 114 km AGL are employed here. Airborne CO measurements were also performed for the first two 115 GEM campaigns over the US Upper Midwest during summer 2017 (GEM1) and winter 2018 116 (GEM2). Measurements took place on a Mooney aircraft (76 flight hours) from 0.1 to 2.2 km 117 AGL (Yu et al., 2020; Yu et al. 2021). We employ data from ACT1-ACT4 for CO source 118 estimation and reserve ACT5, GEM1 and GEM2 for independent evaluation of the results. 119 ACT-America CO dry-air mole fraction measurements used here were performed in-situ 120 by wavelength-scanned cavity ring-down spectroscopy (CRDS; Picarro G2401-m) with ±5 ppb 121 estimated uncertainty (DiGangi et al., 2021; Wei et al., 2021). Additional CO measurements 122 were obtained during ACT-America via air samples collected on-board both aircraft with 123 Programmable Flask Packages (PFP) (Baier et al., 2020; Wei 2021; Davis et al., 2018). An 124 intercomparison of the C-130-H and B-200 Picarro datasets using the PFP observations as 125 transfer standard shows no significant difference (Figure S1) and we treat them here as a single 126 statistical ensemble. GEM CO measurements were performed by continuous-wave tunable 127 infrared laser absorption spectrometry (Aerodyne CW-TILDAS) with ± 1 ppb estimated 128 uncertainty (Gvakharia et al., 2018; Millet et al., 2019). In-situ measurements for ACT and GEM 129 were made at 0.4 Hz and we use 1-minute averaged data in analyses that follow. 130 We also employ airborne CO measurement over the remote Pacific from the Atmospheric 131 Tomography Mission (ATom) (Wofsy et al., 2018) to evaluate and adjust the chemical boundary 132 conditions used in the nested GEOS-Chem simulations (Section 2.2). ATom featured pole-to-133 pole sampling from 0.2-12 km altitude during four separate deployments; CO measurements 134 used here were collected using the NOAA Picarro instrument with estimated ± 3.6 ppb 135 uncertainty (Chen et al., 2013). ATom1 (Northern Hemisphere summer 2016), ATom2 (winter 136 2017), ATom3 (fall 2017) and ATom4 (spring 2018) overlap temporally with ACT1-ACT4, 137 respectively, and are applied for correction accordingly. ATom1 data is further used for ACT5 138 and GEM1 background correction, and ATom2 data for GEM2 background correction, given 139 their matching seasonal coverage. Correction procedures are explained below. All datasets are 140 calibrated on the WMO X2014A scale.

141

Figure 1: ACT-America and GEM flight-tracks colored by observed CO mixing ratios.

143 2.2 GEOS-Chem Simulations

144 We interpret the above airborne datasets using a GEOS-Chem (v12.6.3;

doi:10.5281/zenodo.3552959) simulation nested at $0.25^{\circ} \times 0.3125^{\circ}$ (latitude × longitude)

resolution over North America (60°-130°W, 9.75°-60°N) with 47 vertical layers (Figure S2).

147 Model runs are driven by GEOS-FP meteorological data from NASA GMAO (Lucchesi, 2013),

and employ timesteps of 10-min (transport, convection) and 20-min (emissions, chemistry). A 1-month nested spinup is used for initialization.

150 Chemical boundary conditions (3-hourly) for the nested model domain are obtained from 151 global simulations at $2^{\circ} \times 2.5^{\circ}$ and bias-corrected using a latitude-dependent fit of model-152 measurement 0.1 quantile differences (6° latitude bins from 66°S-54°N) along the ATom flight-153 tracks over the remote Pacific (Figure S3). As described later, we also perform a sensitivity 154 analysis without this boundary condition correction as one test of our results.

- We use tagged tracers (Fisher et al., 2017) to track contributions to ambient CO from direct and indirect CO sources within the North American domain shown in Figure S2 and from the chemical boundary conditions (CO_{bc}) . Tagged direct sources include US on-road mobile emissions (CO_{usrd}) , US non-road mobile emissions (CO_{usnr}) , other US anthropogenic sources
- 158 emissions (CO_{usnt}), US non-road mobile emissions (CO_{usnt}), other US anthropogenic sources 159 (CO_{usot}), non-US anthropogenic emissions (CO_{camx} ; from Canada and Mexico) and wildfires
- plus agricultural burning (CO_{bb}). We separately track secondary CO (CO_{prod}) from the oxidation
- 161 of biogenic VOCs (CO_{prod_bio}), anthropogenic VOCs (CO_{prod_anth}), and other precursors
- 162 (CO_{prod_oth}; methane plus pyrogenic VOCs) occurring within the North American domain. CO
- 163 production and removal rates are computed using archived fields from full-chemistry simulations
- 164 at $2^{\circ} \times 2.5^{\circ}$; secondary contributions from biogenic and anthropogenic VOCs are derived from 165 mag with the corresponding emissions porturbed by 10%
- runs with the corresponding emissions perturbed by 10%.

166 Global anthropogenic emissions in the model are from the Community Emissions Data

- 167 System (Hoesly et al., 2018) overwritten for the US by the 2016 EPA NEI (NEIC2016v1; NEIC, 168 2019) and for Canada by the Air Pollutant Emission Inventory (APEI, 2020). Biogenic emissions
- are from the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1)

implemented as described by Hu et al. (2015), and biomass burning emissions use the Quick-Fire

- 171 Emissions Dataset (Koster et al., 2015).
- 172

173 **3 Results**

174 3.1 Measured Versus Predicted CO over the Eastern and Central US

175 Figure 2a-g shows the mean vertical CO profiles measured during ACT1-ACT5 and 176 GEM1-GEM2. Average concentrations during the ACT-America flights peak in the planetary 177 boundary layer (PBL; defined here as z < 2 km) at ~120-125 ppb during summer and fall, and at ~140 ppb during spring and winter. Concentrations during GEM (which sampled farther north 178 179 and predominantly within the PBL) are slightly higher. Aloft, we see free tropospheric (z > 4 km) 180 concentrations ranging seasonally between ~80-90 ppb (summer) and ~100-110 ppb (winter). 181 Also shown in Figure 2a-g are the CO mixing ratios simulated by GEOS-Chem along the 182 flight-tracks at the time of measurement, with the corresponding tagged-tracer source

183 contributions. The base-case simulation successfully captures the relative vertical distribution of

CO, but underestimates its abundance in all seasons except fall (ACT3). The magnitude of this low bias during spring, summer, and winter ranges from 9 ppb (averaged below 2 km) during spring for ACT4 to 48 ppb during summer for GEM1.

spring for ACT4 to 48 ppb during summer for GEM1.
 Transport from outside North America makes the largest contribution to ambient CO over
 the eastern half of the US in the GEOS-Chem base-case simulation (Figure 2a-g). This
 background varies little with altitude and changes seasonally in concert with the CO lifetime,

190 from ~50 ppb in summer (for ACT1 and ACT5) to ~100 ppb in winter (for ACT2 and GEM2).

191 We see from Figure 2 that the background contribution dominates total CO in the free

troposphere (71-96% above 4 km, lowest in summer). At lower altitudes, regional CO sources

play a larger role; nevertheless, the CO background still represents 55% (summer) to 78%
(winter) of the total averaged model abundance below 2 km.

195 Figure 2h-n shows the base-case model partitioning of North American CO 196 enhancements (i.e., excluding CO_{bc} , which is already present in air entering North America) 197 during ACT-America and GEM. The regional secondary source is further partitioned into 198 biogenic, anthropogenic, and other (methane + pyrogenic VOC) contributions. We see that 199 secondary production accounts for a significant fraction of the predicted North American CO 200 source, particularly during summer when, in the case of ACT1 and ACT5, it mainly arises from 201 biogenic VOC oxidation. Primary emissions mainly reflect US anthropogenic sources (in turn 202 dominated by on-road and off-road mobile emissions). GEM1, over the Upper Midwest, featured 203 a larger contribution from biomass burning.

204

205

206 207

208 209

Geophysical Research Letters

221

222 3.2 CO Source Optimization

We next apply the base-case tagged tracer simulations discussed above to develop improved US CO source estimates based on the ACT-America observations. The optimization is performed separately for ACT1-ACT4 and consists of two steps. First, since background CO dominates the total free tropospheric abundance (Figure 2), we attribute the prior model bias aloft accordingly and correct the simulated CO_{bc} based on the mean >4 km model-measurement differences for each campaign. Given the vertical uniformity of CO_{bc} this correction is applied throughout the column and ranges from a factor of 1.0 during fall to 1.5 during summer.

230 Second, after subtracting this corrected background we derive top-down adjustments on regional CO sources by regressing the model tagged tracers against the observed above-231 232 background enhancements below 2 km AGL. Selected tracers are grouped for optimization to 233 avoid multicollinearity and based on their relative abundance. During summer we thus optimize 234 1) direct CO emissions from US onroad, non-road mobile, and other anthropogenic sources 235 $(CO_{usnei} = CO_{usrd} + CO_{usrr} + CO_{usot})$ and 2) regional secondary CO production from biogenic and anthropogenic VOCs ($CO_{prod_voc} = CO_{prod_bio} + CO_{prod_anth}$) as single variables based on 236 the high cross-correlation (R = 0.92-0.98) among the grouped tracers. Other secondary 237 238 production (CO_{prod oth}) is not optimized as it is primarily from methane and implicitly corrected 239 by the preceding background adjustment. CO sources from Canada and Mexico and from biomass burning each make up <18% of the above-background model abundance during ACT1-4 240 241 and are likewise not optimized. During other seasons the same procedure is used but without 242 optimizing $CO_{prod \ poc}$ as it then accounts for <16% of the mean above-background 243 enhancements. A sensitivity test described later explores how how the choice of tracer groups for

244 optimization affects our results.

245 In this way we obtain seasonal top-down correction factors for the NEIC2016v1 US 246 anthropogenic CO emissions, along with a top-down correction to the regional secondary source 247 from biogenic + anthropogenic VOCs during summer. Results shown in Table 1 are consistent 248 across the seasonal ACT-America campaigns in revealing a moderate NEI overestimate of US 249 anthropogenic CO emissions, with coefficients ranging from 0.66 ± 0.05 to 0.79 ± 0.03 (here and below, stated uncertainties reflect bootstrapped 95% confident intervals). We find that secondary 250 251 CO production from regional VOC oxidation is well-represented in the model, with a derived 252 scale factor of 0.91 ± 0.03 .

Figure 2 and Table 1 show that the optimization successfully minimizes the prior model bias, and either improves or maintains the prior model:measurement correlation. An exception is ACT3, where the prior simulation was already essentially unbiased (< 3 ppb) with high correlation. However, the posterior fit quality here is still comparable to that obtained in other seasons. In the following section, we apply a series of statistical and sensitivity analyses and independent data comparisons to further test the representativeness and robustness of these results.

260 261 262

263

264

265

Tuore II	o cusoin			Pumi	ation							
	CO _{usnei}		CO _{pro}	rod_voc			Mean b	ias (ppb)	RMSE	³ (ppb)	F	2
	Scale	Mean	Scale	Mean	Intercept	VIF^2	Prior	Post	Prior	Post	Prior	Post
	factor	(ppb)	factor	(ppb)								
ACT1	$0.66 \pm$	13.2	0.91 ±	25.4	-0.2 ±	3.1	17.6	-0.2	26.4	16.5	0.75	0.81
(summer)	0.05		0.03		0.3							
ACT2	0.79 ±	12.77			$1.8 \pm$		14.8	1.7	21.4	15.5	0.69	0.69
(winter)	0.03				0.3							
ACT3	$0.69 \pm$	16.77			$5.5 \pm$		2.5	5.5	13.4	14.2	0.79	0.75
(fall)	0.03				0.5							
ACT4	$0.74 \pm$	16.94			-2.7 ±		8.8	-2.6	18.1	17.0	0.65	0.62
(spring)	0.02				0.4							

266 Table 1. Seasonal CO source optimization¹

¹ Stated uncertainties reflect 95% confidence intervals computed through bootstrap resampling.

 2 Variance inflation factor.

³ Root mean square error.

270 271

267

268 269

272

273 3.3 Uncertainty Analysis

274 The bootstrapped uncertainty estimates in Table 1 provide a first evaluation of the 275 optimization results, showing that the individual scaling coefficients derived from ACT1-ACT4 276 are each statistically robust. The similar findings across ACT1-ACT4 provide a second piece of 277 supporting evidence, as the deployments represent four separate datasets and independent source 278 derivations that all lead to consistent results. Third, we see from Figure 2 and Table S2 that the 279 CO source optimization (derived from ACT1-ACT4 data) strongly improves model performance 280 versus independent airborne data from ACT5, GEM1, and GEM2, which were not employed in the optimization. 281

282 As a fourth test, we perform the CO source optimization separately for the two ACT-283 America aircraft. Table S3 shows that we arrive at the same conclusions when analyzing the B-284 200 and C-130 observations independently as opposed to treating them as a combined dataset. Specifically, we infer an NEI overestimate of US anthropogenic CO emissions in both cases, 285 286 with derived scale factors spanning 0.54-0.87 (sensitivity tests) versus 0.66-0.79 (base analysis). 287 The modest adjustment to the modeled secondary CO source from regional biogenic and 288 anthropogenic VOCs is likewise independently supported by both airborne datasets (scale factors 289 of 0.74-0.96 versus 0.91 in the base-case).

290 A fifth evaluation repeats the base-case optimization with alternate boundary conditions 291 (CO_{hc}) for the nested model domain—i.e., employing the native model output for this purpose 292 and omitting the ATom-based background adjustment (Section 2.2; Figure S3). Results in Table 293 S4 show that scale factors derived in this way are statistically consistent with the base-case 294 analysis. For a sixth and final test, we modify the tracer groupings used for optimization and 295 instead derive ACT1-ACT4 scale factors for 1) CO_{usnei} and 2) the sum of all other regional 296 source tracers. Results shown in Table S5 are again consistent with the base-case findings, with a 297 slightly wider range for the CO_{usnei} scale factor (0.58-0.85) and a modestly degraded 298 observational fit.

Overall, the above uncertainty tests all support our core findings, and we proceed to
 interpret the optimized results in terms of their implications for fossil fuel versus non-fossil, and
 primary versus secondary, CO sources over the US.

302

303 3.3.3 Optimized CO Source Contributions

304

305 Figure 3a-g shows the optimized primary and secondary North American contributions to 306 ambient CO as sampled during ACT-America and GEM. We find that secondary production 307 (mainly from biogenic VOCs) is the dominant summertime North American CO source for air 308 masses sampled by ACT-America, accounting for ~70% of the total PBL enhancement. 309 Secondary production is also significant at other times (e.g., 26-45% of the PBL enhancement 310 during the fall, winter, and spring ACT-America campaigns) but then mainly reflects regional 311 methane oxidation along with pyrogenic VOC oxidation. To the north, the importance of 312 secondary CO over the Upper Midwest during GEM is significantly less (~7-40%)-reflecting 313 lower biogenic VOC emissions and slower regional photochemistry. In total, photochemical CO 314 sources contribute between 2 ppb (winter; GEM2) and 31 ppb (summer; ACT5) to the average 315 sampled PBL enhancements, versus 13-25 ppb from primary emissions.

In Figure 3h-n we further partition the optimized CO abundance into fossil fuel versus
non-fossil contributions. Here, fossil fuel sources include primary emissions plus secondary
production from anthropogenic VOC, while non-fossil fuel sources include biogenic VOC
oxidation plus biomass burning CO emissions. The remainder is from the oxidation of methane
and of fire-derived VOCs. Results show that fossil fuel sources account for just 32-38% of the
North American PBL CO enhancements sampled by ACT-America and GEM during summer,
increasing to 48-49% during spring/fall and 57-84% during winter.

The findings above reveal the complications of using CO as an anthropogenic tracer, particularly during summer—as fossil fuel sources account for just 9-16% of the total PBL abundance, and 32-38% of the North American enhancement, during this season. However, for many applications (e.g., applying species:species correlations for source partitioning), source impacts on tracer variability can be more important than their absolute magnitude. For example, one might expect the secondary CO source to be relatively diffuse and that direct anthropogenic emissions would be a more important driver of ambient CO variability over the US.

330 To explore this expectation, Figures S4-S5 show the CO standard deviation by source 331 category (based on the optimized GEOS-Chem simulation), for each airborne campaign in its 332 entirety. In the summertime PBL sampled by ACT-America and GEM, the CO variability due to 333 North American (primary + secondary) fossil fuel sources is substantially smaller (7-10 ppb) 334 than that associated with background (15-21 ppb) and regional non-fossil fuel (11-15 ppb) 335 contributions. In other seasons, regional fossil fuel emissions drive as much or more of the CO 336 variability than non-fossil sources, but (except in the case of GEM) this variability is still smaller 337 than that associated with the CO background.

338 The characterization above, treating each ACT-America and GEM campaign as a single 339 statistical datasert, mainly describes spatial patterns of CO variability across the eastern half of 340 the US as a whole. If we instead apply the optimized model to map the drivers of temporal CO 341 variability (Figures S6-S10), we observe in all seasons a dominant role for fossil fuel emissions 342 in and downwind of most urbanized areas. A similar finding applies for fires in specific affected 343 regions. Temporal variability associated with secondary CO, manifesting most strongly in 344 summer, is relatively low over much of the US Southeast where precursor VOC emissions are 345 highest but is elevated around the periphery of this region (e.g., Figures S6, S11, S16). We 346 attribute this to transport-driven effects at the edges of a large and diffuse source region (Figures 347 S11-S15). In other seasons, temporal variability associated with secondary CO is small, with

350

Figure 3: Observationally-constrained CO source attribution over the eastern US. Plotted are the mean above-background CO profiles from the optimized GEOS-Chem simulation along the aircraft flight-tracks. Panels a-g partition the regional CO enhancements into direct and secondary components. Direct sources include: anthropogenic CO from US on-road (CO_{usrd}), non-road (CO_{usnr}), and other sources (CO_{usot}), anthropogenic CO emitted in Canada + Mexico (CO_{camx}), and biomass burning CO (CO_{bb}). Secondary sources (CO_{prod}) include oxidation of

biogenic + anthropogenic VOC ($CO_{prod_bio} + CO_{prod_anth}$) and of methane + biomass burning VOCs (CO_{prod_oth}). Panels h-n partition the regional CO enhancements into fossil fuel (direct + secondary), biogenic (exclusively secondary), biomass burning (direct), and other (mainly methane oxidation, plus secondary biomass burning) contributions.

363

364 4 Conclusions

365 We applied measurements from 13 airborne campaigns to develop new constraints on CO 366 sources over the central and eastern US. Data were collected over 1,000 flight hours across all 367 seasons, representing the densest airborne dataset yet for CO source quantification over North 368 America. Campaign-average PBL (< 2 km) mixing ratios ranged from 121 (summer) to 158 ppb 369 (winter). Interpreting this dataset with a high-resolution version of the GEOS-Chem CTM driven 370 by the US EPA's NEIC2016v1 inventory, we find that the model accurately captures the 371 observed CO vertical profile shape but underestimates its abundance (by 9-48 ppb) in all seasons 372 except fall. This disparity partly reflects a bias in the model CO background, and after correction 373 we infer an NEI overestimate of fossil fuel CO emissions, with a derived top-down adjustment 374 factor of 0.72 (0.54-0.87; best estimate and uncertainty range across all sensivity tests and 375 seasons). For comparison, the US EPA estimates that national fossil fuel CO emissions 376 decreased by 8% from 2016-2019 (EPA, 2019). Our top-down estimate for the secondary CO 377 source from North American VOC emissions agrees well with the prior model value, with a 378 derived scale factor of 0.91 (0.74-0.96). If the above comparisons are nationally representative, 379 the implied US fossil fuel CO source for 2016-2019 was 29 (22-36) Tg/y, compared to the prior 380 NEIC2016v1 estimate of 41 Tg/y (for 2016).

After optimizing the model based on the airborne constraints, we find that the CO background represents on average 55-78% of the PBL CO sampled during the aircraft campaigns. During summer, North American fossil fuel sources account for only 9-16% of the sampled PBL CO, and 32-38% of the enhancements associated with regional sources. Non-fossil sources from biogenic VOC oxidation and fires account for 40-45% of the above-background enhancements at this time, with the remainder mainly from regional methane oxidation. In other seasons, however, fossil fuel emissions are the largest regional source of CO.

Application of CO as a fossil fuel tracer is challenged by the fact that, during the growing season, such sources account for only a modest fraction of the CO burden and its spatial variability across the US. However, in and near most urbanized regions the temporal variability in CO is still dominated by fossil fuel sources. The number of locations where this remains the case will likely diminish, as US fossil fuel CO emissions are expected to continue declining with future vehicle emission regulations, advanced emission after-treatment technologies, and fleet electrification (Winkler et al., 2018; Nopmongcol et al., 2017).

395

396 Acknowledgments, Samples, and Data.

397 This work was supported by NASA (grant #NNX17AK18G) and the Minnesota Supercomputing

- 398 Institute. The ACT-America, GEM, and ATom datasets are publicly available at
- 399 <u>https://doi.org/10.3334/ORNLDAAC/1593, https://doi.org/10.13020/f50r-zh70</u>, and
- 400 <u>https://doi.org/10.3334/ORNLDAAC/1732.</u> GEOS-Chem model code is publicly available at
- 401 <u>http://www.geos-chem.org</u>. This work was also supported in part by NSF grant #1650682

- 402 (E.AK., A.G., G.P.) and by NASA grants #NNX15AJ06G (B.C.B), #NNX15AJ23G (ATom
- 403 campaign), and #80NSSC18K1393 (X.Y.). We thank Ken Davis, Zach Barkley, and the entire
- 404 ACT-America team for their contributions.
- 405
- 406
- 407 **References**
- 408 ACT-America, or Atmospheric Carbon and Transport (2019). Retrieved September 22, 2020
 409 from <u>https://act-america.larc.nasa.gov/science/</u>
- 410 APEI (2020). Canada's Air Pollutant Emissions Inventory. Retrieved April 10, 2020 from
- $411 \qquad \underline{https://open.canada.ca/data/en/dataset/fa1c88a8-bf78-4fcb-9c1e-2a5534b92131}$
- 412 Baier, B. C., Sweeney, C., Choi, Y., Davis, K. J., DiGangi, J. P., Feng, S., et al. (2020).
- 413 Multispecies assessment of factors influencing regional CO₂ and CH₄ enhancements during the
- 414 winter 2017 ACT-America campaign. Journal of Geophysical Research: Atmospheres, 125(2),
- 415 doi:e2019JD031339.
- 416 Brioude, J., Kim, S.-W., Angevine, W. M., Frost, G. J., Lee, S.-H., McKeen, S. A., et al. (2011).
- 417 Top-down estimate of anthropogenic emission inventories and their interannual variability in
- 418 Houston using a mesoscale inverse modeling technique. *Journal of Geophysical Research:*
- 419 Atmospheres, 116(D20 305). doi:10.1029/2011jd016215
- 420 Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S. W., Evan, S., McKeen, S. A., et al. (2013).
- 421 Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling
- 422 technique: assessing anthropogenic emissions of CO, NO_x and CO₂ and their impacts.
- 423 Atmospheric Chemistry and Physics, 13(7), 3661-3677. doi:10.5194/acp-13-3661-2013
- 424 Chen, H., Karion, A., Rella, C. W., Winderlich, J., Gerbig, C., Filges, A., et al. (2013). Accurate
- 425 measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy
- 426 (CRDS) technique. *Atmospheric Measurement Techniques*, 6(4), 1031-1040. doi:10.5194/amt-6-427 1031-2013
- 428 Cheng, Y., Wang, Y., Zhang, Y., Crawford, J. H., Diskin, G. S., Weinheimer, A. J., & Fried, A.
- 429 (2018). Estimator of surface ozone using formaldehyde and carbon monoxide concentrations
- 430 over the eastern United States in summer. *Journal of Geophysical Research:*
- 431 *Atmospheres*, *123*(14), 7642-7655. doi:10.1029/2018JD028452
- 432 Davis, K. J., Obland, M. D., Lin, B., Lauvaux, T., O'dell, C., Meadows, B., et al. (2018). ACT-
- America: L3 merged in situ atmospheric trace gases and flask data, Eastern USA. ORNL DAAC.
 doi:10.3334/ORNLDAAC/1593
- 435 Davis, K. J., Browell, E.V., Feng, S., Lauvaux, T., Obland, M.D., Pal, S., et al. (2021). The
- 436 Atmospheric carbon and transport (ACT) America Mission. In review, Bulletin American
- 437 *Meteorological Society*. doi:pdf/10.1002/essoar.10505721.1.
- 438 DiGangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., Diskin, G. S., Feng, S., et al. (2021).
- 439 Seasonal variability in local carbon dioxide combustion sources over the central and eastern US
- 440 using airborne in-situ enhancement ratios. *Earth and Space Science Open Archive ESSOAr.* doi:
- 441 10.1002/essoar.10505716.1

- 442 Duncan, B. N., Logan, J. A., Bey, I., Megretskaia, I. A., Yantosca, R. M., Novelli, P. C., et al.
- 443 (2007). Global budget of CO, 1988–1997: Source estimates and validation with a global model.
- 444 Journal of Geophysical Research, 112, D22301 . doi:10.1029/2007jd008459
- 445 EPA (2019) Air Pollutant Emissions Trends Data. Retrieved September 18, 2020, from
- 446 <u>https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data</u>
- 447 Fisher, J. A., Murray, L. T., Jones, D., & Deutscher, N. M. (2017). Improved method for linear
- 448 carbon monoxide simulation and source attribution in atmospheric chemistry models illustrated
- using GEOS-Chem v9. *Geoscientific Model Development*, 10(11), 4129-4144. doi:10.5194/gmd 10-4129-2017
- 451 Friedlingstein, P., Jones, M., O'sullivan, M., Andrew, R., Hauck, J., Peters, G., et al. (2019).
- 452 Global carbon budget 2019. *Earth System Science Data*, 11(4), 1783-1838. doi:10.5194/essd-11-453 1783-2019
- 454 Fujita, E. M., Campbell, D. E., Zielinska, B., Chow, J. C., Lindhjem, C. E., DenBleyker, A., et
- 455 al. (2012). Comparison of the MOVES2010a, MOBILE6.2, and EMFAC2007 mobile source
- 456 emission models with on-road traffic tunnel and remote sensing measurements. *Journal of the*
- 457 Air & Waste Management Association, 62(10), 1134–1149. doi:10.1080/10962247.2012.699016
- 458 Gaubert, B., Worden, H. M., Arellano, A. F. J., Emmons, L. K., Tilmes, S., Barré, J., et al.
- (2017). Chemical feedback from decreasing carbon monoxide emissions. *Geophysical Research Letters*, 44(19), 9985–9995. doi:10.1002/2017gl074987
- 461 Gvakharia, A., Kort, E. A., Smith, M. L., & Conley, S. (2018). Testing and evaluation of a new
- 462 airborne system for continuous N_2O , CO_2 , CO, and H_2O measurements: the Frequent Calibration
- 463 High-performance Airborne Observation System (FCHAOS). *Atmospheric Measurement*
- 464 *Techniques*, 11(11), 6059-6074. doi: 10.5194/amt-11-6059-2018
- 465 ESRL. Earth System Research Laboratories. Aircraft Program Methods (2020). Retrieved
 466 November 18, 2020 from https://www.esrl.noaa.gov/gmd/ccgg/aircraft/sampling.html
- 467 Halliday, H. S., DiGangi, J. P., Choi, Y., Diskin, G. S., Pusede, S. E., Rana, M., et al. (2019).
- 468 Using short-term CO/CO₂ ratios to assess air mass differences over the Korean peninsula during
- 469 KORUS-AQ. Journal of Geophysical Research: Atmospheres, 124(20), 10951–10972.
- 470 doi:10.1029/2018jd029697
- 471 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., et al.
- 472 (2018). Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the
- 473 Community Emission Data System (CEDS). *Geoscientific Model Development*, 11, 369-408.
- 474 doi:10.5194/gmd-2017-43-supplement
- 475 Hu, L., Millet, D. B., Baasandorj, M., Griffis, T. J., Turner, P., Helmig, D., et al. (2015).
- 476 Isoprene emissions and impacts over an ecological transition region in the US Upper Midwest
- 477 inferred from tall tower measurements. Journal of Geophysical Research: Atmospheres, 120(8),
- 478 3553-3571. doi:10.1002/2014jd022732
- Hu, L., Jacob, D. J., Liu, X., Zhang, Y., Zhang, L., Kim, P. S., et al. (2017). Global budget of
- 480 tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS),
- 481 and ozonesonde observations. *Atmospheric Environment*, 167, 323–334.
- 482 doi10.1016/j.atmosenv.2017.08.036

- 483 Hudman, R. C., Murray, L. T., Jacob, D. J., Millet, D. B., Turquety, S., Wu, S., et al (2008).
- Biogenic versus anthropogenic sources of CO in the United States. *Geophysical Research Letters*, 35(4). doi:10.1029/2007gl032393
- 486 Kim, S. Y., Millet, D. B., Hu, L., Mohr, M. J., Griffis, T. J., Wen, D., et al. (2013). Constraints
- 487 on carbon monoxide emissions based on tall tower measurements in the U.S. upper midwest.
- 488 *Environmental Science & Technology*, 130725095602007. doi:10.1021/es4009486
- 489 Koster, R. D., Darmenov, A. S., & da Silva, A. M. (2015). The Quick Fire Emissions Dataset
- 490 (QFED): Documentation of Versions 2.1, 2.2 and 2.4. Volume 38; Technical Report Series on
- 491 Global Modeling and Data Assimilation.
- 492 Lucchesi, R. (2013). File Specification for GEOS-5 FP, NASA GMAO Office Note, No. 4
- 493 (Version 1.0). National Aeronautics and Space Administration, Goddard Space Flight Center,
- 494 *Greenbelt, Maryland, USA:* Available online at http://gmao.gsfc.nasa.gov/pubs
- 495 Millet, D.B., Conley, S.A., Gvakharia, A., Kort, E.A., Plant, G., Smith, M.L., and Yu.X. (2019).
- 496 Airborne measurements from the GEM study. *Retrieved from the Data Repository for the*
- 497 University of Minnesota, doi:10.13020/f50r-zh70.
- 498 Müller, J. F., Stavrakou, T., Bauwens, M., George, M., Hurtmans, D., Coheur, P. F., Clerbaux,
- 499 C., & Sweeney, C. (2018). Top-down CO emissions based on IASI observations and hemispheric
- 500 constraints on OH Levels. *Geophysical Research Letters*, 45(3), 1621–1629.
- 501 doi:10.1002/2017gl076697
- 502 Nathan, B. J., Lauvaux, T., Turnbull, J. C., Richardson, S. J., Miles, N. L., & Gurney, K. R.
- 503 (2018). Source sector attribution of CO₂ emissions using an urban CO/CO₂ Bayesian inversion
- 504 system. Journal of Geophysical Research: Atmospheres, 123(23), 13-611.
- 505 doi:10.1029/2018jd029231
- National Emissions Inventory (NEI). (2014). Retrieved February 26, 2020, from
 https://edap.epa.gov/public/extensions/nei_report_2014/dashboard.html#sector-db
- 508 National Emissions Inventory Collaborative (NEIC) (2019). 2016beta Emissions Modeling
- 509 Platform. Retrieved from <u>http://views.cira.colostate.edu/wiki/wiki/10197</u>.
- 510 Nopmongcol, U., Grant, J., Knipping, E., Alexander, M., Schurhoff, R., Young, et al. (2017). Air
- 511 quality impacts of electrifying vehicles and equipment across the United States. *Environmental*
- 512 *science & technology*, *51*(5), 2830-2837. doi: 10.1021/acs.est.6b04868
- 513 Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC)(2020).
- 514 Retrieved February 21, 2020, from https://daac.ornl.gov/cgi-
- 515 <u>bin/dataset_lister.pl?p=37#:~:text=The%20ACT%2DAmerica%2C%20or%20Atmospheric,in%2</u>
 516 0the%20eastern%20United%20States.
- 517 Parrish, D. D. (2006). Critical evaluation of US on-road vehicle emission inventories.
- 518 Atmospheric Environment, 40(13), 2288–2300. doi 10.1016/j.atmosenv.2005.11.033
- 519 Plant, G., Kort, E. A., Floerchinger, C., Gvakharia, A., Vimont, I., & Sweeney, C. (2019). Large
- 520 fugitive methane emissions from urban centers along the U.S. East Coast. *Geophysical Research*
- 521 Letters, 46, 8500-8507. doi:10.1029/2019GL082635
- 522 Salmon, O. E., Shepson, P. B., Ren, X., He, H., Hall, D. L., Dickerson, R. R., et al. (2018). Top-
- 523 down estimates of NO_x and CO emissions from Washington, DC-Baltimore during the winter

- 524 campaign. Journal of Geophysical Research: Atmospheres, 123(14), 7705-7724.
- 525 doi:10.1029/2018jd028539
- 526 Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., & Bauer, S. E. (2009).
- 527 Improved attribution of climate forcing to emissions. *Science*, 326(5953), 716-718.
- 528 doi:10.1126/science.1174760
- 529 Super, I., van der Gon, H. D., Visschedijk, A. J. H., Moerman, M. M., Chen, H., Van der Molen,
- 530 M. K., & Peters, W. (2017). Interpreting continuous in-situ observations of carbon dioxide and
- 531 carbon monoxide in the urban port area of Rotterdam. *Atmospheric Pollution Research*, 8(1),
- 532 174–187. doi:10.1016/j.apr.2016.08.008
- 533 Wei Y., Shrestha R., Pal S., Gerken T., McNelis J., Singh D., et al. (2021). The ACT-America
- datasets: Description, Management and Delivery, *Earth Space Sci*, in review.
 https://www.essoar.org/doi/pdf/10.1002/essoar.10505692.1.
- 536 Winkler, S. L., Anderson, J. E., Garza, L., Ruona, W. C., Vogt, R., & Wallington, T. J. (2018).
- 537 Vehicle criteria pollutant (PM, NO_x, CO, HCs) emissions: how low should we go?. *npj Climate*
- 538 *and Atmospheric Science*, *1*(1), 1-5. doi:10.1038/s41612-018-0037-5
- 539 Wofsy, S.C., S. Afshar, H.M. Allen, E.C. Apel, E.C. Asher, B. Barletta, et al. (2018). ATom:
- 540 merged atmospheric chemistry, trace gases, and aerosols. *ORNL DAAC*, Oak Ridge, Tennessee,
- 541 USA. doi:10.3334/ORNLDAAC/1581
- 542 Yu, X., Millet, D. B., Wells, K. C., Griffis, T. J., Chen, X., Baker, J. M., et al. (2020). Top-down
- 543 constraints on methane point source emissions from animal agriculture and waste based on new
- 544 airborne measurements in the US Upper Midwest. *Journal of Geophysical Research:*
- 545 *Biogeosciences*, 125(1), e2019JG005429. doi:10.1029/2019JG005429
- 546 Yu, X., Millet, D. B., Wells, K. C., Henze, D. K., Cao, H., Griffis, T. J., et al. (2021). Aircraft-
- 547 based inversions quantify the importance of wetlands and livestock for Upper Midwest methane
- emissions. Atmospheric Chemistry and Physics, 21(2), 951-971. doi: 10.5194/acp-21-951-2021
- 549

Geophysical Research Letters

Supporting Information for

Fossil vs. non-fossil CO sources in the US: New airborne constraints from ACT-America and GEM

Andres Gonzalez¹, Dylan B. Millet¹, Xueying Yu¹, Kelley C. Wells¹, Timothy J. Griffis¹, Bianca C. Baier^{2,3}, Patrick C. Campbell^{4,5,6}, Yonghoon Choi⁷, Joshua P. DiGangi⁷, Alexander Gvakharia⁸, Hannah Halliday⁷, Eric A. Kort⁸, Kathryn McKain^{2,3}, John Nowak⁶, and Genevieve Plant⁸

¹Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA. ²Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA. ³Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA. ⁴Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA, USA. ⁵Cooperative Institute for Satellite Earth System Studies (CISESS), ⁶Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA. ⁷NASA Langley Research Center, Hampton, VA, USA. ⁸Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA.

Contents of this file

Figures S1 to S16 Tables S1 to S5

Figure S1. Intercomparison of ACT-America airborne CO measurements. In situ measurements by Picarro CRDS are plotted against PFP flask measurements on-board the Beechcraft B200 King Air (left column) and C-130H Hercules (right column) aircraft for each ACT-America deployment.

Figure S2. North American nested domain employed for GEOS-Chem simulations.

Figure S3. Correction of the GEOS-Chem CO background based on aircraft measurements from the four ATom deployments. Plotted are observed tropospheric CO mixing ratios over the remote Pacific Ocean averaged by six-degree latitude bins (black) along with the corresponding model values (grey). Data shown are restricted to 0-8 km above sea level, 80°S-56°N, and 160°E-145°W (Northern Hemisphere) or 100°W-145°W (Southern Hemisphere). Purple lines show the model-measurement mismatch as a smooth spline fit to the 0.1 quantile difference.

Figure S4. Sources of CO variability over the eastern US. Plotted is the standard deviation for individual tagged CO tracers based on output from the optimized GEOS-Chem simulation along the ACT-America and GEM flight tracks. CO_{bc} : CO transported from outside North America. CO_{usrd} , CO_{usnr} , CO_{usot} : anthropogenic CO emitted from US on-road, non-road, and other sources. CO_{camx} : anthropogenic CO emitted in Canada + Mexico. CO_{bb} : CO emitted from North American biomass burning. CO_{prod} : CO photochemically produced over North America. Standard deviation is not additive so the individual values do not sum to the total CO variability.

Figure S5. Sources of CO variability over the eastern US. Plotted is the standard deviation for grouped tagged CO tracers from the optimized GEOS-Chem simulation along the ACT-America and GEM flight tracks. Values are shown for non-fossil CO (from biogenic VOC oxidation plus biomass burning emissions), fossil CO (from direct emissions plus anthropogenic VOC oxidation), and CO transported from outside North America (CO_{bc}). Standard deviation is not additive so the individual values do not sum to the total CO variability.

Figure S6. Temporal CO variability in the US PBL during summer. Plotted are the hourly standard deviations (SD) for background CO, biomass burning CO, secondary CO, and directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are plotted for the ACT1 timeframe (11 July to 29 August 2016).

ACT2 SD Winter

Figure S7. Temporal CO variability in the US PBL during winter. Plotted are the hourly standard deviations (SD) for background CO, biomass burning CO, secondary CO, and directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are plotted for the ACT2 timeframe (21 January to 10 March 2017).

Figure S8. Temporal CO variability in the US PBL during fall. Plotted are the hourly standard deviations (SD) for background CO, biomass burning CO, secondary CO, and directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are plotted for the ACT3 timeframe (22 September to 13 November 2017).

Figure S9. Temporal CO variability in the US PBL during spring. Plotted are the hourly standard deviations (SD) for background CO, biomass burning CO, secondary CO, and directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are plotted for the ACT4 timeframe (28 March to 20 May 2018).

ACT5 SD Summer

Figure S10. Temporal CO variability in the US PBL during summer. Plotted are the hourly standard deviations (SD) for background CO, biomass burning CO, secondary CO, and directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are plotted for the ACT5 timeframe (7 June to 27 July 2019).

ACT1 Mean Summer

Figure S11. Contributions to the PBL CO burden over the US during summer. Plotted are the mean contributions from background CO, direct biomass burning emissions, secondary production, and direct fossil fuel emissions based on the optimized GEOS-Chem simulation. Data are plotted for the ACT1 timeframe (11 July to 29 August 2016).

ACT2 Mean Winter

Figure S12. Contributions to the PBL CO burden over the US during winter. Plotted are the mean contributions from background CO, direct biomass burning emissions, secondary production, and direct fossil fuel emissions based on the optimized GEOS-Chem simulation. Data are plotted for the ACT2 timeframe (21 January to 10 March 2017).

Figure S13. Contributions to the PBL CO burden over the US during fall. Plotted are the mean contributions from background CO, direct biomass burning emissions, secondary production, and direct fossil fuel emissions based on the optimized GEOS-Chem simulation. Data are plotted for the ACT3 timeframe (22 September to 13 November 2017).

ACT4 Mean Spring

Figure S14. Contributions to the PBL CO burden over the US during spring. Plotted are the mean contributions from background CO, direct biomass burning emissions, secondary production, and direct fossil fuel emissions based on the optimized GEOS-Chem simulation. Data are plotted for the ACT4 timeframe (28 March to 20 May 2018).

ACT5 Mean Summer

Figure S15. Contributions to the PBL CO burden over the US during summer. Plotted are the mean contributions from background CO, direct biomass burning emissions, secondary production, and direct fossil fuel emissions based on the optimized GEOS-Chem simulation. Data are plotted for the ACT5 timeframe (7 June to 27 July 2019).

Figure S16. North American CO sources based on the prior inventories employed in this work. Left column: CO directly emitted from anthropogenic sources. Middle column: CO emitted from open burning. Right column: biogenic emissions of isoprene, a key CO precursor.

Campaign	Year	Season	Start Date	End Date	Flight Hours
ACT1	2016	Summer	11 July	29 August	218
ACT2	2017	Winter	21 January	10 March	210
ACT3	2017	Fall	22 September	13 November	192
ACT4	2018	Spring	28 March	20 May	197
ACT5	2019	Summer	7 June	27 July	183
GEM1	2017	Summer	12 August	24 August	40
GEM2	2018	Winter	17 January	28 January	36

Table S1. Timeframe and flight hours for the ACT-America and GEM airborne campaigns.

Table S2. Statistical comparison of CO mixing ratios from the prior and optimized GEOS-Chem simulations against independent airborne observations from the ACT5, GEM1, and GEM2 campaigns.

	RMSE	¹ (ppb)		R	Bias Mean (ppb)		
	Prior	Post	Prior	Post	Prior	Post	
ACT5 (summer)	28.2	23.2	0.51	0.57	14.0	7.8	
GEM1 (summer)	57.8	35.8	0.23	0.06	48.4	12.5	
GEM2 (winter)	60.9	59.1	0.36	0.32	21.9	11.8	

¹ Root mean square error.

		CO,	usnei	CO _{pr}	od_voc			RMSE	(ppb) ³	I	2	Bias	Mean
	Aircraft	Scale	Mean	Scale	Mean	Intercept	VIF ²	Prior	Post	Prior	Post	Prior	Post
		factor	(ppb)	factor	(ppb)								
ACT1	B200	0.54 ±	13.1	0.96 ±	25.4	0.09 ±	3.37	26.2	16.2	0.76	0.81	17.7	0.4
(summer)		0.05 ¹		0.02		0.3							
	C-130H	0.87 ±	13.4	0.74 ±	25.3	8.28 ±	2.74	26.6	17.3	0.74	0.80	17.4	2.1
		0.09		0.02		0.3							
ACT2	B200	0.86 ±	13.4			0.43 ±		21.7	16.7	0.66	0.65	14.3	0.4
(winter)		0.04				0.4 4							
	C-130H	$0.67 \pm$	11.8			$5.5 \pm$		21.0	13.7	0.75	0.77	16.0	3.8
		0.04				0.48							
ACT3	B200	0.65 ±	17.5			6.4 ±		13.6	14.4	0.79	0.75	2.1	6.1
(fall)		0.04				0.6							
	C-130H	0.79 ±	15.7			4.2 ±		13.0	13.6	0.79	0.76	3.2	4.2
		0.03				0.41							
ACT4	B200	0.76 ±	15.6			-4.5 ±		17.8	17.5	0.63	0.59	7.8	-4.4
(spring)		0.02				0.44							
	C-130H	0.65 ±	20.29			2.61 ±		18.8	16.0	0.71	0.68	11.3	2.8
		0.03				0.61							

Table S3. Seasonal CO source optimization performed separately for the C-130H and B200 ACT-America datasets.

¹ Stated uncertainties reflect 95% confidence intervals computed through bootstrap resampling.

²Variance inflation factor.

³ Root mean square error.

		CO	usnei	CO _{pr}	od_voc			RMSE	(ppb) ³	1	7	Bias	Mean
	CO _{bc}	Scale	Mean	Scale	Mean	Intercept	VIF ²	Prior	Post	Prior	Post	Prior	Post
		factor	(ppb)	factor	(ppb)								
ACT1	Corrected	$0.66 \pm$	13.2	0.91 ±	25.4	-0.2 ± 0.3	3.1	26.4	16.8	0.75	0.81	17.6	-2.5
(summer)		0.05 ¹		0.03									
	Uncorrected	$0.69 \pm$	13.22	0.85 ±	25.4	2.7 ±	2.1	26.4	17.0	0.75	0.80	11.7	-1.2
		0.05		0.02		0.3							
ACT2	Corrected	$0.79 \pm$	12.77			1.8 ±		21.4	15.5	0.69	0.69	14.8	1.7
(winter)		0.03				0.4							
	Uncorrected	$0.85 \pm$	12.77			-4.3 ±		21.4	15.5	0.69	0.74	14.8	-4.2
		0.03				0.3							
ACT3 (fall)	Corrected	$0.69 \pm$	16.77			5.5 ±		13.4	14.2	0.79	0.75	2.5	5.5
		0.03				0.5							
	Uncorrected	$0.66 \pm$	16.77			6.7 ±		13.4	14.7	0.79	0.75	2.6	6.7
		0.03				0.5							
ACT4	Corrected	0.74 ±	16.94			-2.7 ±		18.1	17.0	0.65	0.61	8.8	-2.6
(spring)		0.02				0.4							
	Uncorrected	0.75 ±	16.94			-3.2 ±		18.1	17.2	0.65	0.60	8.8	-3.0
		0.02				0.4							

Table S4. Seasonal CO source optimization performed with and without ATom-basedboundary condition correction.

¹ Stated uncertainties reflect 95% confidence intervals computed through bootstrap resampling

² Variance inflation factor.

³ Root mean square error.

Table S5. Seasonal CO source optimization for ACT1-ACT4 with alternative tracer groupings: 1) CO_{usnei} and 2) the sum of all other regional source tracers ($CO_{prod_voc} + CO_{prod_oth} + CO_{camx} + CO_{bb}$).

	CO _{usnei}		CO _{prodvoc} +bb+can				RMSE ³ (ppb)		R		Bias Mean	
	Scale	Mean	Scale	Mean	Intercept	VIF ²	Prior	Post	Prior	Post	Prior	Post
	factor	(ppb)	factor	(ppb)								
ACT1	$0.58 \pm$	13.2	$0.96 \pm$	26.7	-0.4 ± 0.3	2.9	26.4	16.6	0.75	0.81	17.6	-0.3
(summer)	0.05 ¹		0.02									
ACT2	0.85 ±	12.77	0.7 ±	7.1	3.1 ±	1.1	21.4	15.6	0.69	0.70	14.8	3.1
(winter)	0.03		0.07		0.5							
ACT3	0.82 ±	16.77	$0.55 \pm$	14.6	5.5 ±	1.2	13.4	15.9	0.79	0.76	2.5	10.1
(fall)	0.03		0.01		0.5							
ACT4	0.70 ±	16.94	1.1 ±	12.6	-3.6 ± 0.5	1.4	18.1	17.2	0.65	0.61	8.8	-3.6
(spring)	0.02		0.05									

¹ Stated uncertainties reflect 95% confidence intervals computed through bootstrap resampling

² Variance inflation factor.

³ Root mean square error.