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Abstract

Despite their global abundance and high ecological and socio-economic significance, the dynamics of coastal inlets often remain

poorly quantified at multi-decadal time scales. Here, we introduce InletTracker, a new tool that reconstructs the time-evolving

state of dynamic coastal inlets over the last 30+ years from publicly available Landsat 5, 7 and 8 and Sentinel 2 satellite imagery.

InletTracker is a Google Earth Engine enabled python toolkit that uses a novel least cost pathfinding approach to trace inlets

along and across the berm (i.e., barrier, bar), and then analyses the resulting transects to infer whether an inlet is open or closed.

To evaluate the performance of InletTracker, we applied the tool at 12 intermittent coastal inlets with different maximum inlet

widths ([?]30-200m), geomorphological setting and opening frequency located across Southeastern and Southwestern Australia.

This exercise involved 6363 unique binary inlet state predictions (i.e., open vs. closed) that were validated against visually

inferred inlet states (from the satellite imagery itself), on-ground observational records, and in situ water levels from inside

the inlets. InletTracker reproduced the visually inferred inlet states with an average accuracy across all sites of 89% for the

combined Landsat and Sentinel 2 record (15-30m resolution) and 94% for the Sentinel 2 record only (10m resolution). Overall,

we found good agreement between the predictions of the tool and the three independent validation datasets for all but the

smallest sites. Our results demonstrate that InletTracker will enable coastal engineers, managers, and researchers to gain new

insights into the dynamics and drivers of coastal inlets or similar shallow water landforms such as river mouths, tidal flats,

floodplains, wetlands or delta channel networks. Further, the high spatial (i.e., 10m) and temporal (i.e., 5 daily) resolution

provided by Sentinel 2 makes InletTracker a viable option for near real-time monitoring of even relatively small inlets with a

minimum channel width of around 10m and frequent, short duration, openings.
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Abstract:  

Despite their global abundance and high ecological and socio-economic significance, the dynamics of 

coastal inlets often remain poorly quantified at multi-decadal time scales. Here, we introduce 

InletTracker, a new tool that reconstructs the time-evolving state of dynamic coastal inlets over the last 

30+ years from publicly available Landsat 5, 7 and 8 and Sentinel-2 satellite imagery. InletTracker is a 

Google Earth Engine enabled python toolkit that uses a novel least-cost pathfinding approach to trace 

inlets along and across the berm (i.e., barrier, bar), and then analyses the resulting transects to infer 

whether an inlet is open or closed. To evaluate the performance of InletTracker, we applied the tool at 

12 intermittent coastal inlets with different maximum inlet widths (≤30-200m), geomorphological 

setting and opening frequency located across Southeastern and Southwestern Australia. This exercise 

involved 6363 unique binary inlet state predictions (i.e., open vs. closed) that were validated against 

visually inferred inlet states (from the satellite imagery itself), on-ground observational records, and in 

situ- water levels from inside the inlets. InletTracker reproduced the visually inferred inlet states with 

an average accuracy across all sites of 89% for the combined Landsat and Sentinel-2 record (15-30m 

resolution) and 94% for the Sentinel-2 record only (10m resolution). Overall, we found good 

agreement between the predictions of the tool and the three independent validation datasets for all 

but the smallest sites. Our results demonstrate that InletTracker will enable coastal engineers, 

managers, and researchers to gain new insights into the dynamics and drivers of coastal inlets or 

similar shallow water landforms such as river mouths, tidal flats, floodplains, wetlands or delta 
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channel networks. Further, the high spatial (i.e., 10m) and temporal (i.e., 5 -daily) resolution provided 

by Sentinel-2 makes InletTracker a viable option for near real-time monitoring of even relatively small 

inlets with a minimum channel width of around 10m and frequent, short-duration, openings.  

Keywords: Tidal inlets, ICOLL, barrier breach, Google Earth Engine, remote sensing, least-cost 

pathfinding, coastal monitoring, intermittent estuaries
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1. Introduction 

1.1 Background 

Many of the world’s coastlines feature highly dynamic intermittent/ephemeral coastal inlets (also 

referred to as tidal inlets, entrances, mouths) that close when fluvial or tidal flows are insufficient to 

prevent coastal sediments from infilling the inlet channel via longshore drift, aeolian transport, and 

wave processes (Haines et al., 2006; Hayes and FitzGerald, 2013; McSweeney et al., 2017; Moore and 

Murray, 2019; Otvos, 2020; Roy et al., 2001; van Ormondt et al., 2020). These intermittent coastal inlets 

can substantially influence the hydrodynamics, morphology and ecology of often extensive sheltered 

estuarine/lagoon environments on the landward side of the inlet (Velasquez Montoya et al., 2018), 

which provide numerous ecosystem services including storm protection, carbon sequestration, 

recreation and fisheries productivity (Moore and Murray, 2019; Newton et al., 2018; Scanes et al., 

2020). Examples of intermittent coastal inlets include those that form after major coastal storms at 

barrier island systems, such as the Outer Banks of North Carolina, U.S. (Moore and Murray, 2019; van 

Ormondt et al., 2020; Velasquez Montoya et al., 2018), or those found at the downstream end of over 

1477+ documented intermittent estuaries worldwide (McSweeney et al., 2017).  

Due to the often sporadic and erratic nature of intermittent coastal inlets, they remain less understood 

than more mature and permanent coastal inlets (Behrens et al., 2013; Mcsweeney et al., 2018; 

Velasquez Montoya et al., 2018), pose a challenge for coastal management (Alluvium, 2012; Gordon 

and Nielsen, 2020; Stephens and Murtagh, 2012) and sometimes feature a heated socio-political debate 

around management interventions such as mechanical openings/closures (Gladstone et al., 2006; 

Gordon and Nielsen, 2020; Stephens and Murtagh, 2012; Young et al., 2014). These concerns can be 

compounded by a lack of datasets on historic inlet states (open vs. closed), which, apart from a few 

targeted coastal monitoring programs (e.g., DPIE (2020a)), do not exist for many inlets around the 

globe. To this end, publicly available satellite records such as the Landsat and Sentinel-2 (S2) archives 

hold great potential for reconstructing coastal inlet dynamics (i.e., location, frequency, duration, size 

and evolution of openings/closures) over the last 30+ years. 
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Information on the long-term spatial and temporal dynamics of coastal inlets would enable 

researchers to further advance the existing knowledge on the mechanics and drivers of inlet 

opening/closure (e.g., Behrens et al., 2013; Bertin and Mendes, 2019; González-Villanueva et al., 2017; 

Mcsweeney et al., 2018; Mcsweeney and Stout, 2020; Morris and Turner, 2010; Ranasinghe and 

Pattiaratchi, 2003; Slinger, 2017; van Ormondt et al., 2020; Velasquez Montoya et al., 2018), the 

hydrology (e.g., Gale et al., 2007) and ecology (e.g., Gladstone et al., 2006; Scanes et al., 2020) of 

intermittent estuaries, or the impacts of climate change on coastal inlet dynamics (e.g., Duong et al., 

2016; Duong et al., 2017, 2018). To date, however, the potential of satellite remote sensing remains 

poorly explored and there is need for an automated and transferable method to monitor intermittent 

coastal inlets worldwide. To address this need, this paper introduces InletTracker, a Google Earth 

Engine (GEE) enabled (Gorelick et al., 2017), open-source python software package for historical and 

near real-time monitoring of highly dynamic and/or intermittent coastal inlets.  

1.2 Existing methods for monitoring coastal inlets 

Existing monitoring and survey techniques for coastal inlets include RTK-GPS and echo-sounding 

surveying (e.g., Mcsweeney and Stout (2020); Morris and Turner (2010)), stationary coastal imaging 

systems such as Argus (e.g., Harley et al. (2011)) as well as more recent techniques such as UAVs 

(Turner et al., 2016) and airborne water penetrating LiDAR (Kinsela et al., 2020). While these 

techniques are suitable for surveying coastal inlets at a high resolution, they remain costly and their 

suitability for reconstructing historical inlet dynamics depends on when corresponding surveys were 

initiated.  

In the absence of long-term observational data, process understanding of intermittent coastal inlets is 

often obtained via numerical, empirical or conceptual models (e.g., Baldock et al. (2008); Duong et al. 

(2018); McSweeney et al. (2018); Morris and Turner (2010); Slinger (2017); van Ormondt et al. (2020); 

Velasquez Montoya et al. (2018); Wainwright et al. (2013)). Although such models typically require 

extensive field data for calibration and validation, they can potentially be used to reconstruct 
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historical inlet dynamics (Duong et al., 2016). Alternatively, a few studies have applied remote sensing 

for reconstructing inlet dynamics (Bertin and Mendes, 2019; Scanes et al., 2020). Notably, Scanes et al. 

(2020) used the Water Observations from Space 25-year time series of Landsat-based binary surface 

water masks (Mueller et al., 2016) to infer a number of past openings of Nadgee Lake on the east coast 

of Australia from variations in the surface water extent of the estuary.  

In addition, several related image processing algorithms target features with geomorphological and 

spectral characteristics similar to those of coastal inlets. For instance, a number of studies have applied 

a waterline mapping approach to reconstruct the extent, dynamics or elevation surface of intertidal 

flats (Bishop-taylor et al., 2019; Bishop-Taylor et al., 2019; Murray et al., 2019; Ryu et al., 2008; Sagar et 

al., 2017; Son et al., 2020). Another closely-related body of research is concerned with mapping the 

location and/or dynamics of shorelines (Bishop-taylor et al., 2019; Liu and Yang, 2009; Pardo-pascual 

et al., 2012; Sanchez-García et al., 2020; Vos et al., 2019a; Zhao et al., 2008). Both algorithm groups 

typically map the waterline on individual images as accurately as possible, while also accounting for 

the tide level at image capture. Robust shoreline detection algorithms, such as those employed by 

CoastSat (Vos et al., 2019b), SHOREX (Sanchez-García et al., 2020), or NIDEM (Bishop-Taylor et al., 

2019) have been shown to provide waterlines at sub-pixel accuracy, but they are ultimately not 

designed for identifying intermittent coastal inlet states, where the modulation of ocean tides, 

variations in water composition and complex branching of channel networks limit their application. 

Another group of relevant algorithms is concerned with the satellite-based mapping of planform river 

channel geometry and morphodynamics (Chen et al., 2020; Gong et al., 2020; Isikdogan et al., 2015; 

Monegaglia et al., 2018; Rowland et al., 2016; Schwenk et al., 2017) and an overview is provided in 

Rowland et al. (2016). Methods with proven skill for mapping shallow delta and tide channel 

networks include the algorithms of Isikdogan et al. (2017, 2015) and Gong et al. (2020). 

While these algorithms represent major advancements for automated mapping of changes in beach 

width and stream channel characteristics from publicly available satellite imagery, they are ultimately 

not suitable to detect whether an inlet is open or close. Here, we introduce InletTracker, a novel 
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remote sensing technique capable of automatically mapping the evolution of highly-dynamic 

intermittent coastal inlets from Landsat and S2 imagery. InletTracker employs a least-cost pathfinding 

technique to trace inlet channels and locates their bottleneck consistently through multi-decadal 

imagery records. The purpose of this paper is to illustrate the skill and limitations of InletTracker, 

based on a comprehensive validation exercise involving 12 intermittent coastal inlets in Australia with 

varying inlet channel width and geomorphological setting. Section 2 describes the methodology 

behind InletTracker and details the experiments used for evaluating its performance. The results are 

provided in Section 3 and discussed in Section 4, which is followed by the conclusions in Section 5.   

2. Materials and methods 

 2.1 Proposed method: InletTracker 

The three ‘core challenges’ to infer the state of an intermittent coastal inlet from medium resolution 

multispectral satellite imagery are: 

i)  The dynamic nature of inlet channels, which can dramatically change over time and space.  

ii) The high variability in reflectance over coastal inlets in the spatial (i.e., dynamic features such as 

shallow channels, sand bars, mudflats, seagrass and adjacent vegetation) and temporal (i.e., 

changes in water colour through seasons, periods of opening and closure, ebb and flood tide 

cycles) domains. 

iii) The shallow water areas in and around coastal inlets that may alternate between wet and dry 

phases depending on the, which is often further compounded by the potentially small size of 

inlet channels relative to the resolution of the satellite imagery.  

The motivation behind InletTracker was to develop an automated tool for tracking the time-evolving 

location and state (i.e., open vs. closed) of coastal inlets that could address these challenges as 

efficiently as possible, while also being applicable across a wide range of geomorphological settings. 

InletTracker consists of a series of integrated Python codes that are freely available on Github 

(https://github.com/VHeimhuber/InletTracker) and Mendeley Data (Heimhuber et al., 2021), where 

detailed guidance is provided on the installation and use of the tool. A high-level overview of the 

InletTracker method, its architecture and major processing steps is provided in Figure 1.  
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Figure 1: Conceptual diagram illustrating the architecture and key processing steps of InletTracker.  

The sequence of computations provided by InletTracker can be summarized as follows: 

i) Image download and pre-processing;  

ii) Least-cost pathfinding along and across the berm (i.e., barrier, bar); 

iii) Inferring open vs. closed inlet states.  

In the following sections, each of these steps is described in detail and an emphasis is placed on how 

each of the three aforementioned challenges is addressed. 
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2.1.1 Image download and pre-processing 

InletTracker uses functionality of the CoastSat python toolbox (Vos et al., 2019b) to access publicly 

available optical satellite data through the GEE. Briefly, the toolbox retrieves Landsat 5, 7 & 8 (L5, L7, 

L8) and S2 Top-of-Atmosphere images cropped to a user-defined region of interest before pre-

processing to mask cloudy pixels and enhance spatial resolution (pansharpening/downsampling) to 

achieve a common resolution of 15m/pixel across all bands for Landsat and 10m/pixel for S2.  

2.1.2 Least-cost pathfinding  

To address the rapid changes in inlet channel location and shape (core challenge 1), a least-cost 

pathfinding technique is used to automatically trace two distinct paths on each image (see also 

Figure 1): 

i) The deepest path connecting a point in the open ocean (referred to as A) with a point inside the 

estuary (B) as shown in Figures 1 and 2a. The A-B pass is hereafter referred to as the across-berm 

path.  

ii) The path connecting two points on the beach berm on opposite sides of the inlet channel through 

the shortest and shallowest (i.e., bottleneck) section of the channel. This path connects points C and 

D in Figures 1 and 2a and is hereafter referred to as along-berm path. 

The automated tracing of these paths for each image is implemented via the least-cost  algorithm of 

the scikit-image graph module (Van Der Walt et al., 2014). The algorithm iteratively routes through a 

‘cost surface’ in the form of two-dimensional grid from the seeds (A and C) to the receiver points (B 

and D), accumulating the cost of every pixel along the path. The resulting least-cost path is the one 

that has the lowest cumulative cost. This pathfinding problem is similar to finding the shortest route 

connecting two points in a road network, where the cost of each road segment is the time required to 

drive it. Instead of the travel time, however, InletTracker uses a single image band or index that is 

proportional to the depth of water as the cost surface. This allows it to find the deepest connection 

(i.e., least-cost) between points A and B and the shallowest connection (i.e., maximum cost) between 
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points C and D. The user can choose between the NIR, SWIR1, the Normalized Difference Water Index 

(NDWI) ((Green-NIR)/(Green+NIR)) (Mcfeeters, 1996) or the modified NDWI (mNDWI) ((Green-

SWIR1)/(Green+SWIR1)) (Xu, 2007) as the cost surface for least-cost pathfinding. In addition, two 

user-defined polygons are used to specify the search region for finding the across and along-berm 

paths (see Figure 2a). This range of options for the cost surface partially addresses the spatial and 

temporal variability in reflectance over coastal inlets (core challenge 2). Further, to overcome issues 

with the least-cost path taking shortcuts over parts of the beach, as illustrated in Figure 2b, the cost 

surface was exponentiated by a factor of 25. This exponentiation exaggerates the cost for crossing dry 

pixels and thereby, encourages the algorithm to trace along wet pixels, even if this results in a 

substantially longer path (see Figure 2c). 

 

Figure 2: Illustration of the least-cost pathfinding method showing (a) S2 true color image (14.02.2018) 

with seed (A and C) and receiver (B and D) points and masks for pathfinding; (b) mNDWI(-1) plotted 

as an elevation surface; (c) the ‘amplified’ mNDWI(-1) cost surface obtained via (mNDWI(-1) +2)25. For 

the unmodified mNDWI(-1) cost surface (b), taking a short cut over the beach berm results in a lower 

cumulative cost than tracing through the inlet for the across-berm (A-B) path. After amplification (c), 

across-berm pathfinding consistently locates the inlet channel centreline along the deepest flow path, 

while along-berm pathfinding tends to approach the bottleneck of the inlet channel. 

 

The along-berm and across-berm paths obtained via pathfinding reduce the spectral information over 

the area of interest to only what is relevant for distinguishing between an open vs. a closed inlet state. 

Although the limited resolution of the satellite imagery relative to the potentially small size of inlet 
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channels (core challenge 3) is a physical limitation inherent to the input data, this ‘focusing’ ensures 

that any available information is used efficiently to infer the state of the inlet. 

2.1.3 Inferring open vs. closed inlet states 

The pathfinding method presented in the previous section consistently traces the along-berm and 

across-berm paths for images in a multi-temporal time series. The second major step of the method is 

to use the information obtained via pathfinding to automatically infer whether an inlet is open or 

closed. To this end, either NDWI or mNDWI is extracted in its original form (i.e., without 

exponentiation but inversed so that water features become negative) along each transect in 1m 

intervals. Figure 3 illustrates this method based on Landsat 8 images of an intermittent inlet in 

south-eastern Australia (Lake Conjola) during an open (Fig. 3a) and closed inlet state (Fig. 3b). The 

mNDWI(-1) extracted along the across-berm and along-berm transects are shown in panels (c) and (d) 

respectively for the open image and in (e) and (f) for the closed image.  

An open inlet, such as the one shown in Figure 3a, creates distinct features in the along-berm and 

across-berm transects. For open inlets, the across-berm transects typically display very low values for 

the open ocean part of the path starting at Point A, before showing a local maximum near the 

intersection with the along-berm transect (Figure 3c). After the local maximum, the transect typically 

continues at lower values but with more variability, due to shallow channel and sandbar features 

inside the inlet. The local maximum near the intersection typically corresponds to the point of lowest 

water depth in the inlet channel (see section S3 in the supplementary materials for details). 

Conversely, the along-berm transects commonly provides high values over the dry sand areas on 

either end of the path, with a local minimum near the intersection with the across-berm transect 

(Figure 3d).  Since these transects are based on water-sensitive bands or indices, these local maxima or 

minima are of particular importance for inferring inlet states. In most inlet configurations, the local 

maximum of the across-berm and the local minimum of the along-berm transect are identical. In a 

closed state (Figure 3b, e, f), they both exhibit the mNDWI of dry sand, which, in this example, is 
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slightly above 0.2. During open states, the magnitude of the local maximum/minimum depends on the 

state of the inlet and the tide, with the most negative values being obtained for deep inlet channels 

captured during high tide. Conversely, for inlets that are either very small or just about to close and 

captured during low tide, the local maxima/minima tend to approach those of dry sand.  

To distinguish between an open or a closed inlet, the method then uses a threshold. However, rather 

than applying a single threshold to the entire local maxima or minima series, the accuracy of which 

can be strongly affected by even minor variations in lighting or atmospheric conditions from image to 

image, InletTracker uses an alternative approach. As can be seen in Figure 3d, the majority of the 

along-berm transect is located over the beach berm, which typically exhibits very stable 

mNDWI/NDWI values of dry sand. Through a series of experiments, we found that the median of the 

along-berm transect consistently approaches the mNDWI or NDWI of dry sand for a wide range of 

inlet configurations. The key advantage of this approach is that no prior knowledge of the spectral 

signature of the beach berm or initial classification step is required.  Instead, the spectral signature of 

the dry parts of the berm is established automatically for every image. 

Based on these learnings, the detection of inlet states in InletTracker is implemented as follows: 

i) First, the local maxima and minima are identified for each image based on the location of the 

intersection of the across-berm and along-berm transects and a user defined search window 

(defined as a search distance on either side of the intersection) (see Figure 3c and d).  

ii) Next, the difference between the local maximum or minimum and the median of the along-berm 

transect is calculated (hereafter referred to as the Δ-to-median parameter).  

iii) Lastly, a single threshold is applied to distinguish between open (above threshold) and closed 

(below threshold) inlet states. The optimal classification threshold is site specific and can be 

inferred based on a user-generated set of training data consisting of visually inferred inlet states. 

This training data generation is readily implemented in InletTracker via an interactive user 

interface.  
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Figure 3: Illustration of the method used for automated detection of inlet states in InletTracker, where 

(a) and (b) are S2 images for Lake Conjola during an open and closed inlet state respectively. Also 

shown are the user defined seed (A/C) and receiver (B/D) points for pathfinding, the corresponding 

masks for limiting the search area, and the automatically traced across-berm and along-berm paths. 

Panels (c) and (d) show the across-berm and along-berm mNDWI(-1) transects for the open image, 

while (e) and (f) show the same transects for the closed image. Based on these transects, the method 

uses a search window to find the maximum of the across-berm and minimum of the along-berm path 

in the vicinity of the intersection between the two paths. It then calculates the difference between the 

median of the along-berm transect and the local maximum/minimum (Δ-to-median) and uses this 

parameter as a proxy of the inlet state.  
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2.2. Validation 

To test its performance, we first applied InletTracker to reconstruct the inlet dynamics of 12 test sites 

in two distinct configurations, which are representative of how the tool will likely be used by different 

users. For the first configuration, we used the full L5, 7 and 8 and S2 imagery record and used SWIR1 

for pathfinding and the mNDWI for inferring inlet states. In the second configuration, we used only 

the S2 imagery and used NIR for pathfinding and NDWI for inferring inlet states. This second 

configuration takes advantage of the 10m vs. 15m resolution of the NIR vs. the SWIR1 band of S2 that 

could provide better detection accuracy for small inlets. We then compared the results against three 

independent datasets, namely i) visually-inferred open vs. closed inlet states for all available cloud 

free Landsat and S2 images ii) long-term observational records of open vs. closed inlet states available 

for four of the sites (DPIE, 2020a) and iii) in-situ water level data for the estuaries of seven of the 12 

inlets (DPIE, 2020b). Additionally, we generated additional results to illustrate the effects of the tide as 

well as the different band and index options provided by the tool (see S3 in supplementary materials). 

In the following sections, the three validation exercises are explained in detail.  

2.2.1 Test sites  

We selected 12 intermittent coastal inlets in Australia with different estuary waterbody and inlet sizes, 

geomorphological settings, and inlet dynamics (Figure 4). For each site, the seed and receiver points 

for along-berm and across-berm pathfinding along with the corresponding boundary masks are 

shown. We used Wamberal, Coila, Conjola and Durras for a focused illustration of the results since 

these sites had consistent long-term observational records. Table 1 provides an overview of the key 

characteristics of each site. Like all intermittent estuaries, they have low or seasonally-low fluvial 

inflows, a spring tidal range of less than 2.50 m and a deep-water significant wave height averaging 

1.25 m or higher (data not shown) (Mcsweeney et al., 2017).  
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Figure 4: Location and inlet configuration of the 12 study sites in Australia showing the across-berm 

(A to B) and along-berm (C to D) seed and receiver points and corresponding masks used to limit the 

area for pathfinding. Sites are ordered from small to large and site names are (a) Inman River, (b) Curl 

Curl, (c) Dee Why, (d) Coila, (e) Wamberal, (f), Narrabeen, (g)  Nadgee,  (h) Hamersley Inlet,  (i) 

Conjola, (j) Durras,  (k) Stokes Inlet, (l) Irwin Inlet. The coordinates of each site are provided in Table 

1. Background images are from Nearmaps. 
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As can be seen in Figure 4, the approximate berm width of these sites ranges from under 50m for the 

smallest site (Inman River) to around 400m for the largest sites (e.g., Conjola, Stokes Inlet, Irwin Inlet). 

Approximate inlet closure indices (i.e., the proportion of time the inlet is closed) ranged from 0.17 for 

Narrabeen to 0.96 for Wamberal (Haines, 2006). 

 

Table 1: Location and key characteristics of the 12 inlets used for testing the performance of 

InletTracker. [1] = Carmichael (2000); [2] = Roper et al. (2011); [3] = Chuwen et al.( 2009); [4] = 

Department of Water (2007); [5] = Calculated from model data of Lyard et al. (2020); [6] = Haines 

(2006) ; [7] = Google Earth Pro  

Inlet name 
Point A 

Lat; Long 

Min. inlet 

opening 

width/ 

Distance  

C to D (m) 

Catchment 

size (km2) 

Estuary 

area 

(km2) 

Annual 

rainfall 

(mm) 

Mean 

tidal 

range 

(m) 

Inlet 

closure 

index 

Inman River 
-35.562381; 

138.613905  
≤30 [7] / 65 195.5 [1] 0.034 712 [1] 0.69 [5] - 

Curl Curl 
-33.768373; 

151.299358 
≤30 [7]/ 185 4.65 [2] 0.063 1151 [2] 1.24 [5] 0.8 [6] 

Dee Why 
-33.747558; 

151.304552  
≤60 [7]/ 270 4.27 [2] 0.311 1146 [2] 1.24 [5] 0.7 [6] 

Coila 
-36.050623; 

150.142422 
 ≤60 [7]/ 200 47.64 [2] 7.071 806 [2] 1.18 [5] 0.95 [6] 

Wamberal 
-33.430613; 

151.449385  
≤70 [7] / 260 5.82 [2] 0.503 1124 [2] 1.25 [5] 0.96 [6] 

Narrabeen 
-33.70493; 

151.309039  
≤70 [7]/ 140 52.41 [2] 2.266 1108 [2] 1.24 [5] 0.17 [6] 

Nadgee 
-37.468075; 

149.97493    
≤60-90[7]/ 560         13.7 [2]  1.226 808 [2] 1.15 [5] 0.8 [6] 

Hamersley 

Inlet 

-33.970127; 

119.907729  
≤70[7]/ 200 1610 [3] 2.653 500 [3] 0.54 [5] - 

Conjola 
-35.271437; 

150.510819 
≤70[7]/ 380 139.09 [2] 6.436 951 [2] 1.20 [5] 0.4 [6] 

Durras 
-35.640561; 

150.308009  
≤90[7]/ 560 58.38 [2] 3.650 944 [2] 1.19 [5] 0.62 [6] 

Stokes Inlet 
-33.856799 

121.133298;  
≤200[7]/ 470 4500 [4] 

12.110 
[4] 

550 [4] 0.56 [5] - 

Irwin Inlet 
-35.024153; 

116.95796     
≤200[7]/ 480 2343 [3] 

12.574 
[3] 

623 [3] 0.47 [5] - 
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2.2.2 Validation against visually inferred binary inlet states 

Due to a lack of alternative datasets that cover the full Landsat record, visual analysis of the input 

imagery was the only feasible option for assessing performance across all sites over the full imagery 

record. The previously mentioned InletTracker training data generator randomly shuffles through the 

available cloud free images of a site, providing a focused view of the inlet in true color, the NDWI, 

and the mNDWI. The analyst then chooses between ‘open’, ‘closed’, ‘unclear’ or ‘poor quality’ via 

arrows on the keyboard. ‘Unclear’ is selected if the inlet is neither clearly open or closed, while ‘poor 

quality’ is selected if there is significant cloud cover, cloud shadow or haze present in the direct 

vicinity of the inlet. A total of 4933 images (excluding unclear or poor-quality) were visually classified 

into open and closed inlet states for this validation and ‘unclear’ images were excluded from the 

analysis.  

Since the entire set of visually inferred validation data was generated by a single analyst, we 

conducted an additional experiment to test the representativeness of this data. To this end, training 

data was generated by an additional six analysts with a background in coastal science for the full S2 

record at Conjola and Dee Why. From these six validation datasets, we then calculated the majority 

vote. This majority vote was then compared against the single analyst data for all overlapping image 

dates, which revealed agreement levels of 82% for Dee Why and 87% for Conjola. This illustrates that 

there is a degree of bias in the visually inferred binary entrance states that needs to be carefully 

considered in the interpretation of the results.   

To evaluate the performance of the algorithm, the binary inlet states inferred from the along-berm and 

across-berm Δ-to-medians were compared against the visually inferred binary inlet states, based on 

the accuracy and F1-score metrics (see Section S1 in the supplementary materials on details how these 

are calculated). The time series of Δ-to-median parameters was classified into open vs. closed inlet 

states using the threshold that resulted in the highest F1-score. Consequently, the resulting accuracies 

could be slightly higher than those that would be obtained based on a smaller set of training data.  
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2.2.3 Validation against observational inlet states 

In New South Wales, Australia, records of open vs. closed inlet states are collected for some inlets and 

centrally maintained by the Department of Primary Industries and the Environment (DPIE, 2020a). 

The time period and quality of this data varied considerably across the test sites. Here, only the 

observational records for the four focus sites, which had consistent long-term records, were used. 

Importantly, the observational records are not perfect as they are often based on several different 

sources of information and data collection methods. For several occasions, the dataset contained 

question marks, empty fields or vague remarks for certain inlet openings or time periods. If a date was 

provided for only the day of opening or the day of closing, then a duration of one month was applied 

to complete the dataset.     

2.2.4 Validation against in-situ water level data 

Lastly, the InletTracker results were compared against the degree of tidal attenuation. Due to the 

limited hydraulic conveyance capacity of inlet channels, ocean tides are significantly attenuated in 

landward water bodies of inlets (González-Villanueva et al., 2017; Gordon and Nielsen, 2020; Haines, 

2006; McPherson et al., 2013; Slinger, 2017). The degree of tidal attenuation of a particular inlet 

depends, among other less significant factors, on the size of the inlet opening as well as the size of the 

estuarine waterbody and its corresponding tidal prism (Khojasteh et al., 2020; Young et al., 2014). 

Since the surface water area of an estuary is roughly constant through time, the level of tidal 

attenuation is largely a function of the size of the inlet opening. Here, we estimated the degree of tidal 

attenuation by comparing the tidal range inside the estuaries with the tidal range in the open ocean as 

exemplified for Durras in Figure 5. 

Water levels inside an intermittent estuary can vary substantially within a single day in response to 

heavy rainfall during closed inlet states as seen in Figure 5a. To account for these non-tidal water level 

fluctuations, we first calculated the difference between the minimum and the maximum water level 

for each day, and then selected the minimum daily value along a 3-day rolling window (Figure 5b). 
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For the open ocean, tide data from the FES2014 global ocean tide atlas (Lyard et al., 2020), a finite 

element solution global ocean tide model that is readily integrated with InletTracker was used. The 

data was extracted from the model based on the location of seed points A for each site (see Table 1) 

and the tidal range was then calculated as the difference between the daily maximum and minimum 

(Figure 5b). Tidal attenuation of each inlet was then calculated using Equation 1 (Figure 5c).  

Tidal attenuation = (1 – (Tidal range inside the inlet / Tidal range in the open ocean)) * 100        (Eq.1) 

Since both the Δ-to-median parameter and tidal attenuation are somewhat proportional to the degree 

of opening of an inlet, there should be some correlation between these two parameters. To test this, we 

calculated correlation statistics (Pearson correlation coefficient, and p-value) between the Δ-to-median 

parameter and tidal attenuation for seven sites for which in-situ water level data was available. 

 

Figure 5: Illustration of how tidal attenuation from the open ocean into the estuary was calculated, 

here exemplified for Durras Lake, NSW. Shown are a) water levels as measured by a gauge inside the 

inlet; b) tidal range in the open ocean as predicted by the FES global tide model (red) (Lyard et al., 

2020) and in the lagoon inferred from the water level data (blue) (DPIE, 2020b); c) tidal attenuation 

obtained via dividing the estuary tidal range by the open ocean tidal range.   
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3. Results 

3.1 Pathfinding  

Overall, InletTracker was found to have excellent ability for consistently tracing dynamic inlet 

channels along and across the berm. This is exemplified in the pathfinding results for selected S2 

images during an ~8 month opening sequence of Inman River, South Australia (Figure 6). The image 

series illustrates the dramatic variations in water level, water color, sun angle (i.e., see increased 

brightness over the beach berm during summer months), and channel and wave condition that can 

accompany the opening and closure of inlet inlets. The pathfinding algorithm effectively dealt with 

these complexities and correctly identified the desired across-berm and along-berm paths along with 

their intersection around the bottleneck of the inlet opening. Further, since pathfinding was based on 

the NIR band for S2 in this example, the obtained paths tend to avoid white water, which has high 

reflectance in the NIR range. 

The ability to consistently trace inlet channels is further illustrated by the results obtained for the full 

S2 record, which, for Durras, comprised 75 cloud free images during open (as inferred visually) and 58 

images during closed inlet states (Figure 7). Panels a, b, c and d in Figure 7 show the corresponding 

paths (one path per image), grouped by the direction of pathfinding and state of the inlet. Here, and in 

the remainder of this manuscript, orange and red tones represent closed inlet states, while blue tones 

represent open inlet states. The across-berm transects during open inlets (panel c) illustrate 

considerable variability in the location and shape (e.g., sinuosity) of inlet openings. The across-berm 

transects during closed inlet states tend to cross the beach berm at its narrowest part but are otherwise 

not of further value. Both the open and closed along-berm paths provide an indication of the average 

position and dynamics of the beach berm throughout the satellite record.  

Panels e) and f) in Figure 7 show the mNDWI values extracted from the S2 imagery along the across-

berm and along-berm paths and illustrate the usefulness of the pathfinding approach. For the 133 S2 

images, the transects consistently depict distinct features for open and closed inlet states. For open 
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inlet states, the along-berm transects exhibit the characteristic channel cross section shape (panel e), 

while the across-berm transects consistently show lower maxima for the berm crossing. As with the 

2-d planform paths, these transects hold considerable information that can facilitate a detailed 

assessment of inlet morphodynamics.  

 

Figure 6: Least-cost pathfinding results for Inman River based on the S2 NIR band (10m resolution) 

through an approximately 8-month opening starting in August 2017. The automatically traced 

across-berm (A to B) and along-berm (C to D) (yellow lines) paths and their intersection (light blue 

cross) are overlaid on the true color S2 image from which they are derived. The across-berm path 

consistently identifies the on average deepest connection between points A and B. 
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Figure 7: Results of the least-cost pathfinding algorithm for Durras and S2 imagery only (2016-2020). 

Across-berm (a) and along-berm (b) transects during closed inlet states overlaid on an example RGB 

S2 image. Across-berm (c) and along-berm (d) transects during open inlet states. Panel (e) shows the 

mNDWI extracted along all of the along-berm paths shown in panels (b) and (d). Panel (f) shows 

mNDWI extracted along the across-berm paths of panels (a) and (c).  
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3.2 Reconstructing inlet states over the full satellite record (1987-2020) 

After confirming the ability of InletTracker to accurately trace openings, we applied it to reconstruct 

historic inlet dynamics for all 12 test sites and compared those results against the three validation 

datasets. Figure 8 shows time series of the along-berm Δ-to-median parameter over the full satellite 

record for the four focus sites. Also shown are the observational inlet state record (DPIE, 2020a), the 

visually inferred inlet states, and the tidal attenuation inferred from the in-situ water levels (DPIE, 

2020b). The number of sufficiently cloud-free images with visually inferred open or closed inlets 

available for each site was 642 for Durras, 548 for Conjola, 676 for Coila and 489 for Wamberal (Table 

2). The observational inlet states illustrate the dramatically different inlet dynamics of the four inlets, 

with Durras and Conjola exhibiting openings that can last for several years at a time, while Coila and 

Wamberal stay open for a couple of months or weeks at a time, respectively. Of the four inlets, 

Wamberal has by far the most dynamic inlet with several short openings per year, many of which are 

due to manual opening of the inlet channel (Gladstone et al., 2006).  

When comparing the Δ-to-median parameter against the visually inferred binary inlet states for 

Durras and Conjola (Figure 8a and b), it can be seen that the parameter provides a good indicator of 

the state of the inlet. During openings, it tends to vary significantly around a site-specific mean value 

of between 0.4 to 1, which is likely due to variations in the tide and changes in the shape of the 

channel. During closed inlet states, the parameter consistently approaches zero. For some of the major 

openings in Conjola (e.g., 1994, 2018) and, to a lesser extent for Durras (1994, 2003), it appears that the 

parameter gradually decreases towards the end of open periods, as the inlet starts accumulating 

marine sediments, before closing entirely. The tidal attenuation records support this observation, with 

the lowest attenuation often occurring right after the inlet is flushed open, before gradually increasing 

back towards 100% attenuation during the inlet closure process (e.g., see openings starting in 2003, 

2005 and 2007 in Durras).  

For Durras and Conjola, there is very good agreement between the Δ-to-median parameter and the 

visually inferred inlet states, the observational record and the degree of tidal attenuation.  In fact, for 
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Durras, an almost perfect result is obtained, with very good agreement between all parameters, except 

for the period around 2013 to 2015. In this period, both the Δ-to-median parameter and the tidal 

attenuation are reflective of an open inlet, indicating that there is likely a gap or error in the 

observational record. For Conjola, there is also very good agreement between all datasets for most of 

the time, except for the presumably wrong indicated inlet state in the observational record between 

1999 and 2012. Notably, the relatively fast alternations between open and closed inlet states between 

1995 and 1998 in Conjola are reasonably well captured by the Δ-to-median parameter.  

Due to their much smaller and shallower inlet channels, the Δ-to-median parameter is much lower for 

Coila and Wamberal during open inlet states (Figure 8c and d) and the class separation between open 

and closed is less pronounced. For Coila, comparison of all parameters shows that not all the short 

inlet openings indicated in the observational record are detected by the Δ-to-median parameter or the 

visually inferred inlet states (e.g., see openings between 2003 and 2015). Nevertheless, several other 

openings such as those in the 80s, 90s and post 2015s are captured well.  

For Wamberal, the reduced number of available images combined with the higher frequency and 

shorter duration of openings highlight the limitations of InletTracker, both in the spatial and temporal 

domain. Although some of the openings are accompanied by markedly higher Δ-to-median values 

and visually inferred open inlet states, most openings indicated in the observational inlet record 

remain undetected. These undetected openings are either the result of no cloud free images coinciding 

with an opening, or a lack of signal in the Δ-to-median parameter.  

Since the beginning of the S2 record in mid-2015, there is a notable increase in the sampling frequency 

for all sites. The considerably higher spatial resolution of the S2 imagery also means that inlet 

openings are better resolved and, in particular for Wamberal, this appears to lead to significantly 

better detection of openings, both visually and via InletTracker.  
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Figure 8: Time series of Δ-to-median values derived from the along-berm transect of each image for 

Durras, Conjola, Coila and Wamberal for the full L5, 7, 8 and S2 record. Pathfinding was based on the 

SWIR1 band, while the Δ-to-median was calculated based on the mNDWI. The degree of tidal 

attenuation derived from in-situ water levels (DPIE, 2020b) is shown in green. Grey background 

shading represents open inlet states as indicated in the observational records (DPIE, 2020a). The end 

of the observational records is indicated for Coila and Wamberal.  

 

By and large, the above visual observations regarding the skill and limitations of InletTracker are 

confirmed by the accuracy assessment of the binary classification (Table 2). The total number of cloud 

free images (excluding all images deemed ‘unclear’) available for each site varied from a maximum of 

642 for Durras, to a minimum of 162 for Irwin Inlet and averaged 411. Hamersley Inlet, Stokes Inlet 
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and Irwin inlet are located in Southwestern Australia and the low number of images here is the 

combined result of reduced sampling via the S2 satellites and persistent issues with the Landsat cloud 

mask over bright sand areas. Averages of 299 images during closed inlet states vs. 112 images during 

open inlet states across all sites indicate that most test sites are predominantly closed, which is in good 

agreement with the Inlet Closure Indices provided in Table 1. Inlets that appear to be predominantly 

open include Durras, Conjola and Irwin inlet. In contrast, Hamersley Inlet and Stokes Inlet were only 

open on 7 and 6 images, respectively, over the satellite record.   

On average across all sites, InletTracker achieved an accuracy of 0.89 and 0.7 for predicting binary 

inlet states based on across-berm and along-berm pathfinding, respectively. F1-scores are more 

indicative of the performance of the algorithm in correctly detecting open inlet states and were 0.64 

and 0.52 for the across-berm and along-berm classifications. These results indicate that, on average, 

the across-berm approach outperforms the along-berm approach for inlet state detection, although 

sites such as Narrabeen and Conjola showed slightly better performance for the along-berm approach. 

Very good results were obtained for larger inlets including Coila (accuracy=0.99; F1-score=0.86), 

Durras (accuracy=0.98; F1-score=0.99), Conjola (accuracy=0.97; F1-score=0.98) and Irwin inlet 

(accuracy=0.96; F1-score=0.97). Nadgee, Dee Why and Stokes inlet showed good accuracies but low 

F1-scores, which can be partially attributed to their relatively small number of actual positives (i.e., 

images during open inlet states), where even a small number of false positives or false negatives can 

lead to poor F1-scores.  

As expected, algorithm performance is also strongly dependent on the size of inlet openings, with the 

two smallest sites Inman River and Curl Curl showing poor results. The relatively high across-berm 

accuracy obtained for these sites is the result of the low number of images during open inlets. 

Although the across-berm Δ-to-median series for Inman River and Curl Curl are noisy and without 

clear class separation (not shown), classification thresholds of 0.01 and 0.19, respectively, placed the 

majority of images in the closed category for both sites, leading to high accuracy values (i.e., 
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overfitting). The corresponding F1-scores of 0.19 and 0.25 provide a better indication of the poor 

algorithm performance for these sites. 

Table 2: Validation statistics obtained via comparison of algorithm results against visually inferred 

inlet states for the full L5,7,8 and S2 imagery record. Accuracy metrics are provided separately for the 

across-berm (A to B) and along-berm (C to D) approach. The total number of images that were 

visually classified into open vs. closed inlet states and the number of images for each class is also 

provided.  The optimal classification threshold was used to classify images into open vs. closed states 

based on the Δ-to-median parameter, where Δ-to-median > threshold = open. 

 

Inlet site 

Transect 

directio

n 

F1-

scor

e 

Accu

-racy 

Tru

e 

neg. 

Fals

e 

pos. 

Fals

e 

neg. 

Tru

e 

pos. 

Classific

ation 

threshol

d 

Total 

nr. Of 

image

s 

Nr. Of 

closed 

image

s 

Nr. Of 

open 

image

s 

Inman 

River 

A-B 0.19 0.79 307 33 50 10 0.01 400 340 60 

C-D 0.30 0.33 73 267 2 58 0.03 - - - 

Curl Curl 
A-B 0.25 0.89 396 21 28 8 0.19 453 417 36 

C-D 0.19 0.43 163 254 6 30 0.12 - - - 

Dee Why 
A-B 0.59 0.86 322 30 29 43 0.08 424 352 72 

C-D 0.68 0.88 324 28 21 51 0.11 - - - 

Coila 
A-B 0.86 0.99 640 3 6 27 0.11 676 643 33 

C-D 0.63 0.95 619 24 7 26 0.19 - - - 

Wamberal 
A-B 0.47 0.94 444 12 19 14 0.16 489 456 33 

C-D 0.54 0.94 443 13 16 17 0.19 - - - 

Narrabeen 
A-B 0.62 0.52 35 92 32 100 0.01 259 127 132 

C-D 0.74 0.67 48 79 7 125 0.07 - - - 

Nadgee 
A-B 0.46 0.91 371 32 5 16 0.19 424 403 21 

C-D 0.12 0.34 123 280 1 20 0.19 - - - 

Hamersley 

Inlet 

A-B 0.67 0.98 205 3 2 5 0.08 215 208 7 

C-D 0.54 0.94 196 12 0 7 0.15 - - - 

Conjola 
A-B 0.96 0.93 47 26 11 464 0.07 548 73 475 

C-D 0.98 0.97 66 7 9 466 0.12 - - - 

Durras 
A-B 0.99 0.98 269 6 5 362 0.1 642 275 367 

C-D 0.99 0.98 268 7 3 364 0.11 - - - 

Stokes 

Inlet 

A-B 0.63 0.98 230 5 1 5 0.16 241 235 6 

C-D 0.12 0.68 160 75 1 5 0.19 - - - 

Irwin inlet 
A-B 0.97 0.96 53 3 4 102 0.1 162 56 106 

C-D 0.44 0.29 1 55 60 46 0.01 - - - 

Average  A-B 0.64 0.89 - - - - 0.11 411 299 112 

Average C-D 0.52 0.70 - - - - 0.12 - - - 

 

Lastly, this experiment provides some insights into the optimal threshold for classifying the 

Δ-to-median series into binary inlet states. A higher threshold will place more images in the closed 

category and vice versa. The average across-berm and along-berm- thresholds that lead to the highest 
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F1-scores are 0.11 and 0.12, respectively, and, for the best performing sites, the optimal threshold is 

commonly very close to 0.1 (i.e., 0.07-0.12).  

3.3 High resolution monitoring of inlet dynamics via Sentinel-2 only (2016-2020) 

This section provides InletTracker results for S2 imagery only (NIR/NDWI configuration), to illustrate 

that the underlying 10m resolution and up to 5-day sampling frequency considerably improves the 

skill of the algorithm for detecting smaller and shorter duration openings. Figure 9 shows the 

corresponding time series of the along-berm Δ-to-median parameter along with the three validation 

datasets for the four focus sites. The corresponding accuracy metrics for all 12 test sites are provided 

in Section S2 of the Supplementary Materials. 

For the four focus sites, InletTracker showed excellent performance with F1-scores and accuracies of 

0.98 and 0.98 for Durras, 0.94 and 0.95 for Conjola, 1.0 and 1.0 for Coila, and 0.89 and 0.98 for 

Wamberal. The time series plots in Figure 9 reflect this good performance, showing a distinct class 

separation in the Δ-to-median parameter for open vs. closed inlet states. In fact, for Durras and 

Conjola, InletTracker appears to outperform the human analyst as indicated by several images 

wrongfully inferred as open despite the Δ-to-median parameter and the other two validation datasets 

clearly indicating a closed inlet (e.g., late 2018, early 2019 for Conjola). Even though Coila and 

Wamberal show equally good class separation in the Δ-to-median parameter, and near perfect 

agreement with the visually inferred inlet states, one of the openings of Coila and several openings of 

Wamberal are missed entirely due to a lack of coinciding images. Thanks to the very high sampling 

frequency of S2-A and B from around 2018 and onwards, however, this represents less of an issue in 

more recent times. Importantly, the S2 acquisition frequency is not uniform around the globe and can 

therefore vary substantially for different inlets (see Bergsma and Almar (2020) for global coastline 

sampling frequencies). 

Across the 12 test inlets, excellent average F1-scores and accuracies of 0.79 and 0.94 for the along-berm 

and 0.75 and 0.91 for the across-berm predictions were obtained. Similar to the results of the full 
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imagery record, the lowest performance was obtained for small sites such as Inman River, Dee Why 

and Curl Curl, which suffer from elevated numbers of false positives and false negatives.  

 

Figure 9: InletTracker results for S2 only in the 10m resolution NIR/NDWI configuration showing time 

series of Δ-to-median values derived from the along-berm transect of each image for Durras, Conjola, 

Coila and Wamberal. 

 

3.4 Correlation between Δ-to-median and tidal attenuation 

To test whether the Δ-to-median variable can provide an approximation of the degree of opening of an 

inlet, the S2-based along-berm Δ-to-median series was compared against the degree of tidal 

attenuation for seven sites for which in-situ water level records date back to at least 2015. The results 
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indicate that there is a degree of correlation between the two parameters for some sites, even without 

adjusting the Δ-to-median parameter for the tide level at the time of image capture (Table 4). For Dee 

Why, Wamberal, Durras and Conjola, negative statistically-significant (p<0.05) Pearson correlations of 

below -0.7 were obtained. For Curl Curl and Coila, weak correlations were found, while Narrabeen 

was roughly between these and the better performing sites. 

Table 4: Validation statistics (Pearson correlation and corresponding p-value) obtained via 

comparison of the along-berm (C-D) Δ-to-median parameter against tidal attenuation for seven sites 

for which in-situ water level data inside the inlet was available for the full S2 imagery record (DPIE, 

2020b). 

Site 
Pearson 

correlation  

p-value of 

Pearson 

correlation 

Curl Curl -0.31 0.000023 

Dee Why -0.72 0.000000 

Wamberal -0.74 0.000000 

Narrabeen -0.62 0.000000 

Coila 0.14 0.135293 

Durras -0.89 0.000000 

Conjola -0.76 0.000000 

 

3.4 The effect of tide on algorithm performance  

The harmonic oscillations in water levels in open inlet channels created by the tide (e.g., Figure 5) 

represent one of the core challenges for automated detection of inlet states through multi-temporal 

imagery. Even without any geomorphic change, the appearance and reflectance spectra of an inlet can 

change dramatically depending on the tide level at the time of image capture. To illustrate, we 

selected two S2 images that were taken 5-days apart and during alternating states of the tide (Figure 

10). On the true color images, the difference in water level of approximately 1.1m between the two 

scenes is clearly visible, with several of the shallow sand bar features on either side of the inlet being 

barely visible on the high tide image. The difference in water level also affects the subsequent 

pathfinding and transect analysis steps. Despite nearly identical channel geometries, across-berm 

pathfinding resulted in a more direct connection between the seed and receiver points for the high 
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tide image. This is the result of the additional 1.1m of water column dramatically reducing the cost 

over shallow sand bar features. Although the location of the along-berm paths was nearly identical for 

both images, the increased water level of the high tide image is strongly reflected in the corresponding 

NDWI transects, which depicts a substantially wider and deeper response over the channel during 

high tide. 

 

Figure 10: Effects of tide on InletTracker results showing (a) true color S2 image taken on 04.05.2020 at 

a lower tide (ztide = -0.5 m above mean sea level); (b) time series of the local ocean tide water level 

overlaid by tide water levels of all available S2 images (white dots); (c) along-berm (C to D) NDWI 

transect and median of the transect for the same image. (d), (e) and (f) show the same as (a), (b) and (c) 

but for an S2 image from the 09.05.2020, when the tide was relatively high (ztide = 0.6 m above mean sea 

level). The effects of the approximately 1.1m difference in tide on water depth in the inlet channel and 

corresponding NDWI transects is clearly visible when comparing panels (c) and (f). Tide levels are 

obtained from the FES global tide model (Lyard et al., 2020).  
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This sensitivity test confirms that the state of the tide has substantial influence on the location of 

least-cost paths and corresponding NDWI or mNDWI transects. For instance, for small inlets or inlet 

channels that have accumulated enough sediment to approach closure, the state of the tide alone 

could determine whether the algorithm predicts an open or closed inlet state (also see discussion on 

transitional inlet states in section 4.3). Similarly, the state of the tide would also strongly affect any 

estimation of the width and depth of an inlet channel (see discussion in section 4.6). To address these 

issues, InletTracker integrates the FES global tide model (Lyard et al., 2020) to identify the state of the 

tide during the time of image capture (e.g., Figure 10b and e), a method that is extensively 

documented and tested as part of Vos et al. (2020). Although there is currently no tide correction 

routine implemented for the Δ-to-median parameter, this enables users to filter the imagery record for 

specific tidal levels or to exclude images taken during very high or low tides from the analysis.  

4. Discussion 

The state and dynamics of an inlet has a profound impact on the eco-hydrological character and 

functioning of inlets, but often remains poorly and inconsistently quantified. Here, we introduced 

InletTracker, a GEE-enabled open-source python toolkit for tracking the time-evolving state of 

dynamic coastal inlets. InletTracker uses a simple but effective pathfinding and transect analysis 

approach that leverages the information content of the satellite imagery to a high degree. One of the 

key benefits of InletTracker is that it can reconstruct the dynamics of inlets from 1986 to present with 

only minimal user input for setup and calibration. Further, due to its open-source and user-friendly 

nature, along with its GEE-facilitated image acquisition and pre-processing routine, it is also easily 

applicable to other inlets around the world. In the following sections, we discuss the current 

performance of InletTracker, opportunities for expanding its capabilities in the future and potential 

applications around the world.  
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4.1 Algorithm performance 

The first key step of the InletTracker method, namely the tracing of the inlet channel along and across 

the berm through the shallowest and deepest part, respectively, showed excellent performance. The 

only other application of a least-cost pathfinding algorithm in a related context is that of Chen et al. 

(2020), who used this approach to identify river centrelines, albeit not from band or spectral indices 

that are proportional to water depth. Further, with an average accuracy of 0.89 (across-berm) and 0.94 

(along-berm) across the 12 test sites for all satellites and S2 only, respectively, InletTracker also 

performed very well in predicting binary inlet states. These statistics are based on a total of 6363 

unique binary inlet state predictions. As anticipated, performance is linked to the size of inlets, with 

the algorithm achieving near perfect results for the four largest inlets, while performing poorly for the 

smallest tested inlets, in particular for those that exhibit frequent short duration openings. The limited 

performance for smaller sites is partially overcome when using S2 in the NIR/NDWI configuration, 

which increases the performance in the spatial domain (i.e., in terms of the tool being able to detect 

inlet states more accurately for small sites). Overall, the comparison against the observational record 

(DPIE, 2020a) and the degree of tidal attenuation (DPIE, 2020b) revealed very similar performance 

patterns. For instance, for the four focus sites, the visually inferred inlet states, observational record, 

and degree of tidal attenuation depict nearly identical sequences of open vs. closed inlet states (e.g., 

Figure 9). These sequences are mostly mimicked well by the Δ-to-median parameter for S2, which 

alternates between its two distinct modes for open vs. closed inlet states. This strong agreement across 

the three independent validations indicates that the binary classification accuracy metrics provided in 

Tables 2 and S1 provide a robust and accurate picture of the performance of InletTracker across the 12 

test sites. Our experiments also show that the Δ-to-median is, to some extent, correlated to the degree 

of inlet opening. Despite the noise in the Δ-to-median parameter resulting from the tide, statistically 

significant correlations of -0.7 were found between the Δ-to-median parameter and the degree of tidal 

attenuation for four of the seven inlets that were tested in this regard. These findings suggest that the 



 

2021, Submitted to Remote Sensing of Environment 33 of 50 

Δ-to-median parameter can be useful for monitoring and predicting the closure of an inlet if the tide is 

carefully accounted for and further investigation of this pathway is encouraged.  

4.2 Spatio-temporal resolution constraints 

Some of the key performance limitations of InletTracker are the result of inherent physical limitations 

of the satellite data, rather than the algorithm itself. The spatio-temporal resolution constraints 

associated with the mapping of surface water dynamics based on the Landsat record with its ≥16 days 

revisit and 30m resolution are discussed in detail in Heimhuber et al. (2018). Due to these inherent 

features of the Landsat record, small inlet openings are often not sufficiently resolved by the imagery 

to provide enough signal for accurately inferring the state of an inlet. The magnitude of this signal 

strongly depends on the location, size, and depth of the inlet channel and its location in relation to the 

pixel(s) covering this part of an image. In summary, increasingly small (open) inlet channels lead to 

increasingly weak and mixed spectral signals for the pixel(s) covering these channels, resulting in 

increasingly poor inlet state detection accuracy. Although not explicitly tested here, we estimate that 

the algorithm starts to reach its limits when the width of an inlet channel is lower than the width of a 

pixel in the respective input imagery (i.e., 30m for Landsat, 10m for S2).  

Accordingly, the satellite revisit interval of 16 days under ideal conditions and multiples of 16 days in 

the presence of clouds means that openings which only last for several days or weeks are often not 

captured in the Landsat record (i.e., prior to 2016). This effect is not captured by the accuracy metrics 

of Tables 2 and S1, since those are based on inlet states visually inferred from the imagery itself. 

However, comparison against the observational inlet state records and the degree of tidal attenuation 

provided insights into the nature of this problem (i.e., Figures 8 and 9). The comparison showed that 

for sites such as Wamberal, short openings of the highly dynamic inlet are often missed throughout 

the Landsat record. Due to increased temporal (i.e., ≥ 5-daily) and spatial (i.e., 10m) sampling 

provided by S2 (Rott et al., 2012), as well as the overlap between S2 and L8, these spatio-temporal 
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resolution constraints are considerably less problematic for applications concerned with inlet 

dynamics after 2016.  

4.3 Dealing with transitional inlet states 

One of the challenges of classifying inlets into open vs. closed (i.e., binary) states is that ambiguity 

arises during the transitional period before an inlet closes fully. At this point in time, an inlet berm 

may have recovered sufficiently to inhibit most tidal exchange but, at the same time, over wash and 

shallow inundation can still occur in the inlet during high tides, storm surges or large swells (e.g., see 

S2 image from 29-04-2018 in Figure 6). Whether such a transitional inlet state is best described as 

closed or open depends on the analysis and/or goal of a particular application but, more importantly, 

this creates a problem for automated detection of inlet states. Such transitional inlet states typically 

lead to Δ-to-median values close to the optimal classification threshold, resulting in a rather arbitrary 

classification as either open or closed. For some applications, it might therefore be advantageous to 

work directly with the Δ-to-median parameter as an inlet state indicator instead of binary inlet states. 

This way, a gradual decrease in the Δ-to-median parameter towards zero at the end of an open period 

could provide some indication for when an inlet is about to close fully, which can be observed for 

Durras and Conjola in Figure 8, for example. The ambiguity surrounding transitional entrance state is 

likely also a key reason for the discrepancies between the single analyst visually inferred entrance 

states and the entrance states obtained via the majority vote of the six additional analysts.  

4.4 Comparison with alternative methods 

To the best of our knowledge, there is only one other study that reconstructed multidecadal inlet 

dynamics of an inlet (Nadgee) from satellite imagery (Scanes et al., 2020). By relating in-situ water 

levels with remotely sensed surface water areas (Mueller et al., 2016), which were then used to infer 

inlet openings, this approach essentially bypasses spatial resolution constraints associated with small 

inlets. The detection of inlet states post opening (infilling and eventual closure) was not attempted in 

this study but, due to limited correlation of the closure process with the estuary water body area, is 
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likely limited. Nevertheless, it does represent an elegant solution to the problem at hand and we 

encourage a direct comparison of this method against InletTracker. 

Although not developed for the purpose of inlet state detection, a number of related algorithms have 

been shown to provide waterline locations with sub-pixel accuracy and as such, could potentially be 

applied in this context (Bishop-taylor et al., 2019; Bishop-Taylor et al., 2019; Sanchez-García et al., 2020; 

Vos et al., 2019a). Interestingly, Vos et al. (2019a) found no significant differences in the accuracies of 

shorelines obtained via Landsat and S2, despite the higher resolution of the latter. In contrary, we 

found considerably improved performance for small inlets when using S2 in the 10m resolution NIR 

and NDWI configuration. Ultimately, waterline or shoreline mapping differs from inlet state detection 

in that the former usually deal with a single curvilinear interface between two distinct and spatially 

large classes (i.e., ocean and beach). If confronted with an inlet channel that may have a width of 

approximately one pixel, it is likely that most of these algorithms would produce spurious results 

without a targeted expansion of the functionality.  

Algorithms such as those behind RivaMap (Isikdogan et al., 2017) or the method of Gong et al. (2020) 

are specifically designed for mapping shallow channel networks and could potentially be useful for 

coastal inlets. Both approaches use sophisticated methods that either enhance the contrast between 

shallow channels and the surrounding landforms (Gong et al., 2020), or leverage the typically 

curvilinear shape of such channels via sophisticated image filtering techniques (Isikdogan et al., 2017). 

A major advantage of both methods over InletTracker is their ability to map entire river or delta 

channel networks, rather than a single selected inlet channel. The method of Gong et al. (2020) was 

validated on a few selected images and, to our best knowledge, does not provide an open-source 

software package. In contrast, RivaMap is an open-source python toolbox capable of mapping river 

channels on large spatio-temporal scales from Landsat imagery and we encourage a comparison of 

this tool against InletTracker.  
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4.5 Opportunities for inferring width and depth of inlet channels 

Currently, InletTracker does not include functionality for identifying the width and depth of inlet 

channels. If desired, the width of the shallowest section of an inlet channel during a specific tide level 

could be inferred from the along-berm NDWI or mNDWI transect either using a suitable thresholding 

technique (e.g., Bishop-taylor et al. (2019); Vos et al. (2019a)), a specific along-berm percentile, or a 

more complex approach such as the inflection point method proposed by Sánchez-García et al. (2020). 

If the width of a channel at the bottleneck can be inferred accurately via this method for different 

levels of the tide but for images obtained close in time (i.e., as done for Figure 10), one could 

potentially reconstruct the shape of the inlet channel.  

Regarding the depth of the channel, several studies have illustrated that shallow water bathymetry 

can be inferred from satellite imagery via targeted algorithms (Chybicki, 2017; Jiang, 2014; Misra and 

Ramakrishnan, 2020; Niroumand-jadidi et al., 2020; Poliyapram et al., 2017; Poursanidis et al., 2019; 

Siermann et al., 2014). This technique is commonly referred to as satellite derived bathymetry (SDB) 

and has previously been shown to yield satisfactory results for Landsat (Misra and Ramakrishnan, 

2020) and S2 imagery (Chybicki, 2017; Poursanidis et al., 2019). Correspondingly, it should be possible 

to infer the water depth along the along-berm and across-berm transects via SDB. The band 

relationships commonly used in SDB are sensitive to several scene specific factors such as lighting and 

atmospheric conditions, sun glitter, the composition of water, and the spectral signature of the bottom. 

Consequently, SDB algorithms either require in-situ data for calibration (e.g., Chybicki (2017); 

Poliyapram et al. (2017)), or a set of spectral models that appropriately account for all of these factors 

(e.g., Ohlendorf et al. (2011)). It is due to these complexities that we did not include such functionality 

in InletTracker. The often-rapid changes in water composition and color due to inlet opening and 

closure dynamics (e.g., see Figure 6) and the daily oscillations of the tides (e.g., Figure 10) pose major 

challenges in this context. 
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4.6 Global application opportunities 

To further illustrate the usefulness of InletTracker for inlet management and research around the 

world, we applied the publicly-available version of the tool to three coastal inlets that have undergone 

a significant opening or closure event between 1986 and now (Figure 11). For this test, we generated 

only minimal training data (i.e., 10 open and 10 closed inlet states) and manually rejected poor-quality 

images that were missed by the cloud cover filter. The mouth of the Rio Grande (Figure 11a), the 

fourth longest river in the U.S., is located in the Gulf of Mexico on the U.S.-Mexican border. Very high 

levels of water abstraction for irrigated agriculture and other water uses in its catchment have 

dramatically reduced flows in the Rio Grande, causing a 200km stretch of the river known as ‘The 

Forgotton Reach’ to occasionally dry out for long periods of time (Johns and VanNijnatten, 2021). As 

can be seen in the time series of across-berm Δ-to-median parameters, these high upstream abstraction 

levels contributed to the complete closure of the Rio Grande’s river mouth from April to July 2001 and 

then again from November 2001 to November 2002, an event that remains poorly documented in the 

scientific literature. 

Both the second and third examples provided in Figure 11b and c respectively are barrier island 

breaches. In August 2011, Hurricane Irene moved up the U.S. East Coast and lead to the creation of an 

initially roughly ~50m wide and 3.5m deep breach known as the Pea Island Breach in the Outer Banks 

of North Carolina (Velasquez Montoya et al., 2018). Despite the poor data coverage of 2012 owed to 

the ceasing of operation of Landsat 5 at the end of 2011 and the Landsat 7 scan line error post 2003, 

InletTracker was able to capture the opening of the breach in 2011, its initial closure in mid-2013 as 

well as its full closure at the end of 2013 (Figure 11b). Similarly, in October 2012, Hurricane Sandy 

made landfall over New Jersey, leading to the formation of the so-called Wilderness Breach on Fire 

Island on the southern side of Long Island (van Ormondt et al., 2020b). In contrary to the Pea Island 

Breach, the Wilderness Breach has remained permanently open as can be seen in the corresponding 

InletTracker results (Figure 11c). To illustrate the tool’s ability to monitor the morphological evolution 



 

2021, Submitted to Remote Sensing of Environment 38 of 50 

of the breach, Figure 11c further shows the last across-berm path obtained for every year since the 

opening of the breach, which migrated about 100m in south-west direction over this period.  

Although these two barrier breaches are well documented in the literature, these results illustrate the 

great potential of InletTracker for supporting inlet management and research around the world. For 

instance, for inlets that are already being monitored via regular on-ground surveys, InletTracker could 

be integrated as a complementary data source to reduce costs and/or to increase the sampling 

frequency. The erratic nature of intermittent coastal inlets poses a particular challenge for decision and 

policy makers and the additional long-term data obtained via InletTracker could help to establish 

more evidence-based management strategies for inlets around the world.  

As another example, the pathfinding and transect analysis components of InletTracker will help to 

gain new insights into the long-term morpho-dynamics of inlets and drivers thereof (e.g., Figure 11c). 

Furthermore, InletTracker could be useful for analysis and monitoring of similar shallow water 

landforms such as delta, river or estuarine channel networks, tidal flats, sand spits, floodplains, levees 

or freshwater wetlands and we strongly encourage the exploration of these pathways. In rivers or 

river channel networks that exhibit rapid channel migration patterns, InletTracker should be able to 

consistently trace the deepest part of the channel between two points along the river, even if the 

channels undergo major morphological changes. This would represent a major advantage over most 

existing remote sensing tools for river planform mapping, which yield the geometric river centreline, 

rather than the hydraulic centreline along which most of the river flow is conveyed.   
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Figure 11: InletTracker results obtained with the public version of the tool and minimal user input for 

three selected coastal inlets with high socio-economic significance showing location and pathfinding 

configuration (left panels) along with the corresponding time series of the across-berm Δ-to-median 

parameter obtained via mNDWI-based pathfinding and transect analysis (right panels) for (a) the Rio 

Grande River mouth on the U.S.-Mexican border (-97.14742, 25.95590) in 2001; (b) the Pea Island 

Breach in the Outer Banks of North Carolina, U.S. (-75.48271, 35.68373); (c) the Wilderness Breach in 

Fire Island, New York, U.S. (-72.89806, 40.72386). For Wilderness Breach, the left panel also shows the 

last across-berm path of every year since the opening of the breach. Background imagery (Google 

Earth).  

5. Conclusions 

In this paper, a new tool for recent historic reconstruction (1986-present) and monitoring of inlet 

dynamics from publicly available satellite records was introduced. Apart from being limited by the 

spatio-temporal resolution constraints of the Landsat and S2 imagery records, our study highlighted 

that InletTracker is able to consistently and accurately infer open vs. closed inlet states and can even 
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provide an indication of the degree of inlet opening for larger inlets. Since the tool is provided free of 

charge as an open-source python software package, we envision for it to be used widely by coastal 

engineers, managers, and scientists for a range of applications. In coming months, we will apply 

InletTracker to generate a first quantification of inlet state dynamics over the past three decades for 

suitable intermittent inlets worldwide. The resulting dataset will help to answer a range of remaining 

questions around processes, dynamics, and drivers (i.e., waves vs. rainfall vs. tide) of inlets in 

different coastal and hydroclimatic settings around the globe. Ultimately, the dynamics of intermittent 

inlets are highly sensitive to changes in the climate and the state of their catchment (in the case of 

intermittent estuaries) and understanding changes in their long-term dynamics is critical for 

establishing suitable climate change adaptation and management strategies. 
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S1. Accuracy metrics used to assess the performance for predicting binary inlet states 7 

 8 

After classifying the Δ-to-median series into binary open vs. closed inlet states, we first computed true 9 

positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). We then calculated 10 

Accuracy as the fraction of all correct classifications over all samples in line with Equation 1 (Kotu and 11 

Deshpande, 2015). Open inlet states are considered ‘positives’ in these calculations. 12 

�������� =(��+�	)/(��+
�+
	+�	) (Eq. 1) 13 

The F1 score is essentially a weighted average of precision and recall, where the precision is the 14 

proportion of correct positive cases to the tested positive cases. It reflects how precise the prediction is 15 

(Kotu and Deshpande, 2015). 16 

�����
��� =��/(��+
�) (Eq. 2) 17 

In comparison, recall is the proportion of correct positive cases to real positive cases. It represents how 18 

well the system captures the targeted cases (Kotu and Deshpande, 2015).  19 

������ =��/(��+
	) (Eq. 3) 20 

The F1 score combines precision and recall together in the form of a harmonic mean that ranges 21 

between 0 and 1 (Kotu and Deshpande, 2015).  22 


1= 2 × (P����
��� × R�����)/(P����
��� + R�����) (Eq. 4) 23 

 24 

 25 
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S2. Accuracy assessment results for high resolution monitoring of inlet dynamics via Sentinel-2 26 

only (2016-2020) 27 

 28 

Table S1: Validation statistics obtained via comparison of algorithm results against visually inferred 29 

inlet states for the S2 record only. Statistics are provided separately for the across-berm (A-B) and 30 

along-berm (C-D) transects. The number of images available for each site and number of open vs. 31 

closed visually inferred inlet states is also provided. The optimal classification threshold was used to 32 

classify images into open vs. closed states based on the Δ-to-median parameter, where Δ-to-median > 33 

threshold = open.  34 

Inlet site 

Transect 

directio

n 

F1-

score 

Accu

-racy 

True 

neg. 

False 

pos. 

False 

neg. 

True 

pos. 

Optimal 

classific. 

Threshol

d 

Total 

nr. Of 

images 

Nr. Of 

closed 

images 

Nr. Of 

open 

images 

Inmanriver 
A-B 0.71 0.79 65 11 14 31 0.01 121 76 45 

C-D 0.70 0.80 69 7 17 28 0.08 - - - 

Curl Curl 
A-B 0.65 0.90 149 9 9 17 0.01 184 158 26 

C-D 0.63 0.90 149 9 10 16 0.04 - - - 

Dee Why 
A-B 0.69 0.90 159 0 21 23 0.02 203 159 44 

C-D 0.66 0.87 150 9 18 26 0.03 - - - 

Coila 
A-B 1.00 1.00 119 0 0 6 0.01 125 119 6 

C-D 1.00 1.00 119 0 0 6 0.03 - - - 

Wamberal 
A-B 0.89 0.98 199 2 3 20 0.03 224 201 23 

C-D 0.91 0.98 199 2 2 21 0.04 - - - 

Narrabean 
A-B 0.98 0.98 59 3 0 65 0.09 127 62 65 

C-D 0.97 0.97 58 4 0 65 0.06 - - - 

Nadgee 
A-B 0.75 0.99 170 0 2 3 0.03 175 170 5 

C-D 0.33 0.95 165 5 3 2 0.15 - - - 

Hamersley

Inlet 

A-B 1.00 1.00 96 0 0 1 0.02 97 96 1 

C-D 1.00 1.00 96 0 0 1 0.05 - - - 

Conjola 
A-B 0.94 0.95 48 1 4 42 0.01 95 49 46 

C-D 0.94 0.95 48 1 4 42 0.04 - - - 

Durras 
A-B 0.98 0.98 57 1 2 72 0.02 132 58 74 

C-D 0.99 0.98 58 0 2 72 0.09 - - - 

Stokes 

Inlet 

A-B 0.00 0.94 129 7 1 0 0.01 137 136 1 

C-D 0.00 0.58 80 56 1 0 0.01 - - - 

Irwin 

Inlet 

A-B 0.91 0.93 38 1 4 26 0.02 69 39 30 

C-D 0.92 0.93 36 3 2 28 0.02 - - - 

Average  A-B 0.75 0.91 - - - - 0.05 141 110 31 

Average C-D 0.79 0.94 - - - - 0.02 - - - 

 35 

36 
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S3. Recommendations for optimal band and index selection  37 

 38 

To account for the unique spectral characteristics of different coastal inlets, InletTracker currently 39 

provides NIR, SWIR1, NDWI and mNDWI as options for path finding and inferring of open vs. closed 40 

inlet states. These options are in line with the majority of state-of-the-art coastal shoreline or waterline 41 

mapping methods that either use a single band NIR or SWIR1/2 approach (Cabezas-Rabadán et al., 42 

2020; Pardo-pascual et al., 2018; Ryu et al., 2002), or an approach based on a spectral index involving 43 

the green, NIR and/or SWIR bands (Bishop-taylor et al., 2019; Son et al., 2020; Vos et al., 2019). The 44 

performance of each of the four band/index options could not be explicitly tested as part of this work 45 

due to a lack of suitable in-situ validation data such as GPS transects. To provide recommendations in 46 

the absence of such data, a brief review of the relevant physical characteristics of the four options is 47 

provided here followed by a targeted analysis of six unique along-berm transects.  48 

The reduced reflectance in the visible, NIR and SWIR wavelengths over water is the result of 49 

absorption and scattering of the electromagnetic radiation as it traverses the water column (Green et 50 

al., 2000). For pure water, the absorption of radiation increases exponentially from visible to NIR 51 

wavelengths and beyond (Green et al., 2000; Pope and Fry, 1997). For wavelengths above 1μm, such as 52 

those measured by the SWIR1 band, absorption is very high, even for turbid water (Liu et al., 2019). 53 

As a consequence, scattered puddles or wet mud that may be present in tidal flats can cause sufficient 54 

absorption in the SWIR range for exposed mudflats to be misclassified as standing water (Ryu et al., 55 

2008). In the NIR band, on the other hand, there is a risk of shallow water areas being falsely classified 56 

as ‘dry’, due to lower absorption levels in water (compared to the SWIR range) and increased 57 

reflectance due to scattering in the presence of high suspended sediment content (Liu et al., 2019; 58 

Lodhi et al., 1997) and/or phytoplankton (Gitelson, 1992). Lastly, the NIR band is significantly affected 59 

by white water in the surf zone (Pardo-pascual et al., 2018; Ryu et al., 2002), which typically leads to 60 

elevated NIR reflectance (see across-berm paths avoiding white water in Figure 5) and the NDWI 61 

shifting towards the ‘dry’ range. Indices such as NDWI and mNDWI take advantage of the fact that 62 

attenuation in the green range is much lower than in the NIR or SWIR ranges consistently for a wide 63 
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range of different surface water features (Fisher et al., 2016; Mcfeeters, 1996; Xu, 2007). Both indices 64 

use the green band as part of a normalized difference ratio, so that their different behaviour largely 65 

corresponds to the aforementioned characteristics of the NIR and SWIR bands.   66 

Many of the unique band and index features discussed above can be readily observed by analyzing 67 

NIR, SWIR1, NDWI and mNDWI transects over a common along-berm or across-berm path shown in 68 

Figure 9 for six example S2 images (three images during closed and three images during open inlet 69 

states). The higher sensitivity of the SWIR1 compared to the NIR band is illustrated well in the wider 70 

and deeper depressions over open inlets obtained for SWIR1. This is especially evident on the image 71 

of the 20-08-2020, where both the SWIR1 and the mNDWI(-1)  indicate lower (in comparison to dry 72 

sand) values of around 0 for the tip of the southern berm adjacent to the channel (see solid blue lines). 73 

While this feature is, albeit less pronounced, also captured by the NIR band, it is lost in the NDWI. 74 

Unfortunately, it remains unclear whether the tip of the southern berm was covered with water or just 75 

wet sand in this example. Considering the tide level of 0.52m above mean sea level (AMSL) at the time 76 

of image capture (not shown), it is possible that shallow inundation was present around the transect in 77 

this section. The transects also illustrate that the normalized difference indices effectively eliminate the 78 

variability in reflectance that is present in both the SWIR1 and NIR bands over the dry berm areas 79 

along the path (see uneven and variable SWIR1 and NIR transects during closed inlets). In these dry 80 

berm areas, the NDWI and mNDWI indices exhibit stable values of around 0.2 and 0.3, respectively. 81 

Although these mean values can fluctuate from image to image due to lighting conditions and other 82 

factors (e.g., Figure 6e), this narrow spectral range is what enables our method to consistently infer the 83 

reflectance of dry berm areas via the median of the along-berm transect.    84 
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 85 

Figure S1: Comparison of NIR, SWIR1, NDWI and mNDWI for analysing inlet states based on three 86 

S2 images during open (blue lines) and three S2 images during closed inlet states (red lines).    87 

 88 
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Based on the physical characteristics discussed above and the experiments presented in this paper, we 89 

provide the following recommendations for inlet state detection via InletTracker.  90 

 For pathfinding, it is advantageous to use either the NIR or SWIR1 band directly and use a 91 

mask to exclude heavily confounding classes such as vegetation or built-up areas.  92 

 For inferring inlet states, on the other hand, it is recommended to use the normalized 93 

difference ratios as these provide a robust approximation of dry sand reflectance via the 94 

median of the along-berm transect.  95 

 It is recommended to use the single band that corresponds to the index that is subsequently 96 

used for inferring inlet states (i.e., NIR/NDWI or SWIR1/mNDWI).  97 

 The SWIR1/mNDWI approach provides a higher sensitivity for detecting very shallow or 98 

narrow inlet openings. Conversely, this high sensitivity to shallow waters and wet sand or 99 

mud can sometimes lead to falsely classifying a closed inlet as open. 100 

 The NIR/NDWI approach is generally more conservative due to the lower sensitivity of the 101 

NIR band for very shallow waters.  The low sensitivity to shallow waters can lead to 102 

classifying open inlet states as closed, especially when the image was acquired during low 103 

tide.  104 

 For S2, the NIR band is of 10m resolution compared to 15m resolution of the SWIR1 band and 105 

as such, the S2 NIR/NDWI configuration is advantageous for IOCEs with small inlet channels. 106 

 In the presence of highly turbid waters or large amounts of white water in or near the inlet 107 

channel, the SWIR1/mNDWI approach is likely to be more robust than the NIR/NDWI 108 

approach, due to the limited sensitivity of the SWIR1 band to these features.   109 

In practice, we further recommend doing test runs for path finding using different seed and receiver 110 

point locations as well as band and index combinations. This will ensure that the optimal algorithm 111 

configuration is established before processing the full imagery archive.   112 

 113 

114 
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