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Abstract

The solar X-ray irradiance is significantly heightened during the course of a solar flare, which can cause radio blackouts due

to ionization of the atoms in the ionosphere. As the duration of a solar flare is not related to the size of that flare, it is not

directly clear how long those blackouts can persist. Using a random forest regression model trained on data taken from X-ray

light curves, we have developed a direct forecasting method that predicts how long the event will remain above background

levels. We test this on a large collection of flares observed with GOES-15, and show that it generally outperforms simple linear

regression. This forecast is computationally light enough to be performed in real time, allowing for the prediction to be made

during the course of a flare.
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Abstract13

The solar X-ray irradiance is significantly heightened during the course of a solar flare,14

which can cause radio blackouts due to ionization of the atoms in the ionosphere. As the15

duration of a solar flare is not related to the size of that flare, it is not directly clear how16

long those blackouts can persist. Using a random forest regression model trained on data17

taken from X-ray light curves, we have developed a direct forecasting method that pre-18

dicts how long the event will remain above background levels. We test this on a large19

collection of flares observed with GOES-15, and show that it generally outperforms sim-20

ple linear regression. This forecast is computationally light enough to be performed in21

real time, allowing for the prediction to be made during the course of a flare.22

Plain Language Summary23

The X-ray emissions from a solar flare can impact the Earth’s ionosphere, ioniz-24

ing the atoms and thereby increasing the total electron content. This is turn reduces the25

range of radio communications, effectively causing a blackout. Unfortunately, it is not26

clear how long any given flare might last, and therefore how long communications could27

be adversely impacted. The duration of a solar flare is not related to the size of that flare,28

so it is not straightforward to predict how long it might last from simple observations.29

In this work, we develop a method that allows us to forecast that duration in real time30

using a machine learning algorithm. This would then allow prediction of how long ra-31

dio communications will be impacted.32

1 Introduction33

Solar flare emissions are measured and classified by their soft X-ray emissions as34

measured by the X-ray Sensors (XRS) on board the Geostationary Operational Envi-35

ronmental Satellites (GOES). These satellites measure the X-ray emission in the 1–8 Å36

and 0.5–4 Å wavelength bands, where the peak level in the former is used as a flare clas-37

sification with X-class corresponding to peak emission above 10−4 W m−2, and M, C,38

B, and A classes in decreasing orders of magnitude. The frequency distribution of flare39

sizes is a power law distribution with slope of approximately -2 (e.g. Hudson 1991), so40

the largest flares are significantly rarer than smaller ones.41
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Solar flare durations vary widely, and are not correlated with the GOES class of42

the flare. In Reep & Knizhnik (2019), for example, it was shown that the GOES class43

is not correlated with the full-width-at-half-maximum (FWHM) in either of the 1–8 Å44

or 0.5–4 Å XRS wavelength bands, and furthermore that the distributions of FWHM are45

consistent with log-normal distributions, approximately ranging from tens of seconds to46

a few hours. There were also no relations found between the GOES FWHM and the tem-47

perature, emission measure (EM), thermal energy, ribbon area, or active region area, though48

there may be a relation in large flares between the magnetic flux and duration (Reep &49

Knizhnik, 2019). Because the durations do not correlate with the flare class, one can-50

not estimate the duration from the peak flux of that flare (or similarly from other sim-51

ple parameters). Toriumi et al. (2017) did find a linear relation between the separation52

of the flare ribbon centroids and the duration in a set of large flares (above M5), but this53

cannot be easily measured in real time, nor done with flares occurring at the limb, and54

would need to be extended to smaller flares to be of general use.55

It is not clear that the duration of a solar flare in X-rays can be predicted from sim-56

ple scaling laws. The duration may be related to some parameters that can be calculated57

post facto, but this means that a real time forecast would be impossible. However, given58

that there are thousands of flares observed by GOES of widely varying sizes and dura-59

tions, and at various levels of solar activity, the statistical data should contain informa-60

tion to estimate likelihood of the duration. This is the goal of this paper.61

Therefore, we wish to develop a real-time forecasting tool that predicts how long62

a solar flare will take to cool from its current flux level to a defined background level.63

For example, suppose that an X-class flare like the one in Figure 1 were occurring at the64

present moment. The two GOES/XRS channels are shown (top) in red (1–8 Å) and blue65

(0.5–4 Å), as well as the derivative of the long wavelength channel (bottom). Given the66

light curves up to the present and their current flux values (solid lines), could we esti-67

mate how long they would take to return to the background level? What is the likely68

duration and what is the range of potential values? In other words, how well can we fore-69

cast the true light curves (dotted lines)? To do so, we use quantities measured from the70

light curves at five times ti, denoted by vertical pink lines, defined by the derivatives,71

for the 1–8 Å channel. These are fully explained in Section 2. We attempt to predict the72

timing of the final vertical line, which we call t4 in this paper.73
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Figure 1. A statement of the problem. If this flare was currently ongoing (at about 22:14),

how long might we estimate it to take to cool from its current flux back down to the background

level? How much uncertainty is there in the estimate of duration? At top, the figure shows the

GOES 1–8 Å light curve (red) and 0.5–4 Å light curve (blue) up to about UT 22:14 for an X5.4

flare on 5 November 2013 (solid lines), while the dotted lines show the true light curves. The

bottom plot shows the time derivative of the 1–8 Å channel, and the five dashed lines mark the

values of each ti (see Section 2).
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In this work, we use a random forest regressor trained only with parameters mea-74

sured from observed GOES/XRS data to estimate the total duration of the flare in XRS75

and calculate a likelihood interval of the duration. We show that this model improves76

its prediction over the course of a flare, and that it outperforms a linear regression model.77

2 Data Preparation78

We first prepare data taken from XRS observations of flares with measurements79

made by the GOES-15 satellite. We examine all flares in NOAA’s GOES event catalogue80

from the launch of GOES-15 through the deactivation of the satellite on 2 March 2020.81

While we have chosen to only focus on GOES-15 data, the model could be trained with82

data from any GOES satellite. Because the instrumental response varies slightly for each83

satellite, it is possible that predictions trained with one satellite’s data may not work84

well for another satellite, which should be tested in the future.85

We expand the time range of the events in the GOES catalogue to ten minutes ear-86

lier and sixty minutes later than the listed start and end times to better include pre-flare87

rise and late phase decay. We do not background subtract the data, since we do not know88

a priori whether the background activity impacts flare duration. We remove events from89

the data set if any of the following apply to an event: (1) there are any data gaps in ei-90

ther GOES/XRS channel; (2) the GOES catalogue is missing any data for an event; (3)91

the signal-to-noise ratio in either GOES/XRS channel is less than 2; (4) the event is not92

sufficiently isolated in time from other events, which we explain below based on the tim-93

ings.94

For each flare, we measure 18 parameters for each event from the light curves for95

both the 1–8 Å and 0.5–4 Å channels. We first calculate the derivatives in both channels96

using a 32-point Savitzky-Golay smoothing filter (Savitzky & Golay, 1964). The filter97

is particularly important for small flares where the signal-to-noise ratio is not as good98

as in larger flares. We then define five times in terms of the derivative with respect to99

time of the light curve: t0 the onset of the flare as the derivative begins to rise, t1 when100

the derivative is maximized, t2 when the flux peaks, t3 when the derivative is minimized,101

and t4 when the derivative approximately returns to 0. More specifically, we define t0102

as the first time when the derivative exceeds 10−4 times the peak flux; for example, for103

an X1 flare, we define t0 as the first time when the derivative exceeds 10−8 W m−2 s−1.104
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Table 1. Definitions of the flare timings that we use in this work. The values are all implicitly

defined in terms of the first time derivative of the light curves F (t) of each XRS channel. For all

flares in our data set, we require ti < ti+1 to be certain that each event is isolated from other

events in time.

Time Meaning Definition

t0 Approximate Start Time dF
dt |t0 = (10−4 s−1)× F (t2)

t1 Maximum of dF
dt

dF
dt |t1 = max

(
dF
dt

)
t2 Peak of Flare dF

dt |t2 = 0

t3 Minimum of dF
dt

dF
dt |t3 = min

(
dF
dt

)
t4 Approximate End Time dF

dt |t4 = −(10−4 s−1)× F (t2)

We similarly define t4 as the first time after t3 when the derivative is above −10−4 times105

the peak flux; for an X1 flare, t4 is the first time after t3 when the derivative increases106

above −10−8 W m−2 s−1. We list the definitions in Table 1.107

At each time ti, we measure the flux level Fi = F (ti), the derivative of the flux108

with time, dF
dt |ti , and the definite integral of the flux Ai =

∫ ti
t0
F (t) dt. By definition,109

A0 = 0 and dF
dt |t0 ≈ 0, so these are neglected. This gives 36 total parameters, 18 for110

each channel. We train the random forest regressor twice: once using the values through111

time t2 in order to forecast t3 and t4 for each channel, and once using the values through112

time t3 in order to forecast t4. Since we do not know a priori what parameters act as113

strong predictors, we consider all features when training the random forest predictor.114

Because flares often occur within short time periods of one another, it can be dif-115

ficult to measure some of the parameters with which we might wish to train a machine116

learning algorithm. For example, if a second flare occurs before an earlier flare finishes117

and the X-ray emission has not yet returned to background levels, we cannot measure118

the true end time of the first flare. This means that we cannot include it in our train-119

ing data set. Specifically, we enforce the condition that each ti occurs in sequential or-120

der, and discard events where this condition does not hold. This happens, for example,121

when there are flares of similar size occurring in close succession.122

After pruning the data set, we are left with 7055 events, ranging in GOES class from123

A2.2 to X13. The FWHM of the light curves range between 24 and 16068 s in the 1–8 Å124
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Figure 2. Plots of the distributions of the peak fluxes and FWHM in the two XRS channels.

The diagonal elements show the distributions themselves, while off-diagonal plots show heat

maps comparing each pair of variables. The flare sizes and durations are uncorrelated, and each

distribution is consistent with log-normal (see Reep & Knizhnik 2019).

channel and between 4 and 10307 s in the 0.5–4 Å channel. The flares occurred between125

4 September 2010 and 24 January 2020 across a wide range of solar activity levels. In126

Figure 2 we show the distributions of fluxes and durations in both XRS channels, as well127

as heat maps showing the relations between each variable. The fluxes and durations are128

uncorrelated, while each individual distribution is consistent with log-normal, demon-129

strated with Kolmogorov-Smirnov tests in Reep & Knizhnik (2019).130
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Figure 3. A pair plot showing the relationships between the timings ti − t0, for each i > 0,

in the 1–8 Å channel. While there is a general positive and monotonic correlation, there is also

noticeable scatter.

Similarly, Figure 3 shows the relationships between the timings in the events in the131

1–8 Å channel. We show each ti−t0, i > 0, which in all cases show a positive and mono-132

tonic correlation. However, the scatter is noticeable, particularly when going from early133

timings to late ones. It is clear that a linear regression could then give a prediction for134

t3 and t4, but would not capture the scatter. Examining the last row, for example, it is135

clear that t1 would not give a good prediction for t4, but t2 would give a better predic-136

tion, and t3 better still. We show in the next section that a random forest regressor out-137

performs a simple linear case.138
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3 Duration Prediction139

We use the random forest regressor implemented in the scikit-learn package (Pe-140

dregosa et al., 2011) to calculate this prediction. Random forest methods (Breiman, 2001)141

create an ensemble of decision tree predictors, which when averaged give a robust pre-142

diction. The chief advantage of a random forest predictor is that it does not assume any143

functional form for the data being fit (whether through classification or regression), so144

that the model can map complex relationships between the inputs and outputs. Breiman145

(2001) notes that the other main advantages are that random forests are fast, robust against146

noise, and can be used to quantify errors and correlations easily.147

Decision trees (Breiman et al., 1984) work by recursively splitting a data set, based148

on values of training features, into nodes. The trees split a certain number of times (the149

depth), which can be fixed or randomized. While an individual decision tree is not ro-150

bust in predictions, by combining multiple trees with differing nodes and depths, the pre-151

diction is improved. The random forest predictor randomizes the elements of the set that152

are used in a decision tree, the features used in the splitting at each node, the values by153

which they are split, and the depth of the trees. When combined, these many varying154

decision tree predictors significantly reduce the variance of the model.155

3.1 Predictions at time t2156

We separate the full data set randomly into a training group (67% of events) and157

test group (33% of events), using the 36 features of the light curves defined above to train158

the data. We train the random forest regressor with the former group. We then test the159

efficacy the model by predicting t3 and t4 for the remaining 33% of the events and com-160

pare them to the actual, observed t3 and t4 values.161

These predictions are presented in Figure 4 for the test group. Using the param-162

eters through time t2 to train the random forest, we show the estimated values of t3 (top163

row) and t4 (bottom row) for the 1–8 Å (left column) and 0.5–4 Å (right column) XRS164

passbands as compared to their true values. We perform a linear regression with a non-165

parametric Theil-Sen estimator (Sen, 1968; Theil, 1992) to estimate the slope and in-166

tercept for these scalings. Theil-Sen estimators are robust and insensitive to outliers in167

the data, unlike ordinary least squares linear regression. We would expect a slope of 1168

for a perfect prediction, such that the predicted time grows at the same rate. The pre-169
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Figure 4. The random forest regressor prediction of the remaining durations, using a random

forest trained with the parameters through time t2. The plots show 2D histograms comparing the

predicted and true values of t3 (top row) and t4 (bottom row) for the XRS 1–8 Å (left column)

and 0.5–4 Å (right column) channels for the 33% of events placed in the test group. The predic-

tions were performed using only the features through time t2. The orange lines are Theil-Sen

linear regression fits to the data, with the slope and intercepts indicated. The slopes are less than

1, indicating that the durations are underestimated in general.

dictions for t3 scale approximately with a slope of 0.9, while the predictions for t4 scale170

more slowly, suggesting that the forecast will generally underestimate the duration for171

longer events.172

To demonstrate that these predictions are reasonable, we show six example flares173

in Figure 5 with both relatively short (left) and long (right) durations, ranging in class174

from C-class (top), M-class (middle), to X-class (bottom). We estimate the remaining175

duration from the peak of each channel at time t2. On each plot, we show the predicted176

value of t4 with a dashed line that terminates with an X mark, where the red case shows177

the prediction for 1–8 Å and blue for 0.5–4 Å. These lines are calculated with a spline178

fit connecting the true t2 values with the predicted values of t4, and are meant simply179

10



to guide the eye. The outer dashed lines similarly show the ±1σ confidence intervals for180

each prediction of t4. In general, the predictions of t4 for short duration flares are close181

to the true values, while those for long duration flares are underestimated. This agrees182

with Figure 4, which shows that the predictions for t4 scale more slowly than the true183

values (slope < 1).184

3.2 Predictions at time t3185

We repeat the analysis, this time training the random forest using the parameters186

through time t3 (the minima of the first derivatives) in order to forecast t4. We use the187

same train-test split of the data as before to ensure a valid comparison. Figure 6 shows188

the results of the new predictions of t4 for the two XRS channels. In this case, the slopes189

are approximately 0.9, improving upon the estimates in Figure 4. The scatter is simi-190

larly reduced. In general, the method still slightly underestimates the durations of events.191

192

In Figure 7, we show the predictions for the same six flares presented previously,193

including C, M, and X class events that are both short and long durations. We see that194

the predictions are now slightly improved when compared to their true values, although195

the estimates of t4, particularly for the longer events, are still somewhat short. For ex-196

ample, the long duration X-flare, at bottom right, is still underestimated. This suggests197

that as the flare proceeds from times t2 (the peak) to t3 (the cooling phase), we can im-198

prove our estimate of the end of the flare t4.199

3.3 Prediction Skill200

scikit-learn also calculates the feature importance, or which features are most201

important in determining the predictions, as a product of its predictions. For regression202

problems, this is quantified by the reduction in variance for each feature, and then the203

features are ranked accordingly. For predictions of t4 made at time t2, the most impor-204

tant features are, respectively, t2, t0, A2, A1, t1. The flux levels and derivative magni-205

tudes are, perhaps surprisingly, almost negligible in their impact on the predictions.206

How does this prediction fare? We calculate a skill score by comparing to a sim-207

ple linear regression model. Since t2 is the most important feature in predicting t4, we208

use it alone to give a simple prediction. In Figure 8, we show scatter plots of t2 versus209
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Figure 5. Forecasts of (t4 - t2) calculated at the peak for six example flares, with relatively

short (left column) and long (right column) total durations. The top row shows two C-class

flares, the middle row M-class, and the bottom row X-class. The red lines are for the 1–8 Å chan-

nel, and blue for the 0.5–4 Å channel. The middle dashed line that terminates with an X mark is

the predicted duration, while the outer lines mark the ±1σ confidence intervals. The black dotted

lines show the true evolution of the light curves. The method tends to predict short duration

flares accurately, while it tends to underestimate the duration of longer duration flares.
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Figure 6. Similar to Figure 4, except that the random forest has now been trained using

features through time t3 to predict the values of t4. The slopes are closer to 1 in this case, indi-

cating a better fit, though still slightly underestimating the duration in general.
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Figure 7. Forecasts of (t4 - t3), similar to Figure 5, showing the predictions beginning at time

t3 (the minimum of the first derivative) for the same six events.
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Figure 8. 2D histograms comparing the true values of t2 and t4 in the 1–8 Å(left) and 0.5–

4 Å(right) channels for the entire data set. The distributions have been fit with a Theil-Sen

estimator (orange lines), for which the slope and y-intercepts are indicated. We use this linear

regression model to calculate a reference forecast which we show is outperformed by the random

forest method.

t4 for the whole data set for each GOES channel. We also show a Theil-Sen linear re-210

gression to the data. With these fits, we then calculate a crude estimate of the final time211

t4,lin = mt2+b, for m the slope and b the y-intercept. We then define a skill score as:212

Skill score = 1− MSErf

MSElin
(1)

where MSErf is the mean squared error from the random forest prediction for t4 and213

MSElin is the mean squared error from the linear regression prediction. A skill score of214

exactly 1 corresponds to a perfect forecast for all events, while a skill score of 0 or less215

indicates that the random forest regressor was less accurate in predicting flare duration216

than the linear regressor. We use only the test data to calculate the MSE to avoid bi-217

asing the skill score. For the forecasts through time t2, we find a skill score of 0.056 in218

the 1–8 Å channel and 0.215 in the 0.5–4 Å channel. For the forecasts through time t3,219

these skill scores improve to 0.693 and 0.883, respectively. That is, the random forest220

slightly outperforms a linear regression when the forecast occurs at time t2 (the peak flux221

in each channel), and strongly outperforms the linear regression when forecasted from222

time t3 (the minima of the first derivatives). The random forest model provides a rea-223

sonable, though imperfect, forecast that statistically tends to underestimate the dura-224

tions.225
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4 Conclusions226

This model is simple, lightweight, and accurate. It can be run in Python to make227

direct predictions of the remaining duration on an ongoing solar flare. We have trained228

the data set using only parameters that are easily measured from GOES/XRS light curves,229

and which can be easily calculated in real-time. The model generally performs well, with230

a skill score that outperforms a simpler linear regression model. The most important fea-231

tures for forecasting the remaining duration are the timings of the start and peak as well232

as the integrals of the flux to the peak.233

We should note that, in principle, quasi-periodic pulsations (QPPs; Nakariakov &234

Melnikov 2009) could be measured from GOES/XRS light curves and that the period235

of QPPs are correlated with flare duration (Hayes et al., 2020). As noted by Hayes et236

al. (2020), however, the period changes during the course of a longer flare. Furthermore,237

the signal-to-noise ratio needs to be relatively large to measure this period, which would238

exclude forecasting for smaller flares. Finally, it is not clear that all flares exhibit QPPs:239

a sample of X-class flares detected QPPs in only about 80% of the events (Simões et al.,240

2015). In future work, it would be worthwhile to build QPP measurements into the model,241

particularly with newer GOES satellites which have better cadence.242

While this model has been built with simplicity in mind, the addition of other data243

sets would likely improve the prediction. The two XRS channels are generally sensitive244

only to plasma exceeding approximately 10 MK, and their ratio can be used to estimate245

temperature (Garcia, 1994). However, they do not actually measure the distribution of246

plasma at various temperatures, and the combination of this data with data from other247

instruments might strongly improve forecasts. For example, the Extreme Ultraviolet Vari-248

ability Experiment (EVE; Woods et al. 2012) onboard the Solar Dynamics Observatory249

(SDO; Pesnell et al. 2012) provides irradiance measurements of a wide range of spectral250

lines that form at different temperatures and heights in the solar atmosphere, which could251

potentially prove useful for these forecasts.252

Acknowledgments253

J.W.R. was supported by a NASA Living With a Star Grant. W.T.B. was supported254

by NASA’s Hinode project through the National Research Council program. The au-255

thors thank Douglas Drob and Dennis Socker for helpful discussions in the development256

15



of this work, and what parameters to examine. We thank Laura Hayes for help with SunPy257

usage, in particular GOES/XRS data in SunPy. The authors also thank the SunPy col-258

laboration for their efforts at making accessible tools for the solar community.259

This work has made use of the following packages: numpy (Oliphant, 2006), matplotlib260

(Hunter, 2007), scipy (Virtanen et al., 2020), pandas (Wes McKinney, 2010), scikit-learn261

(Pedregosa et al., 2011), seaborn (Waskom et al., 2018), and sunpy (The SunPy Com-262

munity et al., 2020; Mumford et al., 2020).263

Data Availability Statement.264

The data and routines used to produce the results in this paper are available at https://265

github.com/USNavalResearchLaboratory/flare duration forecasting (using v1.0.0,266

DOI: 10.5281/zenodo.4592403), archived at https://doi.org/10.5281/zenodo.4592403.267

GOES/XRS data are provided by NOAA and were accessed through the SunPy pack-268

age.269

References270

Breiman, L. (2001, October). Random forests. Mach. Learn., 45 (1), 532. Re-271

trieved from https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:272

1010933404324273

Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and regres-274

sion trees. Taylor & Francis.275

Garcia, H. A. (1994, October). Temperature and Emission Measure from Goes Soft276

X-Ray Measurements. Solar Physics, 154 (2), 275-308. doi: 10.1007/BF00681100277

Hayes, L. A., Inglis, A. R., Christe, S., Dennis, B., & Gallagher, P. T. (2020, May).278

Statistical Study of GOES X-Ray Quasi-periodic Pulsations in Solar Flares. The279

Astrophysical Journal , 895 (1), 50. doi: 10.3847/1538-4357/ab8d40280

Hudson, H. S. (1991, June). Solar flares, microflares, nanoflares, and coronal heat-281

ing. Solar Physics, 133 (2), 357-369. doi: 10.1007/BF00149894282

Hunter, J. D. (2007, May). Matplotlib: A 2D Graphics Environment. Computing in283

Science & Engineering , 9 (3), 90–95. doi: 10.1109/MCSE.2007.55284

Mumford, S. J., Freij, N., Christe, S., Ireland, J., Mayer, F., Hughitt, V. K.,285

. . . Murray, S. A. (2020, July). sunpy v2.0.1. Zenodo. Retrieved from286

https://doi.org/10.5281/zenodo.3940415 doi: 10.5281/zenodo.3940415287

16



Nakariakov, V. M., & Melnikov, V. F. (2009, December). Quasi-Periodic Pulsations288

in Solar Flares. Space Science Reviews, 149 (1-4), 119-151. doi: 10.1007/s11214289

-009-9536-3290

Oliphant, T. (2006). A Guide to Numpy. USA: Trelgol Publishing.291

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,292

. . . Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of293

Machine Learning Research, 12 , 2825–2830.294

Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. (2012, January). The Solar295

Dynamics Observatory (SDO). Solar Physics, 275 (1-2), 3-15. doi: 10.1007/s11207296

-011-9841-3297

Reep, J. W., & Knizhnik, K. J. (2019, April). What Determines the X-Ray Intensity298

and Duration of a Solar Flare? Astrophysical Journal , 874 (2), 157. doi: 10.3847/299

1538-4357/ab0ae7300

Savitzky, A., & Golay, M. J. E. (1964, January). Smoothing and differentiation of301

data by simplified least squares procedures. Analytical Chemistry , 36 , 1627-1639.302

Sen, P. K. (1968). Estimates of the regression coefficient based on kendall’s tau.303

Journal of the American Statistical Association, 63 (324), 1379–1389. Retrieved304

from http://www.jstor.org/stable/2285891305

Simões, P. J. A., Hudson, H. S., & Fletcher, L. (2015, December). Soft X-Ray Pulsa-306

tions in Solar Flares. Solar Physics, 290 (12), 3625-3639. doi: 10.1007/s11207-015307

-0691-2308

The SunPy Community, Barnes, W. T., Bobra, M. G., Christe, S. D., Freij, N.,309

Hayes, L. A., . . . Dang, T. K. (2020). The sunpy project: Open source devel-310

opment and status of the version 1.0 core package. The Astrophysical Journal ,311

890 , 68-. Retrieved from https://iopscience.iop.org/article/10.3847/312

1538-4357/ab4f7a doi: 10.3847/1538-4357/ab4f7a313

Theil, H. (1992). A rank-invariant method of linear and polynomial regression314

analysis. In B. Raj & J. Koerts (Eds.), Henri theil’s contributions to economics315

and econometrics: Econometric theory and methodology (pp. 345–381). Dor-316

drecht: Springer Netherlands. Retrieved from https://doi.org/10.1007/317

978-94-011-2546-8 20 doi: 10.1007/978-94-011-2546-8 20318

Toriumi, S., Schrijver, C. J., Harra, L. K., Hudson, H., & Nagashima, K. (2017,319

Jan). Magnetic Properties of Solar Active Regions That Govern Large Solar320

17



Flares and Eruptions. Astrophysical Journal , 834 (1), 56. doi: 10.3847/1538-4357/321

834/1/56322

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Courna-323

peau, D., . . . van Mulbregt, P. (2020, February). SciPy 1.0: Fundamental324

algorithms for scientific computing in Python. Nature Methods, 1–12. doi:325

10.1038/s41592-019-0686-2326

Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Ostblom, J., Lukauskas,327

S., . . . Qalieh, A. (2018, July). mwaskom/seaborn v0.9.0. Retrieved from328

https://doi.org/10.5281/zenodo.1313201 doi: 10.5281/zenodo.1313201329

Wes McKinney. (2010). Data Structures for Statistical Computing in Python. In330
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