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Abstract

Soil moisture and evapotranspiration (ET) are important components of boreal forest hydrology that affect ecological processes

and land-atmosphere feedbacks. Future trends in soil moisture in particular are uncertain, therefore accurate modeling of these

fluxes and understanding of concomitant sources of uncertainty are critical. Here, we conduct a global sensitivity analysis,

Monte Carlo parameterization, and analysis of parameter uncertainty and its contributions to future soil moisture and ET

uncertainty using a physically-based ecohydrologic model in multiple boreal forest types. Soil and plant hydraulic parameters

and LAI have the largest effects on summer soil moisture at two contrasting sites. We report best estimates and uncertainty

of these parameters via a multi-site Generalized Likelihood Uncertainty Estimation approach. In future scenario simulations,

parameter and global climate model (GCM) choice influence projected changes in soil moisture and evapotranspiration as much

as the projected effects of climate change in a late-century, high-emissions scenario, though the relative effect of parameters,

GCM, and climate vary between objective and study site. Saturated water content, as well as the sensitivity of stomatal

conductance to vapor pressure deficit, have the most statistically significant effects on change in evapotranspiration and soil

moisture, though there is considerable variability between sites and GCMs. In concert, the results of this study provide estimates

of: (1) parameter importance and statistical significance for soil moisture modeling, (2) parameter values for physically-based

soil-vegetation-atmosphere transfer models in multiple boreal forest types, and (3) the contributions of uncertainty in these

parameters to soil moisture and evapotranspiration uncertainty in future climates.
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Key Points: 14 

• Summer soil moisture at rooting depth is most sensitive to soil and plant hydraulic parameters 15 

and parameter interactions.  16 

• Parameter uncertainty affects magnitude and sign of projected change in ET and θVWC; similar 17 

effect size to climate change and GCM.  18 

• We present parameter values useful for hydrologic modeling in multiple boreal forest types while 19 

recognizing equifinality. 20 

  21 
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Abstract 22 

Soil moisture and evapotranspiration (ET) are important components of boreal forest hydrology that 23 

affect ecological processes and land-atmosphere feedbacks. Future trends in soil moisture in particular are 24 

uncertain. Therefore, accurate modeling of these fluxes and understanding of concomitant sources of 25 

uncertainty are critical. Here, we conduct a global sensitivity analysis, Monte Carlo parameterization, and 26 

analysis of parameter uncertainty and its contributions to future soil moisture and ET uncertainty using a 27 

physically-based ecohydrologic model in multiple boreal forest types. Soil and plant hydraulic parameters 28 

and LAI have the largest effects on summer soil moisture at two contrasting sites. We report best 29 

estimates and uncertainty of these parameters via a multi-site Generalized Likelihood Uncertainty 30 

Estimation approach. In future scenario simulations, parameter and global climate model (GCM) choice 31 

influence projected changes in soil moisture and evapotranspiration as much as the projected effects of 32 

climate change in a late-century, high-emissions scenario, though the relative effect of parameters, GCM, 33 

and climate vary between objective and study site. Saturated volumetric water content and sensitivity of 34 

stomatal conductance to vapor pressure deficit have the most statistically significant effects on change in 35 

evapotranspiration and soil moisture, though there is considerable variability between sites and GCMs. In 36 

concert, the results of this study provide estimates of: (1) parameter importance and statistical 37 

significance for soil moisture modeling, (2) parameter values for physically-based soil-vegetation-38 

atmosphere transfer models in multiple boreal forest types, and (3) the contributions of uncertainty in 39 

these parameters to soil moisture and evapotranspiration uncertainty in future climates.  40 

 41 

1 Introduction 42 

Future changes in soil water content (θVWC) in boreal environments are extremely important and quite 43 

uncertain. Soil moisture dynamics interact with water table depths and thaw dynamics to influence 44 

growth, wildfire spread (Bartsch et al., 2009), and net ecosystem carbon dynamics in both coniferous 45 

(Dunn et al., 2007; Krishnan et al., 2008) and deciduous forest types (Cahoon et al., 2018; Yarie & van 46 

Cleve, 2010). θVWC also influences soil temperature and permafrost degradation via increased soil latent 47 

heat of fusion and soil thermal conductivity in wetter soils (Subin et al., 2012). Despite this importance, 48 

considerable uncertainty remains: hydrologic models project a wide range of potential future θVWC in 49 

Arctic regions primarily due to differences in moisture partitioning between models (Andresen et al., 50 

2020) and θVWC has been identified as a crucial missing piece of modeling Arctic and boreal ecosystem 51 

dynamics (Fisher et al., 2018). This is perhaps to be expected, given a variety of potential competing 52 

mechanisms: for example, permafrost thaw and snowpack decreases could lead to soil drying (Lader et 53 
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al., 2020; Teufel & Sushama, 2019), while projected increases in rainfall could increase θVWC (Lader et 54 

al., 2017). Changes in evapotranspiration (ET) due to altered vapor pressure deficit also influence θVWC, 55 

with potential feedbacks in cases where θVWC limits ET (Helbig et al., 2020). 56 

 57 

Given these competing mechanisms, process-based hydrologic modeling is an important tool for 58 

understanding future changes in boreal soil moisture. However, process-based hydrologic models often 59 

suffer from equifinality (Beven, 2006). Sensitivity and uncertainty analyses have emerged as tools to 60 

understand and constrain the consequences of equifinality by identifying the parameters to which models 61 

are most sensitive and assessing the range of variability in model outputs (Pianosi et al., 2016; Wilby, 62 

2005). Global sensitivity analysis methods that explicitly account for interactions between parameters, as 63 

opposed to those that rely on modifications of parameters one at a time, are important for 64 

comprehensively characterizing model sensitivity (Saltelli et al., 2019). However, these methods can be 65 

computationally expensive. The Hilbert-Schmidt Independence Criterion (HSIC) is one approach 66 

originating from the machine learning literature that appears to be particularly useful for sensitivity 67 

analyses of computationally expensive models with large numbers of parameters (Da Veiga, 2015; Iooss 68 

& Lemaître, 2015). Essentially, the HSIC provides an estimate of the dependence of a model outcome on 69 

individual input parameters. For estimating model parameter values and associated uncertainty, 70 

Generalized Likelihood Uncertainty Estimation (GLUE) methods are a common hydrologic modeling 71 

approach favored for their flexibility, relative ease of use, and potential to take advantage of highly 72 

parallel computing environments (Beven & Binley, 1992, 2014). GLUE methods require a modeler to 73 

specify prior distributions of parameters, generate parameter sets from those distributions, run the model 74 

with each parameter set, and identify the parameter sets that result in acceptable model results in 75 

comparison with data, which are often deemed “behavioral” in the GLUE parlance.  76 

 77 

Sensitivity and uncertainty analyses have been used to assess the relative contributions of parameter 78 

selection, climate model selection, and model structure to hydrologic model outcomes, with varied 79 

results. For example, several studies in temperate and mediterranean regions have found that parameter 80 

selection is a relatively small source of uncertainty relative to climate input data and hydrologic model 81 

structure in streamflow simulations (Chegwidden et al., 2019; Dobler et al., 2012; Feng & Beighley, 82 

2020). A study using a monthly water balance model in 61 basins within the Ohio River watershed found 83 

that global climate model choice was a more important source of uncertainty for runoff projections, but 84 

multi-parameter ensemble uncertainty was more important for soil moisture and groundwater (Her et al., 85 

2019). In another study, uncertainty due to model structure versus climate inputs were of comparable 86 

magnitude (Ludwig et al., 2009). In the Colorado River headwaters, choice of calibration data and 87 
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objective function had a larger effect than choice of hydrologic model on discharge uncertainty (Mendoza 88 

et al., 2016). In Arctic regions, Harp et al. (2016) determined that uncertainty in soil hydraulic parameters 89 

is a major contributor to future uncertainty in permafrost dynamics, though contributions from climate 90 

model uncertainty are even greater. This array of findings suggests that relative importance of different 91 

sources of uncertainty depends on geographic context, response variable, model structure, and 92 

methodological decisions made by modelers. No such studies to our knowledge have been conducted for 93 

soil moisture and ET in boreal regions with discontinuous permafrost.  94 

 95 

In this study, we provide a detailed sensitivity and uncertainty analysis of soil moisture and ET using the 96 

Simultaneous Heat and Water (SHAW) model in multiple boreal forest types in order to improve 97 

ecohydrologic modeling in this critically important region. Specifically, we (1) identify and rank the 98 

sensitivity of modeled soil moisture to SHAW parameters and compare them across forest types, (2) 99 

implement an automated calibration procedure to identify parameter values that are transferable across 100 

years and forest types, and (3) estimate the effects of calibration-constrained parameter uncertainty on 101 

uncertainty of future soil moisture relative to GCM choice and the projected effect of climate change. The 102 

results will be useful to those who are interested in understanding and reducing uncertainty in future 103 

projections through additional field data collection or focused modeling efforts to improve parameter 104 

identifiability. These results will also provide further information about the extent to which efforts to 105 

constrain future hydrologic uncertainty should focus on parameter or input data uncertainty, and provide 106 

new understanding of how specific parameterization choices affect projections of future conditions.  107 

2 Materials and Methods 108 

2.1 Study sites 109 

In this study, we use data from four previously established field sites that represent two upland birch-110 

dominated sites in different stages of post-fire successional trajectories (US-Rpf and UP1A) and two 111 

mature spruce forests underlain by permafrost (Smith Lake 1, 2; Figure 1). These sites were selected 112 

based on the diversity of forest structure and ecological conditions, data availability for model forcing and 113 

evaluation, and minimization of net lateral hydrologic fluxes by focusing on upland environments (Table 114 

1). 115 

 116 

Input climate data sources varied between sites depending on availability. Data for the birch-dominated 117 

UP1A was obtained from the Bonanza Creek Long-Term Ecological Research (BNZ LTER) site and 118 

described in detail in Marshall et al. (2020). Briefly, collocated hourly air temperature, relative humidity, 119 



manuscript submitted to Water Resources Research 

 5 

and wind speed data were obtained and gap filled using correlations with data from nearby weather 120 

stations. Downward shortwave radiation was obtained from the US-Uaf AmeriFlux site (Iwata et al., 121 

2010; Ueyama et al., 2009). SHAW corrects shortwave radiation for slope and aspect, minimizing the 122 

importance of these differences between sites. Precipitation data was obtained from the LTER1 site, 1 km 123 

away from UP1A. US-Rpf is an Ameriflux site dominated by birch with all meteorological variables 124 

collected except for winter precipitation. Lacking winter precipitation observations, we used snow depth 125 

data from the nearby US-Prr AmeriFlux site and estimated liquid water content of new snow 126 

accumulation based on the internal algorithm for newly fallen snow density used in SHAW (Anderson, 127 

1976). Soil moisture used for calibration was available at all sites, though depths differed between sites.  128 

 129 

Table 1. Characteristics of the four study sites. Vegetation ages refer to age at the start of the study period. 130 

Mean annual temperature (MAT) and mean annual precipitation (MAP) are calculated based on our gap-131 

filled dataset over the years included in the study. 132 

Name Data 
source 

Years Vegetation 
type 

Soils Slope 
(%) 

Aspect Elevation 
(m) 

Lat, Lon 
(°) 

MAT 
(°C) 

MAP 
(mm) 

UP1A BNZ 

LTER 

2003- 

2015 

20-year old 

birch  

Silt loam  15 S 258 64.73, 

 -148.30 

-1.2 341 

US- 

Rpf 

Ameri- 

Flux 

2011- 

2018 

7-year old 

birch 

2 cm 

organic; 

sandy loam 

15 NE 497 65.12, 

 -147.43 

-0.2 453 

Smith 

Lake 

1 

GIPL; 

Ameri- 

Flux 

2007-

2018 

Mature 

black and 

white 

spruce 

20 cm 

organic; silt 

loam 

6 S 160 64.87, 

-147.86 

-2.9 321 

Smith 

Lake 

2 

GIPL; 

Ameri- 

Flux 

2007-

2018 

Mature 

black 

spruce 

35 cm 

organic; silt 

loam 

2 N 157 64.87,  

-147.86 

-2.9 321 

 133 
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 134 

Figure 1. Study area map, showing core sites for study as well as those used for gap-filling and data 135 

supplementation. Red square in the inset shows extent of the larger map.  136 

 137 

The two spruce sites are Smith Lake 1 and Smith Lake 2, both located on the University of Alaska 138 

Fairbanks campus and adjacent to the US-Uaf AmeriFlux site. Hourly air temperature, relative humidity, 139 

windspeed, and downward shortwave radiation from the AmeriFlux site were used as climate forcings for 140 

simulations of both sites. Minimal gap filling was required for air temperature and relative humidity; in 141 

each case, one 39-hour period was missing, and data from the previous two days was substituted. In 142 

contrast, 27% of the wind data was missing. We filled gaps using a linear interpolation for missing 143 

periods less than 6 hours (5% of data), then used a linear regression against colocated wind sensors (at 144 



manuscript submitted to Water Resources Research 

 7 

different heights) at the same site for the rest of the missing periods. Daily precipitation data was obtained 145 

from the Fairbanks Airport weather station (Menne et al., 2012), which is approximately 5 km to the 146 

south. We disaggregated precipitation data to an hourly time step by estimating the number of 147 

precipitating hours per day on wet days at the LTER1 weather station (3 hours). We then randomly 148 

sampled 3 hours on each wet day and evenly distributed the daily precipitation values over those hours.  149 

 150 

The different sites had varying levels of detail for available vegetation data. Vegetation data for US-Rpf is 151 

described in detail in Ueyama et al. (2019), with annual estimates of peak LAI, leaf-on and leaf-off dates, 152 

and vegetation height. We estimated biomass for this site based on these data using the allometric 153 

equations in Yarie et al. (2007). At UP1A, vegetation surveys provided estimates of stem density and 154 

DBH; we estimated biomass and height again following Yarie et al. (2007). The Smith Lake sites have 155 

LAI of approximately 2.0 (Iwata et al., 2011) with an 8 m canopy height (Heijmans et al., 2004). Biomass 156 

estimates were not available, and were estimated based on relevant literature (Table 2). While this 157 

suggests considerable uncertainty in biomass estimates, biomass primarily controls the heat balance of the 158 

vegetation layer in SHAW, with minimal effects on hydrology. 159 

 160 

Soil textural data was also obtained from different sources for each site. At UP1A, soil texture was 161 

determined based on four soil pits (Yarie, 1998). At US-Rpf, post-burn soils have a 2 cm organic layer, 162 

underlain by sandy loams (Ueyama et al., 2019) In the Smith Lake area, organic layer depths were 163 

obtained by field observations (personal communication, Vladimir Romanovsky), and are underlain by silt 164 

loams (NCSS, 2020).  165 

 166 

2.2 SHAW model 167 

SHAW is a one-dimensional hydrologic model that simultaneously solves the energy and water balance 168 

through the atmosphere-vegetation-snow-soil continuum, with a multi-layer plant canopy, snowpack, and 169 

soil profile (Flerchinger, 2017; Flerchinger & Saxton, 1989; Link et al., 2004; Figure 2). SHAW inputs 170 

include detailed hourly-to-daily climate data, site characteristics, soil texture and layering, soil and plant 171 

hydraulic parameters, and parameters for energy balance-based snow accumulation and ablation (Table 172 

2). Outputs include a complete energy and water balance, snowpack dynamics, and soil liquid and frozen 173 

water content and temperature at each user-defined node in the soil water profile. The timestep is user-174 

defined, and was hourly in this study. SHAW was initially developed in part to simulate soil moisture 175 

dynamics in dynamically freezing soils (Flerchinger et al., 2006; Flerchinger & Saxton, 1989). While this 176 

development was based in temperate regions, this feature makes it particularly attractive for modeling in 177 
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discontinuous permafrost regions. SHAW has previously been applied successfully in boreal and 178 

permafrost sites (Marshall et al., 2020; Zhang et al., 2010, 2013). 179 

 180 

2.3 Sensitivity analysis 181 

We conducted a global sensitivity analysis of the SHAW model at the burned regenerating birch site and 182 

one of the permafrost-underlain spruce sites using the HSIC (Da Veiga, 2015; Iooss & Lemaître, 2015). 183 

These two sites were selected to assess sensitivity of soil moisture and evapotranspiration simulations at 184 

two contrasting sites. HSIC uses a distance correlation to measure the dependence between an input 185 

variable and output variable; it is designed to identify nonlinear dependencies and parameter interactions. 186 

Ranges for each parameter were assessed based on literature and available data (Table 2). For a few 187 

parameters that are well-defined at each site, such as aspect, the complete possible range was used in 188 

order to determine the general importance of these parameters. At each site, 2000 parameter sets were 189 

identified using a Latin Hypercube Sampling (LHS) approach with the ‘lhs’ package in R (Carnell, 2019). 190 

The model was run over the calibration period with each parameter set. Average growing season (May-191 

September) soil moisture at the presumed rooting depth for the dominant vegetation at each site (20 cm 192 

for black spruce; 60 cm for birch) was calculated for each parameter set. The “sensitivity” package was 193 

used to conduct the HSIC sensitivity analysis using universal gaussian kernels and an asymptotic 194 

estimation of the p-value (Iooss et al., 2020). When many statistical significance tests are conducted, false 195 

discovery rates can be quite high; we followed the method described by Wilks (2016) to identify a p-196 

value that controls the false discovery rate at 10% based on the distribution of p-values obtained from a 197 

set of significance tests. This resulted in effective critical p-values of 0.016 at the mature spruce site and 198 

0.034 at the burned site.  199 

 200 
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 201 

Figure 2. Conceptual diagram of the SHAW model; originally published in Link et al. (2004). Tree 202 

illustrations from Van Pelt (2007). © American Meteorological Society. Used with permission. 203 

 204 

2.4 Multi-site parameter estimation 205 

We developed a multi-site framework for estimating regional parameters. Parameters that were 206 

determined to be statistically significant in the sensitivity analysis were calibrated using GLUE; the others 207 

were estimated based on literature values or known values for the site (Table 2). Results indicated that 208 

soil hydraulic parameters were significant in some layers but not others; values for all layers were 209 

calibrated for consistency. Parameters that described vegetation water use characteristics, such as 210 

minimum stomatal conductance and Jarvis-Stewart environmental feedback parameters, were assumed 211 

constant within vegetation types but variable between vegetation types. Organic soil hydraulic parameters 212 

were assumed constant between all organic soils in the study. A three-layer mineral soil profile was 213 

delineated from 0-20 cm, 20-80 cm, and 80-600 cm. Sites with an organic layer used the organic layer, 214 

followed by the second and third mineral layers. Requiring soil hydraulic parameters to remain constant 215 

between sites is likely an oversimplification, but lacking a basis on which to systematically vary soil 216 
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hydraulic parameters within the SHAW framework, this approach was selected to ensure a reasonably 217 

simple and consistent parameterization between sites.   218 

 219 

A GLUE methodology was used to calibrate the sensitive model parameters. We used LHS sampling with 220 

the parameters that were determined by the sensitivity analysis to significantly affect growing season soil 221 

moisture. In order to ensure plausible relationships of parameters between soil layers, specifically Ksat and 222 

θsat decreasing with depth and bulk density increasing with depth in mineral soils, we sampled 5x10
6
 223 

parameter sets, then selected only those that met these criteria, resulting in 22664 parameter sets used in 224 

the GLUE method. All parameter sets were run over the first seven years of data available at each site as a 225 

calibration period, and daily θVWC RMSE at the depth with observations closest to presumed rooting depth 226 

was evaluated over the May-September growing season. To include evapotranspiration in the parameter 227 

selection criteria, we also evaluated the mean absolute error of growing season total evapotranspiration 228 

(MAE ET) at the two sites that had observed latent heat fluxes. Results indicated that RMSE of VWC at 229 

Smith Lake 2 was particularly poor with all parameter sets, suggesting model structural deficiency at this 230 

site as will be discussed later. We therefore did not include ET or VWC from Smith Lake 2 when 231 

evaluating the optimal and behavioral parameter sets, in order to avoid introducing objective functions 232 

that would select for parameter sets that produce reasonably correct answers for incorrect reasons. 233 

Behavioral parameter sets were defined as those with < 0.08 mean RMSE of VWC at the three remaining 234 

sites, and < 15% MAE of ET at the site with ET.  235 

 236 

2.5 Climate projections 237 

We obtained climate data from the NCAR-CCSM4 and GFDL-CM3 global climate models that were 238 

dynamically downscaled using the Weather Research and Forecasting (WRF) model for the years 1970-239 

2100 for the 20 x 20 km grid cells containing each site (Bieniek et al., 2016; Lader et al., 2017). In order 240 

to ensure that climate data was relevant to the sites modeled here, we conducted a multivariate quantile 241 

mapping bias correction to the gap-filled data for each site (Cannon, 2016). Leaf phenology at both birch-242 

dominated sites was modeled using the relationship between snow disappearance date and leaf-on timing 243 

described in Marshall et al. (2020). For each year, we calculated average growing season soil moisture 244 

and total growing season ET at the presumed rooting depth at each site with the full set of behavioral 245 

parameter sets and evaluated how these trajectories differed between parameter sets. We also used the 246 

Hilbert-Schmidt independence criterion to ascertain which parameters contributed most to changes in 247 

mean growing season soil moisture in the late-21st century (2070-2099) period relative to a historical 248 

(1970-1999) period. 249 
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Table 2. Parameters used in study. Parameter names indicate variable name used in figures and a description if applicable. The specifier determines whether the 250 

parameter was applied to hardwoods (HW) or conifers (Con), and to mineral (M) or organic (O) soil. Case determines whether the parameter was fixed (F) or 251 

calibrated (C), based on the sensitivity analysis. Value is the best estimate when fixed, or calibrated value for parameters that are calibrated.  252 

Cate 
gory 

Parameter Units Sites Specifier Case Minimum Value Maximum Sources 

Plants clumping 
 

SL2, 
SL1 

Con F 0.1 0.4 1 Campbell & Norman, 1998  

UP1A, 
USRpf 

HW F 0.1 0.7 1 

CriticalLeafWaterPotential 
(stomatal resistance twice 
its minimum value) 

m SL2, 
SL1 

Con F -236 -174 -112 Dang et al., 1997; Goldstein et al., 
1985 

UP1A, 
USRpf 

HW F -275 -174 -100 Cable et al., 2014 

CriticalTranspTemp °C SL2, 
SL1 

Con F -5 0 5 Bonan & Sirois, 1992; Lamhamedi & 
Bernier, 1994 

UP1A, 
USRpf 

HW F -5 0 5 Ranney & Peet, 1994 

DryBiomass kg/m2 SL1, 
SL2 

Con F 0.1 1.7 17 Alexander et al., 2012; Bonan, 1993; 
Bond-Lamberty et al., 2002.; Melvin et 
al., 2015; Viereck et al., 1983; John 
Yarie & Billings, 2002.  

USRpf HW F 2.2 2.1 27 Alexander et al., 2012; Bonan, 1993; 
Melvin et al., 2015; Viereck et al., 
1983; Wang et al., 1995; John Yarie & 
Billings, 2002. Best estimate is 
allometric. 

UP1A HW F 2.2 4.4 27 

Interception m/m SL2, 
SL1 

Con C 0 1 1 Li et al., 2017; Link et al., 2004 

UP1A, 
USRpf 

HW C 0 0.76 1 

KSt (influence of solar 
radiation on stomatal 
resistance; 0 = no 
influence) 

W/m2 SL2, 
SL1 

Con F 0 20.5 100 Bartlett et al., 2003 

UP1A, 
USRpf 

HW F 0 50 100 Bladon et al., 2006 

Kvpd (maximum reduction 
in stomatal conductance 

 
SL2, 
SL1 

Con C 0.1 0.14 1 Grossnickle & Blake, 1986 
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due to vapor pressure 
deficit) 

UP1A, 
USRpf 

HW C 0.1 0.45 1 Bladon et al., 2006 

Leaf area index (LAI) m2/m2 SL1, 
SL2 

Con C 0.5 1.9 8 Alexander et al., 2012; Bonan, 1993; 
Bond-Lamberty et al., 2002.; Chen et 
al., 1997; H. Iwata et al., 2011; Serbin 
et al., 2013 

USRpf 
 

C 
 

1.8 
 

Bonan, 1993; Chen et al., 1997  
UP1A 

 
C 0.5 4.5 5.7 

Minimum stomatal 
resistance (rs,min) 

s/m SL2, 
SL1 

Con C 0.04 1.105 1.174 Bartlett et al., 2003; Cable et al., 2014; 
Dang et al., 1997; Endalamaw et al., 
2017; Körner, 1995; Maire et al., 2015; 
Salmon et al., 2020 

UP1A, 
USRpf 

HW C 0.04 0.165 0.178 Blanken et al., 1997; Cable et al., 
2014; Dang et al., 1997; Endalamaw et 
al., 2017; Maire et al., 2015; Murray et 
al., 2020; Salmon et al., 2020 

PlantAlbedo 
 

SL2, 
SL1 

Con F 0.1 0.3 0.4 Wide range 

UP1A, 
USRpf 

HW F 0.05 0.3 0.4 Wide range 

PlantHeight m SL1, 
SL2 

Con C 1 8.8 10 Alexander et al., 2012; Bonan, 1993; 
Bond-Lamberty et al., 2002; Heijmans 
et al., 2004 

USRpf 
 

C 1 1.5 3.8 Alexander et al., 2012; Bonan, 1993; 
Bond-Lamberty et al., 2002. UP1A 

 
C 3 7.8 9.9 

r (coefficient for stomatal 
conductance due to VPD) 

 
SL2, 
SL1 

Con C 0.1 0.78 1 Wide range 

UP1A, 
USRpf 

HW C 0.1 0.11 1 Full possible range 

RootingDepth (maximum 
rooting depth) 

m SL2, 
SL1 

Con F 0.1 0.2 0.6 Fryer, 2014 

UP1A, 
USRpf 

HW F 0.1 0.6 1 Safford et al., 1990 

StomatalExponent 
(empirical exponent 

 
SL2, 
SL1 

Con F 2 5 5 Cable et al., 2014 
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relating stomatal 
resistance to leaf potential) 

UP1A, 
USRpf 

HW F 2 5 5 Flerchinger, 2017 

TempLower °C SL2, 
SL1 

Con F -5 0 5 Bonan & Sirois, 1992; Lamhamedi & 
Bernier, 1994 

UP1A, 
USRpf 

HW F -5 0 0 Ranney & Peet, 1994 

TempOpt  SL2, 
SL1 

Con C 11 16.7 25 Bonan & Sirois, 1992; Lamhamedi & 
Bernier, 1994 

UP1A, 
USRpf 

HW C 20 21.3 40 Ranney & Peet, 1994 

TempUpper SL2, 
SL1 

Con F 32 40 50 Bonan & Sirois, 1992; Lamhamedi & 
Bernier, 1994 

UP1A, 
USRpf 

HW F 40 46 50 Ranney & Peet, 1994 

TotalResistance (leaf and 
root resistance) 

m3s/ton SL2, 
SL1 

Con C 50 59 5000 Flerchinger, 2017 

UP1A, 
USRpf 

HW C 250 467 750 Flerchinger, 2017 with 50% increase 
and decrease 

Residue DryWeightOfResidue kg/ ha SL2, 
SL1 

Con F 1000 6000 10000 Wide range 

UP1A, 
USRpf 

HW F 1000 6000 10000 Wide	range 

FractionResidue 
 

All 
 

F 0 0.9 0.9 Wide range 

ResidueAlbedo All 
 

F 0.15 0.25 0.4 Flerchinger, 2017 

ResidueThickness cm SL2, 
SL1 

Con F 0 5 20 Wide range 

UP1A, 
USRpf 

HW F 1 5 20 Wide range 

Site ponding cm All 
 

C 2.5 1.2 10 Wide range 

PrecipThreshold 
(precipitation falls as snow 
below this temperature) 

°C All 
 

F -0.4 1 2.4 Jennings et al., 2018 

roughness (of residue or 
soil surface) 

cm All 
 

F 0.1 1 10 Campbell & Norman, 1998 
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Soils AlbedoDrySoil 
 

All 
 

F 0.1 0.25 0.4 Flerchinger, 2017 

AlbedoExponent 
(Exponent for albedo of 
moist soil) 

All 
 

F 0.1 0.1 3.5 Flerchinger, 2017 

bulkdensity 1 (ρb 1) kg/m3 UP1A M C 700 913 1720 NCSS, 2020 

USRpf, 
SL2, 
SL1 

O C 10 262 300 Liu & Lennartz, 2019 

bulkdensity 2 (ρb 2) All M C 700 1158 1720 NCSS, 2020 

bulkdensity 3 (ρb 3) All M C 700 1223 1720 NCSS, 2020 

ksat 1 (saturated hydraulic 
conductivity) 

cm/hr UP1A M C 0.027 234 270 Blain & Milly, 1991; Chappell et al., 
1998; Grayson et al., 1992; NCSS; 
2020 

USRpf, 
SL2, 
SL1 

O C 0.0017 443 1148 Liu & Lennartz, 2019  

ksat 2 All M C 0.027 181 270 Blain & Milly, 1991; Chappell et al., 
1998; Grayson et al., 1992; NCSS, 
2020 

ksat 3  All M C 0.027 141 270 Blain & Milly, 1991; Chappell et al., 
1998; Grayson et al., 1992; NCSS, 
2020 

lowerBC (soil temperature 
at lower boundary) 

°C USRpf 
 

F 0 2.4 5 Soil temperature observations 

SL2 
 

F -5.1 -1.1 2.9 Soil temperature observations 

SL1 
 

F -4.4 -0.4 3.6 Soil temperature observations 

UP1A 
 

F 0 0.5 5 Soil temperature observations 

poreconn 1 (τ 1; van 
Genuchten pore 
connectivity) 

 
USRpf, 
SL2, 
SL1 

O C -5.22 -1.66 1.06 Liu & Lennartz, 2019 

residual volumetric water 
content 1 (θres 1) 

UP1A M C 0.017 0.021 0.14 NCSS, 2020 

USRpf, 
SL2, 
SL1 

O C 0.004 0.149 0.2 Liu & Lennartz, 2019 
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θres 2 All M C 0.017 0.071 0.14 NCSS, 2020 

θres 3 All M C 0.017 0.088 0.14 NCSS, 2020 

θsat 1 UP1A M C 0.34 0.566 0.59 NCSS, 2020 

USRpf, 
SL2, 
SL1 

O C 0.62 0.625 0.99 Liu & Lennartz, 2019 

θsat 2 All M C 0.34 0.546 0.59 NCSS, 2020 

θsat 3 All M C 0.34 0.454 0.59 NCSS, 2020 

van Genuchten alpha (vG 
α 1) 

m-1 UP1A M C 0.65 4.44 5.1 NCSS, 2020 

USRpf, 
SL2, 
SL1 

O C 1 30.2 45 Liu & Lennartz, 2019; limited upper 
range because model failed above ~45 

vgAlpha_2 (van 
Genuchten alpha) (vG α 2) 

All M C 0.65 2.3 5.1 NCSS, 2020 

vgAlpha_3 (van 
Genuchten alpha) (vG α 3) 

All M C 0.65 4.77 5.1 NCSS, 2020 

vgn_1 (van Genuchten n) 
(vG n 1) 

 
USRpf, 
SL2, 
SL1 

O C 1.29 1.54 1.6 Dettmann et al., 2014; Zhang et al., 
2010 

 253 

 254 
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3 Results  255 

3.1 Parameter sensitivity 256 

At the permafrost-underlain Smith Lake site, growing season θVWC at the assumed maximum rooting 257 

depth (20 cm) was most sensitive to soil hydraulic parameters in the depth at which soil moisture was 258 

assessed (layer 1), as well as parameters that control plant water use, including minimum stomatal 259 

resistance (rs,min), LAI, the Jarvis-Stewart r parameter that controls the influence of vapor pressure deficit 260 

on stomatal resistance, and total resistance in leaves and roots (Figure 3). Growing season θVWC was also 261 

sensitive to Ksat in the second layer and van Genuchten α in the third layer, as well as maximum canopy 262 

interception depth per LAI and aspect. Results at the US-Rpf site were similar. The top four parameters 263 

with the largest influence on growing season θVWC at 60 cm were soil hydraulic parameters in the layer at 264 

which soil moisture was evaluated; soil hydraulic parameters for the other layers, particularly α, ksat, and 265 

θres were also important in the sub- and superjacent layers. As at Smith Lake, rs,min and r were significant. 266 

Notably, peak LAI at this site was not statistically significant, while a few additional controls on plant 267 

hydraulics were: optimum transpiration temperature, plant height, and Kvpd were all statistically 268 

significant. Moreover, slope and maximum ponding depth, in addition to aspect, were significant at this 269 

site.  270 

 271 

To assess the sign of the parameter effects, we compared parameter distributions for the wettest and driest 272 

simulations at each site (Figure 4). Distributions that are very dissimilar between the wettest and driest 273 

simulations indicate that a parameter has a strong and consistent effect, while those with large overlap 274 

indicate either weaker effects or that parameter interactions are more important than the parameter value 275 

itself. Many of these are to be expected based on a priori knowledge of the physics represented in the 276 

SHAW model: for example, high LAI, low rs, min, and south-facing aspects reliably result in drier soils. 277 

Similarly, in the layer at which growing season θVWC was evaluated at each site, low θres, low θsat, and 278 

higher α tend to result in drier θVWC. Less obvious are the contrasting effects of soil hydraulic parameters 279 

in sub- and superjacent layers: for example, at the US-Rpf site, high θres in the third layer tends to yield 280 

drier θVWC in the second layer. While this is also a natural consequence of the physics represented in the 281 

model, it may be less obvious to modelers conducting manual parameterizations. Finally, some 282 

parameters, such as plant height and maximum interception, have a statistically significant effect on 283 

growing season θVWC but limited discernable difference in their distributions between the driest and 284 

wettest 1% of cases. This may suggest that the HSIC metric is identifying parameters with a relatively 285 

small effect size, or that there are complex parameter interactions that minimize the relationship between 286 

an individual parameter and θVWC. 287 
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 288 

 289 

Figure 3. Results of sensitivity analysis at (a) US-Rpf and (b) Smith Lake 2. Significance threshold was p 290 

< 0.034 at US-Rpf and p < 0.016 at Smith Lake 2. S is the Hilbert-Schmidt Independence Criterion.  291 

 292 
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 293 

Figure 4. Distribution of the statistically significant parameter values for the driest and wettest 1% of runs 294 

at (a) US-Rpf and (b) Smith Lake 2. Parameter abbreviations are detailed in Table 2.  295 

 296 

3.2 GLUE results 297 

In the GLUE analysis, 40% of 22,664 parameter sets completed the model runs at all four sites, with some 298 

differences between sites: 99.8% finished at UP1A; 77.0% finished at Smith Lake 2; 69.5% finished at 299 

Smith Lake 1; and 61.2% finished at US-Rpf. Runs that do not complete are likely due to unrealistic 300 

parameter combinations that cause numerical instabilities in the finite difference solutions employed in 301 

the SHAW model. The minimum θVWC RMSE between sites suggests some discrepancy between 302 

performance at each site: at Smith Lake 1 and 2, the minimum RMSEs were 0.087 and 0.111, 303 

respectively, while these values were 0.026 and 0.030 at UP1A and US-Rpf. Minimum MAE of ET was 304 

3.3% and 9.6% at Smith Lake 2 and US Rpf, respectively. After Smith Lake 2 results were discarded due 305 

to poor simulation of soil moisture, 45% of parameter sets completed the model run at the three remaining 306 

sites. Correlations between objective functions suggested some tradeoffs and synergies: for example, 307 

θVWC RMSE at US-Rpf was positively correlated with that at Smith Lake 1 (Pearson’s r = 0.5), while 308 
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RMSE of VWC at UP1A was negatively correlated with θVWC RMSE at both US-Rpf and Smith Lake 1, 309 

indicating that there are tradeoffs in parameter selection between UP1A and the other two sites. MAE of 310 

ET was positively correlated with θVWC RMSE at US-Rpf (r = 0.3), implying that parameter sets that 311 

modeled ET well tended to also model θVWC well.  312 

 313 

The criteria for behavioral parameter sets, with MAE ET at US-Rpf less than 15% and mean θVWC RMSE 314 

across three sites < 0.08, resulted in 27 parameter sets. The distributions of behavioral parameter sets 315 

suggested that some, but not all of the parameters were better constrained post calibration (Figure 5), as 316 

indicated by less variable (e.g. LAI at UP1A) as opposed to similar (e.g.: θsat 2M) posterior parameter 317 

distributions. Note that in some cases, a uniform prior distribution was not used, due to our restrictions on 318 

the changes in some soil hydraulic parameters with depth. In behavioral parameter sets, bulk density of 319 

the organic layer tended to be high relative to the prior distribution. LAI was at the low end of the 320 

distribution at the US-Rpf site, and higher at the UP1A site. rs,min was generally higher in the posterior 321 

than prior distribution. The van Genuchten pore connectivity term, τ, in the organic layer was generally in 322 

the higher range of the prior distribution, and van Genuchten α was relatively high in the organic layer, 323 

but low in the first and second mineral soil layers. Parameter values based on individual sites or objective 324 

functions were quite different from each other in many cases, illustrating the importance of calibration on 325 

multiple sites and hydrologic variables when possible.  326 

 327 
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 328 

Figure 5. Distribution of behavioral parameter sets. Vertical lines for each site (colors) and variable used 329 

in the objective function (line type) indicate the parameter values in the optimal parameter set for each 330 

site and variable. The black vertical lines indicate the best overall parameter. Parameter abbreviations are 331 

detailed in Table 2.  332 

 333 

The optimal parameter set based on multiple objective functions resulted in θVWC RMSE of 0.10 at Smith 334 

Lake 1, 0.05 at UP1A, and 0.08 at US-Rpf, with MAE ET at US-Rpf equal to 9.0%. This parameter set 335 

had considerably higher interception per LAI, Kvpd in conifers, and LAI in conifers and at UP1A than the 336 

best prior estimates. The best estimate of rs,min was slightly higher in conifers and lower in hardwoods 337 

than the best prior estimate. Optimum temperatures for transpiration were quite close to the best prior 338 

estimate. The best estimated maximum ponding depth was at the very high end of the potential range. Ksat 339 

was much higher in mineral layers and lower in the organic layer than the best prior estimate; this may 340 

reflect in part the fact that values for mineral layers were obtained directly from a lab-based database, 341 

while values for organic layers were obtained from literature with values presented over many orders of 342 

magnitude. τ, which is often set to 0.5 in mineral soils but may be much lower in organic horizons 343 

(Dettmann et al., 2014), was much higher than the best estimate for organic soils, and close to the typical 344 
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value in mineral soils. van Genuchten α was considerably larger in both the mineral and organic layers 345 

than best prior estimates.  346 

 347 

3.3 Reproduction of soil moisture and ET 348 

SHAW generally reproduced temporal soil moisture patterns well, but the multi-site solution represented 349 

tradeoffs for individual sites (Figure 6). For example, the parameter set that minimized θVWC RMSE at US 350 

Rpf resulted in θVWC that was consistently too high at UP1A, and too low at Smith Lake 1. Parameter sets 351 

that performed well at three sites performed extremely poorly at Smith Lake 2, and in many cases model 352 

convergence issues prevented the runs from completing at that site. In addition to the overall poor 353 

performance at Smith Lake 2, this reinforces the finding that model structural deficiency likely limits 354 

model performance at this site. The multisite compromise tended to be somewhat too dry in the summers 355 

at Smith Lake 1 and too wet in the winters at US-Rpf, but captured soil moisture dynamics at UP1A very 356 

well.  357 

 358 

Comparisons of modeled and observed ET at US-Rpf indicate that the behavioral parameter sets generally 359 

contained observed summer ET and consistently underestimated winter ET (Figure 7). The best parameter 360 

set and the set based on minimizing MAE ET tended to overestimate summer ET. In contrast, the set that 361 

was selected to minimize the θVWC RMSE at US-Rpf tended to underestimate ET. Model performance 362 

generally declined slightly from the calibration to validation period with respect to θVWC RMSE. In the 363 

multisite compromise, θVWC RMSE increased from 0.112 to 0.123 at Smith Lake 1 (+0.011), from 0.072 364 

to 0.079 at UP1A (+ 0.007), and from 0.054 to 0.072 at US-Rpf (+0.017). The MAE of ET actually 365 

decreased from the calibration to validation period, from 18% to 14% (-4%).  366 

 367 
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 368 

Figure 6. Observed and modeled soil moisture for each site. The black line represents observations at 369 

approximate rooting depth at each site, and the colored lines represent multiple selected model parameters 370 

based on individual objective functions and a multisite compromise. Gray error bars indicate the range of 371 

values simulated by the behavioral parameter sets. Vertical dashed line indicates transition from 372 

calibration to validation period.  373 

 374 
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 375 

Figure 7. Observed and modeled monthly ET at US-Rpf, the only site where ET was available. Gray 376 

shaded area represents the range of all behavioral parameter sets; black line represents observations, and 377 

colored lines represent selected parameter sets as indicated in the legend. Vertical dashed line indicates 378 

transition from calibration to validation period.  379 

 380 

3.4 Climate projections and sensitivity 381 

Climate projections in bias-corrected, dynamically downscaled NCAR-CCSM4 and GFDL-CM3 indicate 382 

increases from 1970-2000 to 2070-2100 in mean annual temperature ranging between sites from 10.3-383 

12.5 °C in GFDL-CM3 and 6.4-7.7 °C in NCAR-CCSM4 (Figure 8). The range of changes in projected 384 

precipitation is much greater between GCMs and sites, with projected changes in GFDL-CM3 much 385 

greater than those in NCAR-CCSM4. At US-Rpf, projected increase in precipitation was 13.1-36.0%, 386 

depending on GCM; projected increase in precipitation was 68-190% at UP1A and 72-396% at Smith 387 

Lake 1. This exaggerated large increase in precipitation in GFDL-CM3 at Smith Lake 1 is due in part to 388 

the bias-correction: the uncorrected, downscaled data in GFDL-CM3 has 510 mm of precipitation at 389 

Smith Lake 1 in 1970-2000, but the bias-corrected data has only 139 mm; in the 2070-2100 period, the 390 

downscaled data has 940 mm while the bias-corrected results has 690 mm. The absolute differences are 391 
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reasonably comparable between the bias-corrected and downscaled data, but the percent differences 392 

increase dramatically due to the smaller denominator in the bias-corrected data.  393 

 394 

 395 

Figure 8. Projections of future climate variables with two GCMs, summarized annually. Thicker lines 396 

indicate bias-corrected data, while thin lines show the WRF-downscaled data.  397 

 398 

Choice of parameter set and GCM had comparable effects on trends in growing season θVWC to the total 399 

effect of climate change, though these differences varied considerably between sites (Table 3; Figure 9). 400 

At Smith Lake 1, growing season θVWC was projected to change by an average of +0.067 ± 0.211 cm3/cm3 401 

in GFDL-CM3 and -0.095 ± 0.157 cm3/cm3 in NCAR-CCSM4. In both GCMs, the high standard 402 

deviation relative to the mean change suggests that the variability due to parameter selection is greater 403 

than the projected impacts of climate change, and that even the sign of the projected change depends on 404 

GCM choice and parameter selection. Moreover, the difference between mean results for each GCM 405 

(0.162 cm3/cm3) is greater than the mean projected impacts of climate change in either GCM, and is of a 406 

similar magnitude to the uncertainty due to parameter set selection. At UP1A, the mean projected change 407 

in growing season θVWC was greater than the standard deviation across parameter sets in both GCMs, 408 
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suggesting that the impacts of climate change in this case were greater than those of parameter selection; 409 

notably, the mean impacts of climate change in NCAR-CCSM4 were almost zero. GCM choice was also 410 

important in this case, with considerable wetting in GFDL-CM3 and almost zero mean change in NCAR-411 

CCSM4. At US-Rpf, the mean effect of climate change was greater than parameter set variability in 412 

GFDL-CM3, but not in NCAR-CCSM4. In US-Rpf as in UP1A, the mean changes in growing season 413 

θVWC were close to zero with NCAR-CCSM4 forcing but showed considerable wetting across most 414 

parameter sets in GFDL-CM3.  415 

 416 

 417 

Figure 9. Percent change from 1970-2000 to 2070-2100 in growing season ET (left) and mean θVWC at 418 

approximate rooting depth (right) for 35 behavioral parameter sets at each site in two GCMs. 419 

 420 

Table 3. Mean and standard deviations of projected changes in growing season soil moisture and ET 421 
between sites and GCMs.  422 

GCM Site Change in 
 θVWC (%) 

Change in  
ET (%) 

GFDL-CM3 SmithLake1 0.067 ± 0.211 94 ± 36 

NCAR-CCSM4 -0.095 ± 0.157 24 ± 20 
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GFDL-CM3 UP1A 0.042 ± 0.014 162 ± 21 

NCAR-CCSM4 0.005 ± 0.003 62 ± 5 

GFDL-CM3 USRpf 0.018 ± 0.006 69 ± 8 

NCAR-CCSM4 0.002 ± 0.002 42 ± 5 

 423 

Changes in ET were predominantly positive, and the relative effect of parameter sets, GCM, and climate 424 

change varied between sites. At Smith Lake 1, the projected change in ET was greater than the standard 425 

deviation across parameter sets for both GCMs, though the mean difference between GCMs (70 426 

percentage points) was greater than the average projected change in ET by NCAR-CCSM4. At UP1A, 427 

change in ET was less dependent on choice of parameter set, but there was a difference of 100 percentage 428 

points in the projected mean change between the two GCMs. At US-Rpf, results were more consistent 429 

between GCMs and parameter sets: the mean difference in ET increase between the two GCMs was only 430 

27 percentage points, and the coefficient of variation across parameter sets was approximately 9 for both 431 

GCMs.  432 

 433 

Some parameters contributed more to future wetting or drying trends than others, though relatively few 434 

have a statistically significant effect on wetting or drying trends (Figure 10). The only parameter with a 435 

statistically significant effect on change in future θVWC was maximum ponding depth, and it had a 436 

statistically significant effect only at USRpf. Higher maximum ponding depth tended to result in reduced 437 

θVWC in the simulations forced with NCAR-CCSM4 (Figure 11). At UP1A, higher θsat in the first and 438 

second layers, and a higher r in the Jarvis-Stewart stomatal conductance functions all had a statistically 439 

significant effect on changes in ET, and higher values of these parameters tended to result in higher 440 

increases in ET in the simulations forced with GFDL-CM3.  441 

 442 
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 443 

Figure 10. HSIC results showing parameters at each site to which change in ET and change in growing 444 

season soil moisture are sensitive. Parameters are ordered based on their mean S across sites and GCMs. 445 

The filled points were statistically significant, with p-values indicating that the false discovery rate was 446 

less than 0.1 for each site. O = organic; M = mineral and numbers 1-3 indicate soil layer; see Table S1 for 447 

additional parameter descriptions.   448 

 449 

 450 
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451 

Figure 11. Distribution of scaled parameter values that contribute to the results with the largest and 452 

smallest 20% of changes in VWC or ET at each site. Only statistically significant parameters are shown; 453 

some site/variable combinations had no significant parameters.  454 

4 Discussion  455 

4.1 Sensitivity analysis 456 

At both sites, the most influential inputs were the van Genuchten hydraulic parameters in the soil layer in 457 

which soil moisture was evaluated. Soil hydraulic parameters in subjacent layers were also quite sensitive 458 

in some cases, though they often had the opposite direction of effect: for example, higher θVWC in the 459 

target layer was associated with higher α in that layer, but lower α in the subjacent layer. This is 460 

consistent with the model physics, but may not be immediately obvious during manual calibration. It is 461 

also an example of a parameter interaction that should be taken into consideration when interpreting and 462 

determining hydrologic model parameters. The sensitivity results also depend to some extent on the width 463 

of the prior distributions, which were determined by a detailed literature review. The results should 464 
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therefore be interpreted with the view that the prior distributions are necessarily somewhat subjective, 465 

depending on available literature and modeler interpretation of that literature. Nevertheless, the results of 466 

the sensitivity analysis suggest that soil hydraulic parameters throughout the soil profile should be 467 

carefully considered in ecohydrological model calibrations.  468 

 469 

4.2 Parameter estimation and uncertainty 470 

SHAW was able to simulate soil moisture dynamics reasonably well across multiple sites over 8-13 years. 471 

Parameter sets were identified to minimize error at individual sites, but a multisite, multiobjective 472 

compromise parameter set also provided acceptable performance. The decline in performance of the 473 

compromise parameter set relative to those that performed best at individual sites highlights the risks of 474 

overfitting the model to an individual site or objective. Previous comparable modeling studies in boreal 475 

regions have found mean error of soil moisture in the rooting zone equal to 0.02, which is lower than the 476 

error we generally found when multiple sites were included (Launiainen et al., 2019). Several other soil 477 

moisture modeling studies in boreal regions note the difficulty of modeling soil moisture, relative to soil 478 

temperature, and provide figures illustrating observed and modeled soil moisture, but lack fit statistics for 479 

comparison (Houle et al., 2012; Jones et al., 2014). The relatively poor model performance at Smith Lake 480 

2, particularly relative to the other sites, suggests a model structural deficiency. Most likely, this is due to 481 

the low slope and topographic position and potential for high net lateral flow at this site given the one 482 

dimensional nature of the SHAW model. Recent improvements in SHAW have allowed for the inclusion 483 

of subsurface lateral flow, which could facilitate the use of SHAW in lowland regions.  484 

 485 

The results of our GLUE uncertainty analysis indicate that most parameters were not very well 486 

constrained relative to the prior distributions, though the parameters that had high sensitivity and were 487 

only used at one site (e.g., LAI at each of the hardwood sites) tended to be relatively well constrained by 488 

the calibration. This suggests that differences between sites limit parameter identifiability within our 489 

modeling context. An alternative to the approach presented here would be to calibrate SHAW against 490 

fully spatially distributed data products, whether remotely sensed or interpolated (Zwieback et al., 2019). 491 

While this would provide more explicit spatial variability, it also introduces additional errors in the 492 

calibration data, which run the risk of contributing disinformative data (Beven & Westerberg, 2011). 493 

Future improvements to our method could leverage data from more sites and include more stratification 494 

of soils by texture and organic layer class (i.e., live moss vs dead moss). However, this is limited by the 495 

availability of sites with high quality climate data inputs and validation data. For instance, in the 496 

AmeriFlux site network, which provided important data for this study, there are about twice as many sites 497 
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per km2 in the contiguous United States as in Alaska (25 sites per million km2 in Alaska, and 47 sites per 498 

million km2 in CONUS). In interior Alaska, upland sites with these data characteristics are particularly 499 

rare and are more appropriate for the SHAW model than lowland sites with large expected net subsurface 500 

lateral flows (Govind et al., 2011). 501 

 502 

Another finding of note was that the parameter set that minimized θVWC RMSE at US-Rpf tended to 503 

underestimate ET at the same site. This may suggest tradeoffs between soil hydraulic and plant hydraulic 504 

parameter accuracy. For instance, this parameter set had low LAI and high rs,min, which may have reduced 505 

plant water use and controlled soil moisture in rooting depth via relatively high van Genuchten α in the 506 

adjoining layers. While the wide range of parameter values in the literature makes it difficult to constrain 507 

these parameters, multi-objective model calibration can reduce equifinality to some extent, in alignment 508 

with previous findings (Efstratiadis & Koutsoyiannis, 2010).  509 

 510 

4.3 Climate projection uncertainty 511 

In this study, parameter uncertainty and GCM choice contributed about as much to future soil moisture 512 

and ET uncertainty as the total effect of changing climate in the less sensitive GCM, NCAR-CCSM4. 513 

This finding reinforces the importance of assessing and reporting sensitivity and uncertainty in 514 

environmental simulation models (Saltelli et al., 2019), and, in addition to model structure, may explain 515 

some of the spread in projected future soil moisture across multiple hydrologic models when parameter 516 

uncertainty is not accounted for (Andresen, 2020). Our finding that parameter uncertainty is quite 517 

important contrasts somewhat with previous studies (Dobler et al., 2012; Feng & Beighley, 2020), though 518 

these have focused primarily on discharge in temperate regions. This could be because the effects of 519 

climate change on soil moisture and ET in boreal Alaska are relatively small compared to projected 520 

changes in discharge in temperate regions, or it could suggest that our criteria for behavioral parameter 521 

sets are looser than previous studies, though this is difficult to directly assess. These results highlight 522 

challenges related to subjectivity in choices of “behavioral” parameter sets, GCMs used as input data, and 523 

the climate scenario considered. This inherent subjectivity may be impossible to eradicate from the 524 

practice of modeling, but should be recognized and explicitly considered when interpreting model results.  525 

 526 

Finally, our results demonstrate the effects of individual parameters on projected changes in soil moisture 527 

and ET. In general, soil moisture in SHAW and similar models can be controlled via soil hydraulic and 528 

plant hydraulic parameters, with equifinality in the balance between the two. The parameters that have a 529 

statistically significant effect on change in ET and soil moisture vary between sites and objective, but 530 
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include θsat, ponding, and the Jarvis-Stewart r parameter, which controls the shape of the stomatal 531 

conductance response to vapor pressure deficit, with high values resulting in more sensitivity of stomatal 532 

conductance to vapor pressure deficit. While the statistical significance of these parameters varies 533 

between the GCMs used for forcing and sites, the effect directions are consistent with expectations. For 534 

example, high θsat in the first and second soil layers tended to increase ET. This could be due to the fact 535 

that higher water holding capacity can exceed evaporative demand in historical conditions but not in 536 

future conditions, leading to large increases in ET. Similarly, higher values of r tended to result in greater 537 

increases in ET, which is to be expected in energy-limited environments, where ET may be primarily 538 

sensitive to vapor pressure deficit. While previous studies have quantified the uncertainty in future 539 

climate projections that can result from equifinality (Mendoza et al., 2016), the effect direction of 540 

particular parameter choices has not, to our knowledge, been previously assessed quantitatively. Even in 541 

contexts in which a full uncertainty analysis is not feasible, we suggest that modelers should explicitly 542 

consider and discuss their parameter value selection relative to known ranges of values, and the potential 543 

effects of these parameter selections on projected climate change impacts in a given model.  544 

 545 

5 Conclusions 546 

In this study, we conducted a global sensitivity analysis of a process-based hydrologic model at two 547 

contrasting boreal sites, providing a screening and ranking of sensitive parameters. Soil hydraulic and 548 

plant hydraulic parameters were most sensitive at both sites. We calibrated these sensitive parameters in a 549 

GLUE parameter calibration and uncertainty analysis against soil moisture and ET, and identified 550 

parameters that were most successful in reasonably reproducing VWC and ET across multiple sites. 551 

Critically, we note that the parameter sets identified here should be considered not as an absolute truth, 552 

but as a useful set of parameters for modeling in upland boreal forests. Finally, we compared the effect of 553 

parameter and GCM selection on changes in soil moisture and ET, finding that these selections can 554 

influence the magnitude of projected changes about as much as the total impact of projected climate 555 

change, and in some cases, can even influence the sign of projected changes. In a novel contribution, we 556 

also identified the parameters to which projected changes in hydrology were most sensitive and the 557 

direction of effect of these parameters. While previous studies have assessed the importance of 558 

equifinality for climate change impacts assessments, this assessment of the most important parameters 559 

and direction of their effects can provide guidance to modellers and consumers of modeling studies who 560 

want to understand how specific parameter selections affect estimates of climate change impacts on 561 

hydrologic states and fluxes in boreal regions.  562 
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