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Abstract

Coupled climate simulations that span several hundred years cannot be run at a high-enough spatial resolution to resolve

mesoscale ocean dynamics. These mesoscale dynamics backscatter to macroscales. Recently, several studies have considered

Deep Learning to parameterize subgrid forcing within macroscale ocean equations using data from idealized simulations. In

this manuscript, we present a stochastic Deep Learning parameterization that is trained on data generated by CM2.6, a high-

resolution state-of-the-art coupled climate model with nominal resolution 1/10° . We train a Convolutional Neural Network

for the subgrid momentum forcing using macroscale surface velocities from a few selected subdomains. At each location and

each time step of the coarse grid, rather than predicting a single number, we predict the mean and standard deviation of a

Gaussian probability distribution. This approach requires training our neural network to minimize a negative log-likelihood loss

function rather than the Mean Square Error, which has been the standard in applications of Deep Learning to the problem

of parameterizations. Each prediction of the mean subgrid forcing can be associated with an uncertainty estimate and can

form the basis for a stochastic subgrid parameterization. Offline tests show that our parameterization generalizes well to the

global oceans, and a climate with increased CO2 levels, without further training. We test our stochastic parameterization in an

idealized shallow water model. The implementation is stable and improves some statistics of the flow. Our work demonstrates

the potential of combining Deep Learning tools with a probabilistic approach in parameterizing unresolved ocean dynamics.
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Abstract11

Coupled climate simulations that span several hundred years cannot be run at a high-12

enough spatial resolution to resolve mesoscale ocean dynamics. These mesoscale dynam-13

ics backscatter to macroscales. Recently, several studies have considered Deep Learn-14

ing to parameterize subgrid forcing within macroscale ocean equations using data from15

idealized simulations. In this manuscript, we present a stochastic Deep Learning param-16

eterization that is trained on data generated by CM2.6, a high-resolution state-of-the-17

art coupled climate model with nominal resolution 1/10◦. We train a Convolutional Neu-18

ral Network for the subgrid momentum forcing using macroscale surface velocities from19

a few selected subdomains. At each location and each time step of the coarse grid, rather20

than predicting a single number, we predict the mean and standard deviation of a Gaus-21

sian probability distribution. This approach requires training our neural network to min-22

imize a negative log-likelihood loss function rather than the Mean Square Error, which23

has been the standard in applications of Deep Learning to the problem of parameter-24

izations. Each prediction of the mean subgrid forcing can be associated with an uncer-25

tainty estimate and can form the basis for a stochastic subgrid parameterization. Offline26

tests show that our parameterization generalizes well to the global oceans, and a climate27

with increased CO2 levels, without further training. We test our stochastic parameter-28

ization in an idealized shallow water model. The implementation is stable and improves29

some statistics of the flow. Our work demonstrates the potential of combining Deep Learn-30

ing tools with a probabilistic approach in parameterizing unresolved ocean dynamics.31

Plain Language Summary32

Numerical predictions for the next century are pivotal to understanding the im-33

pact of climate change. However, those predictions are limited in accuracy by the trade-34

off between the models’ spatio-temporal resolution and their time span, due to the large35

computational power involved. Since small-scale dynamics impact larger-scale dynam-36

ics, a common approach is to use idealized equations, based on the practitioner’s under-37

standing of physics, to account for the impact of unresolved small-scale dynamics on the38

large-scale flow. However, this approach has shown its limits. Recently, several studies39

have considered the use of Deep Learning — a set of techniques designed to learn high-40

dimensional complex functions from large amounts of data — to learn the impact of small-41

scale dynamics on the large-scale flow. Here we apply Deep Learning methods using sim-42

ulated data from a state-of-the-art climate model. Additionally, we account for the un-43

certainty associated with the learned representation of the impact of the small scales on44

the large scale. Our tests using this representation in a simple ocean model show that45

some metrics are improved. Much work remains to be done to assess the success of Deep46

Learning in improving climate models.47

1 Introduction48

The climate system is governed by highly non-linear equations, making them in-49

herently multiscale, with small-scale processes backscattering to large scales. Fluid dy-50

namics equations are known and valid in a continuum. However, climate models solve51

fluid dynamics equations on a grid, resulting in approximate solutions. Ideally, increas-52

ing the spatio-temporal resolution could improve these truncated simulations. However,53

even with the increasing available computational power, running climate models over decades54

or centuries is not a viable approach within the near future (Balaji, 2021). Typically, the55

impact of unresolved small-scale processes on coarse quantities is accounted for via pa-56

rameterizations. These parameterizations are commonly based on first principles (Gent57

& McWilliams, 1989), and despite vastly improving the physics and the simulations, they58

continue to induce biases in simulations, e.g. IPCC (2013).59
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The era of Machine Learning offers an opportunity to improve the parameteriza-60

tion of unresolved processes using available data from observations and limited high-resolution61

simulations. While some progress has been made towards online learning of unresolved62

processes in partial differential equations (Sirignano et al., 2020), the approach is not yet63

ready for complex climate simulations and might not be generalizable due to model de-64

pendence. Therefore, the typical approach in atmosphere and ocean modeling consists65

in training Machine Learning algorithms offline, with a subgrid forcing term that is di-66

agnosed via a filtering operation over high-resolution simulation data. Some recent stud-67

ies have shown the potential of Machine Learning approaches for atmospheric (Rasp et68

al., 2018; Yuval & O’Gorman, 2020) and ocean parameterizations (Bolton & Zanna, 2019;69

Zanna & Bolton, 2020) to improve simulations. So far, most studies on ocean param-70

eterizations that use Machine Learning have been limited to the use of data from ide-71

alized models. The viability of deep learning parameterizations using data from realis-72

tic coupled or uncoupled models and their potential to generalize to different climates73

remain open questions. The stability and the physical behavior of the implementation74

of Deep Learning parameterizations in models have also been a subject of debate (Yuval75

& O’Gorman, 2020; Brenowitz et al., 2020).76

Here we address these questions by showing the high performance of a Deep Neu-77

ral Network in offline predictions of subgrid momentum forcing in different climates us-78

ing data from a high-resolution coupled climate model, which resolves ocean mesoscale79

eddies in many regions (Hallberg, 2013; Griffies et al., 2015). Our work focuses on pa-80

rameterizing the interaction between mesoscale eddies and large-scale flow, which is key81

to establishing the transfer of energy between reservoir and scales (Ferrari & Wunsch,82

2009) and to establishing the large-scale ocean circulation (Waterman & Jayne, 2011).83

In particular, we propose a stochastic parameterization that aims to represent the in-84

herent uncertainty of the subgrid forcing, stabilize the online implementation of the pa-85

rameterization (Zanna et al., 2017; Palmer, 2012) and reduce systematic biases (Berner86

et al., 2017; Gagne II et al., 2020). Stochastic parameterizations become especially needed87

in what has been called the gray zone (Gerard, 2007; Jones et al., 2019), where subgrid88

processes are partly resolved such that laws of large numbers do not apply (Berner et89

al., 2017). In our study, our neural network model outputs the mean and standard de-90

viation for the predicted momentum forcing, which forms the basis of a stochastic pa-91

rameterization that we will implement in an idealized ocean model. Our contribution92

therefore establishes a bridge between recent developments on Deep Learning approaches93

to the problem of parameterizations and stochastic approaches (Mason & Thomson, 1992;94

Zanna et al., 2017, 2018).95

The manuscript is structured as follows. In Section 2, we describe the data, the neu-96

ral network architecture and the training procedure — which uses a probabilistic loss97

function. In Section 3, we conduct an offline test on a global scale, showing the ability98

of our neural network to generalize to regions not seen during training. We also show99

the ability of our neural network to generalize to a different climate in which CO2 lev-100

els are higher and have affected the mesoscale variability. In Section 4, we demonstrate101

the potential for increased stability via a stable implementation of our stochastic param-102

eterization into an idealized ocean model. Finally, in section 5 we conclude and discuss103

the implications of our work and future directions.104

2 Methods105

In Sections 2.1 and 2.2, we describe the filtering and subsequent coarsening of the106

data in order to diagnose the corresponding subgrid momentum forcing necessary to force107

a coarse-resolution model. In Section 2.3 and 2.4, we describe a procedure that enables108

us to represent the uncertainty associated with the forcing using a probabilistic loss func-109

tion for training. In Section 2.5 we review the structure of our proposed neural network.110

Finally, in Section 2.6 we provide details about our training procedure.111
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2.1 Data for Training and Validation112

Applications of Deep Learning to the parameterization of subgrid ocean momen-113

tum forcing have been limited to very idealized models of the ocean dynamics so far (Bolton114

& Zanna, 2019; Zanna & Bolton, 2020). In contrast, here we investigate the use of Deep115

Learning using data from a state-of-the-art high-resolution coupled climate model, CM2.6 (Delworth116

et al., 2012; Griffies et al., 2015). The nominal horizontal resolution of the ocean com-117

ponent of CM2.6 is 1/10◦, therefore resolving mesoscale eddies in many regions of the118

ocean (Hallberg, 2013). The data and tools for analysis were obtained from the Pangeo119

platform (Abernathey et al., 2021).120

(a) Standard deviation of u.

(b) Snapshot of zonal velocity

Figure 1: Filtered and coarse-grained surface velocity u in [m/s] from piControl used
as training data: (a) standard deviation of surface velocity norm and (b) snapshot of the
zonal component. The grey rectangle identify the training subdomains used in this study.

The data used in the present work consists of the high-resolution simulated ocean121

surface velocity field u with components u (zonal) and v (meridional). The model grid122

is configured according to an Arakawa B-grid (Griffies, 2015), with velocity points (both123

zonal and meridional) placed to the North-East of tracer (T ) points, i.e. the top-right124

corner of a T -cell. The temporal resolution of the surface velocity data is daily, and the125
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available data span over approximately 7000 days (about 20 years) for each of the two126

available simulations — a control simulation with pre-industrial atmospheric CO2 lev-127

els, referred to as piControl, and a forced simulation with a 1% CO2 increase per year,128

referred to as 1ptCO2 (Griffies et al., 2015). The 1ptCO2 simulation experiences a one129

percent increase of CO2 per year from the levels of the control simulation until it reaches130

doubling after 70 years, at which point the CO2 levels remain constant. The 1ptCO2 sim-131

ulation data available from Pangeo corresponds to years 60-80.132

2.2 Filtering and Coarse-Graining Procedure133

In this section, we describe the processing necessary to generate the training data134

for our neural network. The procedure follows the two steps presented in Zanna and Bolton135

(2020): low-pass area-weighted Gaussian filtering, followed by coarse-graining. Based on136

the high-resolution surface velocities u from the CM2.6 simulations, this procedure gen-137

erates coarse-resolution velocity data that mimics the simulation data from coarser mod-138

els that will serve as the input to our neural network. In addition, given the high-resolution139

and coarsened velocity data, we diagnose the missing subgrid forcing of a coarse-resolution140

model (e.g., CM2.5) compared to its high-resolution counterpart (here, CM2.6). This141

missing forcing is the subgrid parameterization needed at coarse resolution to mimic the142

effect of unresolved scales on the large-scale flow that will be learned by the neural net-143

work.144

Unlike data used in previous machine learning studies (Bolton & Zanna, 2019; Zanna145

& Bolton, 2020; Yuval & O’Gorman, 2020), the CM2.6 grid is on a sphere. In the zonal146

direction, the spacing is uniform at 1/10◦ longitude spacing, but in the meridional di-147

rection, the grid spacing is not uniform. The grids of CM2.5, with 1/4◦ nominal reso-148

lution, and CM2.1, with 1◦ nominal resolution, have a similar structure. Therefore, the149

meridional length scale used to define the subgrid eddy forcing should depend on the lat-150

itude. In contrast with the typical approach, rather than selecting a uniform length scale151

to filter the data and generate a coarse-resolution field, we select a uniform and unitless152

integer scaling factor σ, that defines the number of grid boxes from the high-resolution153

grid that map to a single grid box of the low-resolution grid. This is the simplest and154

most consistent definition of subgrid scale for the purpose of data-driven parameteriza-155

tion. This unitless scaling factor applies to both the filtering and coarse-graining steps.156

We now describe in details the two steps of our low-resolution data generation pro-157

cedure given the fixed scaling factor σ. As a first step we apply a low-pass weighted Gaus-158

sian filter, denoted by ( ), to the high-resolution surface velocity data, with weights pro-159

vided by grid box areas, to separate the subgrid from the resolved field (Bolton & Zanna,160

2019). The standard deviation of the Gaussian kernel is set to σ/2, such that approx-161

imately 80% of its weight falls within the interval [−σ/2, σ/2] of length σ. Note that in162

using a uniform scaling factor we also allow the use of standard convolution algorithms163

for regularly-spaced data. This would not be possible if we were using a uniform length164

scale as we would then have to adapt the size of the filter in terms of number of grid points165

as a function of latitude, incurring a high computational cost to generate the training166

data. The second step simply consists of a coarse-graining procedure. We down-sample167

the data by a factor of σ along each axis, where the down-sampling is based on the mean168

function applied over squares of side length σ – equivalent to area-weighted average. Af-169

ter coarse-graining, the resulting grid consists of approximately σ2 times less points than170

the high-resolution grid.171

This filtering and coarse-graining procedure is applied to the surface velocity from172

CM2.6 control simulation. Figure 1b shows a snapshot of the filtered and coarse-grained173

surface zonal velocity. The subgrid momentum forcing on the high-resolution grid, de-174

noted S = [SX , SY ]T , is diagnosed via,175

S = (u · ∇) u− (u · ∇) u, (1)176
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and is then coarse-grained. For exact implementation details of the entire procedure in177

the form of pseudo-code, please see Appendix B or the online code.178

In our work, we primarily target parameterization for the eddy-permitting regime,179

in which momentum parameterizations are in demand to mimic the inverse energy cas-180

cade and backscatter processes (Treguier et al., 1997; Zanna et al., 2017; Bachman, 2019;181

Jansen et al., 2019; Zanna et al., 2020). Here, we present experiments in which we set182

σ = 4, such that, irrespective of the subdomains of study, the coarse-grained grid has183

approximately 4 times less grid boxes along each horizontal dimension. This choice of184

4 grid boxes leads to a subgrid forcing of an ocean model at resolution 0.4◦, close to the185

resolution of ESM4 which has a nominal resolution of 0.5◦ (Dunne et al., 2020).186

The filtering and coarse-graining procedure is applied to both data from the piCon-187

trol and 1pctCO2 simulations. The piControl dataset will be used both for training and188

offline testing, while the 1ptCO2 dataset will be used for testing only.189

2.3 Prediction: Conditional Distribution of Subgrid Scale Forcing190

Our goal is to learn a parameterization, denoted by Ŝ, of the diagnosed true sub-191

grid momentum forcing, S (eqn. 1), using deep learning. We propose a neural network192

that uses maps of coarse surface velocities, u, at a given time as inputs, and estimates193

the subgrid momentum forcing components at that same time as outputs. Here estimates194

is to be understood in a broad sense: it could be a single-value prediction or a proba-195

bility distribution as we now explain.196

Specifically, in this work we present a stochastic parameterization of the subgrid197

momentum forcing. To do so, we assume that at each grid box, the distribution of the198

forcing is Gaussian, conditionally on the coarse surface velocities (we do not assume that199

the marginal distribution of the forcing is Gaussian). We also assume that the forcing200

at distinct grid boxes and times are conditionally independent given the coarse surface201

velocities.202

The rationale behind stochastic approaches to the modeling of the subgrid-scale203

forcing is the following: firstly they can partly account for the uncertainty in the rep-204

resentation for the subgrid forcing (Brankart, 2013; Berner et al., 2017; Zanna et al., 2018;205

Juricke & Zanna, 2017; Williams et al., 2016; Stanley et al., 2020) ; secondly, they have206

proven potential in stabilizing numerical simulations (Palmer, 2012; Zanna et al., 2017;207

Berner et al., 2017).208

One of the main sources of uncertainty in the predicted subgrid forcing comes from209

the fact that we only use the resolved coarse velocities to make a prediction. Given a sur-210

face velocity field over a subdomain of the oceans at a given time, we do not necessar-211

ily expect the subgrid momentum forcing to be given by a deterministic mapping. To212

illustrate this statement, consider Equation 1; for the problem at hand, u is unknown,213

and while u 7→ u is well-defined as a mapping, it is not invertible. Thus the parame-214

terization problem can be viewed as an inverse problem, for which probabilistic repre-215

sentations are a common approach (Bishop, 1991). If u is seen as a random variable, we216

may want to represent the probability distribution P (u|u), and the same applies to the217

forcing. Hence we may want our neural network’s output to determine a parametric prob-218

ability distribution rather than a single number.219

Besides, a stochastic parameterization of the subgrid forcing can also account for220

the fact that what we call the true subgrid forcing, Equation 1, depends on our choice221

of filter which may not adequately represent the “missing forcing” from any given nu-222

merical model at coarse-resolution. One could train our neural network with subgrid forc-223

ing generated from a variety of methods, to partially account for the fact that the ex-224

act subgrid forcing is not known.225
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The output Gaussian distribution at each location can be interpreted as an esti-226

mate of the conditional distribution of the subgrid momentum forcing given the local ve-227

locity field. Its mean represents the expectation of that conditional probability distri-228

bution, while its standard deviation represents the uncertainty around the mean. Such229

representation will allow deriving confidence intervals of the predicted subgrid momen-230

tum forcing (see Section 3.2). It also forms the basis of our stochastic parameterization,231

see Section 4 about implementation. In the next section, we will show how to learn the232

mean and standard deviation of the subgrid forcing from data.233

2.4 Probabilistic Loss Function: From MSE to Gaussian Log-Likelihood234

To train our neural network, we aim to find a local minimum to a loss function L(S, Ŝ(θ))235

— summed over all the samples of the training dataset — that represents the mismatch236

between our prediction Ŝ and the true value S given the current state of the parame-237

ters of the neural network, represented here by the vector of parameters θ. Here, S, the238

target tensors of the neural network corresponding to a single sample at a given time,239

has dimensions (nC , nx, ny), where nC = 2 for the zonal and meridional component of240

the velocity field, and (nx, ny) is the size of the domain considered, i.e., the number of241

grid boxes in the zonal and meridional direction, respectively. We have ignored the num-242

ber of mini-batches here for simplicity, which will be discussed in Section 2.6.243

The most common loss function used in regression is the Mean Square Error (MSE),244

which in our case would take the form of, for a single sample,245

LMSE(S, Ŝ(θ)) =

nC∑
k=1

nx∑
i=1

ny∑
j=1

(Ŝk,i,j − Sk,i,j)
2, (2)246

where k denotes the index of the component of the subgrid momentum forcing (here, 1247

corresponds to the zonal component and 2 to the meridional component). Despite its248

widespread use within the Deep Learning community for regression, the MSE loss func-249

tion is not always appropriate. To justify the above claim briefly, it is common to inter-250

pret the MSE loss function from a probabilistic perspective. For simplicity, we limit the251

discussion to univariate random variables, but this can be easily extended to multivari-252

ate variables. Let ψ, ξ be random variables; assume that ψ is observed, and ξ is such that253

its conditional probability density function given ψ is a Gaussian distribution with mean254

µ and constant standard deviation σ,255

p(ξ|ψ;µ, σ) =
1√

2πσ2
exp

{
− (ξ − µ(ψ))2

2σ2

}
. (3)256

If we assume that µ(ψ) can be modeled by a parametric function f (in our case the neu-257

ral network) with parameter θ, the log-likelihood of the parameters θ, σ for an indepen-258

dent and identically distributed (i.i.d.) sample {ψi, ξi}i=1,...,n will be given by,259

l(θ, σ) =

n∑
i=1

{
−1

2
log 2πσ2 − (ξi − f(ψi,θ))2

2σ2

}
. (4)260

Maximizing this log-likelihood1 over θ, σ can be achieved in a separable way (Davison,261

2003): we first maximize over θ, which corresponds to training the neural network us-262

ing the MSE loss, and we then estimate σ by simply computing the standard deviation263

of the residuals {f(ψi,θ)−ξi}i=1,...,n. Hence, from a probabilistic point of view, by min-264

imizing the MSE loss function, we are assuming a constant standard deviation (i.e. that265

does not depend on the velocity field).266

1 Maximizing the log-likelihood results in estimating the parameters of a probability distribution, so

that under the assumed statistical model f the observed data ψ is most probable.
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In this paper, we propose to relax this common assumption based on the literature267

and our understanding of the data. We replace the MSE loss function by a full negative268

Gaussian log-likelihood. Referring back to our univariate example, this would lead to re-269

placing Equation 4 by,270

l(θ) =

n∑
i=1

{
−1

2
log 2πf2(ψi,θ)2 − (ξi − f1(ψi,θ))2

2f2(ψi,θ))2

}
, (5)271

where our function f —which would correspond to our neural network — now has two272

components, one for the mean, f1, of the Gaussian distribution, and the other one for273

the standard deviation, f2. In particular, the term corresponding to the standard devi-274

ation of the Gaussian in Equation 5, f2(ψi,θ)), does depend on the input ψi. In order275

to apply this to the problem of subgrid momentum forcing, we build our neural network276

to output the two moments of a Gaussian distribution, at each location and for both (zonal277

and meridional) components of the subgrid momentum forcing. The output tensor, Ŝ,278

now has dimension (2×nC , nx, ny): we have four output channels (2 ×nC)— the first279

two correspond to the means of the two components of the subgrid momentum forcing,280

the last 2 correspond to the associated standard deviations. Our loss function therefore281

takes the form of (ignoring constant terms),282

LG(S, Ŝ(θ)) =

nC∑
k=1

nx∑
i=1

ny∑
j=1

{
log Ŝk+2,i,j +

(Ŝk,i,j − Sk,i,j)
2

2Ŝ2
k+2,i,j

}
, (6)283

For ease of reading, we introduce a more natural notation, where we denote SC,i,j284

the true value of the forcing, Ŝ
(mean)
C,i,j the mean of the predicted gaussian distribution,285

and Ŝ
(std)
C,i,j its standard deviation, for component C = X(zonal), Y (meridional) at lo-286

cation i, j. With this notation, Equation 6 takes the form of,287

LG(S, Ŝ(θ)) =
∑

C=X,Y

nx∑
i=1

ny∑
j=1

log Ŝ
(std)
C,i,j +

(Ŝ
(mean)
C,i,j − SC,i,j)

2

2
(
Ŝ
(std)
C,i,j

)2
. (7)288

The neural network will learn to jointly optimize the two moments of the predicted Gaus-289

sian distribution, as we show in the schematic of Figure 2. Note that we also jointly train290

on both zonal and meridional components of the forcing, rather than having separate291

neural networks for each component, as in (Zanna & Bolton, 2020).292

2.5 Neural Network Architecture293

Our neural network is a Fully Convolutional Neural Network (Long et al., 2015)294

with a sequence of eight convolutional layers. The ReLU activation function is used for295

hidden layers. Given that the neural network is fully convolutional, it can adapt to vary-296

ing sizes of the input subdomain. We remind the reader that the input consists of two297

channels, one per component of the velocity field, while the output consists of four chan-298

nels, two for each of the two components of the subgrid momentum forcing, see Section 2.4.299

We do not use any padding in the implementation of our convolutional layers. Due to300

the lack of padding in our neural network structure, some pixels near the edges are lost301

in the application of convolutional layers. This results in the outputs predicted by our302

neural network having spatial extent (nx − p, ny − p), where p is a non-negative inte-303

ger that depends on the size of the kernels used in the convolutional layers.304

The mean of the subgrid momentum forcing predicted by the neural network can305

take any real value, as such we do not use any activation function in the final layer for306

the first two channels. However, the output predicted for the standard deviations are re-307

quired to be positive. To enforce this constraint, we use a softplus function, defined by,308

softplus(x) = ln(1 + expx) > 0, (8)309
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Figure 2: Our neural network outputs four maps: the two first maps are the maps of the
means of the predicted forcing components, the last two maps are the standard deviation
of the predicted forcing components.

as a final activation function for the two output channels associated with the standard310

deviations.311

2.6 Training and Validation Procedure312

We now describe our training procedure. The inputs are fed into the neural net-313

work in the form of mini-batches (i.e. small batches of several samples stacked along an314

extra dimension), rather than individually, such that the dimensions of our input ten-315

sors are (nbatch, nC , nx, ny), where nbatch is the number of samples per mini-batch, set316

to nbatch = 4 in our experiments. A common practice in the methodology of neural net-317

works is to normalize inputs to be distributed within the interval [−1, 1], to avoid van-318

ishing and exploding gradients in the application of the back-propagation algorithm. Here,319

we multiply the surface velocities by a factor of 10. This same transformation is applied320

in testing.321

The targets used to train and evaluate our neural network consist of the true sub-322

grid momentum forcing computed in Equation 1 for a given subdomain. We train our323

neural network on data from the piControl simulation. We restrict the training data to324

a combination of four selected sub-domains of the oceans — shown as gray rectangles325

in Figure 1b, see also Table 1— that correspond to various dynamical regimes: the Gulf326

Stream extension, the Equatorial Atlantic, just south of the Equatorial Pacific, and in327

the South Pacific gyre. We leave further improvements through more advanced selection328

and weighting of the training subdomains for future work. We select the first 80% of the329

data (approximately spanning 16 years) as training data, and the final 15% (approxi-330

mately spanning 3 years) are used for validation. We ignored 5% of the data (1 year)331

to avoid any correlation between the training data and the validation data, as it could332

cause validation metrics to become over-optimistic.333
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Table 1: Subdomains used for training and validation.

subdomain latitude range longitude range

A 35.0◦, 50.0◦ -50.0◦, -20.0◦

B -40.0◦, -25.0◦ -180.0◦, -162.0◦

C -20.0◦, -5.0◦ -110.0◦, -92.0◦

D 0.0◦, 15.0◦ -48.0◦, -30.0◦

In the training phase samples are entirely shuffled across the time dimension, as334

well as across subdomains. This allows to jointly train on data from all selected subdo-335

mains simultaneously. However, this requires the tensor inputs obtained from all the sub-336

domains to have the same spatial sizes. We therefore crop the input tensors according337

to the smallest size across subdomains for both spatial dimensions, resulting in train-338

ing samples of spatial extent (nx, ny) = (38, 45).339

We compute the average loss — defined in Section 2.4 — over the samples of a mini-340

batch and across the two components of the forcing, and across both longitude and lat-341

itudes. The average loss is then back-propagated to obtain the derivatives of the loss func-342

tion with respect to the neural network’s parameters. The neural network’s parameters343

are then updated using the ADAM algorithm (Kingma & Ba, 2015). ADAM has become344

one of the go-to optimization algorithm in the Deep Learning community, which is in part345

due to its robustness to the choice of the learning rate and its quick convergence. Af-346

ter the neural network’s parameters have been updated, we repeat the same process with347

a new mini-batch, and so on, until all the training data has been used, which corresponds348

to one epoch of training. At this point, we compute the average loss over the validation349

data, which was not used for optimization. We track this validation loss over the whole350

set of training epochs and repeat this process. We implement early stopping so that train-351

ing stops once the validation loss has not improved for four consecutive epochs of train-352

ing. More details about our final choice of hyperparameters, such as the learning rate,353

hand-picked through a validation procedure, can be found in Appendix A.354

3 Offline Tests on a Global Scale355

We test our stochastic deep learning parameterization on a global scale and demon-356

strate its generalization properties offline via test metrics for which notation is introduced357

in Section 3.2. In Section 3.3 we first carry out a test on piControl in order to assess the358

ability of our neural network model to generalize to subdomains and dynamical regimes359

not seen during the training phase. We then carry out a test on 1ptCO2 in Section 3.4,360

where the CO2 levels in the atmosphere reach double those of the piControl simulation.361

Our results show that our stochastic deep learning parameterization performs well in this362

new climate, without requiring further training of our neural network. This is crucial if363

such parameterizations are to be used for climate projections (Rasp et al., 2018; O’Gorman364

& Dwyer, 2018).365

3.1 Global Reconstruction for Offline Testing366

We directly apply our trained neural network to the global coarse velocities for of-367

fline testing. When applying the neural network to global data, we extend the input ve-368

locities cyclically along the zonal dimension, thus ensuring the output covers all longi-369

tudes. This is not possible along the meridional dimension, thus resulting in the loss of370

p = 10 grid boxes (see Section 2.5) along the meridional dimension at both extreme lat-371

itudes.372
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Velocity snapshots are assembled to form small mini-batches with size 4 (equiva-373

lent to 4 days); the size is determined by the available GPU memory. Non-ocean points374

of the input grid are stored as NaNs. In our tests, we therefore ignore locations whose375

receptive field intersect with a continent and show them as greyed-out in the maps shown376

thereafter (note, the receptive field of a neuron within the neural network’s output is the377

set of input neurons that impact its value). We leave the treatment of near-continent grid378

points for future work.379

3.2 Metrics and Statistics for Offline Performance380

To quantify the offline accuracy of our neural network’s predictions of the subgrid381

momentum forcing, we define several metrics. We note T = 7300 the total number of382

days over which these metrics are computed.383

We first define our notation for the standard Mean Square Error (MSE) and cor-384

relation. To make explicit the dimension along which the data is reduced to compute these385

two metrics, we write MSEC,i,j,− for the time-mean MSE of the C ∈ {X,Y } compo-386

nent of the forcing, where the reduction is carried out along the time axis, i.e.387

MSEC,i,j,− =
1

T

T∑
t=1

(
Ŝ
(mean)
C,i,j,t − SC,i,j,t

)2
, i = 1, . . . , nx, j = 1, . . . , ny. (9)388

The combined MSE, that encompasses both components X and Y , can be shown on a389

map, and is defined as390

MSEi,j,− =
1

T

T∑
t=1

{(
Ŝ
(mean)
X,i,j,t − SX,i,j,t

)2
+
(
Ŝ
(mean)
Y,i,j,t − SY,i,j,t

)2}
. (10)391

We also define a scalar MSE according to,392

MSE =
1

nx ny T

T∑
t=1

nx∑
i=1

ny∑
j=1

{(
Ŝ
(mean)
X,i,j,t − SX,i,j,t

)2
+
(
Ŝ
(mean)
Y,i,j,t − SY,i,j,t

)2}
. (11)393

In addition to the standard MSE, we define an R2 coefficient which is normalized394

by the value of the true subgrid forcing such that395

R2
C,i,j,− = 1−

∑T
t=1

(
Ŝ
(mean)
C,i,j,t − SC,i,j,t

)2
∑T

t=1 S2
C,i,j,t

, C = X,Y, (12)396

and its scalar version R2
C , according to,397

R2
C = 1−

∑T
t=1,i,j

(
Ŝ
(mean)
C,i,j,t − SC,i,j,t

)2
∑T

t=1 S2
C,i,j,t

, C = X,Y. (13)398

We note that R2
C ≤ 1 and if Ŝ

(mean)
C,i,j,t is zero, R2

C is 0. The advantage of this quantity399

is that it is easier to interpret when shown on a map — values close to 1 indicate that400

our predictions account for a large part of the average amplitude of the subgrid momen-401

tum forcing, while values close to 0 would indicate the opposite.402

In order to verify that our model is not simply predicting the seasonal climatol-403

ogy of the subgrid momentum forcing, we define a modified version of this quantity, ac-404

cording to,405

R2,clim
C,i,j,− = 1−

∑T
t=1

(
Ŝ
(mean)
C,i,j,t − SC,i,j,t

)2
∑T

t=1

(
Sclim
C,i,j,t − SC,i,j,t

)2 , C = X,Y, (14)406
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where Sclim
C,i,j,t is the climatological C−component subgrid momentum forcing at location407

i, j and time t. This metric allows us to assess what percentage of the signal’s variance408

we account for, after removing the inherent variability due to the seasonal climatology.409

Another quantity of interest given our probabilistic representation of the subgrid410

momentum forcing parameterization is that of the standardized residuals, given by,411

eC,i,j,t =
Ŝ
(mean)
C,i,j,t − SC,i,j,t

Ŝ
(std)
C,i,j,t

, C = X,Y. (15)412

Under our idealized assumption, these normalized residuals are expected to follow a stan-413

dard normal distribution.414

We will also use confidence intervals, to quantify the uncertainty in the predicted415

subgrid forcing and evaluate it performance. Under the Gaussian assumption, a 95% con-416

fidence interval corresponds to,417

S
(mean)
C,i,j ± 1.96 S

(std)
C,i,j , C = X,Y. (16)418

3.3 Generalization & Subdomains — Test on piControl419

We carry out an offline test of our neural network on global scale data from piCon-420

trol. There are large variations in subgrid eddy momentum in the piControl (Fig. 3a)421

across the oceans, with the largest amplitude occurring in eddy rich regions such as the422

Gulf Stream, Kuroshio, Southern Ocean and equatorial regions. There is a strong co-423

herence between the pattern of the variance of the mean of the true subgrid forcing (Fig. 3a)424

and that of the predicted forcing (Fig. 3b). This coherence holds for the zonal and merid-425

ional component of the forcing, as shown for example in the correlation map between426

the true zonal forcing and the mean component of the predicted zonal forcing (Fig. C1).427

428

The time-mean MSE over both components of the forcing (eqn. 11) can vary by429

several orders of magnitude from one region to another (Fig. 4a). However, these changes430

are largely due to the inherent spatial variability of the subgrid forcing, evident by com-431

paring its spatial pattern (Fig. 3a) with the spatial pattern of the MSE (Fig. 4a). There-432

fore, the R2,clim
i,j,− coefficient (eqn. 14) is more informative of the neural network’s perfor-433

mance (Fig. 4b).434

In most regions of the oceans, our neural network is able to account for more than435

70% of the signal’s variance, with performance nearing 90% in regions where the vari-436

ance of the eddy momentum forcing is the highest, for instance in the Gulf Stream re-437

gion and Southern Ocean (see the appendix for maps of the R2,clim computed for each438

component of the forcing – Fig. C2 – showing similar skill). These metrics indicate that439

the neural network generalizes well to most regions, despite being trained on only four440

small subdomains of the oceans. However, our neural network performs poorly in sea-441

ice covered regions, which is not surprising as the dynamics of these regions were not in-442

cluded in the training and varies widely from open ocean turbulence. Considering tur-443

bulence at the ocean-ice boundary will be left for future work, and will require numer-444

ical simulations that can adequately represent such processes.445

The near-global (60◦S, 60◦N) scalar R2 value obtained is 0.869, while for R2,clim
446

we obtain 0.855; the skill demonstrates the high performance of our neural network and447

further confirms that the neural network does not merely predict large variations due448

to the seasonal climatology. The global R2 is higher than the average of R2 values over449

the map due to the higher R2 values in regions where the variance of the forcing is large450

(note that eqn. 13 is not the spatial average of eqn. 12).451

To demonstrate some advantages of predicting the two moments of a Gaussian dis-452

tribution, we focus on time series at two different locations. We compare the time se-453
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(a) True forcing

(b) Predicted mean

Figure 3: Time-mean variance of the norm of momentum forcing in piControl: (a) True
forcing ||S||; (b) predicted mean, ||Ŝmean|| in offline testing.
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(a) Mean Square Error (piControl)

(b) R2,clim metric (piControl)

Figure 4: Time-mean (a) MSE (equation (10)) and (b) R2,clim, defined using Equa-

tion (14) as R2,clim
X,i,j,− + R2,clim

Y,i,j,−, for piControl.

ries of the true and predicted zonal forcing at 30◦N, 60◦W , which is located within the454

turbulent Gulf Stream region (Fig. 5a), and at 20◦S, 104◦W , which corresponds to a more455

quiescent region with less mesoscale eddy activity (Fig. 5b). The true zonal forcing SX,i,j,t456

is shown along with the mean prediction Ŝ
(mean)
X,i,j,t and the 95% confidence interval obtained457

from the predicted standard deviation Ŝ
(std)
X,i,j,t. The forcing is generally well approximated458

by the predicted mean forcing, except when extremes occur. However, the true forcing459

is, most of the time, within the 95% confidence interval. The predicted standard devi-460

ation Ŝ
(std)
X,i,j,t varies greatly across the considered time window — indicating that the un-461

certainty of the forcing is not constant. Our neural network performs best in turbulent462

regions. This is in agreement with R2 maps where higher values are observed in regions463

where the forcing is larger, and also with results from idealized ocean models (Bolton464

& Zanna, 2019; Zanna & Bolton, 2020). Finally, to investigate regions with a low R2 score,465

we analyze the time series of the true and predicted meridional forcing at 29◦N, 129◦W466

(Fig. C3), which corresponds to a location near the West Coast of the United States where467
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the R2 score is 0.532. The time series indicates that the low R2 occurs due to a few ex-468

treme events that are not well predicted.469

To further analyze our predicted forcing from the piControl dataset, we study the
global distribution of a stochastic simulation of subgrid momentum forcing generated us-
ing,

S̃C,i,j = Ŝ
(mean)
C,i,j + εC,i,j × Ŝ

(std)
C,i,j , C = X,Y, i = 1, · · · , nx, j = 1, · · · , ny,

where the inputs to the neural network are the coarse surface velocities from piControl.470

The histograms of the global distribution of each component of the subgrid forcing for471

the true and simulated forcing show that the two distributions are very similar (Figure C4).472

However, the distribution of the true forcing has larger tails than that of the simulated473

forcing. This is partly due to our assumption that the distribution of the forcing, con-474

ditioned on the coarse surface velocity field, is Gaussian. We test this hypothesis by in-475

vestigating the distribution of normalized residuals, defined by Equation 15. Figure C5a476

consists of the sample distribution of normalized residuals (blue), after subsampling one477

point out of ten along the time axis, and one point out of five along the spatial axes, shown478

together with the probability density function of the standard normal distribution (red.479

We also present a quantile-quantile (QQ)-plot of the sampled normalized residuals in Fig-480

ure C5b, using the same subsampling procedure as in Figure C5a. The normalized resid-481

uals have much heavier tails than those of a standard normal. Hence, we could improve482

our model by using another distribution with heavier tails, or a multimodal distribution (Bishop,483

1991). This approach will likely improve the offline prediction of extreme events which484

we have shown is problematic in our neural network. We leave this investigation for fu-485

ture work.486

3.4 Generalization & Climate Change — Test on 1ptCO2487

One key challenge for deep learning parameterizations in ocean and climate mod-488

eling is for them to be able to generalize to a new climate (O’Gorman & Dwyer, 2018).489

So far, we have only used data from the piControl simulations, both for training (Sec-490

tion 2.6) and testing (Section 3.3). Here, we test the trained neural network from sec-491

tion 2.6, without further tuning, using simulated data from 1ptCO2. The surface veloc-492

ities, associated kinetic energy, and subgrid momentum forcing, are influenced by the CO2493

forcing. The time-mean standard deviation of the surface velocity between piControl and494

1ptCO2 (Figure 6a) changes by up to 40% in some parts of the oceans. The majority495

of the changes are occurring in regions dominated by high kinetic energy in piControl496

such as the Gulf Stream region and its extension, the Kuroshio extension, or the South-497

ern Ocean. Besides, we identify changes in the Indian Ocean and in the Arctic (ice-melt498

is likely related to changes in the latter). Similar changes in the subgrid momentum forc-499

ing are occurring as well (Figure 6b). The surface velocities used as inputs to the neu-500

ral network and the target subgrid forcing to be predicted are therefore significantly dif-501

ferent from those of piControl.502

In order to compare performance of our neural network on piControl and 1ptCO2503

we use the same metrics as in Section 3.3. The MSE and R2,clim metrics computed over504

the 20 years of daily simulation data from 1ptCO2 are shown in Fig. 7. Our neural net-505

work performs as well for this new climate as it did for the climate it had been trained506

on (e.g., compare Fig. 7 with Fig. 4). The time-mean R2,clim obtained on piControl and507

1ptCO2 show little difference (Figure 7c), except in the North-East Atlantic and in cer-508

tain polar regions which were partially ice-covered in piControl, where there is a slight509

decrease in performance (at most 0.1) as measured by the time-mean R2,clim. We com-510

pute scalar metrics of the performance of our neural network’s performance over the pi-511

Control and 1ptCO2 simulation data, again limited to 60◦S, 60◦N , and obtain 0.871 for512

R2 and 0.858 for R2,clim, i.e. very similar to the values obtained for piControl. The neu-513
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(a) turbulent

(b) quiescent

Figure 5: Time series of the zonal component of the subgrid momentum forcing at (a)
30◦N, 60◦W , a location dominated by turbulent behavior and (b) 20◦S, 104◦W , a more
quiescent location for one year: true forcing (solid blue), mean of the predicted forcing
(orange), and 95% confidence interval (green).
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(a) Surface velocity relative change.

(b) subgrid momentum forcing relative change.

Figure 6: Relative difference between piControl and 1ptCO2 in the standard deviation
of the (a) surface velocity norm and (b) subgrid forcing norm. Positive (negative) val-
ues indicate that the variance has increased (decreasing) in the 1ptCO2 compared to the
piControl.

ral network for subgrid momentum forcing trained on piControl data generalizes well to514

an unseen warmer climate as simulated by a coupled high-resolution climate model.515

4 Online Implementation in an Idealized Model516

Offline performance tests have not been good predictors for online performance,517

as shown for example in Zanna and Bolton (2020), at least not using current assessment518

metrics. The coupling between the machine learning (ML) parameterization and the prog-519

nostic model must satisfy the same numerical stability criteria and conservation prop-520

erties as any physics-derived parameterization. Therefore, good offline performance is521

a necessary condition to the success of any ML parameterization, but is not a sufficient522

condition.523

Zanna and Bolton (2020) implemented a convolutional neural network parameter-524

ization which, while physically constrained, led to too vigorous an inverse energy cas-525

cade. While the model was not numerically unstable, the behavior of the model was pushed526
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(a) Mean Square Error (1ptCO2)

(b) R2,clim metric (1ptCO2)

(c) Change in R2,clim between 1ptCO2 and piControl.

Figure 7: Performance of the trained neural network on 1ptCO2simulation: (1) Mean
Square Error (1ptCO2) ; (b) R2,clim metric (1ptCO2); (c) Change in R2,clim between
1ptCO2 and piControl.
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into a different dynamical regime in which the eddy mean-flow interactions dominated527

over the wind forcing. To ensure a reasonable dynamical behavior, the authors tuned down528

the parameterization by a spatially and temporally uniform multiplicative factor to re-529

duce the magnitude of the forcing in an ad-hoc way.530

The use of a stochastic parameterization has the potential to damp the eddy (and531

destabilizing) feedbacks seen in Zanna and Bolton (2020). Here, we use the same ide-532

alized barotropic shallow water model as in Zanna and Bolton (2020) (see their study533

for further details about the model, or our code) to implement the stochastic deep learn-534

ing parameterization learned from complex CM2.6 data. The stochastic parameteriza-535

tion is implemented in a 40 km horizontal resolution run, and we compare the runs to536

a high-resolution model run at 10 km horizontal resolution, hence mimicking the change537

in resolution between CM2.6 simulation data and the coarse-grained data we generated538

to diagnose the momentum forcing.539

Unlike CM2.6 which was on a B-grid, the shallow water model is discretized on an540

Arakawa C-grid. Therefore, at each time step of the integration, we first interpolate the541

two velocity components on tracer points and then pass them through our neural net-542

work. This produces, for each grid box and for each component of the forcing, a mean543

Ŝ
(mean)
C,i,j and a standard deviation Ŝ

(std)
C,i,j . The stochastic subgrid momentum forcing S̃544

implemented in the shallow water model is then generated (see schematics in Fig. 10)545

according to,546

S̃C,i,j = Ŝ
(mean)
C,i,j + εC,i,j × Ŝ

(std)
C,i,j , C = X,Y, i = 1, · · · , nx, j = 1, · · · , ny, (17)547

where the εC,i,j are sampled according to i.i.d. standard normal distributions. The field548

S̃ is then interpolated back to the u and v grid for the X and Y components, respectively,549

and used as the value of the subgrid momentum forcing in the shallow water model.550

We ran the model for 10 years and produced 3 different ensemble members of the551

parameterized model. The parameterized simulations are stable and produced a physically-552

consistent state without any tuning or scaling factor. The kinetic energy of the flow is553

improved: both the mean and the standard deviation are very close to the high-resolution554

simulation (Fig. 8). Similarly to Zanna and Bolton (2020), the variance of the velocity555

fields (not shown) and sea surface height (Fig. 9) are vastly improved by the parame-556

terization. However, changes in the mean velocity are rather small (not shown). We be-557

lieve that the simplicity of the shallow water model used in the present study is at the558

core of the lack of substantial improvement in the mean flow and will be tested in a more559

complex model in future work. Unlike Zanna and Bolton (2020), no physical constraint560

was imposed when learning the neural network parameterization in our study; yet, we561

do not observe any drift in the model. Despite using zero-padding during the implemen-562

tation, the solutions near the boundaries are not strongly impacted, as reported by Zanna563

and Bolton (2020). Overall, the coarse resolution stochastic simulations are 25% slower564

than the unparameterized runs but more than 40 times faster than a high-resolution sim-565

ulation at 10 km on the same CPU. However, this statement is to be taken with care as566

the high-resolution simulation was not optimized.567

5 Discussion568

Current parameterizations of ocean and atmosphere processes remain a large source569

of bias and uncertainty in climate models. Therefore, harnessing state-of-the-art Deep570

Learning and statistical methods to improve parameterizations of subgrid processes has571

recently raised a lot of interest (Rasp et al., 2018; Bolton & Zanna, 2019; Yuval & O’Gorman,572

2020; Zanna & Bolton, 2020). Here, we have demonstrated the potential of Deep Learn-573

ing approaches for the problem of ocean momentum subgrid parameterizations using data574

generated by a realistic coupled climate model, as opposed to data from idealized ocean-575
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(a) Time series
(b) Histogram

Figure 8: Kinetic energy [m2/s2] (a) time series, and (b) histogram for the low resolu-
tion unparametrized simulation at 30 km (blue), low resolution parameterized ensemble
member simulations (green, orange, red), and filtered + coarse-grained high-resolution
simulation (purple). In panel b: the solid lines indicate the mean and the dashed lines the
standard deviation of the simulated kinetic energy; note that only one ensemble member
is shown, but the other ensemble members produce similar statistics.

Figure 9: Standard deviation of sea surface height [m] for the (left) low resolution simu-
lation; (middle) one ensemble member from the parameterized versions; (right) the high
resolution simulation.

only quasi-geostrophy or primitive equation simulations (Bolton & Zanna, 2019; Zanna576

& Bolton, 2020).577

The use of data from realistic coupled climate models to train Deep Learning is non-578

trivial due to the size of the problem, the use of the tripolar irregular spherical grid, and579

the coupling between the ocean and the atmosphere. Here, we establish a filtering and580

coarse-graining procedure to diagnose the subgrid momentum forcing in a global model581

and show that using only a limited number of subdomains, we can train a neural net-582

work to skillfully predict the subgrid momentum forcing over the global ocean, and in583

a different climate with increased CO2 levels. However, there are several remaining chal-584

lenges. We have shown that the offline skill of the predictions is lower in regions where585

sea-ice is present. Therefore, to improve parameterizations of ocean mesoscale eddies in586

these regions, it might be necessary to acquire data that can faithfully represent these587
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Figure 10: Procedure for generating the stochastic parameterization (eqn. 17) imple-
mented in the coarse resolution idealized model, based on the trained neural network.

interactions. Another outstanding challenge is related to grid boxes located near con-588

tinents, due the filtering and learning phases.589

The neural network was trained to predict the parameters (mean and standard de-590

viation) of a Gaussian probability distribution at each grid box, therefore providing a591

probabilistic approach to predicting the subgrid forcing with Deep Learning. This prob-592

abilistic approach attempts to account for both the uncertainty in the mapping between593

the coarse velocity field and the subgrid forcing and the uncertainty in the data itself.594

Stochasticity has been shown to improve model bias and produce more reliable ensem-595

ble predictions (Berner et al., 2017). Besides, while most current Deep Learning approaches596

to the parameterization of subgrid processes have been deterministic, a stochastic ap-597

proach could be key when it comes to online implementations. Many Deep Learning im-598

plementations of parameterizations trained offline have resulted in poor stability prop-599

erties or unrealistic flows in online simulations. Stochasticity could potentially solve this600

issue as shown in previous work (Palmer, 2012; Zanna et al., 2017). Using an idealized601

shallow water model, we showed that implementing our stochastic parameterization re-602

sults in stable simulations and produces a realistic flow without any tuning. However,603

while the stochastic parameterization vastly improved some metrics (mean and variance604

of the kinetic energy), the impact on other metrics were only modest (e.g., zonal veloc-605

ities).606

The probabilistic approach presented here to learning the subgrid forcing remains607

simple and could be applied to parameterizing other processes. Yet it could benefit from608

more advanced probabilistic modeling. While we limited ourselves to conditionally i.i.d.609

Gaussian distributions, our analysis of residuals shows that representing higher moments610

could lead to a better representation of the distribution of subgrid forcing. In addition,611

we do not account for model uncertainty, i.e. uncertainty in the parameters of the neu-612

ral network (Jospin et al., 2020). While Bayesian neural networks remain computation-613

ally more expensive, recent progress on that front could be an interesting avenue of in-614

vestigation, and provide additional assurance compared to single outputs.615

Finally, combining closed-form parameterizations with stochastic Deep Learning616

approaches could be another fruitful avenue. For instance, it would be possible to pre-617

dict the mean forcing via a closed-form equation, such as done by Zanna and Bolton (2020)618

using equation-discovery methods, while representing higher-order moments via a prob-619

abilistic Deep Learning approach similar to that proposed in this manuscript. This ap-620

proach could improve our understanding of missing processes and their representation621

in climate models. While the effects of Deep Learning subgrid parameterizations on cli-622

mate projections remain to be ascertained, the benefits of Deep Learning could be greater623

if they are used to understand processes from a probabilistic perspective.624
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Appendix A Training Hyperparameters625

The values of the hyperparameters used in our training procedure are provided in626

Table A1. The learning rate is decreased through the training procedure, hence we pro-627

vide its initial value (epoch 0) and epochs at which it is decreased. The provided num-628

ber of epochs corresponds to the maximum number of training epochs. In practice, train-629

ing usually stops earlier due to our implementation of early stopping.630

Table A1: Hyperparameter values for training

Hyperparameter Value

Number of epochs 100

Learning rate Epoch 0 5e−4

Epoch 10 5e−5

Epoch 20 5e−6

Batch size 4

Filter sizes Layers 1− 2 5
Layers 3− 8 3

Padding No

Appendix B Generation of Low-Resolution Data and Estimates of the631

Missing Mesoscale Forcing632

In this appendix we provide pseudo-code for the generation of the low-resolution633

data based on the CM2.6 high-resolution dataset. This algorithm makes use of two func-634

tions whose pseudo-code is also provided, filter, which applies a Gaussian filter to the635

passed data weighted by the cell areas, and advections, which computes the advection636

term of a discrete velocity field.637
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Algorithm 1: Filtering & Coarse-graining procedure

Data: ui,j , vi,j , i = 1, . . . ,m, j = 1, . . . , n
Result: ui,j , vi,j , SX,i,j , SY,i,j

/* Pre-processing: replace nans (i.e. land points) with zeros */

if ui,j == NAN then ui,j ← 0;
if vi,j == NAN then vi,j ← 0;
/* Compute the filtered high-rez surface velocities, for each

component */

ui,j ← filter(ui,j) ; /* filter function defined below */

vi,j ← filter(vi,j);
/* Compute the advection term of the filtered surface velocities */

ψX,i,j , ψY,i,j ← advection(ui,j , vi,j) ; /* advection function def. below */

/* Compute the filtered advection term from high-rez surface

velocities */

φX,i,j , φY,i,j ← advection(ui,j , vi,j);

φX,i,j ← filter(φX,i,j);

φY,i,j ← filter(φY,i,j);
/* Compute the components of the forcing term */

SX,i,j ← ψX,i,j − φX,i,j ;

SY,i,j ← ψX,i,j − φX,i,j ;
/* Apply coarse-graining by factor σ */

ui,j ← coarsen(ui,j , σ);
vi,j ← coarsen(vi,j , σ);
SX,i,j ← coarsen(SX,i,j , σ);
SY,i,j ← coarsen(SY,i,j , σ);

Function filter:
Input: ui,j , dxi,j , dyi,j , σ
Output: ui,j
Ai,j = dxi,j × dyi,j ; /* Area of the U-cell */

ui,j =

∑2σ
i′,j′=−2σ

ui′,j′∗Ai′,j′ exp
{
− (i′−i)2+(j′−j)2

2(σ2 )
2

}
∑2σ
i′,j′=−2σ

Ai′,j′ exp

{
− (i′−i)2+(j′−j)2

2(σ2 )
2

} ;

return ui,j ;

Function Advection:
Input: ui,j , vi,j , dxi,j , dyi,j
Output: φX,i,j , φY,i,j
∂xui,j ← ui,j−ui−1,j

dxi,j
;

∂yui,j =
ui,j−ui,j−1

dyi,j
;

∂xvi,j =
vi,j−vi−1,j

dxi,j
;

∂yvi,j =
vi,j−vi,j−1

dyi,j
;

/* Note here that the 4 quantities defined above need to be

interpolated back on the U-grid before the two lines below */

φX,i,j = ui,j∂xui,j + vi,j∂yui,j ;
φY,i,j = ui,j∂xvi,j + vi,j∂yvi,j ;
return φX,i,j , φY,i,j ;

638

Remark: the high-resolution velocities are not defined on continents. To still be able639

to apply the Gaussian filtering used in the above procedure, we define the surface ve-640

locities at those points as zero.641
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Appendix C Complementary Figures642

Figure C1: Correlation between SX and Ŝ
(mean)
X
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(a) R2,clim metric (piControl) for the zonal component

(b) R2,clim metric (piControl) for the meridional component

Figure C2: Map of time-mean R2,clim metric in piControl for (a) the zonal component
(b) the meridional component. The performances for both components are similar.
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Figure C3: Time series of the true (solid blue) zonal component of the subgrid momen-
tum forcing, mean zonal component of our neural network (orange), and 95% confidence
interval (green), at 29◦N, 129◦W . This location was selected within the region on the
West coast of the United States where the R2 is lower; this appears to be due to a few
extreme events that are not accurately predicted, rather than a consistent ill-performance.
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Figure C4: Sample log-probability distribution of true (purple) and stochastically sim-
ulated forcing (green) in the control simulation, for both components — zonal (left) and
meridional (right). The histograms are shown on a log scale due to the hyperbolic-type
distribution of the forcing.
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(a) Sample distribution

(b) QQ plot

Figure C5: Distribution analysis of normalized residuals (eqn. 15) of subgrid momentum
forcing in the control simulation. (a) Sample distribution (blue) along with the proba-
bility density function of the standard normal distribution (red), (b) QQ plot (blue) of
normalized residuals against the standard normal distribution, and line (green) defined by
y = x.
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