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Abstract

In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park

agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic

Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the

campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR

(Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common

AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration

data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During

the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30000 km2 of UAVSAR data were collected over 10

key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1 hectare
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sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated

uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR

products and field measurements. Our results showcase the types of data products and scientific results expected from the

spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use

of waveform Lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more

applications by the greater scientific community.
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Abstract 1 

In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among 2 

international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in 3 

support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA 4 

Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign 5 

was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-6 

band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for 7 

the AfriSAR deployment was the common AGBD estimation requirement for the three future 8 

spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full 9 

range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. 10 

During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30000 km2 of 11 

UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of 12 

forest structure and biomass were collected in sixteen 1 hectare sized plots. The campaign 13 

produced gridded Lidar canopy structure products, gridded aboveground biomass and associated 14 

uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric 15 

SAR and Tomographic SAR products and field measurements. Our results showcase the types of 16 

data products and scientific results expected from the spaceborne Lidar and SAR missions; we 17 

also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform 18 

lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water 19 

resources and more applications by the greater scientific community. 20 

 21 
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1. INTRODUCTION: THE NEED FOR MULTI -SENSOR FOREST STRUCTURE DATASETS  24 

Following the urgent need for improved mapping of vegetation structure (Le Toan et al., 25 

2011) to better quantify global carbon stocks and fluxes from land use change (Houghton et al. 26 

2005) and impacts on ecosystem services and forest resources (Bustamante et al., 2016), NASA 27 

and ESA have developed three spaceborne missions – NASA Global Ecosystems Dynamics 28 

Investigation (GEDI, Dubayah et al, 2020), NASA-ISRO Synthetic Aperture Radar Mission (NISAR, 29 

Rosen et al., 2016) and ESA BIOMASS (Quegan et al., 2019) - to be launched between 2018 and 30 

2022.  By virtue of the different sensitivities to forest structure combined with overlapping 31 

coverage at different geographic and time scales, NISAR, GEDI and BIOMASS are slated for new 32 

remote sensing analysis and scientific discovery that were not possible to date or with each 33 

mission alone. In particular, the fusion of data from these three missions, which will be freely and 34 

publicly available, will provide scientific opportunities to further our understanding of ecosystem 35 

processes from the scale of anthropogenic disturbance to the global scale. An overview of the 36 

main expected mission parameters is shown in Table 1.   37 

GEDI is a geodetic laser altimeter and waveform lidar instrument built and operated by  NASA 38 

and University of Maryland. The GEDI mission launched on December 5th, 2018 and deployed on 39 

the International Space Station (ISS), with the aim of measuring forest structure and biomass 40 

within the ISS coverage window of +/- 51.6 degrees latitude (Dubayah et al., 2020; Duncanson et 41 

al., 2020). The GEDI mission provides canopy height and Aboveground Biomass Density (AGBD) 42 

samples within 25 m footprints and a wall-to-wall gridded data products at 1 km resolution. The 43 
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GEDI mission’s strengths lie in the penetration capability of GEDI’s near infrared lasers (1064 nm 44 

wavelength) and the near-continuous recording of the returned signal, providing the most 45 

accurate vertical samples of canopy structure from space. The spatial distribution of GEDI 46 

footprints is dense in tropical biomes (8 tracks separated by ~600-m across track with footprints 47 

spaced ~60-m along track) but no observations will be generated at high-latitudes (>51.5 48 

degrees) due to the ISS orbit. 49 

 The NASA-ISRO Synthetic Aperture Radar Mission (NISAR) is a three-year joint US-India L- and 50 

S-band SAR mission to be launched in 2023 with scientific applications in the solid earth, 51 

cryosphere, hydrosphere and ecosystem sciences (Rosen et al., 2017). NISAR will provide global, 52 

cloud-free, wall-to-wall L-band SAR observations with two polarizations (HH and HV) at 12.5 m 53 

resolution, with a 12 day repeat and approximately 30 observations per year (NISAR, 2018). One 54 

of the mission objectives is to map woody vegetation disturbance, recovery and AGBD up to 100 55 

Mg ha-1 at the 1 ha scale. NISAR’s primary limitation for mapping of forest structure lies in the 56 

reduced sensitivity of L-band backscatter to AGBD above approximately 100 Mg/ha (Yu and 57 

Saatchi, 2016). This limits accurate AGBD mapping in most dense tropical, subtropical and 58 

temperate forests if backscatter alone is used.   59 

 The European Space Agency’s BIOMASS Mission is a 5-year P-band SAR mission (435 Mz) to 60 

be launched in October 2022 with the primary objectives of mapping forest AGBD and height at 61 

200 m spatial resolution and disturbance at 50 m spatial resolution (Carreiras et al., 2017; Le Toan 62 

et al., 2011). The ESA BIOMASS mission will collect data in fully polarimetric, repeat-pass 63 

interferometric and tomographic modes to produce repeated measurements of forest height as 64 

well as AGBD during its 5-year mission life (Quegan et al., 2019). These maps are expected to be 65 
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more accurate in higher AGBD ecosystems than those produced by other SAR missions, due to 66 

higher P-band penetration into the canopy compared to shorter wavelengths such as L, C, X or S-67 

band and, more importantly, due to the missions’ capability to support Polarimetric InSAR and 68 

Tomographic SAR. However, the BIOMASS mission will only aquire data over tropical and 69 

subtropical regions worldwide due to the International Telecommunication Union–70 

Radiocommunications restrictions over North America and Europe (Carreiras et al., 2017).  71 

In anticipation of the three missions, there was a need for field and airborne measurements 72 

of forest structure and condition, as well as new forest structure retrieval algorithms across a 73 

wide range of tropical forest conditions.  As a result the European Space Agency (ESA), United 74 

States National Aeronautics and Space Agency (NASA), French Aerospace Lab (Office National 75 

d'Etudes et de Recherches Aérospatiales; ONERA), German Space Agency (Deutsches Zentrum 76 

für Luft-und Raumfahrt; DLR), Gabonese National Park Agency (Agence Nationale des Parcs 77 

Nationaux; ANPN), the Gabonese Earth Observation Agency (Agence Gabonaise de l’Etude et 78 

Observation de la Terre; AGEOS) and multiple international University partners collaborated on 79 

the AfriSAR campaign, to acquire coincident calibration and validation datasets that would 80 

facilitate comparison between the airborne, field  and spaceborne data. It follows NASA’s 81 

previous regional field campaigns, such as 1994 and 1996 Boreal Ecosystem-Atmosphere Study 82 

(BOREAS), the 2001 Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-ECO) and 83 

the 2015 Arctic-Boreal Vulnerability Experiment (ABoVE), and ESA’s TropiSAR in combining 84 

remote-sensing techniques and ground-based experiments to assess ecosystem structure and 85 

change in responses to anthropogenic and environmental drivers.  86 
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The primary aim of the AfriSAR campaign was to collect ground, airborne SAR and airborne 87 

Lidar data for the development and evaluation of forest structure and AGBD retrieval algorithms 88 

and GEDI, NISAR and BIOMASS sensor calibration and validation. The campaign consisted of two 89 

deployments, the first deployment in 2015 focused only on ESA BIOMASS calibration with the 90 

ONERA SETHI P- and L- band SAR system; the second in 2016 included the NASA deployment, 91 

with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR and the 92 

DLR L- and P-band F-SAR system; during both deployments AGEOS and ANPN collaborated on site 93 

selection, coordination and field measurements. The objectives of the AfriSAR deployments were 94 

to:  95 

1) Measure forest canopy height, canopy profiles and AGBD under a variety of forest 96 

conditions, such as primary and degraded forest, and a variety of forest types, including 97 

tropical rainforest, mangroves, forested freshwater wetlands and savannas. 98 

2) Acquire detailed measurements of airborne SAR data and Lidar data for validation and 99 

cross calibration of NASA and ONERA/DLR instruments and for calibration and 100 

validation support of the BIOMASS, NISAR, and GEDI missions. 101 

3) Conduct technology demonstrations of joint SAR and Lidar applications for improved 102 

measurement of canopy structure and AGBD.  103 

The AfriSAR campaign encompassed both field and airborne missions to study forest structure 104 

and AGBD of tropical forests. The ESA and DLR acquisition and analysis have been described in 105 

detail in Hajnsek et al., (2016),  Wasik et al (2018) as well as Labriere et al (2018).  In this paper, 106 

we focus on the NASA contribution to the AfriSAR campaign and describe the objectives, field 107 

measurements and study sites covered. We also provide an overview and analysis of the higher-108 
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level NASA AfriSAR data products and in anticipation of similar data products that will result from 109 

NISAR and GEDI. In section Error! Reference source not found., we describe the targeted field 110 

sites and study area. Section 3 provides a detailed overview of the field and airborne data analysis 111 

while section 4 describes the  methods used to acquire field and airborne canopy structure and 112 

AGBD estimates from different sensors and processing techniques, such as PolInSAR, Lidar and 113 

Tomographic SAR. In section 5, we present an analysis and comparison of the different data 114 

produced by the campaign. Section 6 discusses the broader implications of the airborne 115 

campaign for mission algorithm development and existing applications of the data. Finally, in 116 

section 7, we discuss the implications of the campaign and present our general conclusions. 117 

Table 1. Overview of the GEDI, NISAR and BIOMASS expected mission parameters 118 

 GEDI NISAR BIOMASS 
Type Waveform Lidar  L-band SAR  P-band SAR  
Coverage ~ +/- 51.6 degrees Global South America, Africa, Asia, 

Australia 
Launch date Dec 5 2018 2022 2022 
Min. Mission length 2 years  3 years 5 years  
Repeat coverage None Every 12 days Every 3 days 
Resolution 25 m footprint  

1 km gridded data  
12.5 m SLC  
12.5 x 12.5 GRD 

30 m SLC  
50 m gridded Disturbance  
200 m gridded Height and 
AGBD product 

AGB range all  <100 Mg ha-1 all 
AGBD Uncertainty  <20 Mg ha-1 or 20% 

standard error, 
whichever is greater, 
for 80% of 1km cells 

20% up to 100 Mg ha-1 20% for AGBD > 50 Mg ha-1  
10 Mg ha-1 for AGBD <50 Mg 
ha-1 

2. STUDY AREA 119 

Gabon was selected as the study area for AfriSAR due to ecological and logistical 120 

considerations, as it is a densely forested country with rich structural and functional biodiversity. 121 

By area, Gabon is the second most forested tropical country in the world with 88.5% forest cover 122 
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and 23.5 M ha of forest (Sannier et al., 2014). Its composition roughly follows the precipitation 123 

gradient, with mesic equatorial coastal forests in the west and drier Guinean–Congolian lowland 124 

forests in the east (Poulsen et al, 2016).  Forests are estimated to have the second highest carbon 125 

density after Malaysia, with a mean total (above and belowground)  carbon density of 164 Mg C 126 

ha-1 (Saatchi et al., 2011). Almost three-quarters (67%) of Gabon’s forest is in logging concessions 127 

while 30000 km2 or 11% of the land areas are protected in 13 national parks that encompass 128 

most of the important terrestrial, coastal, and marine ecosystems in the country (Forêt 129 

Ressources Management, 2018). Across the country, 31% of the forested areas have been 130 

selectively logged, with harvest intensities ranging from 0.4–0.8 trees ha-1 (Medjibe et al., 2013). 131 

Gabon has among the richest wildlife and plant communities in Africa, and up to 20% of its 132 

species are endemic to the country. For example, roughly 40% of the world’s western lowland 133 

gorillas are thought to live in Gabon (Laurance, 2006).  134 

 The sites imaged as part of the NASA AfriSAR campaign were selected based on preceding ESA 135 

acquisitions, the availability of field measurements of forest structure, accessibility and 136 

recommendations by experts, most notably the Gabonese National Park Service - Agence 137 

Nationale des Parks Nationaux (ANPN). The four joint ESA/NASA AfriSAR Sites were Mondah 138 

forest, Lopé National Park, Mabounié and Rabi (Fig. 1). The additional NASA AfriSAR sites were 139 

Pongara National Park, Akanda National Park, the Gamba Complex and Mouila, as well as two 140 

transects flown to capture geographic and climatic variability. See the Supplemental material for 141 

a detailed description of the sites. 142 

 143 
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3. AIRBORNE AND FIELD DATA ACQUISITION 144 
LVIS is a medium-altitude imaging laser altimeter designed and developed at the NASA 145 

Goddard Space Flight Center to measure vegetation structure, sub canopy ground elevation, and 146 

topography of ice sheets and glaciers (Blair et al., 1999). It is also the airborne prototype of the 147 

GEDI mission with similar instrument and data specifications. LVIS was flown in Gabon from 148 

February 20th to March 8th 2016 on the NASA Langley King Air B-200 at an altitude of 7.3 km 149 

(Table 2). The nominal footprint diameter was 20 m with 9 m separation, providing overlapping 150 

along track footprints. Both the transmitted and return signals are digitized to provides a true 3D 151 

vertical record of intercepted surfaces including the canopy surfaces and underlying ground. 152 

From each waveform, canopy height, canopy vertical metrics, and subcanopy topography were 153 

derived, relative to the WGS-84 ellipsoid (Blair et al., 1999; Blair and Hofton, 2018). We compared 154 

LVIS crossover footprints (areas where two footprints from different acquisitions overlap) to 155 

compute horizontal and vertical accuracy of the measurements.  156 

LVIS standard data products include Level 1B and 2B. The Level 1B product contains the 157 

geolocated laser return waveforms in HDF5 format. The Level 2 product contains elevation 158 

(ground and canopy top) and Relative Height (RH) products derived from the Level 1B file in ASCII 159 

text (.TXT) format. LVIS Crossover comparisons showed that the LVIS Level 1B product has an 160 

expected horizontal geolocation of 1 m or less (Lope 0.41 m, Mabounié 0.57 m, Mondah 0.99 m, 161 

and Rabi 0.5 m) and vertical accuracy of 5 to 10 cm (Blair and Hofton, 2018).  More acquisition 162 

details and original L1 & L2 data products are available through the National Snow and Ice Data 163 

Center DAAC and LVIS website. 164 

UAVSAR is an airborne fully polarimetric L-band (1.26 GHz, 80 MHz bandwidth) Synthetic 165 

Aperture Radar (SAR) system designed, built and operated out of the NASA Jet Propulsion 166 
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Laboratory. The instrument was developed for repeat pass interferometry (InSAR) in support of 167 

crustal deformation, polarimetric Interferometric SAR (PolInSAR) and Polarimetric tomography 168 

(TomoSAR) to measure forest structure and sub canopy topography (Hensley et al., 2008). It was 169 

deployed in Gabon from February 23 through March 8,  2016 on the NASA Gulfstream III aircraft, 170 

flying at 12.5 km altitude and equipped with a Precision Autopilot system allowing for flight 171 

repeat track acquisition within 5 m of the original flight line. UAVSAR multi-looked complex data 172 

resolution is 0.00005556 degrees, or 6.14 m at the equator. The aim of collecting UAVSAR in 173 

Gabon was to acquire multiple repeat-pass InSAR acquisitions with varying interferometric 174 

baselines and time spans, including mimicking NISAR temporal baselines (Denbina et al., 2018). 175 

The different interferometric baselines are obtained by acquiring repeat flight lines parallel to 176 

the first line but displaced vertically (i.e. changing flight altitude) by multiples of 15 m or 20 m 177 

(Table 2).  This flight configuration was designed to resolve a wide range of forest canopy heights, 178 

and flight were nudged vertically by 15 m or 20 m  to minimize the variation of the interferometric 179 

wavenumber within UAVSAR’s imaging swath (i.e. the wavenumber varies more rapidly across 180 

the range perpendicular to flight with horizontal baselines). 181 

The vertical baselines collected by UAVSAR were planned considering different objectives for 182 

the study areas.  For example, the Akanda site was flown repeatedly using the same baseline 183 

lengths, in order to provide the data for an in-depth study of temporal decorrelation.  The 184 

Pongara study area was limited to fewer flight lines due to scheduling.  The Lope study area had 185 

baselines designed for TomoSAR, with consistent spacing between baselines and a large 186 

maximum baseline length.  The appropriate baseline lengths were also planned using limited pre-187 

existing knowledge (from lidar and field surveys) of the expected forest heights in each study 188 



 

 12 

area.  However, some study areas had maximum canopy heights greater than expected, such that 189 

the minimum baseline length collected by UAVSAR was insufficient to retrieve the heights of 190 

some of the tallest trees (Denbina et al., 2018). 191 

UAVSAR acquired data in several modes including PolSAR, Inteferometric SAR (InSAR), 192 

PolInSAR, Tomographic SAR (TomoSAR), zero-baseline (i.e. exact repeated flight line). The Lopé 193 

site was the most extensively covered with up to 9 baselines on two separate dates (Feb 25 and 194 

March 8). The two flights were acquired 12 days apart in order to simulate the temporal 195 

difference between two NISAR acquisitions. UAVSAR Standard products include full polarimetric 196 

(HH-HV-VV-VH) mulitilook complex (.mlc) gridded geocoded (.grd) data. Additionally, a SLC 197 

datastack was produced that includes all of the acquisitions with varying baselines, plus the 198 

vertical wavenumber and effective baseline data. The number of repeat passes and baselines are 199 

shown in Table 2.  200 
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 201 
Figure 1 NASA AfriSAR Airborne Acquisitions. A) All LVIS and UAVSAR acquisitions. B and C 202 
show LVIS and UAVSAR acquisitions and field data sites separately. 203 



 

 14 

Table 2  LVIS and UAVSAR airborne acquisitions, site names and dates* 204 

LVIS Acquisitions 
Site Name Date in 2016 
Mabounié February 20 
TanDEM-X transect February 22 
GEDI crossover transect February 22 
Biomass-1 transect February 23 
Lopé March 2 
Pongara March 4 
Rabi March 7 
Mondah and Akanda March 4 
Mondah and Akanda March 8 
Biomass-2 Transect March 8 

UAVSAR acquisitions 
 Vertical Baseline configuration [m]  
Mondah and Akanda 0, 0, 0, 45, 45,45, 60, 60, 60  March 6 
Pongara 0, 20, 45, 105  February 27 
Pongara - March 6 
Lope (North) 0, 20, 40, 60, 80, 100, 120, 0 February 25 
Lope (North) 0, 20, 40, 60, 80, 100, 120, 160, 180, 0 March 8 
Lope mosaic (entire park) - March 1 
Rabi 0, 20, 40, 60, 80, 100, 120, 160, 180, 200 February 28 
Mouila, Mabounié and Ogooué 0 March 1 
Gamba Complex 0 March 6 

*LVIS acquired data on multiple days and flights over several sites. The dates shown here represent 205 
primary date at which most of the data over specific sites was collected.  206 
 207 

 208 

In Situ:  We established and surveyed field plots in the forested areas in and surrounding the 209 

Mondah Forest in collaboration with ANPN. The Mondah plots were spatially distributed in low 210 

density forest based on previously developed biomass estimates (Saatchi et al., 2011) and 211 

previously flown discrete return Lidar data (Silva et al., 2018) to focus on lower AGBD (<200 Mg 212 

AGBD ha-1) forests.  Sampling was conducted in March 2016 using a modified methodology of the 213 

Gabon National Resource Inventory (Poulsen et al., 2017). 214 
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 The field team established 15 1-ha plots (100 m x 100 m) divided into sixteen 25 x 25 m 215 

subplots and recorded the GPS coordinates of all plot and subplot corners. Technicians measured 216 

the diameter at breast height (1.3 m) of every tree ≥ 5 cm and counted the number of trees < 5 217 

cm diameter. A botanist identified trees to species or genus. In addition, field teams measured 218 

tree heights with a laser hypsometer (TruPulse 200 Hypsometer, Laser Technology, Inc., 219 

Centennial, CO, USA), taking three measurements of 55 randomly selected trees per site with 10 220 

trees from each of 5 DBH subclasses (10-20 cm, 21-30 cm, 31-40 cm, 41-50 cm, >50 cm) and the 221 

five largest trees. Shrub height was measured at each subplot corner and shrub cover for each 222 

quadrant was recorded. Within each subplot, field teams took hemispherical photos at 0.5 m 223 

height from the forest floor. For woody vegetation shorter than breast height, a 1 x 1 m mini-plot 224 

was randomly set up in each subplot to measure percent ground cover. In addition to these 225 

measurements, field teams recorded the following: altitude and orientation of each plot, forest 226 

type (primary, secondary or logged), inundation type (never, seasonally or permanently), and 227 

presence of disturbances, such as downed trees, fires, elephant or other large animal damage. 228 

The field team also noted whether there was evidence of hunting, forest product harvesting, and 229 

human trails and stumps.  230 

4. NASA AfriSAR Data Products and Algorithms  231 

4.1. DATA PRODUCTS 232 
Following the release of the standard LVIS and UAVSAR data products, the AfriSAR science 233 

team has produced additional Level 3 and 4 data products in line with GEDI and NISAR data 234 

products. The aim of producing these products is to promote scientific analyses of the AfriSAR 235 
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data and advance the calibration and validation between sensors and missions (Table 3). AfriSAR 236 

products are versioned and may be improved in the future.  237 

 238 
Table 3 AfriSAR data product list 239 
AfriSAR Data Product 
Name Description Reference 

Mondah Forest Tree 
Species, Biophysical, and 
Biomass Data, Gabon, 
2016 

Individual tree, Plot (1 ha) and subplot 
(0.0625 – 0.25 ha) AGBD and structure 
metrics including uncertainty 

Fatoyinbo et 
al., 2018 

 
LVIS-based products    

L1B Geolocated 
Waveforms 

Geolocated laser return waveforms for 
each laser footprint 

Blair and 
Hofton, 2018a 

L2 Elevation and Height 
Products 

Ground and canopy top elevations and 
relative height metrics describing the 
vertical distribution of Lidar return 
energy from the ground. 

Hofton et al, 
2018b 

Footprint-Level Canopy 
Cover and Vertical Profile 
Metrics  

Footprint-level products of vertical 
profiles of canopy cover fraction in 1-
meter bins, vertical profiles of plant 
area index (PAI) in 1-meter bins, 
footprint summary data of total 
recorded energy, leaf area index, 
canopy cover fraction, and vertical 
foliage profiles in 10-meter bins in 
Lopé, Mondah/Akanda, Pongara, Rabi 
and Mabounié. 

Tang et al., 
2018 

Gridded Forest Biomass 
and Canopy Metrics 
Derived from LVIS, 
Gabon, 2016 

Gridded version of Canopy cover, 
canopy heights, bare ground elevation, 
plant area index (PAI), foliage height 
diversity (FHD) and respective 
uncertainties at 25 m resolution in 
Lopé, Mondah/Akanda and Mabounié. 

Armston et al., 
2020 

Gridded Estimates of aboveground 
biomass (AGB) and respective 
uncertainties for four sites in Gabon at 
0.25 ha (50 m) resolution derived with 
field measurements and airborne LiDAR 
data collected from 2010 to 2016.  

Armston et al., 
2020 

  UAVSAR based products   
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Polarimetric SAR Stack Calibrated, co-registered single look 
complex (SLC) time series data in slant 
range  

Alaska Satellite 
Facility DAAC 

Canopy Height Derived 
from PolInSAR and Lidar 
Data 

Canopy height and intermediate 
parameters of the PolInSAR data 
(including radar backscatter, 
coherence, and viewing and terrain 
geometry) from multi-baseline 
PolInSAR data using the Kapok open-
source Python library over Lopé, 
Pongara, Mondah/Akanda. 

Denbina et al., 
2018a 

Canopy height derived from a fusion of 
PolInSAR and LVIS Lidar data over Lopé, 
Pongara, Mondah/Akanda. 

Denbina et al., 
2018a 

Canopy Structure Derived 
from PolInSAR and 
Coherence TomoSAR 
NISAR tools 

Canopy Height, associated uncertainty 
and intermediate products derived by 
applying multi-baseline PolInSAR using 
the PLaNT software and Polarimetric 
Coherence Tomographic SAR (PCT) 
techniques over Lopé, Mondah and 
Rabi 

Lavalle et al., 
2018a 

Polarimetric Height 
Profiles by TomoSAR, 
Lope and Rabi Forests, 
Gabon, 2016 

Canopy height profiles produced using 
synthetic aperture radar tomography 
(TomoSAR) over Lopé and Rabi 

Hawkins et al., 
2018a 

 240 
 241 
 242 
 243 

4.2. PLOT LEVEL ABOVEGROUND BIOMASS DENSITY:  244 

We estimated AGBD for the Mondah plots using a pantropical allometric model including 245 

parameters for tree diameter, height and wood specific density as developed by Chave et al. 246 

(2014). We used the R package, BIOMASS, to analyze the plot data (Réjou-Méchain et al., 2017). 247 

BIOMASS assigns wood density values to trees, builds a model to predict tree height from DBH 248 

using one of five potential functional forms, and propagates errors associated with diameter and 249 

wood density measurements, tree height predictions, and the allometric model. 250 
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 251 

4.3. HEIGHT AND TOPOGRAPHY PRODUCTS  252 

LVIS gridded height models and bare earth DEM were produced for the Lopé, 253 

Mondah/Akanda, Pongara, Rabi and Mabounié flightlines from the standard LVIS Level 2 254 

topography and relative height data products distributed for each laser footprint (Blair and 255 

Hofton, 2018). The canopy height was determined by the geolocation of the precise timing points 256 

along the received waveform. These timing points include the received waveform signal start, 257 

end and distinct modes representing reflecting surfaces within each laser footprint. An array of 258 

energy percentiles between the signal end (0%) and start (100%) ranging points were then 259 

computed, with the relative height (RH) of each percentile bin defined as its elevation minus the 260 

elevation of the lowest detected mode (ie the ground) for more detail, see Blair et al. (1999). 261 

The relative height metrics RH25, RH50, RH75, RH90, RH95, RH98, RH99 and RH100 were 262 

computed from the lidar waveform.  The percentile indicates the relative amount of energy 263 

above from the ground. For example, RH50 represents the height below which there is 50% of 264 

the lidar return energy.  RH98, RH99 and RH100 can be used to represent the top canopy height. 265 

The LVIS 25 x 25 m (0.0625 ha) spatial resolution relative height metrics (RH25, RH50, RH75, 266 

RH90, RH95, RH98, RH99 and RH100) and bare earth elevation grids were generated from the 267 

footprint elevation and height metrics. All shots falling within individual cells according to their 268 

ground location were aggregated and statistical moments calculated (mean and standard 269 

deviation of values). An ancillary data product describing the number of shots and flightlines used 270 

for each grid cell was also generated. The bare earth elevation or Digital Elevation Model (DEM) 271 

interpolation approach used the natural neighbor algorithm (Sibson, 1981), which is an efficient 272 
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interpolation algorithm that requires no local tuning of parameters and has been previously 273 

applied to the generation of lidar DEM’s over large areas (Fisher et al., 2020). The gridded 274 

products cover a smaller spatial extent than the footprint products, since the former include 275 

transects and transit flightpaths. All LVIS gridded products use the GeoTIFF format. 276 

UAVSAR canopy height products and associated uncertainty maps from multi-baseline 277 

Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) were generated for all sites 278 

where multiple interferometric baselines were collected, namely Lopé, Rabi, Pongara and 279 

Mondah. The co-registered stacks of UAVSAR SLC images are also distributed as a level 2 280 

product and form basis input layers to derive the PolInSAR height products.  Three product 281 

variants of the UAVSAR-derived Canopy Height Models (CHM) were generated using different 282 

algorithms and implemented using 2 different softwares with potentially different 283 

interpretations of forest structure and height (e.g. sensitivity to tree density or woody 284 

biomass). These three products were produced using:  285 

1) the prototype NISAR interferometric processor ISCE (Interferometric Software Computing 286 

Environment) and the PLAnT toolbox (Polarimetric-Interferometric Lab and Analysis 287 

Tool) (LAVALLE et al., 2018b), called CHMPLAnT from hereon,  288 

2) an inversion of the random volume over ground (RVoG) model implemented in Kapok: an 289 

open source Python library (Denbina et al., 2017). This canopy height inversion is called 290 

CHMKapok from hereon, 291 

3) a fusion approach that inverts the RVoG model using a Support Vector Machine (SVM) 292 

machine learning algorithm to estimate the best interferometric baseline for each pixel.  293 

The SVM is trained using lidar canopy height data, and attempts to select the 294 
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interferometric baseline with highest accuracy given the observed PolInSAR coherence 295 

characteristics (Denbina et al., 2018), called CHMfusion from hereon. 296 

The standard approach used in all three products for estimating canopy heights from multiple 297 

baselines starts by calibrating and co-registering the set of available Single Look Complex (SLC) 298 

along with generating maps vertical wavenumber (kz), look vector, and latitude and longitude 299 

referenced to the WGS84 ellipsoid. The vertical wavenumber represents the sensitivity of the 300 

interferometric phase to vertical canopy height, and is dependent on the spatial baseline 301 

between the repeat acquisitions as well as the viewing and target geometry (Kugler et al., 2015). 302 

The vertical wavenumber determines the suitability of a given baseline to accurately estimate 303 

canopy height for a particular true forest height.  Different baselines with different vertical 304 

wavenumbers can be utilized to produce consistent canopy height inversion accuracy across a 305 

wide range of forest heights (Kugler et al., 2015). 306 

The vertical wavenumber maps were computed using the calculated look vector for each pixel, 307 

and considering the distortion effects caused by the underlying ground topography, based on the 308 

30m SRTM DEM. While higher resolution DEMs were available in some areas, none covered the 309 

full extents of the UAVSAR acquisitions. The full look vector was used, rather than just the look 310 

angle, in order to account for the effect of aircraft attitude including non-zero squint angle.  311 

 312 

UAVSAR CHMPLAnT data were produced for Mondah, Rabi and Lopé National Park sites. These 313 

were generated with the prototype NISAR interferometric processor ISCE and the PLAnT toolbox 314 

starting from polarimetric SAR (PolSAR) SLC stacks (Lavalle et al., 2018a). This product also 315 

includes various intermediate PolInSAR products including canopy and ground coherence maps, 316 
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mask coherence separation, mask coherence error and location, and merged vertical 317 

wavenumber maps.  To generate the CHMPLAnT product, PolInSAR canopy height and uncertainty 318 

products were derived using an algorithm based on the random-volume-over-ground (RVoG) 319 

(Cloude and Papathanassiou, 2003; Papathanassiou and Cloude, 2004) and its extension, named 320 

random-motion-over-ground (RMoG), to include temporal decorrelation (Lavalle and Hensley, 321 

2015),  as well as the structured-volume-over-ground (SVoG) models (Cloude et al, 2006). For 322 

CHMPLAnT, a cost function based on the product between mean PolInSAR coherence and 323 

RVoG/RMoG-model visible line length (the distance between optimized PolInSAR coherences) 324 

was adopted. The merging of interferometric observations from the multiple baselines ensures 325 

a good balance between random phase noise, which increases with baseline length due to 326 

increased volume decorrelation and lower interferometric coherence, and interferometric 327 

sensitivity to structure. It also provides an effective way to partially compensate for temporal 328 

decorrelation effects that result from acquiring images of an interferometric pair in repeat-pass 329 

modes (i.e. at different time).  Masking of very low coherence samples and very small baselines 330 

was applied during the multi-baseline merging process depending on the multi-baseline flight 331 

configuration and characteristics of the imaged forests.  The associated canopy height 332 

uncertainty product represents the standard deviation in meters of CHMPLAnT. More details about 333 

the generation of the CHMPLAnT products and the canopy height uncertainty product  can be found 334 

in Riel et al., 2018. 335 

  336 

The UAVSAR CHMKapok product provides estimates of forest canopy height and uncertainty for 337 

study areas in Pongara and Lopé derived with the Kapok software (Denbina et al., 2018a; Denbina 338 
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et al., 2018b). This dataset also includes various intermediate PolInSAR products including radar 339 

backscatter, coherence, and viewing and terrain geometry. Canopy height was derived from the 340 

multi-baseline UAVSAR data by inverting the RVoG model. Kapok uses the SLC stack to calculate 341 

a multi-look PolInSAR covariance matrix for each pixel in the imagery. Kapok also resamples the 342 

available vertical wavenumber, look vector, and geolocation information to have the same 343 

dimensions as the multi-looked UAVSAR image stack.  344 

After calculating the multi-look covariance matrix, a coherence optimization procedure was 345 

performed to find the PolInSAR coherences with the largest separation in the complex plane, 346 

followed by an estimation of the interferometric phase of the ground surface beneath the forest 347 

canopy, as in the standard three-stage RVoG model inversion procedure (Cloude and 348 

Papathanassiou, 2003).  For each pixel, a single interferometric baseline was used for the height 349 

inversion, based on the characteristics of the observed coherence region, as described in 350 

(Denbina et al., 2018b) CHMKapok products were created by solving for the forest canopy height 351 

and extinction parameters of the model, ignoring the effects of temporal decorrelation.  Pixels 352 

with low HV backscatter were masked out to avoid estimating forest heights over water areas 353 

and had their canopy height set to zero (i.e., non-forest). CHMKapok uncertainty is the standard 354 

deviation in meters of the canopy height product hv, derived using the same approach as 355 

described in Riel et al., (2018).  356 

 357 

UAVSAR CHMfusion: In addition to the standard PolInSAR canopy height products derived 358 

above, experimental UAVSAR and LVIS fusion canopy height products were also generated for 359 

the Pongara and Lopé sites as described in Denbina et al., 2018b.  For each pixel, the algorithm 360 
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uses machine learning to choose the interferometric baseline expected to provide the best 361 

canopy height estimate.  This selection is primarily based on the characteristics of the observed 362 

PolInSAR coherence region, in addition to other parameters such as kz and radar backscatter. A 363 

sparse subset of coincident LVIS RH100 data, similar to the point density expected from the GEDI 364 

mission, was used to train the classifier at approximately 250-m spacing in both azimuth and 365 

range directions (Denbina et al., 2018b).  After training, for each pixel the baseline selected by 366 

the classifier was used to invert forest height from the RVoG model, as described in the previous 367 

paragraph.  This product helps demonstrate the potential of fusing multi-baseline PolInSAR with 368 

data from GEDI or other future spaceborne lidar missions.    369 

 370 

4.4. Vertical Profile Products  371 

The AfriSAR vertical canopy structure were generated using established algorithms on the LVIS 372 

data, and more experimental techniques with UAVSAR data.  373 

 374 

LVIS footprint canopy cover metrics and profiles: Footprint-level canopy structure products 375 

were generated for the Lopé, Mondah/Akanda, Pongara, Rabi and Mabounié flight lines using 376 

established techniques (Tang et al., 2018). Products generated are: 377 

1) Vertical profiles of canopy cover fraction (CCF) in 1 m vertical bins. Canopy cover fraction is 378 

defined as 1 -𝑃!"#(𝑧, 𝜃), where z and theta are zero and Pgap is the directional gap 379 

probability (Tang and Armston, 2019). This is equivalent to the probability that the ground 380 

surface is directly visible at the nadir view of LVIS. 381 
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2) Vertical profiles of plant area index 𝑃𝐴𝐼(𝑧) between the top of canopy (z = 𝐻$"%) and the 382 

ground (z = 0), with a vertical bin size of 1 m. PAI is defined as one half of the total plant element 383 

area per unit ground surface (m2 m-2; (Gower and Norman, 1991). 384 

3) Footprint summary data of total recorded energy, PAI, CCF, and vertical plant area volume 385 

density (PAVD, m2 m-3) profiles in 10 m vertical bins (i.e. 0-10, 10-20, 20-30 and above), and 386 

foliage height diversity (FHD) - a canopy structural index that describes the vertical heterogeneity 387 

of the PAVD profile (MacArthur and Horn, 1969). 388 

The algorithm to derive vertical canopy profile metrics from waveform lidar is well developed 389 

(Armston et al., 2013a; Ni-Meister et al., 2010; Tang et al., 2012) and requires estimates of the 390 

following parameters to compute: (i) the integrated laser energy returns from the canopy Rv(z) 391 

and ground Rg; (ii) the ratio of canopy and ground reflectance ρv/ρg; (iii) the leaf area angle 392 

projection coefficient, 𝐺(𝜃), representing the fraction of canopy element area projected 393 

perpendicular to the view direction to the total canopy element area; and (iv) the clumping index, 394 

Ω(𝜃), describing the spatial distribution pattern of canopy elements.  395 

Here we set G = 0.5 for a uniform random foliage distribution and Ω = 1 , which assumes that 396 

elements are dispersed randomly and independently between canopy layers. These assumptions 397 

are consistent with findings by Marselis et al. (2018) who validated the vertical profile metric 398 

estimates using independently acquired Terrestrial Laser Scanning (TLS) estimates. The Rv(z) and 399 

ground Rg are derived from LVIS level 1B and level 2 products by fitting an exponential Gaussian 400 

to the lowest waveform mode corresponding to the ground (Dubayah et al, 2020). The vegetation 401 

to ground reflectance ratio, ρv/ρg, is then set as a constant value per site (e.g. 1.493 for Mondah) 402 

using the method developed in previous studies (Armston et al., 2013b; Tang et al., 2016). 403 
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LVIS gridded canopy cover and vertical profile metrics were produced for the Lopé, 404 

Mondah/Akanda, Pongara, Rabi and Mabounié flightlines. The gridded map products were 405 

generated at 25 meter (0.0625 ha) spatial resolution from footprint canopy cover metrics and 406 

profile data. The canopy cover and vertical profile metric grids generated include the mean and 407 

standard deviation of total canopy cover, foliage height diversity, total plant area index (PAI), and 408 

PAI in height intervals of 0-10 m, 10-20 m, 20-30 m, and 30+ m. Data product format, projection, 409 

and grid alignment were same as used for the LVIS gridded height models and bare earth DEMs.  410 

 411 

UAVSAR Tomographic SAR products enable the generation of a wall-to-wall 3-dimensional 412 

map of vegetation structure (see Hawkins et al., 2018; Lavalle et al., 2017, Riel et al., 2018). 413 

Generally, a TomoSAR product describes the radar backscatter as a function of vertical elevation 414 

within the forest canopy and is thus related to the vertical distribution of material within the 415 

canopy (i.e. trunks, branches, leaves). Unlike Lidar, which results from intercepted surfaces, 416 

including leaves, L-band radar tomography penetrates deep into the canopy with greater 417 

sensitivity to large branches and trunks. The vertical resolution is driven by the length of the 418 

longest interferometric baselines in the tomographic stack and is therefore coarser than in the 419 

lidar data (ie m resolution in TomoSAR vs mm to cm in Lidar). The spacing between the 420 

interferometric baselines determines the height of ambiguity, which was set to be greater than 421 

the expected height of the forest. The three dimensional focusing of an image stack requires that 422 

each image has a common phase reference, which is especially difficult in the airborne case, since 423 

errors in the knowledge of the platform position are typically a large fraction of the size of the 424 

radar wavelength. For phase calibration, we adopted the approach described in  Tebaldini et al. 425 
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(2016) and  Hawkins et al. (2018a) where the full network of interferograms is reduced to a 426 

smaller set of “linked phases” and used to estimate a set of trajectory corrections having a 427 

consistent phase reference.   The AfriSAR team generated two variants of the demonstrative 428 

Tomographic SAR products described below. 429 

  430 

UAVSAR TomoSAR: products have backscatter values at several vertical height slices that can 431 

be used to generate canopy profiles and 3D canopy structure across the entire vegetation 432 

volume. These products were generated over Rabi and Lopé National Park as these were suitable 433 

for processing using tomographic imaging techniques described by Hawkins et al. ( 2018b), 434 

Lavalle et al, 2017). In these two sites, several flight lines (N=8) were acquired with different 435 

vertical baselines (i.e. separation between flights), spanning a vertical aperture of 120 m (see 436 

Table 3). Each flight line captures the radar backscatter projected onto its imaging plane and by 437 

varying the radar altitude between image acquisitions, we vary the angle of this projection and 438 

can therefore reconstruct the full backscattering profile. The tomographic processing begins with 439 

the single look complex (SLC) data products generated by the standard UAVSAR stack processor 440 

(see Table 3), which includes a motion measurement error calibration step (Hensley et al. 2015). 441 

To further reduce relative phase errors between the images in a stack, a second motion 442 

measurement error calibration step is performed (Tebaldini et al., 2016). Finally, the phase 443 

calibrated SLC images are considered samples of the backscatter vertical wavenumber spectrum, 444 

allowing the profiles to be recovered with spectral estimation techniques, either the discrete 445 

time Fourier transform (Reigber and Moreira 2000) or the Capon method (Lombardini and 446 
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Reigber 2003). This results in a three-dimensional grid of radar backscatter throughout the 447 

vegetation volume and is therefore related to the vertical distribution of AGBD.  448 

 449 

UAVSAR TomoPLAnt products were generated for Mondah, Lopé National Park and Rabi, 450 

starting from the stack of polarimetric SLC images using a processing chain based on ISCE and 451 

PLAnT tools (Lavalle et al., 2018b). Polarimetric Coherence TomoSAR (PCT) forest structure 452 

products were derived by expanding a  second order Legendre polynomial expansion (Cloude, 453 

2006) between the ground and the estimated tree height, in this case the lidar-based canopy 454 

height, to generate the forest vertical backscatter profile. Similar to the above method, the 455 

vertical wavenumber layers and phase-calibrated tomographic SLC images were then used to 456 

estimate the vertical reflectivity for each polarimetric channel using the standard Capon and 457 

Fourier beamforming. The generation of polarimetric coherence TomoSAR profiles also required 458 

the use of the tree height product generated using PolInSAR technique.  459 

 460 

4.5. AfriSAR Biomass Products 461 

LVIS gridded Aboveground Biomass Density and associated error: AGBD was estimated for 462 

Lopé, Mondah, Rabi and Mabounié using a model that follows the functional form of the scaling 463 

equations used to derive mass from individual tree structure: 464 

𝐴𝐺𝐵𝐷	(𝑀𝑔	ℎ𝑎&') = 𝐻" ∙ 𝐵𝐴𝐷( ∙ 𝑊𝑆𝐺)                  (1) 465 

where H is the canopy top height, BAD is basal area density and WSG is the wood specific gravity. 466 

This model form has been widely used in the literature, for example Asner et al. (2011) to 467 

estimate AGBD in the tropical forests of Central and South America, Madagascar, and the Island 468 



 

 28 

of Hawaii. We used RH98 for the Canopy top height (H) since this is less sensitive to noise 469 

(Hancock et al., 2019). However, this model is also parameterized in terms of basal area density 470 

(BAD) and wood specific gravity (WSG), neither of which are directly measured by the lidar 471 

waveforms. Therefore, to model BAD in this study, we developed a linear model parameterized 472 

by canopy cover (CC) and height (z), as previously shown by Asner and Mascaro (2014) and Ni-473 

Meister et al., (2010), for predicting BAD from lidar measurements: 474 

𝐵𝐴𝐷	(𝑚*	ℎ𝑎&') = 𝑅𝐻90 ∙ 𝐶𝐶+,-!"#                   (2) 475 

where CCz=Hmax is canopy cover at the top of canopy (i.e. total cover).  476 

The AGBD model was developed using field measurements from Mondah, Lopé, and 477 

Mabounié. Models were independently developed at spatial resolutions of 50 m (0.25 ha) and 478 

100m (1 ha), for which we had in situ estimates of AGBD that could be co-located with waveform 479 

footprints with relative geolocation errors of <5%. The specification of these models required 480 

explicit treatment of heteroscedasticity and the non-normal error distribution of the AGBD.  481 

The variance of the Gamma distribution is proportional to the squared means, thus allowing 482 

this form of heteroscedasticity to be specified and avoiding the assumption of 483 

homoscedasticity.  An identity link function was used, since we observed AGBD was linearly 484 

related to the non-linear combination of predictors in Eqn. 1. Estimation of the model 485 

parameters was undertaken in a Model parameters were estimated in a generalized non-linear 486 

Bayesian framework using the R package ‘brms’ (Burkner, 2017). 487 

We used a Generalized Linear Model (GLM), selecting a Gamma distribution for modelling the 488 

continuous, non-negative and positive-skewed AGBD data, where the variance is proportional to 489 

the squared mean. Model parameters were then estimated in a generalized non-linear Bayesian 490 
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framework using R. Posterior predictive distributions provided realistic per-pixel estimates of 491 

uncertainty in the form of 95% confidence intervals. Model performance was assessed by leave-492 

one-out (LOO) cross-validation.  493 

 494 

4.6. DATASET INTERCOMPARISON  495 

We compared the accuracies and sensitivities of the height and AGBD products by extracting 496 

the values of the RH100, CHMPLAnT, CHMKapok, CHMFusion data (for height) and AGBDLVIS, with two 497 

small footprint lidar datasets by Labriere et al (2018) and Silva et al (2018) and plotting them 498 

against each other. To achieve this, we extracted all points covering the overlapping areas 499 

between LVIS and the radar products. The values of each point were then plotted and basic 500 

statistics calculated (r2, intercept, slope, RMSE, residual error, p-value). Crossovers between LVIS 501 

and discrete return ALS data were used for comparison of equivalent products for each dataset 502 

at the Lopé, Mondah/Akanda, Rabi and Mabounié sites. To ensure both datasets were aligned, 503 

horizontal offsets were calculated by maximizing the correlation between real and ALS simulated 504 

LVIS waveforms (Blair and Hofton 1999; Hancock et al., 2019) and then applied.  505 

For the TomoSAR analysis, lidar waveforms were reprojected to the radar geometry to ease 506 

the comparison with tomograms. Furthermore, radar tomograms have been normalized to their 507 

maximum vertical value to highlight the vertical structural changes and to avoid that a bright 508 

concentrated target shadows scattering elements less bright but more distributed along 509 

elevation. 510 
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5. DATA PRODUCT ANALYSIS  511 

Here we present the analysis of the level 3 data products. These data products are accessible 512 

through  the NASA Earthdata Search Portal for AfriSAR at 513 

https://search.earthdata.nasa.gov/search?q=afrisar and the Oak Ridge National Laboratories 514 

Distributed Active Archive Center for Biogeochemical Dynamics at https://daac.ornl.gov/.  515 

 516 

In situ aboveground biomass density: 517 

We measured 6692 trees from 139 species in Mondah, with DBH values ranging from 5 cm to 518 

198.4 cm and maximum measured heights of 59.23 m. Mean AGBD was 103.2 Mg ha-1 and ranged 519 

from 3.26 Mg ha-1 to 267.5 Mg ha-1. All vegetation characteristics and estimates of AGBD were 520 

reported at multiple scales: 0.0625 ha, 0.25 ha, and 1 ha. These data are available on the ORNL 521 

DAAC (Fatoyinbo et al., 2018) and were used to validate and calibrate the NASA AfriSAR higher 522 

level data products described below.  523 

 524 

LVIS footprint level canopy cover metrics and profiles:  525 

Canopy cover and height distribution across plots varied greatly, highlighting the difference in 526 

stand structures across sites. Examples of canopy metric data products over the Mondah flight 527 

lines are shown in Figure 2. All LVIS based data products are shown in Table 2. Taller stands, as 528 

shown in plot NASA 13, Figure 2 with a 40+ m canopy had lower plant volume throughout the 529 

vertical canopy profile, with the highest density in the understory, while the medium stature (~25 530 

m canopy) plot NASA 21A’s plant area was dense throughout the entire canopy layer. Plot 20 on 531 

the other hand had a similar canopy height to plot 21, but lower AGBD and a majority of the plant 532 
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area volume concentrated in the lowest 5 m of the canopy, suggesting a difference in forest 533 

composition and/or forest management strategy between the 3 plots.  534 

 In the comparison of the LVIS and ALS crossovers of the canopy metric products, there was a 535 

mean negative bias (LVIS cover estimates are lower than ALS) of between 5.9% at Mabounie and 536 

11.2% at Mondah with the corresponding RMSE between 15.5% and 24.2%. Mondah was not 537 

included in these statistics because of the 5 years between the ALS and LVIS acquisition dates 538 

and large areas of secondary forest growth. The differences in cover estimates between LVIS and 539 

ALS are in some cases the result of errors in ground return energy estimates. It is important to 540 

note that ALS does not provide a direct estimate of canopy cover, which can cause systematic 541 

differences (see Armston et al., 2013; Fisher et al., 2020), but this small negative bias in LVIS 542 

estimated canopy cover is consistent with what we would expect from the small positive bias in 543 

LVIS estimated ground elevation (0.6 – 2.3 m across all sites) described below. 544 

 545 
Figure 2. Top row: Plant area volume density as a function of canopy height in three plots in 546 
Mondah forest (plot 13, 21 and 20). The lightest shade is 0.1-0.9 percentile, the darker shade 547 
is 0.3-0.7 percentile and the line is the 0.5 quantile 548 

 549 
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LVIS footprint level height and elevation metrics  550 

LVIS to ALS footprint cross-over comparisons showed the RMSE for ground elevation ranged 551 

between 1.75 m for Mondah and 4.2 m for Lopé. The mean bias was positive (LVIS elevation 552 

estimates above ALS estimates) and ranged between 0.64 m for Lopé and 2.3 m for Rabi. There 553 

was a weak trend of increasing positive mean bias (LVIS elevation estimates above ALS estimates) 554 

and RMSE with increasing canopy cover and slope. Uncertainties in subcanopy ground elevation 555 

estimates from large-footprint waveform lidar have been well explained in the literature (Hofton 556 

et al. 2000, Duncanson et al. 2010, Hancock et al. 2012). In the case of mangroves, underlying 557 

conditions such as the presence of water (tides) or aboveground roots (such as mangrove prop 558 

roots) may also affect the ability of the LVIS algorithm to accurately estimate the elevation of the 559 

ground. 560 

 561 

LVIS gridded height models and bare earth DEMs:  562 

The largest height metrics were found in Lopé National Park, with maximum canopy height 563 

estimates in the gridded LVIS product of 84.3 m for RH100 and 75.9 m using RH98. At the 564 

individual footprint level, the maximum heights at Lopé are 93.5 m for RH100 and 88.9 m for 565 

RH98, highlighting the impact of spatial averaging to 25 m on gridded height estimates. Over 566 

areas with complex topography (e.g. gullies), such as Lopé, the ground waveforms at the spatial 567 

resolution of LVIS or GEDI footprints can be multi-modal, meaning that the lowest mode may not 568 

always be the only ground return, thereby resulting in RH metrics being larger than actual 569 

individual tree height. Maximum gridded height values are 64.2 m (55.17 for RH98) in Mondah, 570 



 

 33 

65.1 m (51.5 m for RH98) for Pongara, 76.6 (49.4 m for RH98) for Rabi, 75.26 m (50.3 m for RH98) 571 

in Mabounié.  572 

The bare earth gridded DEM height is presented as height over the geoid, and ranges from the 573 

lowest areas of 8 m in Pongara to 671 m in Lopé National Park, highlighting the wide range in 574 

topography and environmental settings covered. Overall, the subcanopy bare earth height range 575 

for Lopé is from 101 m to 671.8 m, from 10 m to 63.3 m in Mondah, from 10 m to 243.2 m in 576 

Rabi, and from 8.9 m to 138.8 m in Pongara. 577 

 578 

 579 
Figure 3 LVIS and UAVSAR gridded data products for Mondah and Pongara at 30 m resolution. 580 
In the left pane, the following gridded metrics are shown from top to bottom: Gridded Digital 581 
Elevation Model for Mondah, Rh100 for Mondah, Plant area index composite of 0 m-10m (red), 582 
10m-20 m (green), 20m-30 m (blue) plant area index between 0-10 m vertical, plant area index 583 
between 20-30 m vertical and canopy cover fraction. In the right pane, the following gridded 584 
products are shown from top to bottom: CHMKapok Canopy Height, CHMKapok Canopy height for 585 
Pongara, CHMFusion Canopy height for Pongara. 586 

 587 
LVIS gridded Aboveground Biomass density and associated error:  588 

For the 3 sites, mean AGBD ranged from 337 Mg ha-1 +/- 165 Mg ha-1 in Lopé National Park to 589 

249 Mg ha-1 +/- 145 Mg ha-1 in Mabounié and 86 Mg ha-1 +/- 138 Mg ha-1 in Mondah forest. The 590 
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calibration results for the LVIS AGBD estimators at 1 ha and 0.25 ha spatial resolution using 591 

Mondah, Lopé and Mabounié plot data is shown in Table 4. Estimator parameters were not 592 

significantly different at 0.25 and 1 ha spatial resolutions, with greatest uncertainty in the stand 593 

wood density (SWD) parameter. Estimator performance was best at the 1 ha resolution, with an 594 

r2 of 0.82 and RMSE of 85 Mg ha-1, whereas the 0.25 ha resolution model had an r2 of 0.72 and 595 

RMSE of 114 Mg ha-1.  596 

In the comparison of AGBDLVIS vs ALS-based AGBD data (Figure 4), the LVIS-based AGBD 597 

estimates were closer to the AGBDLabriere, with r2 of 0.86, RMSE of 25% and a bias of 6%, than to 598 

AGBDSilva which had an r2 of 0.88, RMSE of 34% and a bias of -19.98%. The differences in AGBD 599 

derived from ALS and LVIS can be attributed to multiple reasons – temporal differences, 600 

particularly secondary forest growth in Mondah Forest between the 2012 ALS and the 2016 LVIS 601 

Lidar acquisitions in addition to differences in sampling error (number of LVIS shots per grid cell) 602 

between grid cells. 603 

 604 
Table 4 LVIS AGBD model performance at 1 ha and 0.25 ha spatial resolution using Mondah, 605 
Lopé and Mabounié plot data. Parameter estimates and model fit statistics were estimated 606 
using leave-one-out cross validation.  607 
Resolution R2 RMSE Parameter Estimate Error Lower 

95% CI 
Upper 
95% CI 

1 ha 0.82 (0.04) 84.94 SWD -1.84 0.68 -3.17 -0.51    
RH98 0.01 0.15 -0.30 0.30    
SBA 0.24 0.07 0.11 0.38 

0.25 ha 0.72 (0.01) 114.07 SWD -1.86 0.43 -2.70 -1.00    
RH98 -0.02 0.10 -0.20 0.17    
SBA 0.27 0.04 0.19 0.35 

*where SWD is stand wood density, WD is Wood Density and SBA is stand Basal Area 608 
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 609 

 610 
 611 
Figure 4 Comparison of airborne lidar-derived AGBD estimates (Labriere et al. 2018, Silva et al. 612 
2018 and LVIS-based) in Lopé National Park. 613 
 614 

 615 
UAVSAR canopy height  616 

UAVSAR height product accuracies were assessed in comparison to LVIS Rh100 metrics. 617 

Comparisons of the three UAVSAR canopy height products with LVIS are shown in Figure 3 and 618 

Figure 5. Generally speaking, the UAVSARFusion canopy height product performed best when 619 

compared to LVIS RH100 with the highest r2 (0.84 in Pongara and 0.74 in Lopé), lowest RMSE 620 

(around 27%) and low bias (3.65 % for Pongara), although the UAVSARFusion product slightly 621 

underestimated canopy heights in Lope (bias – 6.89%), especially for taller trees. Good 622 
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agreement between these datasets is to be expected since the UAVSARFusion product used a 623 

sparse subset of LVIS RH100 data to train the classifier.  624 

The fact that UAVSAR Canopy height models performing better in Pongara vs Lopé when 625 

compared to LVIS data is likely due to underlying topography. In Pongara, which is primarily a 626 

mangrove forest, the topography is flat or has negligible slopes whereas the other sites, 627 

especially Lopé and Mondah are characterized by large topographic gradients and many areas of 628 

steep slopes. In addition, in Pongara there is a wider distribution of heights in each height class, 629 

whereas in Lopé, for example, canopy height is focused in 2 classes – short trees or very tall trees. 630 

Therefore, any underestimation of tall trees will result in a biased estimate. The CHMfusion does 631 

tend to overestimate canopy height in short mangroves, possibly due to lower canopy cover. 632 

CHMKapok also overestimated shorter trees and underestimated taller canopies when compared 633 

to Rh100 with r2 of 0.73 and 0.63 in Pongara and Lopé respectively and RMSE of about 33%. As 634 

with the CHMFusion product, there was a bias, with mangrove heights (in Pongara) being 635 

overestimated (bias of 7.23 %) whereas tall trees were generally underestimated in Lopé 636 

resulting in a bias of – 9.94 %. Similarly to the other SAR Canopy height products, CHMPLaNT 637 

generally underestimated tall trees while overestimating short ones when compared to Rh100 638 

due to the configuration of the airborne experiment.  The comparison resulted in r2 values of 0.76 639 

for Lopé, 0.54 for Mondah and 0.24 for Rabi, and biases ranging from 14.48% in Mondah to -640 

32.9% in Rabi (Figure 5).  641 

These comparisons highlight that the deviation between UAVSAR- and LVIS-derived canopy 642 

maps depends significantly on the choice of the interferometric baseline, forest structure, 643 

presence of temporal decorrelation, terrain conditions, and the inversion model. Generally 644 
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speaking, UAVSAR canopy height estimates are most accurate over a height range between 10 645 

and 30 meters due to L-band penetration in the canopy and UAVSAR baseline design. The quality 646 

of the height retrieval degrades as the retrieved height approaches values lower than 5 m, which 647 

may be dominated by temporal decorrelation and result in an overestimation of heights.  For 648 
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values greater than 40 m, the effects of the limited penetration and saturation of the L-band 649 

signal may lead to an underestimation of tree height.  650 

 651 
 652 
 653 
 654 
 655 
 656 
 657 

Figure 5 comparison of LVIS Rh 100 standard height products with 3 UAVSAR Pol-InSAR 
height products CHM Kapok (Denbina et al, 2018), CHM Fusion (Denbina et al, 2018) and 
CHM Plant (Lavalle et al, 2018)  
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UAVSAR Tomographic SAR:  658 

We generated SAR tomograms using the Capon, Fourier and Polarization Coherence 659 

Tomography techniques, as shown in Figure 6. The transects is 1.7 km long and 20m wide where 660 

topography varies by about 50m and land cover ranges from bare soil or short vegetation to 40 661 

m tall trees. Generally, the radar tomograms and lidar waveforms agree with each other, 662 

especially over short vegetation. In these regions, mainly concentrated in the horizontal intervals 663 

0-300 m and 550-800 m in Figure 6, the lidar height metrics, along with the Capon and the PCT 664 

tomograms show similar patterns of vertical volume distribution across the transect, suggesting 665 

that these tomographic techniques are good candidates for estimating vegetation structure 666 

patterns. Over tall trees in the intervals 300-550 m and beyond 800 m, all SAR-based transect 667 

show modulations of vertical brightness depending on the vegetation structure and underlying 668 

soil scattering that need to be taken into account. 669 

The tomogram resulting from the Fourier technique has a coarse vertical resolution of about 670 

8 m as highlighted of over bare earth or short-vegetated areas and is therefore less suitable for 671 

fine vertical resolution mapping of tree canopies. As expected, the Fourier tomogram also has 672 

larger side lobes compared to the Capon and PCT tomograms, with the canopy reflectivity 673 

“leaking” above the expected tree height, giving the profile a blurrier appearance.   674 

The exact features of TomoSAR measurements are more visible when vertical profiles of the 675 

four techniques are extracted from an approximately 20m by 20 m square column or equivalent 676 

LVIS footprint as shown in Figure 7. Here, the profiles have been normalized to their maximum 677 

value along the vertical direction, with all peaks equal to 1. Most notably, the profiles have 678 

multiple peaks, one strong peak representing the ground and another weaker but wider peak 679 
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about 20m above the ground representing the bulk of the canopy returns. The Capon and Fourier 680 

tomograms are in good agreement with the corresponding LVIS profiles with profiles produced 681 

using the Capon algorithm most similar to the LVIS profile, although tomographic profiles change 682 

with the polarimetric channels (Figure 7) revealing different scattering mechanisms within the 683 

canopy and in the ground-trunk scattering interaction. Note that, from Figure 7, canopy height 684 

could be estimated from the UAVSAR TomoSAR products as the maximum vertical extent of the 685 

tomograms, although additional corrections would be required to account for L-band 686 

penetration, look angle, resolution and overall sensitivity (Shiroma and Lavalle, 2020). More 687 

specifically, the differences in viewing geometry between the nadir looking lidar and the side 688 

looking TomoSAR profiles, and different interactions with canopy components may result in 689 

different parts of the canopy being represented. Here our results show that lidar waveforms and 690 

L-band radar tomograms have similar overall responses over forest canopies even though they 691 

are based on measurements at different wavelength and thus different  scattering mechanisms. 692 

More detailed analyses of SAR tomograms collected as part of AfriSAR and their implications for 693 

forest vertical structure measurements can be found in Shiroma and Lavalle, (2020) and Pardini 694 

et al (2019).  695 
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 696 
 697 
Figure 6 Comparison of TomoSAR Capon (a), Fourier (b), PCT (c) transects with LVIS (d) data 698 
projected into radar geometry in the Lope National Park site.  The color scale ranges from 699 
dark blue (low values) to yellow (high values) and indicates the normalized waveform return 700 
(panel A) and the normalized radar HV backscatter (panels B, C and D). 701 

 702 

 703 

A 

B 

C 

D 



 

 42 

The tomographic SAR profiles produced using the Capon technique are most similar to the LVIS 704 

profile, although large differences between the retrievals of each polarization are still present. 705 

The estimated Capon and Fourier ground location are in good agreement with LVIS, although the 706 

ground detected by UAVSAR here is generally higher than what was measured by LVIS. The 707 

estimated maximum canopy height from the UAVSAR TomoSAR product is comparable to canopy 708 

height from LVIS, although there is still some error due to L-band penetration, look angle, 709 

resolution and sensitivity. More specifically, there are significant geometric differences between 710 

lidar waveforms and the TomoSAR profiles leading to differences between measurements, such 711 

as LVIS being nadir looking whereas TomoSAR is side looking and then projected onto a vertical 712 

height axis. 713 

 714 
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 715 

Figure 7 Comparison of TomoSAR Capon, Fourier, PCT data overlaid on a LVIS waveforms 716 
projected into radar geometry in Lope National Park for a 20 m by 20 m area. 717 

 718 

6. DISCUSSION  719 

The 2016 NASA AfriSAR mission was the first simultaneous acquisition of polarimetric SAR, 720 

waveform lidar and field data in support of the upcoming NISAR, GEDI and Biomass missions and 721 

the first coordinated campaign for measurements of forest structure properties across multiple 722 

international space agencies. While similar campaigns flying LVIS and UAVSAR have been carried 723 

out, such as the 2009 and 2010 DESDynI Cal/Val campaigns in Howland, Harvard and Penobscot 724 

BIOMASS 1st Science Workshop 27-30 January 2015 

Capon Tomogram (HH + HV)
Fourier Tomogram (HH + VV)
PCT tomogram (2 HV)
LVIS waveform
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Experimental Forests (Montesano et al, 2013), the amount of data collected and area covered 725 

was much lower than accomplished by AfriSAR. Furthermore, previous campaigns did not include 726 

multiple baseline or tomographic SAR acquisitions. Here, we collected over 7000 km2 of Lidar and 727 

30000 km2 of PolSAR data, covering 30% of the Gabonese territory and all of the major terrestrial 728 

ecosystems of Central African Region.  729 

The AfriSAR data have been key in advancing forest structure retrieval algorithms, image 730 

processing software, spaceborne data simulation and biodiversity mapping methodologies 731 

amongst others. In Denbina et al (2018b), the new Kapok software package to generate canopy 732 

height from repeat-pass UAVSAR data was developed using UAVSAR and LVIS airborne 733 

acquisitions over Pongara and Lope National Parks, while the ISCE-PLANT software was 734 

developed over Lope, Mondah and Rabi sites. Similarly, this dataset was instrumental in 735 

developing new machine learning approaches to fuse SAR and Lidar data (Denbina et al, 2018b, 736 

(Pourshamsi et al., 2018). Here the subsampled LVIS data was used to select the best baseline 737 

configuration and kz value, i.e. to determine whether a large or shorter baseline configuration 738 

between two UAVSAR acquisitions should be used in multiple baseline PolInSAR processing. 739 

On the Lidar side, the AfriSAR data was one of the key datasets used for validation of the GEDI-740 

simulator (Hancock et al., 2019a), pre-launch calibration and validation of GEDI Level 2 footprint 741 

product algorithms (Hofton and Blair, 2019; Tang and Armston, 2019), and is an ongoing key 742 

component of GEDI’s post-launch calibration and performance assessment strategy (Dubayah et 743 

al, 2020). It has also been used in combination with other SAR datasets, such as Sentinel-1, to 744 

generate country wide (Lang et al, 2019 ) and site-wide (Pourshamsi, et al, 2018) canopy height 745 

and AGBD (Marshak et al., 2020) estimates.  746 
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Areas of dense canopy cover as found in Gabon may sometimes present a challenge for lidar 747 

measurements, particularly over complex topography. LVIS was designed to be sensitive enough 748 

to detect a ground pulse in canopy cover of up to 99% and comparisons with small-footprint 749 

systems have shown this to be true (Hofton et al., 2002). However, certain environmental 750 

conditions such as steep slopes or low-lying canopy material such as shrubs can weaken already 751 

weak ground returns to the point where automated ground finding algorithms misidentify the 752 

ground. Here, LVIS was deployed over the most challenging forest conditions - the combination 753 

of high canopy cover, wide ranges of topographic relief and different types of forest types and 754 

densities. Despite these conditions we showed a high degree of consistency in estimating canopy 755 

structure parameters from airborne waveform lidar data. We also found excellent agreements 756 

with PAI profiles derived from terrestrial laser scanner (TLS) even at a high vertical resolution (1 757 

m) (Marselis et al. 2018). In sum, our results highlight the fidelity of LVIS-based vegetation 758 

structure products and strengthens the confidence in our data processing algorithms. 759 

  The extensive UAVSAR collection over a wide range of forest types and biomass added 760 

important new sites for the NISAR mission calibration and algorithm development, with the 761 

addition of 15 new 1-ha plots in lower biomass areas and extensive airborne Lidar data needed 762 

for AGBD calibration and validation.  Indeed, while a breadth of field measurements was 763 

previously available in Central African forests, 90% of all plots were in high biomass forests (over 764 

200 Mg/ha). Through the additional field data collected here we have expanded the range in 765 

AGBD measurements available for the tropics with plot AGBD densities ranging from 50 to 250 766 

Mg/ha. In the case of UAVSAR, this was the first extensive PolInSAR and tomographic experiment 767 

over tropical forests. While TomoSAR and PolInSAR processing have been carried out before with 768 
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UAVSAR (Hensley et al., 2016), the AfriSAR campaign allowed for extensive experiments on 769 

baseline and temporal decorrelation. Here, we were able to generate canopy height products 770 

using multiple methodologies, using the PLAnT software (Lavalle et al., 2018b), the Kapok 771 

software and the Fusion approach (Denbina et al., 2018) which helped determine the limitations 772 

and strengths of each methodology and the ideal configurations for L-band multibaseline 773 

PolInSAR acquisitions in dense tropical forests.  774 

As an example, the fact that the ‘fusion’ approach performs better at estimating the Rh100 or 775 

Top of Canopy height than the traditional PolInSAR approaches highlights the potential 776 

improvement when using SAR-Lidar fusion or other ancillary data that helps in selecting the 777 

appropriate interferometric baseline. The lower bias between the CHMFusion products and the 778 

more traditional PolInSAR methodology highlights the importance of selecting the appropriate 779 

baseline, especially in areas like Gabon, where the range in heights is high (up to 65 + m).  780 

The demonstration of the Tomographic SAR capabilities in tropical forests of Gabon served to 781 

develop and evaluate several algorithms that will be used to improve the design of future 782 

airborne experiments and spaceborne missions. Similar to Pardini et al (2019), the Lidar profiles 783 

are more sensitive than TomoSAR reflectivity profiles to variations in the top of the canopy, 784 

however, TomoSAR long-wavelength profiles (from L- and P-band) are more sensitive to below-785 

canopy variations in vertical structure. Thus, in addition to providing structural information 786 

complementary to Lidar, TomoSAR could effectively improve carbon stock estimates and 787 

sensitivity to forest disturbances.   Importantly, TomoSAR may enable the generation of wall-to-788 

wall maps of vertical distribution of material within forest canopies due to its all-weather 789 

capability. Finally, while the operational repeat-pass mode of the NISAR mission does not allow 790 
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for TomoSAR or multi-baseline PolInSAR acquisitions, the multi-baseline acquisitions of the ESA 791 

BIOMASS mission will provide the necessary datasets.  792 

The released UAVSAR and LVIS datasets provide a large quantity of coincident (PolIn)SAR and 793 

lidar coverage, ideal for the development and testing of algorithms which fuse the results from 794 

these sensors. While SAR data has wide spatial coverage and high resolution, it can be affected 795 

by some limitations and error sources such as temporal decorrelation and saturation in high 796 

AGBD forests. Lidar can generally estimate forest canopy height and vertical variations in canopy 797 

structure with high accuracy but is limited in terms of spatial coverage. Fusion algorithms can 798 

therefore help to mitigate the weaknesses of each sensor, combining the data into fused 799 

products which leverage the strengths of both lidar and SAR. The released CHMFusion fused canopy 800 

height and AGBD products help demonstrate examples of this potential, and the released L1 801 

UAVSAR and LVIS data can be used for development and testing of other future algorithms, which 802 

can be applied to spaceborne data from GEDI, NISAR, Biomass, and other future sensors.  803 

 One of the main hurdles for the uptake and use of lidar and SAR by the broader ecological and 804 

scientific community has been the lack of gridded and higher level products available from 805 

waveform Lidar and SAR data. Data from sensors with existing and well documented ARD 806 

products have much higher use than sensors without, highlighting the importance of providing 807 

not only raw data but also preprocessed datasets. As an example, the SRTM DEM, a processed 808 

and tiled product derived from C-band single pass interferometry, is one of NASA’s most 809 

downloaded datasets, although it is only based on a one-time acquisition in early 2000 (Farr et 810 

al., 2007).   811 
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As part of the AfriSAR campaign, we have produced a suite of data products from UAVSAR and 812 

LVIS that have not been available to date, such as LVIS-derived canopy cover fraction, Plant Area 813 

Index, Gridded canopy height from LVIS and UAVSAR Pol-InSAR and Tomographic SAR products, 814 

allowing the development of new scientific applications. In Marselis et al (2018), for example, the 815 

LVIS canopy cover profile data products were used to predict successional vegetation types in 816 

Lopé National Park, with potential implications for the use of GEDI data for informing 817 

conservation and biodiversity studies. The dataset was also key in the development of a 818 

methodology to map tree species diversity using canopy structure data (Marselis et al., 2019) 819 

using GEDI-like data.  We anticipate and encourage a wide range of future applications, such as 820 

the development of new algorithms that make use of the SAR SLC stacks and associated 821 

geometric parameters (e.g. Soja et al., 2021). The unique combination of multi-modal remote 822 

sensing and field datasets produced by AfriSAR are also the basis of the Biomass Retrieval Inter-823 

comparison eXperiment (BRIX-1 and BRIX-2), which will benchmark biomass retrieval algorithms 824 

using GEDI, NISAR and ESA BIOMASS data on the joint ESA-NASA Multi-mission Analysis and 825 

Algorithm Platform (MAAP; Albinet et al., 2019). 826 

AfriSAR was an experimental campaign for which several new SAR and Lidar algorithms were 827 

developed and implemented. Because of the limitations that arise during airborne experiments, 828 

such as time constraints and changes in flying conditions, there were flight configurations and 829 

data acquisitions that resulted in data that did not capture the entire range of forest structure 830 

conditions. An example is the vertical wavenumber configuration of the SAR experiments limiting 831 

the acquisition of the full height range in all of the imaged sites, or the presence of clouds and 832 

poor conditions in some LVIS acquisitions leading to gaps in the data.  In addition, while the NASA 833 
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AfriSAR campaign was designed to acquire data over as many forest ecosystem types as possible 834 

there is still a lack of data in certain key areas and types of measurements, such as flooded 835 

freshwater forests, wetlands or temporal forest structure changes.  We therefore recommend 836 

follow-on airborne experiments focused on different types of ecosystems, including wetlands, 837 

dry forests, temperate forests as well as repeat measurements that allow the estimation of forest 838 

structure changes.  839 

The AfriSAR campaign also provided the opportunity to advance applications of current 840 

airborne and future spaceborne missions in the field of tropical forest ecology, conservation and 841 

biodiversity. African rainforests in particular have suffered extensive clearing and fragmentation;   842 

it is  estimated that West and Eastern Africa and Madagascar have lost about 90% of their original 843 

rainforest cover, whereas about 60% of the Central African forests still remain with much lower 844 

deforestation rates (Malhi et al., 2013). The Central African forest studied as part of AfriSAR is 845 

the second largest tropical forest after the Amazon, and better data, such as that expected from 846 

current and future missions, is crucial to better inform its management.  847 

7. CONCLUSIONS 848 

The airborne SAR, Lidar and field data acquired during the AfriSAR campaign constitutes a 849 

rich dataset for use not only in support of the NISAR, BIOMASS and GEDI missions, but also for 850 

improved understanding and monitoring of Central Africa’s tropical forests, wetlands and 851 

savannas. We anticipate that the dataset and described data products will be of use for studies 852 

of water and carbon cycling in the Congo basin, used as input and validation for forest growth 853 

models and to evaluate conservation and forest management practices. The high-resolution 854 
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canopy height and vertical structure distribution data will be of direct use for studies of carbon 855 

cycling and biodiversity amongst many other applications.  856 

Spatially explicit estimates of the vertical dimension of forests are needed to characterize 857 

rapidly changing global forest cover and AGBD, monitor disturbance, and assess biodiversity 858 

(Bergen et al., 2009). The suite of current and upcoming active Remote Sensing missions, 859 

including GEDI, BIOMASS, and NISAR, is expected to provide the global scale estimates of canopy 860 

height, vertical forest structure and forest density at the resolutions (1 km or better) and 861 

accuracies (20% error for 80% of the grid cells) needed to improve our understanding of the role 862 

of the land carbon sink in the global carbon cycle. 863 

Combining multiple active datasets is already of immense interest, and this is only expected 864 

to increase with the impressive amount of data promised from GEDI, NISAR and BIOMASS.  The 865 

AfriSAR datasets have allowed us a snapshot of the capability of not only the individual missions’ 866 

measurements, but also the exciting range of science and applications possible through Lidar and 867 

SAR data fusion.  868 
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SUPPLEMENTAL MATERIAL 

 

 

A description of the ground sites imaged as part of the UAVSAR, LVIS, SETHI and F-SAR 

acquisitions in 2015 and 2016 is provided below.  

 

Mondah Forest covers an area of 6747 ha of which 20% is protected (Lachenaud et al., 2013). 

Originally established as a timber production forest and research area in 1934, it lies on the 

Libreville peninsula, 20 km north of the center of the capital Libreville (Walters et al., 2016). 

Mondah Forest is the main forested area in the region with a mean tree species richness of about 

55 species per hectare, but is highly dependent on disturbance status (Labriere, 2018).  

The Mondah Forest ecosystem is characterized by high endemism due to the overlap of two 

forest types, very wet forest in the northwest and drier forest in the south and east of the country 

(Lachenaud, 2013). The ecosystem, which extends between the Libreville peninsula north into 

Equatorial Guinea (Vande Weghe, 2005), is characterized by rivers and valleys that create 

variation in both climate and vegetation types. Mondah Forest has been inhabited at least since 

3400 BP (Clist, 2005) and exploited for forest resources at least since the 1400s (Patterson, 1975). 

Human disturbance has degraded the forest so that 55% of the area is classified as secondary 

forest (Nziengui et al., 2008). Moreover, due to its proximity to Libreville, the Mondah Forest 

area experiences the highest deforestation rate of the entire country (Hansen et al., 2013).  

Several field plots were established in Mondah Forest between 2009 and 2016 airborne Lidar 

data is also available (Silva et al., 2018). Plot data collected before 2012 are available through 



AfriTRON (Lewis et al., 2009), while field data collected as part of AfriSAR are described below 

and available through the NASA Oak Ridge DAAC. The area was imaged by SETHI, F-SAR, UAVSAR 

and LVIS. 

 

 

Lopé National Park covers an area of 494,800 ha and is the first protected area in Gabon, 

originally established as a wildlife reserve in 1946 and then gazetted as a national park in 2002 

(Mitchard et al., 2012). Lopé is known for its diverse bird and mammalian fauna, including forest 

elephants and western lowland gorillas. Elevation ranges from 72 to 980 m above sea level (asl), 

with slopes exceeding 20% in almost a quarter of the park. Closed-canopy tropical rainforest 

covers most of the park and its surroundings, with the exception of the most northern part that 

is composed of savanna and a mosaic of low-AGBD forest types including Okoumé (Aucoumea 

klaineana) and open canopy Marantaceae. During the Last Glacial Maximum, savanna covered 

the entire park area, but forest expanded and continues to expand into the savanna due to 

increasing precipitation (White, 2001). Tree species richness is an average of 35 species per ha, 

but varies largely between forest types (Labriere, 2018).  

Lopé is the best studied forest site in Gabon with multiple permanent and semi-permanent 

field plots, including 12 new plots (9 of 1 ha and 3 of 0.5 ha) established by ESA as part of AfriSAR 

in 2016 (Labriere et al, 2018). The area was imaged by SETHI, F-SAR, UAVSAR and LVIS and 

airborne scanning Lidar in 2015 (Pardini et al., 2018; Silva et al., 2018)).   

 



Mabounié and the Lower Ogooué: Mabounié is located in the Lower Ogooué River Basin, a 

Ramsar site (a wetland of international importance) that comprises a vast alluvial plain about 200 

km long and 70 km wide. The Basin is covered in dense forest, alluvial lakes, flooded forests, 

wetlands and savannas and supports high animal biodiversity, including several threatened 

species. Tree species richness is about 55 tree species per ha (Labriere et al., 2018) and the site 

is commonly used for floodplain agriculture. Airborne Lidar data was collected over Mabounié in 

2011 (Labrière et al., 2018), and twelve 1-ha field plots were surveyed by the IRD (Institut de 

Recherche et de Développement) in 2012 (Bastin et al., 2015). The area was imaged by UAVSAR, 

F-SAR and LVIS.  

 

Rabi is a 25-ha permanent plot managed by the Smithsonian CTFS-GEO (Center for Tropical 

Forest Science Global Earth Observatory) ForestGEO program situated within the Shell Rabi Oil 

Concession (Anderson-Teixeira et al., 2015). It is located in the Gamba Complex of protected 

areas (see detailed description below). Within the 25-ha Rabi plot, every tree greater than 1 cm 

in diameter at breast height (130 cm) was measured to evaluate the contribution of small 

diameter trees to the abundance and distribution of small trees (Memiaghe et al., 2016).  

Rabi was selected as one of the joint ESA/NASA sites because of the availability of field 

measurements from 2012 and ALS data from 2015 (Silva et al., 2018). For AfriSAR, the area was 

imaged by F-SAR, SETHI, UAVSAR and LVIS. 

 

Pongara National Park is located on the southern bank of the Komo Estuary, close to 

Libreville. The park covers an area of 87,000 ha and is covered primarily by mangroves and some 



terra firma rainforests (Dauby et al., 2008). As with much of the coastal forests in Gabon, the 

upland forests and their composition have not been well studied, although there are reports of 

high levels of plant endemism (Lachenaud et al., 2013). Pongara protects leatherback turtle 

nesting grounds and mangroves: Gabon hosts 30% of the global population of leatherback turtles 

(Bourgeois et al., 2009) and some of the tallest mangroves in the world, with individual trees 

attaining 65 m (Simard et al., 2019). This area was imaged by UAVSAR, F-SAR and LVIS.  

 

Akanda National Park is situated to the northeast of Libreville, adjoining the Mondah Forest. 

The park is 54,000 ha in area and comprised primarily of mangrove forests, mudflats and the 

waters of the Corisco Bay, although some terra firma forests are also present. As with Pongara 

National Park, Akanda harbors important feeding and nesting habitat for four sea turtle species 

and is home to the largest population of migratory birds in Gabon (Lachenaud et al., 2013a; 

Vande Weghe, 2005). This area was imaged by LVIS and UAVSAR as part of the Mondah flight 

lines, but no Akanda-specific field measurements are available to our knowledge. 

 

The Gamba Complex of Protected Areas is the largest protected area in Gabon, covering 

5329000 ha or about 4% of Gabon (Memiaghe et al., 2016). The protected areas within the 

Gamba Complex include the Loango and Moukalaba Doudou national parks and the Iguela, Sette 

Cama and Ngove-Ndogo protected hunting domains. The Gamba Complex is located in the 

southern portion of Guineo-Congolian forest type, which includes swamp and mixed moist semi-

evergreen forest types (M.E. Lee et al., 2006). Loango National Park, in particular, is famous for 

its mosaic of habitats from beaches and dunes to littoral forests, coastal scrub, mangroves, 



extensive permanently- and seasonally-inundated forests, upland forest, rocky outcrops, various 

stages of secondary forest, and prairies. It has a high concentration of megafauna, including 

elephants, buffalos, hippopotami, gorillas and leopards (Lee et al., 2006). The coastal area of the 

Gamba Complex, within Loango and Sette Cama was imaged only by UAVSAR. No known field 

measurements were available. 

 

Mouila is located in southwest Gabon, at the northern limit of the Western Congolian Forest 

Savanna Mosaic Region. The Mouila sites include the government leased Olam oil palm 

concessions consisting of Mouila Lots 1 (ML1, 35,300 ha) and 2 (ML2, 31,800 ha) in which Palm 

agriculture was initiated in early 2013 and 2014, respectively (Burton et al., 2017). ML2 is an old 

timber concession composed mainly of selectively logged, lowland mixed tropical forest. The 

concession consists of relatively flat plains to be developed for palm agriculture, with the 

remaining plains and plateau designated as High Conservation Value Forest due to its unique 

structure and biodiversity. This site was flown by UAVSAR only, and previous airborne Lidar data 

were acquired in 2011 (Burton et al., 2017). Field measurements belong to the Government of 

Gabon. 

 

Transects: In addition to the sites described above, LVIS flew several long transect flight lines: 

the ‘Biomass Gradient line’ from east to west following the dense forest to savanna gradient; this 

line also transects the UAVSAR Lower Ogooué acquisitions. Two additional east-west lines cross 

over the Minkébé National Park in the far north of the country, while a long north-south line 

crosses over Lopé National Park. The aim of the long transects was to record additional variability 



in canopy height across the country. In addition, the east-west data will be used as calibration 

data for the GEDI mission, which will be in a north-south orbit, and therefore, cross over the east-

west line during several GEDI orbits. 
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