Evaluating the Effects of River Partial Penetration on the Occurrence of Riparian Freshwater Lenses

Amir Jazayeri¹, Adrian Deane Werner¹, Huiqiang Wu², and Chunhui Lu²

¹Flinders University ²Hohai University

November 24, 2022

Abstract

Previous studies of freshwater lenses in saline aquifers adjoining gaining rivers ("riparian lenses") have so far considered only rivers that fully penetrate the aquifer, whereas in most cases, rivers are only partially penetrating. This paper presents a new methodology for obtaining the saltwater discharge and the shape of a steady-state, non-disperive riparian lens, where the river is partially penetrating, combining two previous analytical solutions. The resulting analytical solution is compared to numerical modelling results to assess assumptions and the methodology adopted to approximate the "turning effect", which is the change in groundwater flow direction (horizontal to vertical) near the partially penetrating river. A range of conditions are analysed, constrained by parameters adopted previously for River Murray floodplains (Australia). Consistency between analytical and numerical results highlight the capability of the proposed analytical solution to predict the riparian lens geometry and saltwater discharge into partially penetrating rivers. The sensitivity analysis indicates that larger riparian lenses are produced adjacent to the deeper and wider rivers, as expected. The change in width or depth of the river has more influence on the saltwater discharge and the horizontal extent of the riparian lens (and less effect on the vertical extent of the lens adjacent to the river) for shallower and narrower rivers. This research highlights the utility of the new method and demonstrates that the assumption of a fully penetrating river likely leads to significant overestimation of the saltwater discharge to the river and the riparian lens horizontal extent and vertical depth.

Evaluating the Effects of River Partial Penetration on the Occurrence of Riparian Freshwater Lenses

Amir Jazayeri^{1,2}, Adrian D. Werner^{1,2}, Huiqiang Wu^{3,4}, and Chunhui Lu^{3,4}

¹School of the Environment, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.

²National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.

³State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, China.

⁴Yangtze Institute for Conservation and Development, Hohai University, Nanjing, China.

Corresponding author: Amir Jazayeri (amir.jazayeri@flinders.edu.au)

Key Points:

- New method developed to find saltwater discharge and steady-state, non-dispersive riparian lens shape close to a partially penetrating river
- Consistency between analytical and numerical results highlight the capability of proposed methodology.
- Assumption of a fully penetrating river likely leads to significant overestimates of lens size and saltwater discharge to the river.

1 Abstract

Previous studies of freshwater lenses in saline aquifers adjoining gaining rivers ("riparian 2 3 lenses") have so far considered only rivers that fully penetrate the aquifer, whereas in most cases, rivers are only partially penetrating. This paper presents a new methodology for obtaining the 4 saltwater discharge and the shape of a steady-state, non-disperive riparian lens, where the river is 5 6 partially penetrating, combining two previous analytical solutions. The resulting analytical solution is compared to numerical modelling results to assess assumptions and the methodology 7 adopted to approximate the "turning effect", which is the change in groundwater flow direction 8 (horizontal to vertical) near the partially penetrating river. A range of conditions are analysed, 9 constrained by parameters adopted previously for River Murray floodplains (Australia). 10 Consistency between analytical and numerical results highlight the capability of the proposed 11 analytical solution to predict the riparian lens geometry and saltwater discharge into partially 12 penetrating rivers. The sensitivity analysis indicates that larger riparian lenses are produced 13 adjacent to the deeper and wider rivers, as expected. The change in width or depth of the river 14 has more influence on the saltwater discharge and the horizontal extent of the riparian lens (and 15 less effect on the vertical extent of the lens adjacent to the river) for shallower and narrower 16 rivers. This research highlights the utility of the new method and demonstrates that the 17 assumption of a fully penetrating river likely leads to significant overestimation of the saltwater 18

19 discharge to the river and the riparian lens horizontal extent and vertical depth.

20 **1 Introduction**

21 Buoyant freshwater lenses may occur in riparian zones and within floodplains adjoining freshwater rivers traversing saline aquifers, which are commonly encountered in arid or semi-22 arid regions (e.g. Cartwright et al., 2010; Cendón et al., 2010; Werner & Laattoe, 2016; Laattoe 23 et al., 2017). These freshwater lenses (i.e. termed "riparian lenses" in this paper) are of great 24 importance in sustaining riparian and floodplain ecosystems, and in the management of river 25 water quality during low-flow periods (e.g. Holland et al., 2009; Telfer et al., 2012). Riparian 26 lenses have been observed under both losing and gaining river conditions. For example, 27 Cartwright et al. (2010), Alaghmand et al. (2014), and Alaghmand et al. (2015) found riparian 28 lenses under losing river conditions in semi-arid floodplains adjacent to the River Murray, 29 Australia. Riparian lenses were encountered by Munday et al. (2006) under gaining river 30 conditions in geophysical surveys conducted in the Bookpurnong floodplain, also adjacent to the 31

32 River Murray.

Werner and Laattoe (2016) showed that gaining-river riparian lenses are caused by buoyancy effects. They derived an analytical solution for the shape of these types of lenses (and for the corresponding saltwater discharge rates) that was verified by Werner et al. (2016) through laboratory experimentation. Werner (2017) subsequently added a correction term to the analytical solution of Werner and Laattoe (2016) to correct for the dispersive mixing that was neglected in assuming of freshwater-saltwater immiscibility.

Previous studies of Werner and Laattoe (2016), Werner et al. (2016) and Werner (2017) presumed that the gaining freshwater river penetrates the entire depth of the aquifer. However, it is clear in geological and geophysical-survey cross-sections that the floodplains where riparian lenses were first encountered contain rivers that are incised only partly through the host aquifer (e.g. Munday et al., 2006). The effect of this partial penetration on riparian lenses has not been studied previously. 45 Miracapillo and Morel-Seytoux (2014) showed that the depth of river penetration within an aquifer is an important controlling factor in estimating river-aquifer exchange flow rates. 46 When a river partially penetrates an aquifer, the direction of groundwater flow to the river 47 bottom may be effectively vertical, thereby violating the Dupuit-Forchheimer (D-F) assumption 48 of zero resistance to vertical flow used in earlier methods for calculating river-aquifer 49 interactions that adopt a fully penetrating river (e.g. Hantush, 1965). To overcome errors 50 introduced by the change in groundwater flow direction (from horizontal to vertical), Morel-51 Seytoux (2009) introduced a "turning factor", which, simply put, is a factor that modifies the 52 river-aquifer connectivity that would otherwise apply to a fully penetrating river, thereby 53 accounting for the resistance caused by the change in flow direction in the vicinity of a partially 54 penetrating river (a more detailed explanation and mathematical application of the turning factor 55 is provided later in this article). This followed the earlier work of Morel-Seytoux (1975), who 56 proposed river loss influence coefficients for incorporating the effect of river penetration. Morel-57 Seytoux et al. (2014) provided a table of coefficients (from curve-fitting of analytical values) that 58 allow for the application of simple formula to obtain the turning factor. They considered the case 59 of a river placed at the land surface (i.e. does not penetrate the aquifer). Miracapillo and Morel-60 61 Seytoux (2014) modified this approach to account for partial penetration of the aquifer by the river, and added an approach for calculating the river-aquifer exchange when the heads on the 62 two sides of the river are different (i.e. asymmetric riparian heads). 63

In this study, the riparian lens theory of Werner and Laattoe (2016) is combined with the river partial-penetration theory provided by Morel-Seytoux (2009), Miracapillo and Morel-Seytoux (2014), and Morel-Seytoux et al. (2014) to produce a methodology for estimating riparian lenses adjacent to partially penetrating rivers that are gaining. This is expected to broaden the applicability of previous riparian lens solutions that apply only to fully penetrating, gaining rivers.

70 **2 Theory**

This section combines two previous analytical solutions to produce a new methodology 71 for obtaining the saltwater discharge and the geometry of a steady-state riparian lens adjacent to 72 a gaining river, which partially penetrates an otherwise saline aquifer. Figure 1 depicts the 73 corresponding conceptual model, showing the buoyant riparian lens. The riparian lens is 74 presumed to contain stagnant groundwater, and therefore, the watertable is horizontal. The river 75 width of $2W_r$ [L] is bisected under the assumption of symmetry. The river penetrates to a depth 76 η_r [L] into the aquifer and receives steady-state saline groundwater discharge q_s [L²T⁻¹] (i.e. 77 discharge per unit length of river perpendicular to the cross-section). Resistive material of 78 thickness B_r [L] lines the river, and the depth of the aquifer base below the riverbed is η_a [L]. 79 Freshwater and saltwater thicknesses are designated η_f [L] and η_s [L], respectively. The riparian 80 lens extends to a distance x_L [L] from the origin (point "o", aligned with the riverbank edge and 81 the base of the aquifer; Figure 1). Here, at the lens tip, the saltwater thickness is η_{sL} [L]. The 82 saltwater thickness at the origin (i.e. adjacent to the riverbank) is η_{sr} [L], and η_{sb} is the saltwater 83 thickness at the landward boundary (or at least the location of a known head or flux of saltwater 84 towards the river, e.g. from a monitoring well), located at x_b [L]. 85

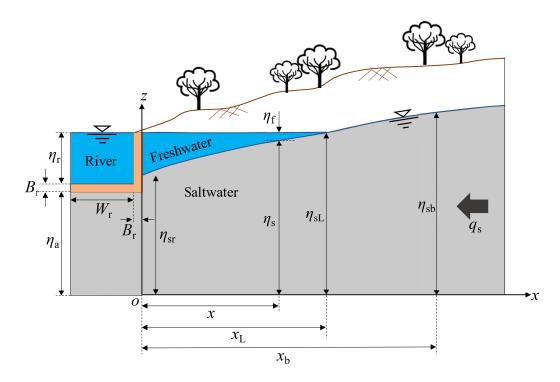


Figure 1. Conceptual model of saline groundwater flow to a partially penetrating river with a riparian lens adjacent to the river. The river is bisected along an axis of symmetry. Blue and grey shading represent freshwater and saltwater, respectively.

Morel-Seytoux (2009) presumed that groundwater flow in an aquifer adjacent to a 92 93 partially penetrating river is effectively horizontal at some "far distance" from the river, given here as $x_{\rm B}$ [L], whereas closer to the river, the flow has a non-negligible vertical component. The 94 D-F assumption presumably holds for $x \ge x_{\rm B}$. Previous studies have presumed that the D-F 95 assumption applies beyond distances from the river equal to twice the aquifer thickness or 96 average aquifer thickness (e.g. Haitjema, 1987; Morel-Seytoux, 2009; Morel-Seytoux et al., 97 2014, 2017), at least for freshwater-only situations. Applying this notion to the current riparian 98 lens situation, the value of x_B was taken as $2d_s$, where d_s [L] is the average thickness of saltwater 99 between the riverbank and at distance $x_{\rm B}$. That is: 100

$$d_{\rm s} = \frac{\eta_{\rm sr} + \eta_{\rm sB}}{2} \tag{1}$$

Here, η_{sB} [L] is the saltwater thickness at x_B , and η_{sr} is shown in Figure 1.

Flow to the river incorporates the turning factor of Morel-Seytoux (2009). That is, the exchange flow between the river and aquifer is proportional to the difference in head between the river and a point in the aquifer sufficiently distant from the river to allow the D-F assumption to apply (i.e. at $x = x_B$), given for freshwater-only conditions as (Morel-Seytoux, 2009):

107
$$Q = KL\Gamma(h_{\rm r} - h_{\rm B})$$
(2)

108 where $Q [L^{3}T^{-1}]$ is the fresh groundwater flow to each side of the river, $K [LT^{-1}]$ is the aquifer 109 hydraulic conductivity (in this case, for freshwater), L [L] is the river reach length (perpendicular 110 to the river cross-section), $\Gamma [-]$ is the one-side dimensionless conductance, $h_{\rm r} [L]$ is the head in

111 the river, and $h_{\rm B}$ [L] is the head in the aquifer at $x_{\rm B}$.

Equation (2) needs modification to apply to the conceptual model of Figure 1 because of the effects on flow of having two fluids (freshwater and saltwater) of different densities. To account for saltwater flow beneath a buoyant riparian lens, equation (2) is modified to express head variables in equivalent saltwater head terms, in a similar manner to Werner and Laattoe (2016), as:

117
$$q_{\rm s} = K_{\rm s} \Gamma_{\rm s} \left(h_{\rm sr} - h_{\rm sB} \right) \tag{3}$$

Here, *L* in equation (2) is taken as unity, reducing *Q* to q_s . K_s [LT⁻¹] is the saltwater hydraulic conductivity of the aquifer, which relates to the freshwater *K* through $K_s = \rho_s \mu_f K/(\rho_f \mu_s)$, where ρ_s and ρ_f are saltwater and freshwater densities [ML⁻³] and μ_s and μ_f are freshwater and saltwater dynamic viscosities [ML⁻¹T⁻¹], respectively. For simplicity, $\mu_f/\mu_s = 1$ is adopted. Γ_s [-] is the modified, one-side, dimensionless conductance for saltwater flow, which is defined in Section 2.3. h_{sr} and h_{sB} [L] are equivalent hydrostatic saltwater heads at the river and at x_B , respectively. The former is given by:

$$h_{\rm sr} = \eta_{\rm a} + B_{\rm r} + \frac{\rho_{\rm f}}{\rho_{\rm s}} \eta_{\rm r} \tag{4}$$

126 h_{sB} depends on whether x_B is beyond or within the extent of the riparian lens, as discussed in 127 subsections that follow.

128 2.1 Scenario 1: x_B within the riparian lens area ($x_B < x_L$)

129 Where the riparian lens exists ($x \le x_L$; Figure 1), the combined thickness of the lens and 130 underlying saltwater is equal to the height of the river water level above the aquifer base, 131 namely:

132

139

125

$$\eta_{\rm s} + \eta_{\rm f} = \eta_{\rm sL} = \eta_{\rm a} + B_{\rm r} + \eta_{\rm r} \tag{5}$$

Within the area of the lens where the D-F assumption is valid ($x_B \le x \le x_L$), the saltwater head that drives (saltwater) flow is equal to the depth of saltwater flow (η_s) plus the saltwater head caused by the (freshwater) riparian lens, giving rise to an equivalent saltwater head (h_s [L]) of:

 $h_{\rm s} = \eta_{\rm s} + \frac{\rho_{\rm f}}{\rho_{\rm s}} \eta_{\rm f} \tag{6}$

138 Combining equations (5) and (6) produces:

$$h_{\rm s} = \eta_{\rm s} + \frac{\rho_{\rm f}}{\rho_{\rm s}} \left(\eta_{\rm a} + B_{\rm r} + \eta_{\rm r} - \eta_{\rm s}\right) \tag{7}$$

140 Noting that at x_B , $h_s = h_{sB}$, and $\eta_s = \eta_{sB}$, and combining equations (3), (4) and (7) leads to:

141
$$q_{\rm s} = K_{\rm s} \Gamma_{\rm s} \left(1 - \frac{\rho_{\rm f}}{\rho_{\rm s}} \right) \left(\eta_{\rm a} + B_{\rm r} - \eta_{\rm sB} \right)$$
(8a)

142 And:

143

$$\eta_{\rm sB} = \eta_{\rm a} + B_{\rm r} - \frac{q_{\rm s}}{K_{\rm s} \Gamma_{\rm s} \left(1 - \frac{\rho_{\rm f}}{\rho_{\rm s}}\right)}$$
(8b)

144 Where the D-F assumption is applicable $(x \ge x_B)$, saltwater flow (i.e. q_s) can be described 145 by Darcy's law for horizontal flow:

$$q_{\rm s} = -K_{\rm s}\eta_{\rm s}\frac{dh_{\rm s}}{dx} \tag{9}$$

147 Beyond the extent of the lens $(x \ge x_L)$, q_s is given by:

148
$$q_{\rm s} = -K_{\rm s}\eta_{\rm s}\frac{d\eta_{\rm s}}{dx} \tag{10}$$

149 By taking the definite integration of equation (10) between two arbitrary points, x_1 and x_2 , 150 where $x_L \le x_1, x_2 \le x_b$, then:

151
$$q_{s}(x_{2}-x_{1}) = -\frac{K_{s}}{2}(\eta_{s2}^{2}-\eta_{s1}^{2})$$
(11)

152 Substituting
$$x_1 = x_L$$
, $\eta_{s1} = \eta_{sL}$, $x_2 = x_b$ and $\eta_{s2} = \eta_{sb}$ into equation (11), q_s can be found as:

153
$$q_{\rm s} = -\frac{K_{\rm s}}{2(x_{\rm b} - x_{\rm L})} (\eta_{\rm sb}^2 - \eta_{\rm sL}^2)$$
(12a)

154 And:

155
$$x_{\rm L} = \frac{K_{\rm s}}{2q_{\rm s}} (\eta_{\rm sb}^2 - \eta_{\rm sL}^2) + x_{\rm b}$$
(12b)

The equation for saltwater flow beneath the lens, for region $x \ge x_B$, can be obtained by substituting equation (7) into equation (9), producing (Werner & Laattoe, 2016):

158
$$q_{\rm s} = -K_{\rm s} \left(1 - \frac{\rho_{\rm f}}{\rho_{\rm s}}\right) \eta_{\rm s} \frac{d\eta_{\rm s}}{dx}$$
(13)

159 The definite integral of equation (13), between x_1 and x_2 , where $x_B \le x_1$, $x_2 \le x_L$ becomes:

160
$$q_{s}(x_{2}-x_{1}) = -\frac{K_{s}}{2} \left(1 - \frac{\rho_{f}}{\rho_{s}}\right) \left(\eta_{s2}^{2} - \eta_{s1}^{2}\right)$$
(14)

161 Substituting $x_1 = x_B$, $\eta_{s1} = \eta_{sB}$, $x_2 = x_L$ and $\eta_{s2} = \eta_{sL}$, equation (14) becomes:

162
$$q_{\rm s} = -\frac{K_{\rm s}}{2(x_{\rm L} - x_{\rm B})} \left(1 - \frac{\rho_{\rm f}}{\rho_{\rm s}}\right) \left(\eta_{\rm sL}^2 - \eta_{\rm sB}^2\right)$$
(15)

163 Seeking q_s as a function of variables that can be measured in field situations, we 164 eliminate η_{sB} and x_L by combining equations (8b), (12b) and (15), resulting in the following 165 quadratic equation:

166
$$aq_s^2 + bq_s + c = 0$$
 (16)

167 where coefficients a, b and c are given by:

$$a = -\frac{1}{K_{\rm s}\Gamma_{\rm s}^2 \left(1 - \frac{\rho_{\rm f}}{\rho_{\rm s}}\right)} \tag{17a}$$

$$b = 2\left(x_{\rm b} - x_{\rm B} + \frac{(\eta_{\rm a} + B_{\rm r})}{\Gamma_{\rm s}}\right)$$
(17b)

170
$$c = K_{\rm s} \left(\eta_{\rm sb}^{2} - \frac{\rho_{\rm f}}{\rho_{\rm s}} \eta_{\rm sL}^{2} - \left(1 - \frac{\rho_{\rm f}}{\rho_{\rm s}} \right) (\eta_{\rm a} + B_{\rm r})^{2} \right)$$
(17c)

Equation (16) can easily be solved to obtain q_s , and the lens extent, x_L is then attainable from equation (12b).

173 2.2 Scenario 2: x_B outside the riparian lens area ($x_B > x_L$)

When x_B is located outside the riparian lens area, the saltwater head at x_B is equal to the saltwater thickness (i.e. $h_{sB} = \eta_{sB}$), which in combination with equations (3) and (4) produces:

176
$$q_{\rm s} = K_{\rm s} \Gamma_{\rm s} \left(\eta_{\rm a} + B_{\rm r} + \frac{\rho_{\rm f}}{\rho_{\rm s}} \eta_{\rm r} - \eta_{\rm sB} \right)$$
(18a)

168

169

178
$$\eta_{sB} = \eta_a + B_r + \frac{\rho_f}{\rho_s} \eta_r - \frac{q_s}{K_s \Gamma_s}$$
(18b)

179 In addition, in the saltwater region, by substituting $x_1 = x_B$, $\eta_{s1} = \eta_{sB}$, $x_2 = x_b$ and $\eta_{s2} = \eta_{sL}$ 180 into equation (11), q_s can be obtained as:

181
$$q_{\rm s} = -\frac{K_{\rm s}}{2(x_{\rm b} - x_{\rm B})} (\eta_{\rm sb}^2 - \eta_{\rm sB}^2)$$
(19)

182 Substituting equation (18b) into equation (19) leads again to a quadratic expression in the 183 form of equation (16), where coefficients a, b and c are given by:

184
$$a = \left(\frac{1}{K_{\rm s}\Gamma_{\rm s}}\right)^2 \tag{20a}$$

185
$$b = \frac{-2}{K_{\rm s}} \left(x_{\rm b} - x_{\rm B} + \frac{\left(\eta_{\rm a} + B_{\rm r} + \frac{\rho_{\rm f}}{\rho_{\rm s}} \eta_{\rm r}\right)}{\Gamma_{\rm s}} \right)$$
(20b)

186
$$c = \left(\eta_{\rm a} + B_{\rm r} + \frac{\rho_{\rm f}}{\rho_{\rm s}}\eta_{\rm r}\right)^2 - \eta_{\rm sb}^2 \qquad (20c)$$

187 The value of q_s can again be achieved by solving equation (16), allowing x_L to be 188 obtained from equation (12b).

2.3 Modified, one-side, dimensionless conductance for saltwater flow to the river (Γ_s) Morel-Seytoux (2009) showed, for freshwater-only problems, that Γ is a function of the normalized wetted perimeter, W_p^N [-], and the normalised degree of penetration, d_p^N [-] of the river. W_p^N is W_p/d , where W_p is the wetted perimeter of the river and *d* is the average aquifer thickness, or simply the aquifer thickness. d_p^N is η_r/d . Modification of the method for obtaining Γ is required to account for the buoyant riparian lens. That is, W_p^N is replaced with a saltwater normalised wetted perimeter (W_{sp}^N [-]), which we define as:

196
$$W_{\rm sp}^{N} = \frac{W_{\rm sp}}{d_{\rm s}} = \frac{2(W_{\rm r} + (\eta_{\rm sr} - \eta_{\rm a} - B_{\rm r}))}{d_{\rm s}}$$
(21)

where W_{sp} is the total wetted perimeter through which saltwater discharges (on both sides of the river). d_p^N is replaced with a saltwater normalised degree of penetration ($d_{sp}^N[-]$), given by:

199
$$d_{\rm sp}^{N} = \frac{\eta_{\rm sr} - \eta_{\rm a} - B_{\rm r}}{d_{\rm s}}$$
(22)

By using W_{sp}^{N} and d_{sp}^{N} obtained from equations (21) and (22), instead of W_{p}^{N} and d_{p}^{N} for freshwater-only situations, Γ_{s} can be calculated by the following steps. Firstly, the value of Γ_{s} for the situation of no river penetration or a flat recharge zone (i.e. Γ_{flat} [-]) is calculated from (Morel-Seytoux et al., 2014):

204

$$\Gamma_{\text{flat}} = \frac{1}{2 \left[1 + \frac{1}{\pi} \ln \left(\frac{2}{1 - \sqrt{e^{-\pi W_{\text{sp}}^{\text{N}}}}} \right) \right]}$$
(23)

205 Secondly, Γ_{flat} is adjusted to account for partial penetration of the river (Miracapillo & 206 Morel-Seytoux, 2014):

207
$$\Gamma_{\rm p} = \Gamma_{\rm flat} \left[1 + a_1 d_{\rm sp}^{\rm N} + a_2 \left(d_{\rm sp}^{\rm N} \right)^2 \right]$$
(24)

where a_1 [-] and a_2 [-] are given in Table 1.

209

$W_{\rm sp}^{\rm N}$ range	$d_{\rm sp}^{\rm N}$ range	a_1	<i>a</i> ₂
$W_{\rm sp}^{\rm N} \leq 1.0$	$d_{\rm sp}^{\rm N} \leq 0.2$	0.890	-2.430
$W_{\rm sp}^{\rm N} \leq 1.0$	$0.2 < d_{\rm sp}^{\rm N} \le 0.5$	0.538	-0.387
$1.0 < W_{\rm sp}^{\rm N} \le 3.0$	$d_{\rm sp}^{\rm N} \leq 0.2$	0.819	-1.340
$1.0 < W_{\rm sp}^{\rm N} \le 3.0$	$0.2 < d_{\rm sp}^{\rm N} \le 0.5$	0.672	-0.542
$1.0 < W_{\rm sp}^{\rm N} \le 3.0$	$0.5 < d_{\rm sp}^{\rm N} \le 0.9$	0.567	-0.330

Table 1. Values for partial penetration coefficients in equation (24), given by Morel-Seytoux et
al. (2014).

212

Finally, a modification to the conductance is required if a clogging layer exists (Morel-Seytoux, 2009):

215

 $\Gamma_{\rm c} = \frac{\Gamma_{\rm p}}{\left(1 + 2\left(\frac{B_{\rm r}}{W_{\rm sp}}\right)\left(\frac{K_{\rm s}}{K_{\rm sc}}\right)\Gamma_{\rm p}\right)}$ (25)

Here, K_{sc} [LT⁻¹] is the saltwater hydraulic conductivity of the clogging layer. Thus, Γ_s is either Γ_p or Γ_c depending on the existence of a clogging layer.

218 2.4 Applying the analytical solution

Calculating q_s using the analytical solution obtained in this study requires knowledge of 219 the position of $x_{\rm B}$ relative to $x_{\rm L}$, which is dependent on $q_{\rm s}$ via equation (12b), and $q_{\rm s}$ is 220 determinable from knowledge of the boundary conditions and other measurable parameters 221 according to equations (16) and (17a-c) or (20a-c) (the choice of which depends on the position 222 223 of $x_{\rm B}$ relative to $x_{\rm L}$). Hence, solving for $q_{\rm s}$ and $x_{\rm L}$ requires iteration of the theory given earlier. Several assumptions were used to approximate the initial values required to start the 224 iteration process. Firstly, $d_s \approx \eta_a$ (and hence $x_B \approx 2\eta_a$) was adopted. Secondly, the values of W_{sn}^N 225 and d_{sp}^{N} required to calculate Γ_{s} were approximated by $W_{sp} \approx 2W_{r}$ (i.e. assuming that $(\eta_{sr} - \eta_{a} - \eta_{a})$ 226 $B_{\rm r}$ $<< W_{\rm r}$), and the equivalent saltwater depth within the river (i.e. $\eta_{\rm r} \rho_{\rm f} / \rho_{\rm s}$) was chosen as a 227 replacement for $(\eta_{sr} - \eta_a - B_r)$ in equation (22), leading to the following initial estimates: 228

229
$$W_{\rm sp}^{N} \approx \frac{2W_{\rm r}}{\eta_{\rm a}}$$
(26)

230
$$d_{\rm sp}^N \approx \frac{(\rho_{\rm f}/\rho_{\rm s})\eta_{\rm r}}{\eta_{\rm a}}$$
(27)

Using equations (26) and (27), the initial value of Γ_s can be calculated from equations (23) to (25). Thirdly, it was assumed that $x_B < x_L$, and therefore the initial value of Γ_s is used in equations (17a-c) to find the coefficients in equation (16). Note that the solution to equation (16) to find q_s has two roots, only one of which is acceptable; namely the negative root indicating saltwater flow towards the river.

The value of q_s is then applied in equation (12b) to calculate x_L . The value of x_L is 236 compared with $x_{\rm B}$ to check if the initial assumption of $x_{\rm B} < x_{\rm L}$ was correct or not. If $x_{\rm B} > x_{\rm L}$, 237 equations (20a-c) should be used to calculate the coefficients of equation (16). The new value of 238 q_s can be obtained by finding the negative root of equation (16), which is used in equation (12b) 239 to find a new value for $x_{\rm L}$. The obtained values of $q_{\rm s}$ and $x_{\rm L}$ can be used to find $\eta_{\rm sB}$ through 240 application of equation (8b) (if $x_B < x_L$) or equation (18b) (if $x_B > x_L$). Values of q_s and x_L also 241 allow for the calculation of η_{sr} using equation (14) (by substituting $x_1 = 0$, $\eta_{s1} = \eta_{sr}$, $x_2 = x_L$ and 242 $\eta_{s2} = \eta_{sL}$). The corrected values of variables d_s , x_B , W_{sp} , W_{sp}^N and d_{sp}^N can be calculated from the 243 obtained values of η_{sr} and η_{sB} through equation (1) (to find d_s), equation (21) (to find W_{sp}^N) and 244 equation (22) (to find d_{sp}^{N}). Then, the above method is repeated to find new values of Γ_{s} , q_{s} , x_{L} , 245 $\eta_{\rm sr}$ and $\eta_{\rm sB}$. The iteration procedure needs to be continued until convergence criteria are met. We 246 ceased iterating once the change in q_s between two consecutive iterations was less than 0.1%. 247

After finding the converged values of q_s and x_L , the freshwater-saltwater interface can be tracked using equation (14) by adopting $x_1 = x$, $\eta_{s1} = \eta_s$, $x_2 = x_L$ and $\eta_{s2} = \eta_{sL}$, as:

250

$$\eta_{\rm s} = \sqrt{\frac{2q_{\rm s}(x_{\rm L} - x)}{K_{\rm s}\left(1 - \frac{\rho_{\rm f}}{\rho_{\rm s}}\right)} + \eta_{\rm sL}^{2}}$$
(28)

The iteration procedure required to apply the above analytical solution is summarised as a flowchart in Figure 2.

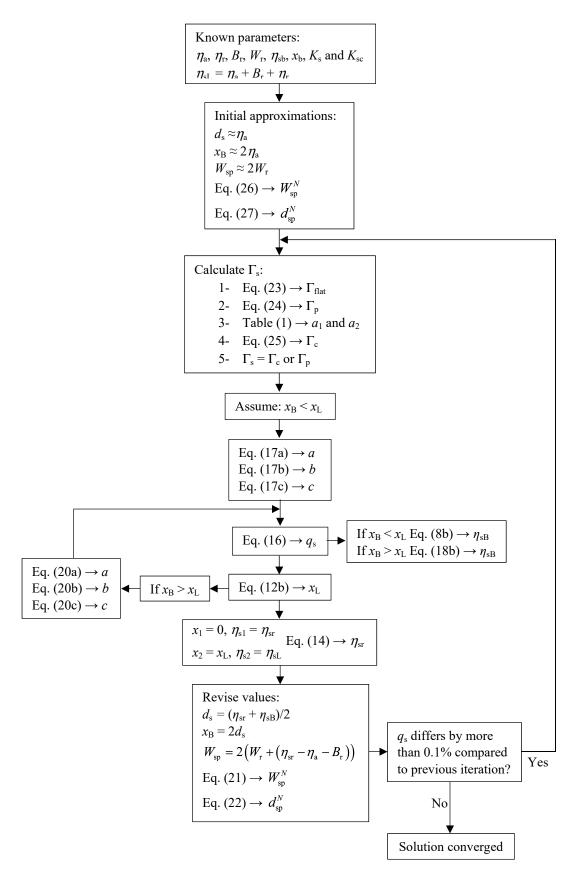


Figure 2. Flowchart of iteration method for applying the partially penetrating riparian lens analytical solution ("Eq." means "Equation").

256

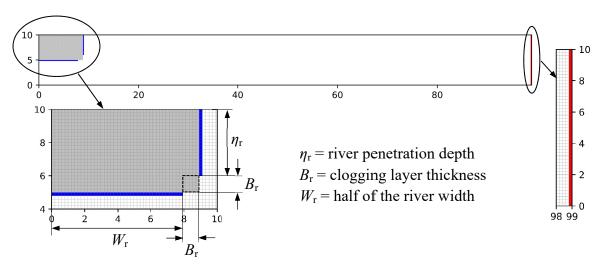
It should be noted that equation (28) is based on the D-F assumption, which is presumed 257 to hold for the region $x_{\rm B} \le x \le x_{\rm L}$. For the region $0 \le x < x_{\rm B}$, where a component of vertical flow 258 is expected, equation (28) is also used to deduce the lens shape, including η_{sr} , in the absence of 259 an alternative formula for the lens shape in this near-river region. This introduces some errors in 260 the analytical solution for the near-river part of the lens $(0 \le x \le x_{\rm B})$ that are assessed in Section 261 3. Even though lens calculations for $0 \le x \le x_{\rm B}$ do not comply with the D-F assumption, any error 262 associated with that non-compliance does not necessarily influence other calculations within the 263 analytical approach (e.g. calculated values of $x_{\rm L}$ and $q_{\rm s}$). 264

265 **3 Comparison to numerical modelling**

266 3.1 Description of model setup

Numerical modelling of partially penetrating rivers lined with low-*K* streambed material was undertaken using SEAWAT (version 4; Langevin et al., 2008) to evaluate the analytical solution proposed herein. SEAWAT has been extensively used and validated for variable-density flow and solute transport, combining MODFLOW-2000 (Harbaugh et al., 2000) and MT3DMS (Zheng & Wang, 1999) through the water density term. For brevity, the mathematical formulation of SEAWAT is not shown here and the reader is referred to the software

273 documentation (Guo & Langevin, 2002).
274 Various river geometries (width and donth of


Various river geometries (width and depth of penetration) were tested using cross-274 275 sectional simulations of an unconfined aquifer. The vertical extent of the numerical model domain for all cases was constant at 10 m, while the horizontal extent was varied from 95 to 99 276 m to obtain the same distance between the riverbank edge and the landward boundary (i.e. 90 m), 277 despite different W_r . The numerical models adopt the cell widths ranging from 0.19 to 0.198 m 278 and a depth of 0.2 m, leading to a total of 25,000 cells. This achieved a balance between 279 accuracy of the results and reasonable computational run times, which were up to one hour on a 280 quadcore Intel[®] Core[™] i5-7500 processor. 281

The saltwater boundary was represented by specified-head boundary condition, while the freshwater river was simulated using the General-Head Boundary (GHB) package of SEAWAT (Langevin et al., 2008). Use of the GHB package allowed flow into or out of the model domain (via the river) depending on the resistance of a clogging layer, represented by the boundary conductance. Specifically, following the guidance given in (Harbaugh et al., 2000) the GHB conductance (C_{GHB} [L²T⁻¹]) was set to:

288
$$C_{\rm GHB} = \frac{KK_{\rm c}\Delta A}{\left(KB_{\rm r} + K_{\rm c}\frac{\Delta L}{2}\right)}$$
(29)

289 where $\Delta A [L^2]$ is the cell cross-sectional area perpendicular to the flow. For horizontal GHB cells 290 along the horizontal river bottom, $\Delta A = \Delta x \Delta y$ and for the vertical riverbank, $\Delta A = \Delta z \Delta y$, where 291 Δx , Δz and $\Delta y (\Delta y$ is perpendicular to the river cross-section and is equal to 1 m) are the cell size 292 [L] in *x*, *z* and *y* (perpendicular to the river cross-section) directions, respectively. ΔL [L] is the

- 293 cell size in the direction of flow (i.e. Δz and Δx for GHB cells representing the parts of the river 294 boundary that are horizontal and vertical, respectively).
- Figure 3 illustrates an example of the model boundary conditions and river geometry, representing Case E-4 in the current study.
- 297

Figure 3. An example of model domain (for Case E-4; described in Table 3). Red, blue and grey cells represent specified-head (saltwater; solute concentration = 1), general-head (freshwater; solute concentration = 0) and no-flow (inactive) boundary conditions, respectively. The black dashed lines in the lower right corner of the incised area where, conceptually, the clogging layer does not abut river water. A more detailed explanation for the lack of GHB boundary cells (blue) along the lower-right corner of the inactive zone is offered in the main text. Units are in metres.

Figure 3 shows that GHB boundary cells are not used to represent the entire perimeter of 306 the incised area in the top left corner of the model, which represents the physical space occupied 307 by the river and surrounding riverbed materials. This is because the GHB boundary cells 308 represent the connection of the aquifer to the river through riverbed material. The GHB cells 309 simulate river-aquifer connection that occurs perpendicular to the riverbed (horizontal river 310 bottom) and the riverbank (vertical side of the river). Therefore, as the clogging layer in the 311 lower right corner of the incised region does not connect the aquifer to water river (perpendicular 312 to the boundary), we omitted any connectivity between the aquifer and the river along the outer 313 edge of these cells (i.e. there are no GHB cells along this part of the perimeter). An alternative to 314 315 this approach could have been to try to parameterise GHB cells in this region considering the convergent flow that might occur through the corner square of riverbed material, i.e., towards the 316 lower right corner of the river. This would have required a rather arbitrary choice of conductance 317 (which would have been lower than the value used along other parts of the boundary where flow 318 to the river is perpendicular to the riverbank/riverbed), so we prefer simply to disconnect the 319 aquifer from the river where there is not a connection to the aquifer in the direction perpendicular 320 321 to the river boundary. This resulted in vertical and horizontal lengths of the incised region equal to $B_{\rm r}$ where no GHB cells were placed (i.e. the square region shown by black dashed lines in 322 Figure 3), while GHB cells covered a horizontal distance of W_r and a vertical distance of η_r , 323

324 corresponding with the river width and depth, respectively. Also, preliminary model testing

- found that a better match to the analytical solution was obtained with the approach to GHB cell
- distribution in Figure 3.

Solute concentrations at specified-head and general-head boundaries were dealt with in the Sink and Source Mixing (SSM) package of MT3DMS (Zheng & Wang, 1999). This allowed groundwater discharge to occur at the ambient salt concentration, and incoming groundwater to have specified salinity levels (e.g. freshwater in the case of the river and saltwater at the inland boundary). The SEAWAT models were run in transient mode until steady-state conditions were achieved, as indicated by time-invariant total solute mass in the model. Periods needed to reach steady-state conditions were in the order of 5000 to 8000 days.

The parameters adopted in numerical models (and corresponding analytical solutions, where parameters are relevant) were chosen to be consistent with previous studies (e.g. Werner, 2017) and are considered reasonable for River Murray conditions (i.e. consistent with parameter ranges provided by Werner and Laattoe (2016) for typical River Murray conditions). Parameter values are given in Table 2.

- 339
- 340

Table 2. Parameters used in numerical and analytical models.

Table 2. Parameters used in numeric	al and analytic	al moucis.	
Parameter	Symbol	Value	Unit
Aquifer freshwater hydraulic conductivity ^a	K	10	m/d
Clogging layer freshwater hydraulic conductivity ^a	Kc	1	m/d
Clogging layer thickness	B _r	1	m
Freshwater density	$ ho_{ m f}$	1000	kg/m ³
Saltwater density	$ ho_{ m s}$	1025	kg/m ³
Distance of landward boundary from riverbank	x_{b}	90	m
Saltwater thickness at landward boundary	$\eta_{ m sb}$	10.05	m
Specific yield ^b	$S_{ m y}$	0.24	_
Specific storage ^b	$S_{\rm s}$	10^{-6}	1/m
Effective porosity ^b	n	0.3	-

^aSEAWAT uses *K* and K_c as input, while K_s and K_{sc} should be adopted in the analytical solution.

³⁴² ^bParameter used only in numerical models.

343

344 Dispersion parameters in numerical models (i.e. longitudinal dispersivity, α_L [L], 345 transverse dispersivity, α_T [L], and molecular diffusion, D_m [L²T⁻¹]) were set to zero as an

346 attempt to simulate non-dispersive, sharp-interface conditions (or at least minimal dispersion).

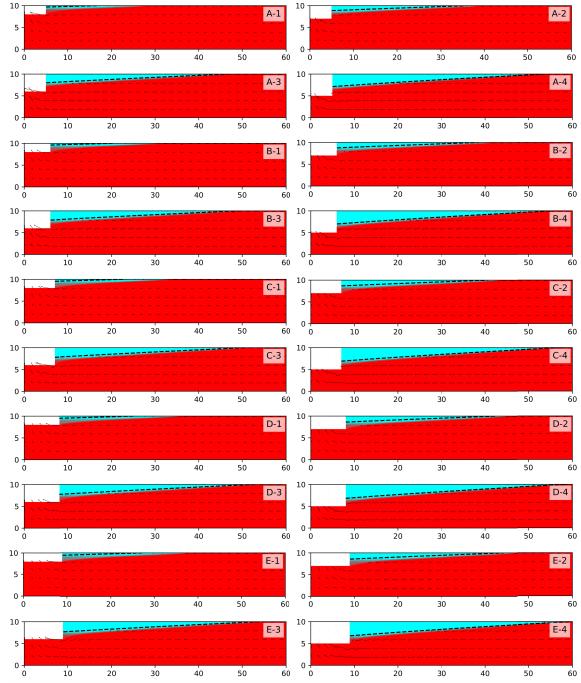
347 However, some dispersion occurred in SEAWAT due to unavoidable artificial numerical

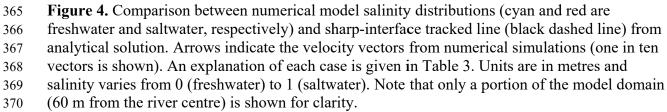
dispersion (Werner, 2017).

Twenty cases were used to consider various river geometries, including river widths and depths varying from 4 to 8 m and 1 to 4 m, respectively. These river geometries correspond to

- 351 W_{sp}^{N} and d_{sp}^{N} ranging from 0.95 to 2.40 and 0.05 to 0.15, respectively. Table 3 provides the
- 352 parameters for various river geometries used in analytical and numerical models.
- 353

able 5.1 arameters for various river geometries adopted in numerical and analytical mod					1 moue	
River depth	$\eta_{\rm r}$ (m)		1	2	3	4
Depth of aquifer beneath riverbed base	$\eta_{\rm a}$ (m)		8	7	6	5
	<i>W</i> _r (m)	4	A-1	A-2	A-3	A-4
		5	B-1	B-2	B-3	B-4
River half-width		6	C-1	C-2	C-3	C-4
		7	D-1	D-2	D-3	D-4
		8	E-1	E-2	E-3	E-4


Table 3. Parameters for various river geometries adopted in numerical and analytical models.


355

356 3.2 Analytical solution and numerical simulation results and comparison

The steady-state salinity distributions of numerical models and the sharp-interface of the analytical solution for various river geometries are shown in Figure 4, with key results listed in Table 4, which also contains the discrepancies in the three main riparian lens characteristics (i.e. q_s, x_L and η_{sr}). Here, numerical results for x_L and η_{sr} are compared to the analytical solution by considering the 0.5 relative salinity concentration (i.e. 50% saltwater concentrations) isochlor

362 from numerical models.

Fable 4. Numerical and analytical model results of q_s , x_L and η_{sr} for different cases.									
	Numerical model ^a			Analytical solution		Difference ^b (%)			
Case	$q_{\rm s}$ (m ² /s)	$x_{\rm L}$ (m)	$\eta_{\rm sr}({\rm m})$	$q_{\rm s}$ (m ² /s)	$x_{\rm L}$ (m)	$\eta_{\rm sr}({\rm m})$	$q_{ m s}$	$x_{ m L}$	$\eta_{ m sr}$
A-1	-0.0834	23.10	9.10	-0.0656	11.69	9.69	-21.3	-49.4	6.43
A-2	-0.102	35.03	8.27	-0.0869	30.89	8.86	-14.7	-11.8	7.21
A-3	-0.119	42.63	7.48	-0.107	41.94	8.01	-10.3	-1.61	7.10
A-4	-0.135	47.98	6.69	-0.125	49.01	7.13	-7.14	2.16	6.66
B- 1	-0.0868	25.24	9.01	-0.0678	14.21	9.61	-21.9	-43.7	6.60
B-2	-0.106	36.60	8.12	-0.0894	32.50	8.76	-15.3	-11.2	7.87
B-3	-0.123	43.91	7.30	-0.109	43.05	7.89	-10.9	-1.96	8.08
B-4	-0.138	49.00	6.50	-0.128	49.81	7.00	-7.64	1.65	7.78
C-1	-0.0892	27.03	8.87	-0.0695	16.03	9.54	-22.2	-40.7	7.63
C-2	-0.108	37.70	8.02	-0.0912	33.69	8.68	-15.6	-10.7	8.29
C-3	-0.125	44.81	7.18	-0.111	43.87	7.80	-11.2	-2.09	8.68
C-4	-0.141	49.69	6.37	-0.130	50.40	6.91	-7.89	1.43	8.46
D-1	-0.0910	28.45	8.70	-0.0708	17.40	9.49	-22.3	-38.9	9.08
D-2	-0.110	38.44	7.94	-0.0927	34.58	8.62	-15.8	-10.0	8.63
D-3	-0.127	45.40	7.09	-0.113	44.50	7.73	-11.3	-1.98	9.04
D-4	-0.143	50.14	6.27	-0.131	50.86	6.83	-7.96	1.44	8.85
E-1	-0.0920	32.31	8.45	-0.0718	18.45	9.46	-22.0	-42.9	11.9
E-2	-0.111	38.88	7.89	-0.0939	35.27	8.57	-15.5	-9.28	8.64
E-3	-0.128	45.70	7.04	-0.114	45.00	7.67	-11.0	-1.55	9.04
E-4	-0.144	50.40	6.22	-0.133	51.22	6.76	-7.65	1.62	8.65

Table 4. Numerical and analytical model results of q_s , x_L and η_{sr} for different cases.

^aBased on 0.5 relative salinity concentration (i.e. 50% saltwater concentrations) isochlor.

 b (analytical result – numerical result)/numerical result × 100%.

375

The numerical and analytical results given in Figure 4 and Table 4 indicate that shallow rivers produce much smaller riparian lenses than those adjacent to rivers that penetrate almost the entire aquifer thickness, thus highlighting the benefit of the partially penetrating solution. The proposed analytical solution provides a reasonable prediction of the riparian lens geometry and saltwater discharge into partially penetrating rivers for the majority of cases. For example, differences between numerical simulations and analytical results has a maximum of 22% for q_s ,

which was obtained for the case of the smallest river penetration depth (i.e. $\eta_r = 1$ m; Cases A-1,

B-1, C-1, D-1 and E-1). In other cases, q_s discrepancies are less than 16%. Table 4 shows that the

analytical solution tends to underestimate the magnitude of q_s in all cases.

In terms of x_L , the analytical solution and numerical models differ by less than 12% for all cases except those with river depths of 1 m (i.e. Cases A-1, B-1, C-1, D-1 and E-1), for which significant analytical-numerical discrepancies were obtained (39-49%). We attribute these high errors to the stronger vertical flows that arise in the cases with the shallowest rivers (i.e. smallest η_r of 1 m), leading to the largest departures from the D-F assumption adopted in the analytical solution. Lens extents were underestimated by the analytical solution, relative to numerical results, in 15 of the 20 cases listed in Table 4.

Analytical-numerical differences in η_{sr} were less than 12% in all cases, and were overestimated by the analytical solution. Therefore, riparian lenses obtained using the new method are deeper but extend a shorter distance from the riverbank compared to those from numerical models.

Statistical criteria, including mean absolute error (MAE), root mean square error 396 (RMSE), percent bias (PBIAS) and Nash-Sutcliffe efficiency (NSE) (Moriasi et al., 2007), are 397 presented in Table 5 to evaluate the match between analytical solution and numerical 398 simulations. MAE, RMSE, PBIAS values closer to 0 and NSE closer to 1 indicate better 399 agreement (Moriasi et al., 2007). The sign of PBIAS values in Table 5 indicate that the analytical 400 solution underestimates both q_s and x_L , while η_{sr} was overestimated (as described above). These 401 statistics considered together suggest that the analytical and numerical models are generally in 402 reasonable agreement. 403

404

405

 Table 5. Statistical criteria to evaluate analytical-numerical model agreement.

	$q_{ m s}$	$x_{ m L}$	$\eta_{ m sr}$
MAE	$0.0151(m^2/s)$	4.31 (m)	0.63 (m)
RMSE	0.0154 (m ² /s)	6.21 (m)	0.64 (m)
PBIAS (%)	13.1	9.85	-8.21
NSE	0.37	0.47	0.52

406

407 Figure 5 represents the results of sensitivity analysis using the analytical solution, in which the sensitivity of q_s , x_{I} , η_{sr} and η_{sB} to changes in W_r and η_r are shown. The results show 408 that river penetration depth plays a more important role than the river width, in terms of the 409 effect on all four output variables. Increasing η_r (i.e. depth of river penetration) from 1 to 4 m led 410 to larger $|q_s|$ and x_L , while the values of η_{sr} and η_{sB} decreased (i.e. the depth of the lens increased), 411 signifying larger riparian lenses next to deeper rivers, as expected. Deepening the river from 1 to 412 4 m increased q_s by an average of 87% and x_L by an average 231%, while η_{sr} decreased by an 413 average of 28%, and η_{sB} decreased by an average of 20%. The results also indicate that the river 414 415 penetration depth has a larger effect on q_s and x_L for narrower rivers, while the river penetration depth has almost the same impact on η_{sr} and η_{sB} for different values of W_r . 416

419

Figure 5. Sensitivity analysis of riparian lens characteristics to river geometries. $|q_{s, Full}|$, $x_{L, Full}$, $\eta_{sr, Full}$ and $\eta_{sB, Full}$ represent the corresponding value of q_s , $x_L \eta_{sr}$ and η_{sB} for a fully penetrating river, respectively.

Figure 5 illustrates that by increasing W_r , larger q_s and x_L were obtained, while η_{sr} and η_{sB} decreased. That is, wider rivers are expected to have more extensive riparian lenses. Widening the river (increasing W_r) from 4 to 8 m increased q_s by an average of 7% and x_L was larger by an average of 21%, while η_{sr} and η_{sB} were smaller by 4% and 2%, on average. This indicates that W_r has a larger effect on q_s and x_L for shallower rivers, while the effect of W_r on η_{sr} and η_{sB} was almost independent of η_r .

430 Values of $|q_{s, Full}|$, $x_{L, Full}$, $\eta_{sr, Full}$ and $\eta_{sB, Full}$, representing a fully penetrating river, are also 431 given in Figure 5 (formulae for fully penetrating rivers given by Werner and Laattoe (2016) and 432 omitted here for brevity). As expected, the assumption of a fully penetrating river for situations

involving partially penetrating rivers may lead to significant overestimates of q_s and x_L , and underestimates of η_{sr} .

435 4 Conclusions

Previous analytical models for the shape of riparian lenses in saline aquifers (adjacent to gaining rivers) have presumed that the river penetrates the entire aquifer depth. However, we introduce a new methodology for calculating the saltwater discharge and the shape of the riparian lens adjoining a gaining river that partially penetrates an otherwise saline aquifer. The derived analytical solution is solved through an iterative procedure, and is verified by comparison to numerical simulation.

The results of the proposed analytical solution, in terms of the lens extent and saltwater discharge, were in reasonable agreement with numerical modelling values. However, the departure from the D-F assumption near the river for cases involving the shallowest rivers introduced some errors in the lens geometry. This took the form of shorter lenses and less saltwater discharge.

The assumption of a fully penetrating river (when the river is in reality partially penetrating) leads to larger riparian lenses in both horizontal extent and vertical depth. Also, fully penetrating rivers involve greater saltwater discharge compared to partially penetrating rivers.

Differences between numerical and analytical models were, on average, 14% for saltwater discharge and 13% for the lens' horizontal extent. The analytical solution tended to underestimate both saltwater discharge and the horizontal extent of the lens.

Sensitivity analysis, based on the proposed analytical solution, shows that larger riparian 454 lenses are produced adjacent to deeper and wider rivers, as expected. The river depth is more 455 influential factor on the saltwater discharge and the horizontal extent of the lens compared to the 456 river width, for the cases that we considered. Changing the width or depth of the river had more 457 influence on the saltwater discharge and the horizontal extent of the lens for shallower and 458 narrower rivers. The proposed analytical methodology provides a useful screening tool for 459 examination of the occurrence of riparian lens in the floodplain saline aquifer adjacent to gaining 460 river of partial penetration to the aquifer. 461

462 Acknowledgements

The authors are thankful for helpful discussions with Hubert Morel-Seytoux (Hydroprose International Consulting) regarding his analytical methodology on river-aquifer exchange fluxes for partially penetrating rivers. Adrian Werner is the recipient of an Australian Research Council

for partially penetrating rivers. Adrian Werner is the recipient of an Australian Research Court
 Future Fellowship (project number FT150100403). Amir Jazayeri is funded by the Australian

467 Research Council (project numbers FT150100403 and LP140100317). Chunhui Lu

468 acknowledges the financial support from the National Key Research Project

469 (2018YFC0407200), National Natural Science Foundation of China (51679067 and 51879088),

470 and Fundamental Research Funds for the Central Universities (B200204002). The relevant data

471 arising from this research are listed in the references, tables, and figures contained herein. Any

472 additional details can be obtained from the corresponding author

473 (amir.jazayeri@flinders.edu.au).

474 **References**

- Alaghmand, S., Beecham, S., Jolly, I. D., Holland, K. L., Woods, J. A., & Hassanli, A. (2014),
 Modelling the impacts of river stage manipulation on a complex river-floodplain system
 in a semi-arid region. *Environmental Modelling and Software.*, *59*, 109–126.
 https://doi.org/10.1016/j.envsoft.2014.05.013
- Alaghmand, S., Beecham, S., Woods, J. A., Holland, K. L., Jolly, I. D., Hassanli, A., & Nouri, H.
 (2015), Injection of fresh river water into a saline floodplain aquifer as a salt interception
 measure in a semi-arid environment. *Ecolological Engineering*, 75, 308–322.
 https://doi.org/10.1016/j.ecoleng.2014.11.014
- Cartwright, I., Weaver, T. R., Simmons, C. T., Fifield, L. K., Lawrence, C. R., Chisari, R., &
 Varley, S. (2010), Physical hydrogeology and environmental isotopes to constrain the
 age, origins, and stability of a low-salinity groundwater lens formed by periodic river
 recharge: Murray Basin, Australia. *Journal of Hydrology*, *380*(1-2), 203–221.
 https://doi.org/10.1016/j.jhydrol.2009.11.001
- Cendón, D. I., Larsen, J. R., Jones, B. G., Nanson, G. C., Rickleman, D., Hankin, S. I., Pueyo, J.
 J., & Maroulis, J. (2010), Freshwater recharge into a shallow saline groundwater system,
 Cooper Creek floodplain, Queensland, Australia. *Journal of Hydrology*, *392*(3–4), 150–
 163. https://doi.org/10.1016/j.jhydrol.2010.08.003
- Guo, W., & Langevin, C. D. (2002), User's Guide to SEAWAT: A Computer Program For
 Simulation of Three-Dimensional Variable-Density Ground-Water Flow, U.S. Geological
 Survey Techniques of Water-Resources Investigations. Book 6, Chapter A7, 77 pp.,
 Tallahassee, Florida.
- Haitjema, H. M. (1987), Comparing a three-dimensional and a Dupuit-Forchheimer solution for
 a circular recharge area in a confined aquifer. *Journal of Hydrology*, *91*, 83–101.
 https://doi.org/10.1016/0022-1694(87)90130-2
- Hantush, M. S. (1965), Wells near Streams with Semipervious Beds. *Journal of Geophysical Research*, 70(12), 2829–2838. https://doi.org/10.1029/JZ070i012p02829
- Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000), *MODFLOW-2000, the*U. S. Geological Survey Modular Ground-Water Model User Guide to Modularization
 Concepts and the Ground-Water Flow Process, U. S. Geological Survey, Open File, 0092, 121 pp., Reston, Virginia.
- Holland, K. L., Charles, A. H., Jolly, I. D., Overton, I. C., Gehrig, S., & Simmons, C. T. (2009),
 Effectiveness of artificial watering of a semi-arid saline wetland for managing riparian
 vegetation health. *Hydrological Processes.*, 23(24), 3474–3484.
 https://doi.org/10.1002/hyp.7451
- Laattoe, T., Werner, A. D., Woods, J. A., & Cartwright, I. (2017), Terrestrial freshwater lenses:
 Unexplored subterranean oases. *Journal of Hydrology*, 553, 501–507.
 https://doi.org/10.1016/j.jhydrol.2017.08.014
- Langevin, C. D., Thorne Jr., D. T., Dausman, A. M., Sukop, M. C., & Guo, W. (2008), SEAWAT
 Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat
 Transport, U. S. Geological Survey Techniques and Methods. Book 6, Chapter A22, 39
- 515 pp., Reston, Virginia.

516	Miracapillo, C., & Morel-Seytoux, H. J. (2014), Analytical solutions for stream-aquifer flow
517	exchange under varying head asymmetry and river penetration: Comparison to numerical
518	solutions and use in regional groundwater models. <i>Water Resources Research</i> , 50(9),
519	7430–7444. https://doi.org/10.1002/2014WR015456
520	Morel-Seytoux, H. J. (1975), A Simple Case of Conjunctive Surface-Ground-Water
521	Management. Ground Water, 13(6), 506–515. https://doi.org/10.1111/j.1745-
522	6584.1975.tb03620.x
523 524 525	Morel-Seytoux, H. J. (2009), The turning factor in the estimation of stream-aquifer seepage. <i>Ground Water</i> , 47(2), 205–212. https://doi.org/10.1111/j.1745-6584.2008.00512.x
526	Morel-Seytoux, H. J., Mehl, S., & Morgado, K. (2014), Factors Influencing the Stream-Aquifer
527	Flow Exchange Coefficient. <i>Ground Water</i> , 52(5), 775–781.
528	https://doi.org/10.1111/gwat.12112
529	Morel-Seytoux, H. J., Miller, C. D., Miracapillo, C. & Mehl, S. (2017), River Seepage
530	Conductance in Large-Scale Regional Studies. <i>Groundwater</i> , 55(3), 399–407.
531	https://doi.org/ 10.1111/gwat.12491
532	Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T. (2007), Model
533	evaluation guidelines for systematic quantification of accuracy in watershed simulations.
534	<i>Transactions of the ASABE</i> , <i>50</i> (3), 885–900. https://doi.org/10.13031/2013.23153
535 536 537 538 539 540	Munday, T., Fitzpatrick, A., Doble, R. C., Berens, V., Hatch, M., & Cahill, K. (2006), The combined use of air, ground and 'in river' electromagnetics in defining spatial processes of salinisation across ecologically important floodplain areas: Lower River Murray, SA, In: Regolith 2006: Consolidation and Dispersion of Ideas, pp. 249–255, CRC LEME, Hahndorf, Australia. [Available at www.crcleme.org.au/Pubs/Monographs/regolith2006/Munday T.pdf.]
541	Telfer, A., Burnell, R., Woods, J., & Weir, Y. (2012), River Murray floodplain salt mobilisation
542	and salinity exceedances at Morgan, prepared by Australian Water Environments for the
543	Murray-Darling Basin Authority, <i>MDBA</i> Pub. No. 53/12, 175.
544	Werner, A. D. (2017), Correction factor to account for dispersion in sharp-interface models of
545	terrestrial freshwater lenses and active seawater intrusion. <i>Advances in Water Resources</i> ,
546	102, 45–52. https://doi.org/10.1016/j.advwatres.2017.02.001
547	Werner, A. D., & Laattoe, T. (2016), Terrestrial freshwater lenses in stable riverine settings:
548	Occurrence and controlling factors. <i>Water Resources Research</i> , 52(5), 3654–3662.
549	https://doi.org/10.1002/2015wr018346
550	Werner, A. D., Kawachi, A., & Laattoe, T. (2016), Plausibility of freshwater lenses adjacent to
551	gaining rivers: Validation by laboratory experimentation. <i>Water Resources Research</i> ,
552	52(11), 8487–8499. https://doi.org/10.1002/2016wr019400
553	Zheng, C., & Wang, P. P. (1999), MT3DMS: A modular three-dimensional multispecies
554	transport model for simulation of advection, dispersion and chemical reactions of
555	contaminants in groundwater systems: Documentation and user's guide, Contract Report
556	SERDP-99-1, U.S. Army Corps of Engineers-Engineer Research and Development
557	Center.

558	Notations	
559	$\alpha_{\rm L}$ [L]	longitudinal dispersivity
560	$\alpha_{\rm T}$ [L]	transverse dispersivity
561	$\eta_{ m a}\left[m L ight]$	depth of aquifer base below the riverbed
562	$\eta_{ m f}$ [L]	freshwater thickness
563	$\eta_{ m r}$ [L]	river penetration depth
564	$\eta_{ m s};\eta_{ m s1};\eta_{ m s2}[m L]$	saltwater thickness (the depth of saltwater flow)
565	$\eta_{ m sb}$ [-]	saltwater thickness at the landward boundary located at x_b
566	η_{sB} [L]	saltwater thickness at $x_{\rm B}$
567	$\eta_{ m sB, Full}$ [L]	saltwater thickness at $x_{\rm B}$ for fully penetrating river
568	$\eta_{ m sL}$ [L]	saltwater thickness the lens tip
569	$\eta_{ m sr}$ [L]	saltwater thickness at the origin (adjacent to the riverbank)
570 571	$\eta_{ m sr, Full}$ [L]	saltwater thickness at the origin (adjacent to the riverbank) for fully penetrating river
572	$\mu_{\rm f} [{\rm ML}^{-1} { m T}^{-1}]$	freshwater dynamic viscosity
573	$\mu_{\rm s} [{\rm ML}^{-1} {\rm T}^{-1}]$	saltwater dynamic viscosity
574	$ ho_{ m f} [m ML^{-3}]$	freshwater density
575	$ ho_{ m s} [{ m ML}^{-3}]$	saltwater density
576	Γ[-]	one-side dimensionless conductance
577	Γ _c [-]	one-side dimensionless conductance in the presence of a clogging layer
578 579	$\Gamma_{\rm flat}$ [-]	one-side dimensionless conductance in case of no penetration of the river or a flat recharge zone
580 581	$\Gamma_{p}[L]$	one-side dimensionless conductance in case of partial penetration of the river
582	Γ _s [-]	modified one-side dimensionless conductance for saltwater flow
583	$\Delta A [L^2]$	cell cross-sectional area perpendicular to the flow
584	ΔL [L]	cell size in the direction of flow
585	$\Delta x; \Delta y; \Delta z [L]$	cell size in x , y and z directions, respectively
586	a; b; c [-]	coefficients in equation (16)
587	$a_1; a_2[-]$	coefficients in equation (24)
588	$B_{\rm r}$ [L]	clogging layer (resistive material) thickness
589	$C_{\text{GHB}} \left[L^2 \mathrm{T}^{-1} \right]$	general-head boundary conductance
590	<i>d</i> [L]	average aquifer thickness

591	d_{p}^{N} [-]	normalised degree of penetration of the river (freshwater only)
592	$d_{\rm s}$ [L]	average thickness of saltwater between the riverbank and at distance $x_{\rm B}$
593	$d_{ m sp}^{ m N}$ [-]	saltwater normalised degree of penetration
594	$D_{\rm m} [{ m L}^2 { m T}^{-1}]$	molecular diffusion
595	$h_{ m B}$ [L]	head in the aquifer at $x_{\rm B}$
596	$h_{ m r}$ [L]	head in the river
597	$h_{\rm s}$ [L]	equivalent saltwater head
598	$h_{ m sB}$ [L]	equivalent hydrostatic saltwater head at $x_{\rm B}$
599	$h_{ m sr}$ [L]	equivalent hydrostatic saltwater head at the river
600	$K[LT^{-1}]$	aquifer freshwater hydraulic conductivity
601	$K_{\rm c} [{\rm LT}^{-1}]$	clogging layer freshwater hydraulic conductivity
602	$K_{\rm s}$ [LT ⁻¹]	saltwater hydraulic conductivity of the aquifer
603	$K_{\rm sc} [{\rm LT}^{-1}]$	saltwater hydraulic conductivity of the clogging layer
604	<i>L</i> [L]	river reach length (perpendicular to the river cross-section)
605	n [-]	effective porosity
606	$q_{\rm s} [{ m L}^2 { m T}^{-1}]$	steady-state saline groundwater discharge
607	$q_{ m s,Full}[{ m L}^2{ m T}^{ ext{-}1}]$	steady-state saline groundwater discharge for fully penetrating river
608	$Q [L^3 T^{-1}]$	fresh groundwater flow to each side of the river
609	<i>S</i> _y [-]	specific yield
610	$S_{\rm s}$ [L ⁻¹]	specific storage
611	$W_{\rm p}^{\rm N}$ [-]	normalized wetted perimeter (freshwater only)
612	<i>W</i> _p [L]	wetted perimeter of the river (freshwater only)
613	$W_{\rm r}$ [L]	half of the river width
614	$W_{ m sp}^{ m N}$ [-]	saltwater normalised wetted perimeter
615 616	<i>W</i> _{sp} [L]	total wetted perimeter through which saltwater discharges (on both sides of the river)
617	$x; x_1; x_2 [L]$	horizontal distance from riverbank
618	<i>x</i> _b [L]	landward boundary distance from riverbank
619	<i>x</i> _B [L]	"far distance" from the river where the D-F assumption is valid
620	$x_{\rm L}$ [L]	riparian lens extent
621	$x_{ m L, Full}$ [L]	riparian lens extent for fully penetrating river

623	NSE	Nash-Sutcliffe efficiency
624	MAE	mean absolute error
625	RMSE	root mean square error
626	PBIAS	percent bias