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Abstract

We present a data-driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according

to their observed velocities, displacements or other selected characteristics. Clustering GNSS stations has the potential for

identifying useful scientific information, and is a necessary initial step in other analysis, such as detecting aseismic transient

signals (Granat et. al., 2013). Desired features of the data can be selected for clustering, including some subset of displacement

or velocity components, uncertainty estimates, station location, and other relevant information. Based on those selections, the

clustering procedure autonomously groups the GNSS stations according to a selected clustering method. We have implemented

this approach as a Python application, allowing us to draw upon the full range of open source clustering methods available in

Python’s scikit-learn package (Pedregosa et. al., 2011). The application returns the stations labeled by group as a table and

color coded KML file and is designed to work with the GNSS information available from GeoGateway (Heflin et. al., 2020;

Donnellan et al, 2021) but is easily extensible. We focused on California and western Nevada. The results show partitions that

follow faults or geologic boundaries, including for recent large earthquakes and post-seismic motion. The San Andreas fault

system is most prominent, reflecting Pacific-North American plate boundary motion. Deformation reflected as class boundaries

is distributed north and south of the central California creeping section. For most models the southernmost San Andreas fault

connects with the Eastern California Shear Zone (ECSZ) rather than continuing through the San Gorgonio Pass.
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Key Points 

1. Unsupervised clustering methods provide a data-driven way of analyzing and 

partitioning GNSS observations of crustal deformation. 

2. Deformation is distributed across the San Andreas fault system but is localized at the 

creeping section in central California. 

3. The Southern San Andreas fault connects with the Eastern California Shear Zone 

rather than the rest of the San Andreas fault system. 
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Abstract 

We present a data-driven approach to clustering or grouping Global Navigation 

Satellite System (GNSS) stations according to their observed velocities, displacements or 

other selected characteristics. Clustering GNSS stations has the potential for identifying 

useful scientific information, and is a necessary initial step in other analysis, such as 

detecting aseismic transient signals (Granat et. al., 2013). Desired features of the data can 

be selected for clustering, including some subset of displacement or velocity components, 

uncertainty estimates, station location, and other relevant information. Based on those 

selections, the clustering procedure autonomously groups the GNSS stations according 

to a selected clustering method. We have implemented this approach as a Python 

application, allowing us to draw upon the full range of open source clustering methods 

available in Python’s scikit-learn package (Pedregosa et. al., 2011). The application 

returns the stations labeled by group as a table and color coded KML file and is designed 

to work with the GNSS information available from GeoGateway (Heflin et. al., 2020; 

Donnellan et al, 2021) but is easily extensible. We focused on California and western 

Nevada. The results show partitions that follow faults or geologic boundaries, including 

for recent large earthquakes and post-seismic motion. The San Andreas fault system is 

most prominent, reflecting Pacific-North American plate boundary motion. Deformation 

reflected as class boundaries is distributed north and south of the central California 

creeping section. For most models the southernmost San Andreas fault connects with the 

Eastern California Shear Zone (ECSZ) rather than continuing through the San Gorgonio 

Pass. 
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1.  Introduction 

The use of unsupervised clustering methods for analysis and interpretation of 

geodetic data was discussed in (Granat, 2000), and the specific use of k-means and 

hierarchical agglomerative clustering methods to analyze GNSS velocity observations 

was presented in some detail in (Simpson et. al., 2012) and subsequent papers (Savage et. 

al., 2013; Thatcher et. al., 2016). Here we build upon this previous work to extend 

unsupervised clustering to GNSS observations of both velocity and displacement using 

a wide variety of clustering methodologies. This approach contrasts with that of (Meade 

and Hager, 2005) and (Johnson, 2013), which fit the California region GNSS velocities 

with translations and rotations of dozens of small pre-defined blocks based on prior 

mapped faults. Our method complements theirs, by exchanging rigid block definitions 

for data-driven clusters; their methods have an advantageous side product of reasonably 

determined fault slip rates at the boundaries.  
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We present a Python implementation of our approach, built upon the open source 

machine learning package scikit-learn (Pedregosa et. al., 2011), that provides considerable 

flexibility in experimental design. The software returns the GNSS stations labeled by 

group in both tabular form and as a color coded KML file for easy visualization in Google 

Earth or Google Maps. Our implementation is designed to work with the GNSS 

displacement and velocity information available from GeoGateway (Donnellan et. al., 

2021), a map-based science gateway supported by NASA, but is easily extendable to other 

data sources or output formats. Velocities available from this source are estimated over 

the lifetime of each station, excluding detected breaks (Heflin et al, 2000). 

2.  Methods 

The goal of any clustering method is to group the available observations such that the 

members of each group are objectively self-similar to each other while being different 

from members of all other groups. So-called unsupervised clustering methods attempt to 

do this with little or no a priori information about the “true” group membership. Our 

hypothesis is that there are natural groupings of crustal displacement reflective of 

underlying physical processes, and so to test we apply unsupervised clustering methods 

to GNSS observations. 

When performing unsupervised clustering, certain key questions need to be 

answered. What is the metric used for self-similarity and cluster differentiation (e.g., 

Euclidean distance)? What features of the observations will be used, and will they be 

normalized (typically yes)? What is the expected number of clusters (usually referred to 

as “k”), or should the clustering method attempt to estimate the number? The answers to 

these questions inform our experimental design. 

As a specific example, consider clustering cosesismic GNSS displacements using the 

k-means (Lloyd, 1982) algorithm. In k-means clustering, the algorithm attempts to 
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partition the n observations into k clusters in which each observation belongs to the 

cluster with the nearest mean. The final result is the partitioning of the observation space 

into Voronoi cells. The problem is computationally difficult (NP-hard), but efficient 

iterative heuristic algorithms have been developed that usually converge quickly to a 

local optimum (Elkan, 2003; Hammerly and Drake, 2015). When using k-means, our 

experimental setup is as follows: 

1. Our similarity metric is Euclidean distance, set by our choice of algorithm. 

2. We know that we need at least one partition of the data, but our choice of 

geographical area for the study also places a likely upper bound on the number of 

partitions, kmax. So we can run experiments for k = 2,…,kmax.       

3. We can include or exclude any direction of displacement observations for each 

station, although in general we usually include the horizontal while choosing to 

include or exclude the vertical direction depending on what sort of phenomena 

we wish to study. 

4. We can choose to normalize the displacement observations with respect to one 

another; our implementation normalizes features to have zero mean and unit 

variance. Depending on the data, this may enhance the influence of small 

displacements on the resulting groupings.   

5. We can include or exclude the geographical position information (latitude, 

longitude) of each station. Including geographical information biases the 

algorithm towards creating spatially continuous clusters, while excluding it means 

clusters are based solely on displacement. If we decide to include geographical 

information, we must normalize the observation vectors so that each feature can 

be considered unitless.   

Since our software implementation is based on scikit-learn, we were able to easily 

include the following clustering options for use by investigators: 
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1. K-means clustering. 

2. Affinity propagation clustering. 

3. Mean-shift clustering. 

4. Spectral clustering. 

5. Agglomerative clustering. 

6. DBSCAN. 

7. Gaussian mixture modeling. 

8. Variational inference Gaussian mixture modeling. 

Wherever possible, we provide the user with reasonable default values for the 

necessary parameters used by each algorithm, although users may pass their own 

parameter values using optional command flags. 

3.  Experimental Results and Discussion 

We carried out a series of experiments using this approach designed to identify major 

crustal deformation boundaries in California. We used as our experimental input velocity 

and displacement observations calculated using the data from the Global Navigation and 

Satellite Systems (GNSS) processed using the GIPSY software package (Heflin et al, 2020). 

Our velocity clustering results for California are in good general agreement with those 

presented previously in (Thatcher et. al., 2016), as shown in Figure 1. However, we extend 

our analysis to include several classes for long-term velocities, cosesismic offsets, post-

seismic motions, and specific time intervals. 

We employed two different clustering algorithms, k-means (discussed above) and 

Gaussian mixture modeling (McLachlan and Peel, 2004) for more robust results, and 

stepped up the number of classes for each from two to ten. We found that when we 

included horizontal and vertical motions in the analysis the results were a mixture of 

subsurface fluid motions that dominate the vertical motions and tectonic motions that 
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dominate the horizontal motions. Since we were primarily interested in tectonic motion 

in these experiments, we excluded vertical motion from our study to avoid contamination 

by strong subsidence signals in the vertical direction. The software allows for station 

geometry of the stations to be included or excluded in the analysis. This biases the results 

so that stations within a cluster tend to be adjacent. After performing several experiments, 

we discovered that for this data set, inclusion of the station locations caused the geometry 

to dominate the clustering results. We note that plate boundaries naturally produce fault 

parallel extended clusters, which would never be contiguous when geometry is included 

in the feature set. As a result, we excluded geometry information so as not to obscure the 

signal arising from motion. 

We performed the following experiments perfomed. For the results presented here 

we used a Gaussian Mixture Model for horizontal components only with no geometric 

constraint. We solve for 2-10 classes for each. We used GeoGateway (Donnellan et al, 

2021; Heflin et al, 2020) to compute a table of values for the following using a bounding 

box surrounding California (Latitude 37.1903, width 9.5335°, Longitude -119.1311, width 

11.3379°). 

1. Long-term velocities 

2. Coseismic motions for the 2010 Mw7.3 El Mayor - Cucapah Earthquake (EMC; 

Rymer et al, 2010). 

3. Coseismic motions for the 2019 Mw 6.4 and Mw7.1 Ridgecrest Earthquake 

Sequence (R; Liu et al, 2019) 

4. Postseismic motions for the 2010 Mw7.3 El Mayor - Cucapah Earthquake for 18 

days to 2 years after the event. 

5. Postseismic motions for the 2019 Mw 6.4 and Mw7.1 Ridgecrest Earthquake 

Sequence for 17 months after the events (July 22, 2019 - December 1, 2020). 
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6. Modeled motions from 1 January 2000 - 1 April 2010 or before the El Mayor - 

Cucapah earthquake. Modeled motions remove annual terms and jumps in the 

time series. 

7. Modeled motions from 10 April 2010 - July 1, 2019 or between the El Mayor - 

Cucapah and Ridgecrest earthquakes. 

8. Modeled motion from 10 July 2019 - 1 December 2020 or after the Ridgecrest 

earthquake sequence. 

In classifying long-term velocities there is one boundary for k=2, which generally 

follows the San Andreas fault system (Figure 1). The Eastern California Shear Zone 

(ECSZ) is identified when k≥3 or for three or more classes with two or more boundaries 

suggesting that the San Andreas fault system is the dominant Pacific - North American 

plate boundary and that the ECSZ is the next most dominant. We hand drew boundaries 

between classes k=2-10 (Figure 2). Overlaying all of the boundaries shows a distributed 

set of boundaries sub-parallel to the San Andreas fault system, the ECSZ/Owens 

Valley/Walker Lane and a north-south boundary further east, which may mark the stable 

North American Plate. The location of the latter two (eastern) boundaries is consistent 

and irrespective of the number of classes. Aside from two off-shore zones the class 

boundaries concentrate near the Salton Trough in the southernmost part of California. 

The Central Valley forms its own cluster. Cluster boundaries are less consistent in the 

southern Central Valley, but we attribute this in part of horizontal motion induced by 

subsidence. 
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Figure 1. Clusters of velocities for number of clusters k = 2 to 10 starting row wise at 

top left. Yellow lines indicate faults from the Uniform California Earthquake Rupture 

Forecast model (UCERF-3; Field et al, 2014). 
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The boundary for k=2 is straighter than the San Andreas fault, likely indicating that it 

is controlled by deeper plate tectonic motions. From south to north, the boundary begins 

at and follows the Imperial fault, then follows the western side of the Salton Sea passing 

west of San Gorgonio Pass and east of Cajon Pass. From there the boundary follows the 

San Gabriel section of the San Andreas fault ~6 km north, passing east of Tejon Pass, and 

following the western edge of the San Joaquin Valley. The boundary joins the San 

Andreas fault at the south end of the Parkfield section and extends northwest through 

the creeping section. The boundary then joins the Calaveras fault veers slightly east in 

San Pablo Bay and joins the Maacama fault. The Maacama fault turns northward near 

Cloverdale as does the boundary, which makes a sharper northward bend and jogs east 

and north of Redwood Valley and Ukiah. At the north end of the Maacama fault the 

boundary joins the Garberville - Briceland fault before turning westward to the Pacific 

coast shore. Boundaries converge at the creeping section of the San Andreas fault 

regardless of the number of classes. The boundaries fan outward at the north and south 

end of the creeping section into sub-parallel boundaries. We interpret this to indicate 

distributed deformation north and south of the creeping section of the San Andreas fault 

with deformation concentrated at the creeping section. A set of boundaries extends south 

through offshore Channel Islands parallel to the coast. 

The eastern margin of the Pacific-North American plate boundary is present for k≥5 

and the location of the boundary is consistent for k=5-10. Originating in the Salton Trough 

the boundary extends northward from Bombay beach at the southernmost San Andreas 

fault. It extends northward east of the Mojave Block (Glazner et al, 2002), through the 

mountains east of Death Valley and into Nevada. The boundaries turn northward to join 

the 1954 Dixie Valley earthquake sequence ruptures (Caskey et al, 1996) and 1915 

Pleasant Valley earthquake rupture (Jones 1915).  
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The ECSZ emerges at Bombay beach, departing from the San Andreas fault and 

trending northward through the Mojave block in a zone bounded by the 1992 M7.3 

Landers (Hauksson et al, 1993) and 1999 M7.1 Hector Mine (Behr et al, 2000) earthquake 

ruptures. Rather than follow the Blackwater fault as previously suggested (i.e. Peltzer et 

al, 2001), the boundaries follow the Goldstone Lake fault (Glazner et al., 2002; Schermer 

et al., 1996) or Paradise fault 33 km to the east of the Blackwater fault, and joins with the 

Wilson Canyon fault about 20 km east of the 2019 M7.1 Ridgecrest rupture. From there it 

extends northward along the Owens Valley and Walker Lane. The boundaries divert 

around a 30–35 km radius area spanning the Mono Craters between Mammoth Lakes and 

Mono Lake. They continue along the Eastern Sierra to Carson City. Just north of Lake 

Tahoe the class boundaries follow a northwest trend to Mount Lassen and then continue 

west along the northern boundary of the Great Valley. Most of the boundaries converge 

at the coast due east of the Mendocino Triple Junction (Silver, 1971). North of Mendocino 

there is a boundary that separates the northern coast of California from the Coast Ranges 

50 km inland. 
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Figure 2. Hand drawn boundaries between clusters for long term velocities for 

number of clusters k = 2 to 10. 
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Clusters for the 2010 M7.3 El Mayor - Cucapah earthquake (EMC) show a distinct class 

near the earthquake rupture (Figure 3). Additional classes show different characteristics 

between the Salton Trough and Peninsular ranges with coseismic offsets detected into 

Mojave block and north. The 2019 Ridgecrest earthquake sequence, better centered in the 

middle of the GNSS network, shows far reaching cosesismic offsets to the GNSS stations 

(Figure 4). Stations within the Brawley Seismic Zone in the Salton Trough show breaks in 

the time series at the time of the Ridgecrest earthquakes. Classes for increasing k indicate 

local cosesismic offsets, classes that define the central California coast ranges and 

Transverse ranges, and that partition the eastern and western Mojave Desert along a zone 

mapped by Schermer et al. (1996). Showing the boundaries of each earthquake separately 

and combined (Figure 5) shows that stations are classified in groups that roughly follow 

the ECSZ and the boundaries take up more of the region to the east of both ruptures. 

Perhaps future earthquakes will affect stations along the San Andreas fault system to a 

greater extent. 
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Figure 3. Clusters for cosesismic motions from the 2010 M7.3 El Mayor - Cucapah 

earthquake with the number of clusters k = 2 to 10 increasing row wise. Yellow lines show 

UCERF-3 faults. Red line shows the EMC rupture location. Red arrow points to the EMC 

rupture. 
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Figure 4. Clusters for cosesismic motions from the 2019 M6.4 and M7.1 Ridgecrest 

earthquake sequence with the number of clusters k = 2 to 10 increasing row wise. Yellow 

lines show UCERF-3 faults. Red line shows the EMC rupture location. Red arrow points 

to the EMC rupture. 
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Figure 5. Coseismic boundaries for the EMC and R earthquakes. Top left shows classes 

k = 2 to 10 for R and the bottom left for EMC. Coseismic classes for both are shown in the 

right plot illustrating that large events of the last decade affected the ECSZ. 

We next computed the classes for postseismic motions for each earthquake (Figures 6-

7). GNSS station breaks are routinely identified in the time series (Heflin et al, 2000) and 

the GNSS tools sum the breaks over a given time period. The default is 2 years, however 

given the data of this writing we had to use 15 months for the Ridgecrest earthquake 

sequence. While the assumption is that breaks are associated with each event sequence it 

is likely that breaks can be identified due to other causes. As a result, the farther field 

stations that are identified are effectively noisy and more classes are not helpful to the 

interpretation. Using up to 5 classes is informative, however, and focuses attention on 

features local to the events (Figure 8). The Salton trough is clearly affected by the EMC 
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earthquake in the postseismic timeframe with sharp boundaries to the east and west that 

follow the general fault directions as well as the topographic fabric. The rupture is in the 

western third of the clusters, suggesting that there is more postseismic deformation on 

the northeast side of the EMC rupture. The R rupture shows a similar result with the fault 

located toward the west side of the central/local cluster groups. Interestingly, the local 

cluster groups are bounded by the Garlock fault to the south. While postseismic motions 

did occur south of the Garlock fault the clustering algorithm identifies those stations as 

having different feature characteristics. 
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Figure 6. Classes for EMC cumulative postseismic motion for two years from 22 April 

2010 with the number of clusters k = 2 to 10 increasing by rowe. Yellow lines are UCERF3 

faults. 
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Figure 7. Classes for R cumulative postseismic motion from 23 July 2019 to 1 

December 2020 with the number of clusters k = 2 to 10 increasing by row. Yellow lines are 

UCERF3 faults. 
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Figure 8. Boundaries for postseismic motions for EMC and R earthquakes that are 

found in close proximity to each respective rupture. Class boundaries distant to each 

earthquake are not shown as they inconsistent across the number of classes. The motions 

are subtle far field and the results are unlikely to be geophysically meaningful. Red lines 

show ruptures and red arrows point to the ruptures. Top of figure shows class boundaries 

for for R and the bottom shows boundaries for EMC for classes k =2 to 5 in both cases.  
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Finally, we divided the network time series into three time frames and computed the 

modeled displacements for each. The three time frames were 2000 to before the 2010 EMC 

earthquake, the time period between the 2010 EMC and 2019 R earthquakes, and the post 

R time frame (Figures 9-11). Qualitatively the results are not particularly different than 

for the long-term velocities. This suggests that the crust responds within a few years. 
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Figure 9. Clusters determined from modeled displacements in the decade before the 

EMC earthquake with the number of clusters k = 2 to 10 increasing row wise. 
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Figure 10. Clusters determined from modeled displacements in the decade between 

the EMC and R earthquakes with the number of clusters k = 2 to 10 increasing row wise. 
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Figure 11. Clusters determined from modeled displacements for the 15 months after 

the R earthquake with the number of clusters k = 2 to 10 increasing row wise. 



Granat et al. Clustering Analysis… 25 

4.  Conclusions 

Our experiments indicate that not constraining the clustering algorithm by location 

or geometry results avoids domination by geometric features and allows for clusters that 

better correlate with faults and tectonic features, since the plate boundary naturally 

produces fault parallel extended clusters. Omitting the vertical results in clusters that 

better align with tectonic features and are not affected by subsidence associated with oil 

and groundwater withdrawal or recharge. Future work will explore the use of vertical 

results for study of non-tectonic crustal deformation signals. 

The San Andreas fault system dominates crustal deformation of the Pacific - North 

American plate boundary in California. However, cluster boundaries for fewer clusters 

show a slightly straighter main plate boundary zone of deformation than the San Andreas 

fault. In particular, no cluster boundaries connect the fault north of the southern bend/San 

Gorgonio Pass across the Coachella Valley near Palm Springs to the Coachella segment 

of the San Andreas fault. Boundaries east of the Salton Sea connect with the ECSZ and 

boundaries associated with the San Andreas system are found from the center of the 

Salton Sea to the west. As the number of clusters increases there are an increasing number 

of cluster boundaries distributed to the west that can be associated with the San Jacinto 

fault, Elsinore fault, and faults offshore in the San Diego Trough. The finding that the 

classes cut across the San Andreas fault is consistent with observations of fragile geologic 

features near Cajon Pass, suggesting that joint ruptures of the San Andreas and San 

Jacinto faults propagate through the Pass (Grant-Ludwig et al., 2015; Lozos, 2016). A 

pattern of joint rupture implies that the San Andreas and San Jacinto faults are connected 

at seismogenic depths and the San Jacinto fault is the main branch of the San Andreas 

system in southern California south of Cajon Pass. Older branches of the San Andreas 

fault extending through the San Gorgonio Pass have complex geometry (Yule and Sieh, 

2003) and are being actively offset by sinistral conjugate faults (Kendrick et al., 2015). 
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The creeping section of the San Andreas fault concentrates the boundaries, which fan 

out on either side. The weak Fransciscan rock facilitates creep (Irwin and Barnes, 1975). 

Presumably when the creeping section closes and there are fewer compliant rocks the 

zone of deformation will broaden in Central California. Further north as in southern 

California the boundaries become distributed as the number of clusters increases. 

The ECSZ is a throughgoing boundary that begins in the eastern Salton Trough and 

trends north through the Mojave block. The ECSZ identified in this clustering 

methodology is further east than the Landers rupture and Blackwater fault. Instead, it 

follows the Goldstone Lake or Paradise fault bounding a set of east-west striking faults 

on the west side. Another persistent set of cluster boundaries bounds the same east-west 

striking faults on the east side as well as the eastern end of the Garlock fault. The presence 

of the boundaries and the fault geometry of the Mojave Desert area suggest that the east 

Garlock fault is transferred south along the right-lateral ECSZ.  

For long-term velocities and coseismic motions for large earthquakes at least with 

Mw≥7 a range of clusters k from 2 to 10 is informative. For postseismic motions k ≤ 5 is 

informative. It may be that more classes are not useful because fewer stations are typically 

affected by postseismic motions. In general, postseismic motions are fairly localized to 

within one fault dimension, but for the EMC and Ridgecrest earthquakes classes 

identified in postseismic motion are weighted more to the east of each rupture. The 

Garlock fault creates a clear barrier for Ridgecrest postseismic motion confining it to the 

north of the fault. Future experiments should test whether including geometry as a 

constraint improves the results. 

Selecting decadal long subsets of the GNSS time series proved less useful other than 

to identify that classes computed from several years of data are similar to those for the 

long-term velocities. This suggests that most postseismic motion occurs within a few 
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years of earthquakes, which is similar to other observations (e.g. Ross et al, 2017, 

Donnellan et al, 2018, Shen et al, 1992, Pollitz et al, 2000). 
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