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Abstract

Data-driven and machine learning models have recently received increasing interest to resolve the bottleneck of computational

speed faced by various physically-based simulations. A few studies have explored the application of these models to develop

new, and fast, applications for fluvial and pluvial flood extent mapping, and flood susceptibility assessment. However, most

studies have focused on model development for specific catchment areas, drainage networks or gauge stations. Hence, their

results cannot be directly reused to other contexts unless extra data are available and the models are further trained. This

study explores the generalizability of convolutional neural networks (CNNs) as flood prediction models. The study proposes a

CNN-based model that can be reused in different catchment areas with different topography once the model is trained. The

study investigates two options, patch- and resizing-based options, to process catchment areas of different sizes and different

boundary shapes. The results showed that the CNN-based model generalizes well on “unseen” catchment areas with promising

prediction accuracy and significantly less computational time when compared to physically-based models. The obtained results

also suggest that the patch-based option is more effective than the resizing-based option in terms of prediction accuracy. In

addition, all experiments have shown that the prediction of flow velocity is more accurate than water depth, suggesting that

the water accumulation is more sensitive to global elevation information than flow velocity. Therefore, one can suggest that

CNN-based models for flood prediction should consider large-size inputs and have large receptive field architecture to achieve

a better performance.
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Abstract 13 

Data-driven and machine learning models have recently received increasing interest to resolve 14 

the bottleneck of computational speed faced by various physically-based simulations. A few 15 

studies have explored the application of these models to develop new, and fast, applications for 16 

fluvial and pluvial flood extent mapping, and flood susceptibility assessment. However, most 17 

studies have focused on model development for specific catchment areas, drainage networks or 18 

gauge stations. Hence, their results cannot be directly reused to other contexts unless extra data 19 

are available and the models are further trained. This study explores the generalizability of 20 

convolutional neural networks (CNNs) as flood prediction models. The study proposes a CNN-21 

based model that can be reused in different catchment areas with different topography once the 22 

model is trained. The study investigates two options, patch- and resizing-based options, to 23 

process catchment areas of different sizes and different boundary shapes. The results showed that 24 

the CNN-based model generalizes well on “unseen” catchment areas with promising prediction 25 

accuracy and significantly less computational time when compared to physically-based models. 26 

The obtained results also suggest that the patch-based option is more effective than the resizing-27 

based option in terms of prediction accuracy. In addition, all experiments have shown that the 28 

prediction of flow velocity is more accurate than water depth, suggesting that the water 29 

accumulation is more sensitive to global elevation information than flow velocity. Therefore, one 30 

can suggest that CNN-based models for flood prediction should consider large-size inputs and 31 

have large receptive field architecture to achieve a better performance. 32 

1 Introduction 33 

Solving physics-related problems using data-driven and machine learning models has 34 

recently become a research field receiving growing attention. Many challenging problems, 35 

especially those that relate with dynamic processes, are being tackled by learning from large 36 

datasets using machine learning models (e.g., Greydanus et al., 2019; Read et al., 2019). 37 

Compared to conventional models that are typically based on a system of equations that describe 38 

the physical phenomena, data-driven models, such as artificial neural networks, have two major 39 

advantages. First, data-driven models can produce relatively accurate predictions without the 40 

need of having the full a priori knowledge of the phenomena. The accuracy of the model is 41 

related to the amount of data available. This is useful when working with complex phenomena 42 

such as weather forecasting (e.g., Xingjian el al., 2015; Cramer el al., 2017). Second, data-driven 43 

models can be used as surrogate models for computationally expensive simulations such as fluid 44 

dynamics (e.g., Tompson et al., 2017; Raissi et al., 2018), agent-based simulations (e.g., Feng et 45 

al., 2016) and topology optimizations (e.g., Li et al., 2019; Sosnovik & Oseledets, 2019). The 46 

computational process of data-driven models is independent of the problem context. Therefore, 47 

when combined with parallel computing techniques, data-driven surrogate models can 48 

significantly accelerate the computational process, especially if considerable number of 49 

simulations are required. 50 

Recently, data-driven models have also gained interest for flow and flood modeling 51 

applications. A considerable number of studies have been conducted using data-driven methods 52 

for tasks such as flood extent mapping (e.g., Gebrehiwot et al., 2019; Moy de Vitry et al., 2019), 53 

flood susceptibility assessment (e.g., Zhao et al., 2019; Bui et al., 2020; Zhao et al., 2020; Wang 54 

et al., 2020), and pluvial flood predictions (e.g., Huang et al., 2014; Tan et al., 2018; Berkhahn et 55 

al., 2019). These studies have shown that machine learning techniques can handle a wide range 56 
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of flood-related problems with acceptable accuracy when sufficient data are available. However, 57 

most of these studies have focused on specific catchment areas or drainage systems. Their results 58 

cannot be directly transferred to other locations without adding more data and further training of 59 

the models. Although several studies exist for flood prediction in different terrains, these studies 60 

are either based on high-level parameters of a terrain generator instead of the raw elevation data 61 

(e.g., Mustafa et al., 2018), or consist of multiple site-specific models rather than one general 62 

model (e.g., Berkhahn et al., 2019; Kratzert et al., 2019a), which prevent these models from 63 

being reused to other scenarios and applications.Recently, data-driven models have also gained 64 

interest for flow and flood modeling applications. A considerable number of studies have been 65 

conducted using data-driven methods for tasks such as flood extent mapping (e.g., Gebrehiwot et 66 

al., 2019; Moy de Vitry et al., 2019), flood susceptibility assessment (e.g., Zhao et al., 2019; Bui 67 

et al., 2020; Zhao et al., 2020; Wang et al., 2020), and pluvial flood predictions (e.g., Huang et 68 

al., 2014; Tan et al., 2018; Berkhahn et al., 2019). These studies have shown that machine 69 

learning techniques can handle a wide range of flood-related problems with acceptable accuracy 70 

when sufficient data are available. However, most of these studies have focused on specific 71 

catchment areas or drainage systems. Their results cannot be directly transferred to other 72 

locations without adding more data and further training of the models. Although several studies 73 

exist for flood prediction in different terrains, these studies are either based on high-level 74 

parameters of a terrain generator instead of the raw elevation data (e.g., Mustafa et al., 2018), or 75 

consist of multiple site-specific models rather than one general model (e.g., Berkhahn et al., 76 

2019; Kratzert et al., 2019a), which prevent these models from being reused to other scenarios 77 

and applications. 78 

Despite the recent investigations, data-driven flood prediction models that can generalize 79 

to different raw terrain inputs (called general flood prediction models) remains rare. The 80 

prediction of catchment-level rainfall-runoff relations was presented by Kratzert et al. (2019b) in 81 

which a recurrent neural network model was tested on basins that were not included in the 82 

training data. Other type of predictions, such as surface water depth and flow velocities, have not 83 

yet been well-studied. The lack of general flood prediction models can be justified by two main 84 

reasons. First, such model requires a machine learning algorithm that can handle different terrain 85 

inputs. The model should be able to systematically process catchment rasters of different size or 86 

drainage network graphs with different number of nodes. This is a challenging task as machine 87 

learning algorithms such as fully-connected neural networks require input vectors to have the 88 

same dimensionality. Second, making an urban-scale general flood prediction model requires 89 

large amount of flood data to be available as the training data. Considering the size and spatial 90 

and temporal resolutions of a typical urban flood simulation, preparing a large flood dataset is 91 

demanding and computationally expensive. Therefore, despite the recent exciting data-driven 92 

flood modelling applications, researchers and urban planners still lack proper surrogate models 93 

for large-scale simulation-intensive applications such as urban flood risk management, real-time 94 

pluvial flood forecast and flood-driven urban planning. This situation emphasizes the need of a 95 

data-driven model capable for accurate flood predictions on different catchments. 96 

In this study, we propose a data-driven pluvial flood prediction model that can generalize 97 

to different terrain inputs. In other words, once the model is trained, it can be used to different 98 

catchment areas that are not included in the training data. The proposed model represents the 99 

pluvial flood prediction as an image-to-image translation task that can be handled by 100 

convolutional neural networks (CNNs). As CNNs were shown effective to generalize on various 101 

rainfall events for urban-scale inundation prediction (Guo et al., 2020a), we mainly focus on the 102 
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flood prediction of the same event in different catchment areas. Currently, our model only 103 

predicts maximum water depths and flow velocities as they are the key factors used by risk 104 

assessments and urban planning. The main contributions of our study include: 105 

1. A new data-driven flood prediction model capable to generalize to different catchment 106 

areas, i.e., areas with different topography, and to generate flood predictions in several seconds 107 

with a promising accuracy compared to physically-based simulations. 108 

2. A set of tests of two different spatial discretization options to handle catchment areas 109 

of different sizes, which can be used as reference for further research. 110 

3. A large pluvial flood dataset generated using a simplified physically-based flood 111 

model that can contribute to other related flood prediction studies. 112 

2 Flow and Flood Estimation Related Studies 113 

Data-driven models as “surrogates” to accelerate the computational process of physically-114 

based simulations have been intensively discussed in many different fields such as computer 115 

graphics and computational fluid dynamics. One of the earliest studies in this areas was 116 

presented by Ladicky et al. (2015) who trained a regression forest using simulation data to 117 

predict the new states of liquid particles from their previous states. The trained regression model 118 

was capable to generate realistic fluid animations consisting of millions of particles in an 119 

interactive frame rate. In addition to the particle-based simulations, Guo et al. (2016) shown that 120 

the grid-based fluid simulations can also be approximated accurately by machine learning 121 

algorithms. They introduced a CNN model which predicted the velocity field of the steady flow 122 

from discretized input geometries. Tompson et al. (2017) used a CNN to infer the pressure field 123 

from the input geometries and the divergence of the velocity field. The trained CNN replaced the 124 

conventional iterative linear solver and thus accelerated the simulation process. Raissi et al. 125 

(2018) adopted a fully connected neural network to infer displacement, velocity, and pressure 126 

from input space-time specifications. They applied the network to the vibrating cylinder problem 127 

and achieved a very high prediction accuracy. However, neither the computational speed nor the 128 

generalizability to other scenarios was reported. Amaranto et al. (2018) proposed to use fully-129 

connected neural networks to predict the future ground water level from input factors such as 130 

precipitation and current water level. The model was combined with an optimization process for 131 

better neural network design. Kim et al. (2019) proposed a novel CNN structure to predict fluid 132 

velocity from a set of reduced input parameters such as the source position and the inflow 133 

velocity. In their study, multiple CNN instances were trained for different simulation scenarios. 134 

Recently, Thuerey et al. (2020) used CNN to directly infer both the velocity and the pressure 135 

field from input airfoil geometries. They used a bottleneck neural network structure which 136 

convert input array to an output array of the same size. 137 

Data-driven models have also been considered for river flow and flood modeling. One of 138 

the research directions is the long-term water-level forecast for specific locations based on 139 

observational rainfall data. For example, Chang et al. (2004) used a recurrent neural network to 140 

forecast the two-step-ahead river stream flow based on the rainfall measurements from several 141 

gauge stations. After the training, the neural network was capable to forecast 2-hour ahead 142 

stream flow appropriately. This method was later extended to multiple-step-ahead using an 143 

expandable neural network architecture. The inputs of the neural networks included not only 144 

rainfall measurements but also the historical water depth observations (Chen et al., 2013; Chang 145 
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et al., 2014). Kratzert et al. (2019a) trained several basin-specific recurrent neural networks with 146 

long short-term memory (LSTM) network cells. The trained models outperformed the calibrated 147 

traditional hydrology models. Recently, Gude et al. (2020) used recurrent neural networks to 148 

predict long-term water depths in rivers as well as the associated uncertainties. 149 

In contrast to these works that focused on long-term predictions of a specific location, 150 

another research direction is to predict the water depths or the flood susceptibility within an area 151 

of interest. This direction typically uses neural networks to learn the correlation between several 152 

designed input terrain features and the output water depths. For example, Berkhahn et al. (2019) 153 

used fully-connected neural networks to estimate the water depth of several catchment areas in 154 

real-time based on synthetic rainfall events. The catchment areas were discretized to rectangular 155 

grids with each cell corresponded to one output of the neural networks. Large catchment areas 156 

were modeled by multiple neural networks with zero-value cells neglected. Bui et al. (2020) used 157 

a fully-connected neural network to predict the flood susceptibility for the scattered locations 158 

within a catchment area. The inputs of the neural network were designed features such as slope, 159 

curvature and elevations, and the outputs were binary value indicated the susceptibility. Wang et 160 

al. (2020) adopted a similar pipeline for susceptibility mapping. Their model used a CNN instead 161 

of a fully-connected network. The neural network was trained using 76 sample locations within 162 

the studied catchment area and tested with other locations within the same area. Guo et al. 163 

(2020a) showed that CNNs could accurately predict the maximum water depths in specific 164 

catchment areas from varying input hyetographs. 165 

Besides these studies that were based on neural networks, a few other exist that used 166 

other type of data-driven models. For example, Tehrany et al. (2013) proposed a rule-based 167 

decision tree that estimate the flood susceptibility based on selected input factors, such as soil 168 

type, terrain curvature and distance to rivers. Other methods such as logistic regressions and 169 

support vector machines were also investigated (Tehrany et al., 2017, 2019). Zaghloul (2017) 170 

used a ray-shooting method to extract geometric features in different spatial locations. The 171 

features were used to train a self-organizing map to predict the velocity field of a steady wind 172 

flow. Leitão et al. (2018) used similar feature-extraction and learning methods for flood 173 

prediction. The methods were tested in several benchmark cases showing promising accuracy. 174 

3 Problem Statement 175 

Even though data-driven techniques have already been explored for river flow and flood 176 

modeling, most studies were limited on specific catchment areas or gauge stations. Therefore, 177 

further investigations are needed to study the generalizability of data-driven models on flood 178 

predictions on different catchment areas. In this study, we focus on a data-driven model for flood 179 

predictions with terrain generalizability, which means once the model is trained, it can be used 180 

on different catchment areas not included in the training data. As a first step of this study, we 181 

simplify the problem by focusing on the maximum water depths and flow velocities. We also 182 

restrict the rainfall event to a designed 100-year storm instead of any events. 183 

In the proposed model, we consider flood prediction as a supervised learning task, 184 

meaning that the prediction model is trained using input-output pairs. The inputs are elevation 185 

raster data and outputs are raster data of simulation results, namely water depth and velocity in 186 

this case. After the training step, the model can predict the maximum water depth and flow 187 

velocity from the new elevation data that is fed as input. We use CNNs to implement the 188 

prediction model, which, when compared to other machine learning algorithms such as fully-189 
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connected neural networks, can utilize the spatial information of adjacent pixels (raster cells) 190 

without facing an exponential growth of model parameters. This gives CNNs a huge advantage 191 

for handling image-like data such as raster datasets. However, challenges still remain. The major 192 

challenge is that, unlike previous studies from computer graphics in which the simulation 193 

domains are relatively small (e.g., 256×256 pixels), catchment areas for typical flood prediction 194 

tasks are large (e.g., 3,000×3,000 pixels). Running CNNs on large input would be infeasible due 195 

to the memory limitation of most graphic cards. To overcome this challenge, we propose and 196 

investigate two options: the patch- and the resizing-based options. A baseline experiment is also 197 

considered in our study to evaluate the performance of the two proposed options. 198 

3.1 Patch-based option 199 

The patch-based option samples elevation and inundation patches from the catchment 200 

areas. The patch sampling process is random and the obtained patches may contain no-data 201 

pixels. The patches are used to train and validate the CNN models. After the training step, flood 202 

predictions for new catchment areas are also obtained at patch level. The flood patches are then 203 

assembled as the final prediction. Furthermore, we oversample the target catchment area to 204 

produce patches that overlap. As suggested by the previous study (Guo et al., 2020a), we use the 205 

mean value of the overlapped pixels to further reduce errors. The patch-based option was shown 206 

effective for describing the original objects, for example, local patches can be used to match 207 

different 3D geometries (e.g., Masci et al., 2015), or segment objects from arbitrarily large 208 

images (e.g., Ronneberger et al., 2015). Nevertheless, considering the information loss caused by 209 

the patch sampling, we chose a relatively large patch size of 1,024×1,024 to preserve as much 210 

global information as possible; we have also tested other patch sizes for comparison purposes. 211 

3.2 Resizing-based option 212 

The resizing-based option down-samples large catchment areas, and then up-samples the 213 

outputs to their original sizes. The purpose of this option is to study whether CNNs can 214 

effectively handle resized or even distorted inputs and make accurate predictions as in other 215 

applications, such as detecting the boundary of objects from images taken from different angles 216 

(e.g., Badrinarayanan et al., 2017). The resizing-based option preserves global elevation 217 

information but destroys local detailed patterns. The lost details were shown by previous studies 218 

(e.g., Chu & Thuerey, 2017) re-generatable by synthetic up-sampling methods. We choose a 219 

large input size (1024×1024) to preserve as much local information as possible. Also, we only 220 

resize catchments that are larger than this size to avoid extra information loss. Catchments that 221 

are smaller than the input size are padded with 0s instead of scaled up. The resizing process 222 

preserves the aspect ratio of catchment areas. 223 

3.3 Baseline experiment 224 

In addition to the two proposed options, we introduce a baseline experiment to investigate 225 

how accurate CNNs are in an ideal situation, i.e., when terrain data for flood simulations have 226 

the same size of the input size of the CNNs. These terrain data do not necessarily represent full 227 

catchment areas. Therefore, the simulation results produced by these data cannot be applied to 228 

real applications. We would like to emphasize that the purpose of this experiment is not for 229 

applicational scenarios, rather, it is to study the output difference between a CNN model and a 230 

physically-based model when the two models are provided with identical inputs. The experiment 231 

excludes the information loss caused by the patch- or resize-based options. Therefore, the result 232 



manuscript submitted to Water Resources Research 

 

can be interpreted as the potential upper bound of the accuracy of the proposed CNN models, 233 

which is a useful reference to assess the performance of the two proposed options. 234 

4 Proposed CNN Model 235 

Water accumulation in a small region is the result of rainfall falling directly in the region, 236 

water flowing from an upstream region and water leaving the region to downstream areas. As 237 

such, for our CNN model, each pixel of the model’s output layer should “see” as many input 238 

pixels as possible in order to make accurate predictions. In other words, the CNN model should 239 

learn from the global elevation information rather than only from local terrain patterns (Geirhos 240 

et al., 2019). The region of the “visible pixels” is called the receptive field (Luo et al., 2016) and 241 

it can be effectively increased by (1) adding more network layers and (2) using larger 242 

convolutional kernels. Based on these considerations, we design our CNN model using deep 243 

networks with relatively large convolutional kernel so that a large receptive field is achieved. 244 

4.1 Model design 245 

The CNN model is designed based on the structure of U-Net (Ronneberger et al., 2015), a 246 

neural network architecture that is characterized by the skip-connections between shallow and 247 

deep layers. The skip connections of U-Net offer two advantages: 1) deep networks without skip 248 

connections are difficult to train and sometimes less accurate (He el al., 2016), and 2) deep 249 

networks tend to “smooth” the adjacent pixels in the output layer and destroy the output detail 250 

patterns (Long et al., 2015). Although small convolutional kernels can improve the output details 251 

(Badrinarayanan et al., 2017), using small kernels is in contradiction with having a desired large 252 

receptive field. In contrast, the skip connections can preserve information from the shallow 253 

layers, improving the obtained details quality in the output layer. 254 

The structure of the CNN model is shown in Figure 1. The model consists of an encoder 255 

and a decoder. The encoder is a series of convolutional and max-pooling layers which compress 256 

the input raster to arrays of smaller sizes. The decoder is a series of up-sampling and 257 

convolutional layers which decompress the compressed arrays to the output raster. For each up-258 

sampling layer of the decoder, its output array is concatenated with the array of the same size 259 

produced by the encoder. The concatenated arrays are fed to the successive layer of the up-260 

sampling layers. 261 

 262 

 263 

Figure 1. The prediction model. Note that the not all layers are shown for visualization purpose 264 

 265 
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The number of layers of the CNN model depends on the size of the input. The goal is to 266 

have the receptive field in the latent layer (the last layer of the encoder) larger than the input size. 267 

The receptive field rn of the n-th hidden layer of the encoder can be calculated using Equation 1. 268 

𝑟𝑛 = {

𝑘1, if 𝑛 = 1

𝑟𝑛−1 + (𝑘𝑛 − 1) ∏ 𝑠𝑖

𝑛−1

𝑖=1

, if 𝑛 > 1
#(1)  

In the equation, kn, sn are the kernel size (the size of the convolutional kernel) and the 269 

stride of the n-th hidden layer, respectively. For max-pooling layers, k=s. Therefore, the larger 270 

the input size, the deeper the network. 271 

Based on this formulation, we tested different combinations of kernel size, stride, and 272 

number of layers. We found that, for the encoder part, a good combination to efficiently increase 273 

the receptive field is two convolutional layers with k=7 and s=1 followed by one max pooling 274 

layer with k=2 and s=2. For the decoder part, we used a symmetrical layer sequence and replace 275 

all max-pooling layers by up-sampling layers with k=2. All convolutional layers of the decoder 276 

part have a k=3 in order to better preserve detail spatial patterns. The activation functions for all 277 

except the last convolutional layers are Leaky-ReLU (Maas et al., 2013). The Leaky-ReLU 278 

function avoids the “vanishing gradient problem” (Hochreiter et al., 1998) of the sigmoid 279 

functions and the dead neuron problem of the rectified linear function (Nair & Hinton, 2010). 280 

The output layer has no activation function and produces unbounded values. 281 

4.2 Processing elevation data 282 

The raw elevation raster xraw are rescaled to x = c(max(xraw) - xraw) for data normalization, 283 

in which max returns the maximum value of xraw and c is a constant. By conducting multiple 284 

training process with different c values, we found that smaller c such as 0.01 performs better than 285 

large c values in terms of the prediction accuracy of the model. The rescaled elevations are 286 

concatenated with additional features that are derived from xraw. The features, which are obtained 287 

using the approach of De Smith et al. (2007), include slope, aspect and curvature. All no-data 288 

pixels are filled with 0s. We compared training processes with and without terrain features, and 289 

found that, although the CNNs can learn from raw data without any designed features, using 290 

terrain features makes the training process converge faster. The testing results of different c 291 

values and different terrain features are shown in the Appendix. The values of flood simulation 292 

rasters are unchanged and are used as the ground truth for training and validation. 293 

5 Experiments 294 

The proposed flood forecasting method was tested in three experiments using real 295 

elevation data. These experiments corresponded to the two options described in Sections 3.1 and 296 

3.2: the patch- and the resizing-based options, and the baseline experiment described Section 3.3. 297 

For each experiment, several CNN models with different input sizes and kernel sizes were 298 

compared. The CNN models were trained separately for different experiments, which means if 299 

two models have the same design (input size, kernel size etc.) but used in different experiments, 300 

they were trained using different training data. 301 
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5.1 Terrain and rainfall data 302 

The elevation data for the experiment were collected from the GeoVITe geodata service 303 

of ETH Zurich (https://geovite.ethz.ch/). The data were downloaded as 2 m raster tiles and were 304 

processed using GIS software into catchment areas (Figure 2). The collected elevation data 305 

consist of two regions. The first region is an area of approximately 90 km × 65 km around the 306 

Canton of Zurich, Switzerland. This region contains 649 catchment areas. The second region 307 

corresponds to the cities of Lausanne and Geneva, Switzerland, and contains seven catchment 308 

areas. We denote the first region as the “main dataset” and the second region as the “validation 309 

dataset”. The purpose of the validation dataset is to test the performance of our model when 310 

“unfamiliar” elevation data are presented. All the catchment areas were used in the patch-based 311 

and resizing-based experiments. The baseline experiment, however, used 1,000 elevation patches 312 

that were randomly sampled from the main dataset without considering the boarder of catchment 313 

areas. 314 

 315 

Figure 2. Dataset used in the study. 316 

The ground truth data (i.e., flooding results) for all experiments were created by the five-317 

hour length simulations of a 1-hour duration large design rainfall event using CADDIES model 318 

(Guidolin et al., 2016). The design rainfall event was generated using the alternating block 319 

method (Te Chow et al., 1988). CADDIES is a cellular-automata-based flood model capable of 320 

relatively fast pluvial flood simulations. 321 

For both patch- and resizing-based options, the ground truth was generated per catchment 322 

area; 67% catchments from the main dataset were randomly selected as the training sets, whereas 323 

the remaining 33% were defined as the test set. All the catchment areas from the validation 324 

dataset were used for validation (Figure 2). The CNNs were trained using the training sets and 325 

evaluated using both the test set and the validation set. For the baseline experiment, the 326 

simulations were conducted using the 1,000 elevation patches, among which 67% patches were 327 

the training set and the remaining 33% were the test set. There was no validation set for the 328 

baseline experiment. During the training process, data augmentation techniques that randomly 329 

flip and rotate the rasters were used to increase the number of training data. 330 

5.2 Tested CNN models 331 

The CNN models tested and compared in this study were named by input size-kernel size. 332 

The details of these models are shown in Table 1. We propose the 1024-k7 model as our 333 

https://geovite.ethz.ch/
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benchmark flood prediction model due to its relatively large input size and receptive field, which 334 

reduces information loss and can potentially learn from a larger area. Compared to this model, 335 

the other models have smaller receptive fields or smaller input size: 336 

• 1024-k3 model tested the effect of small kernels. 337 

• 1024-plain model tested the effect of skip connections.  338 

• 512-k7 and 256-k7 models tested different patch size for patch-based option.  339 

Unless otherwise mentioned, all results presented in the paper were obtained by the 1024-340 

k7 model. 341 

All models were implemented using Keras 2.2.2 (Chollet et al., 2015) and Tensorflow 342 

1.14.0 (Abadi et al., 2016), and were trained using the Adam optimizer (Kingma & Ba, 2015) 343 

with a learning rate of 5×10
-5

. The batch size for all training was two. We used a small batch size 344 

due to the memory limitation of the used graphic card. The mean square loss functions were used 345 

during the training step of all the models. All no-data pixels were excluded from the loss 346 

functions. Furthermore, as the two options have different number of input-output pairs, i.e., the 347 

number of patches (for the patch-based option) is larger than the number of catchment areas (for 348 

the resizing-based option). Resizing-based models were trained with more epochs. For all 349 

models, we stopped the training process when their test losses converge to stable values. 350 

Table 1. Different models tested in our experiments 351 

Name Input size 
Receptive 

field 
Kernel 

size  
All layers shown in sequence 

(concatenations are not shown) 1 
Tested in 

1024-k7 
1,024×1,02

4 

1588 7 convp(8); convp(16); convp(32); convp(64); 
convp(128); convp(256); 2×conv(512); upconv(256); 
upconv(128); upconv(64); upconv(32); upconv(16); 

upconv(8); conv(2) 

All experiments 
1024-k3 572 3 

1024-plain 
1,024×1,02

4 
1588 7 1024-plain has no skip connections 

The baseline 
experiment 

512-k7 512×512 788 7 

convp(16); convp(32); convp(64); convp(128); 
convp(256); 2×conv(512); upconv(256); 

upconv(128); upconv(64); upconv(32); upconv(16); 
conv(2) 

The patch-based 
option 

256-k7 256×256 388 7 
convp(32); convp(64); convp(128); convp(256); 

2×conv(512); upconv(256); upconv(128); 
upconv(64); upconv(32); conv(2) 

1
 conv(n) represents one convolutional layer with the kernel size = 3; convp(n) is two convolutional layers with the kernel size 352 

specified in the network name, followed by one max pooling layer; upconv(n) is one up-sampling layer followed by two 353 
convolutional layers with the kernel size = 3, and n is the number of output image channels. 354 

5.3 Model evaluation 355 

The performance of the proposed model was evaluated from the viewpoints of prediction 356 

accuracy and computational time. The prediction accuracy was evaluated by calculating the 357 

mean absolute error (MAE) between the prediction and the respective ground-truth data and by 358 

visually analyzing two-dimensional (2D) error (prediction−simulation) histograms. The MAE 359 

assesses the accuracy in general and compares the overall performance of different CNN models 360 

tested in the experiments. The MAE has limitations on showing the error distributions when the 361 

dataset is imbalanced due to, for example, the different proportion between flooding and non-362 

flooding areas. This issue can be handled by the 2D error histogram which shows the number of 363 

raster cells that are yi by simulation and yj by prediction by the pixel at row i and column j. The 364 
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2D histogram shows the distribution of prediction errors in both shallow and deep-water areas, 365 

allowing to analyse if the models tend to under- or over-estimate. Both MAE and 2D error 366 

histogram exclude no-data pixels from the assessment results. In addition to these measurements, 367 

spatial distribution of errors were also reported. 368 

The computational time was measured by the average prediction time for the entire 369 

catchment area. For the baseline experiment and the resizing-based option, the time is equivalent 370 

to the process time for one input raster. For the patch-based option, the time depends on how 371 

many patches are sampled from the catchment area. The patch sampling process we used 372 

determines the patch locations by moving a 1,024×1,024 patch horizontally and vertically with a 373 

step of 512 until the entire catchment area is covered. For smaller patch size, the moving step 374 

reduces proportionally. In addition to the prediction time, the time for necessary preprocessing 375 

and post-processing was also measured. 376 

6. Results 377 

6.1 Evaluating model architecture 378 

The performance of the different prediction models is presented in Table 2, including the 379 

MAEs of water depth and flow velocity in test set and validation set. The results show that 380 

models that have the same input size are more accurate when the receptive field is larger. This 381 

result indicates that the availability of global elevation information is essential for flood 382 

predictions. This conclusion is clearer when the results of the patch-based option (512-k7 and 383 

256-k7) are compared. Models that process smaller patch size clearly showed higher prediction 384 

errors. It can also be seen from the loss curves of the different models (Figure 3) that models 385 

with smaller receptive field tend to have larger gaps between the training and test losses. In other 386 

words, when two models reach the same training loss (the same accuracy on training data), the 387 

one that has larger receptive field has a lower test loss (higher accuracy on test data). This 388 

indicates that models without sufficient receptive field tend to “memorize” the training data 389 

rather than make good generalization on the test data. The results of the baseline experiment also 390 

emphasize the importance of global information. Moreover, the baseline experiment shows that 391 

the effect of skip connections is significant. 392 

Table 2. The MAE values for water depth (m) and flow velocity (m/s) of different models on test 393 

and validation sets. The values within brackets correspond to the flow velocity. 394 

Name 
The patch-based option The resizing-based option The baseline 

experiment Test set Validation set Test set Validation set 

1024-k7 0.0132 (0.0290) 0.0219 (0.0313) 0.0193 (0.0447) 0.0250 (0.0445) 0.0212 (0.0705) 
1024-k3 0.0158 (0.0351) 0.0227 (0.0319) 0.0227 (0.0559) 0.0290 (0.0556) 0.0246 (0.0812) 
1024-plain - - - - 0.0394 (0.1230) 
512-k7 0.0185 (0.0397 0.0186 (0.0259) - - - 
256-k7 0.0215 (0.0469) 0.0228 (0.0365) - - - 

 395 
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 396 

Figure 3. training loss of experiments with different network designs 397 

 398 

6.2 Evaluating the prediction accuracy 399 

The error distribution of the results produced by the 1024-k7 model for the two options 400 

and the baseline experiment are presented as 2D error histograms in Figure 4. The plot pixel at 401 

row i and column j shows the number of raster cells that are yi by simulation and yj by prediction. 402 

Therefore, a perfect model with no prediction error will produce a histogram in which all pixels 403 

except the diagonal are 0. The more diverge the non-zeros pixels from the diagonal, the lower the 404 

prediction accuracy. The histograms show that the prediction accuracy obtained is relatively 405 

lower in the patch- and resizing-based options when compared with the accuracy obtained using 406 

the baseline experiment. This suggests that, as expected, the information loss caused by patch-407 

sampling and resizing reduces the prediction accuracy. Flood predictions on catchment areas that 408 

have arbitrary size and irregular boundary is thus more challenging than on terrain data with the 409 

same size. However, although the resizing option provides a more “global view” than the patch-410 

based option, the lack of diagonal-liked pattern on validation set indicates that the resizing option 411 

does not generalize well. This suggests that learning from elevation data of different scales is 412 

more difficult than learning from incomplete elevation data (patches). In addition, both options 413 

and the baseline experiment achieved higher accuracy on flow velocity than water depth. This 414 

indicates that the flow velocity is affected more by the local elevation pattern than by the global 415 

terrain information, thus making flow velocity easier to learn and to predict. 416 
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 417 

Figure 4. 2D error histograms of all three experiments 418 

 419 

6.3 Spatial distribution of errors 420 

Figures 5 and 6 show examples of the 20% most and the 20% least accurate results for 421 

the two proposed options, i.e., the results with smaller and larger MAE, respectively. Figure 7 422 

shows three sample results for the baseline experiment. All figures contain enlargements that 423 

focus on high-error areas. The spatial patterns between the prediction and the simulation show a 424 

high-level visual similarity, suggesting that the neural networks can identify flood extent 425 

accurately. The baseline experiment (Figure 7) also suggests that in ideal conditions, i.e., when 426 

all terrain data used by physically-based simulations are fed to the CNN model without 427 

information loss, the CNN model can approximate the simulator with relatively high accuracy. 428 

Again, as seen in Figure 4, the errors relative to water depth are relatively higher when 429 

compared to those of flow velocity. These high-error areas are mainly located in those areas with 430 

more than 1 m water depth (Figure 5 and 6). The error of flow velocity in these areas is, 431 

however, relatively lower. This observation holds true for the baseline experiment as well 432 

(Figure 7). This phenomenon is most likely related to the fact that water accumulation areas can 433 

receive water from far upstream regions. Water depth prediction seems to be sensitive to the 434 

catchment global elevation information, whereas flow velocity seems to be affected mainly by 435 

local elevation patterns, confirming the findings of Tsubaki and Kawahara (2013). Consequently, 436 

predicting water depth accurately when elevation data are incomplete is more challenging than 437 

predicting flow velocity. Note that all figures use non-linear color maps to visualize small values. 438 

The mapping intervals are shown in the color bars. For each interval, linear interpolation is used. 439 
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 440 

Figure 5. Prediction results of the patch-based option: a 20% most accurate results from test set 441 

(left), a 20% least accurate results from test set (middle), and a sample result from validation set 442 

(right). 443 

 444 
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 445 

Figure 6. Prediction results of the resizing-based option: a 20% most accurate results from test 446 

set (left), a 20% least accurate results from test set (middle), and a sample result from validation 447 

set (right). 448 

 449 
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 450 

Figure 7. Prediction results of the baseline experiment: three samples from the test set. 451 

 452 

In addition, the patch- and resizing-based options show a similar trend of performance on 453 

different catchment areas, i.e., both options perform better on some catchment areas than some 454 

other catchment areas. This result can be seen in Figure 8, in which the x and y axes represent 455 

the MAE values produced by patch- and resizing-based options, respectively. Each dot in the 456 

figure represents one catchment area. To further investigate this, case studies were made on four 457 

catchment areas (samples A, B, C and D in Figure 8, plotted by flow velocity). These catchment 458 

areas were selected as (1) they correspond to higher and lower prediction accuracies, and (2) they 459 

are large and contain more terrain features. The case studies suggest that most prediction errors 460 

occur in water channels and ponds, and it is not clear that urban areas have in general a lower or 461 

higher prediction accuracy when compared to rural areas. The spatial plots of these four 462 

catchment areas are presented in Appendix. A hypothesis created from these four case studies is 463 

that the lower accuracy on specific catchment areas is due to lack of sufficient terrain variations 464 

in our dataset. The results can theoretically be improved if more data are included in the training 465 

step. Furthermore, Figure 8 also shows that the resizing-based option tends to be less accurate 466 

than the patch-based option, which confirms the previous conclusions. 467 
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 468 

Figure 8. Comparing two options’ MAE values, each dot represents one catchment area. 469 

6.4 Evaluating prediction time 470 

The time comparison between physically-based simulations and CNN models is 471 

presented in Figure 9 where each point represents one catchment. The x-axes of the plots 472 

represent the simulation time and the y-axes show the prediction time. The orange points 473 

consider both prediction time and the time for necessary data preprocessing, whereas the blue 474 

points consider only the prediction times. The plots clearly show that CNNs achieved a 475 

significant improvement on computational speed. Results that take approximately 20,000 476 

seconds by simulations can be obtained by three seconds using CNN based models. For the 477 

patch-based option, the prediction time is linearly correlated with the simulation time. This is due 478 

to the increasing number of patches sampled from larger catchment areas. For the resizing-based 479 

option, the prediction time (blue) is constant, and the data preprocessing time (orange) slightly 480 

increases for catchment areas that cost more simulation time, explained by the different size of 481 

the catchment areas. The baseline experiment shows that the data-processing time remains 482 

constant if all elevation data have same size. 483 

 484 

Figure 9. Simulation time vs. prediction times exclude (blue) or include (orange) data processing 485 

time, each dot represents one catchment area. 486 

 487 
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7. Conclusions and Possible Future Research Directions  488 

This study presented a data-driven approach for fast flood prediction using CNNs that is 489 

able to generalize on different catchment areas. The study consists of three experiments in which 490 

two experiments explored different methods for processing catchment areas and the third one, a 491 

theoretical example, serves as the baseline as it is not affected by input data information loss. 492 

The results have shown that CNNs exhibit a promising ability to generalize the information 493 

learnt from certain terrains to other unseen terrains, suggesting a potential to serve as the 494 

“universal” surrogate model for flood predictions of different catchments and scenarios. 495 

The results of the experiments also suggest that the major challenge for data-driven flood 496 

prediction is how to systematically encode catchment areas of arbitrary sizes and shapes. 497 

Compared to the baseline experiment, both patch- and resizing-based options showed a lower 498 

prediction accuracy. The patch-based option showed significantly better performance than the 499 

resizing-based option on validation data, which means the information loss caused by 500 

subsampling is more critical than by incomplete terrain data. The resizing-based option tends to 501 

“memorize” the training data rather than generalize. The high-error areas are more likely to exist 502 

around deep-water regions than shallow-water regions. This suggests that water accumulation is 503 

sensitive to the global pattern of the catchment area; this was also found by Tsubaki and 504 

Kawahara (2013). This conclusion is also supported by the results of the comparison of the 505 

different CNN models investigated in our study. Models with larger receptive field and larger 506 

input size higher accuracy in all the experiments conducted. Another interesting result is that all 507 

experiments achieved higher prediction accuracy on flow velocities than water depths. 508 

The question of how to effectively encode different catchment areas still remains a major 509 

challenge. Possible solutions include testing new neural network architecture, modifying the loss 510 

functions, or sampling patches based on flow movement rather than spatial locations (e.g., Chu 511 

& Thuerey, 2017). Another interesting direction of future research would be to estimate the flow 512 

dynamic based on input constraints such as spatial rainfall intensity. Also, the rapid development 513 

of sensor networks has made it possible to collect data by crowdsourcing methods (Zheng et al., 514 

2018) or computer vision techniques (e.g., Moy de Vitry et al., 2019; Gebrehiwot et al., 2019), 515 

opening new possibilities to produce observational flood data to be used in the training step of 516 

data-driven flood prediction models. 517 
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Appendix 690 

The case studies of four selected catchment areas are presented in Figures A1 to A4. Each 691 

figure contains three columns that correspond to the simulation results, the patch-based 692 

predictions and the resizing-based predictions. The first and second rows of each figure are water 693 

depth results and errors. The third and last rows of each figure are flow velocity results and 694 

errors. The elevation data are attached at the bottom right corner of each figure. 695 

Figures A1 and A2 show the case studies that correspond to sample A and B in Figure 8. 696 

The two samples represent rural and urban areas, respectively. For these samples, both patch- 697 

and resizing-based options reached a relatively high accuracy. On a detailed level, the patch-698 

based option made less mis-prediction than the resizing-based option in terms of numerical 699 

errors and visual patterns. An example is presented through the enlargement areas of both 700 

samples (Figures A1 and A2) where the difference of visual patterns can be clearly seen. Figure 701 

A1 shows another mis-prediction of resizing-based option. The mis-prediction is located on the 702 

right side of the red rectangle, near the boundary of the catchment area. The resizing-based 703 

option consider this location filled with deep waters (last plot of the first row), whereas these 704 

waters do not exist at the same location of the simulation result and the patch-based options (first 705 

two plots of the first row). 706 
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 707 

Figure A1. Case study sample A 708 

 709 
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 710 

Figure A2. Case study sample B 711 

Figures A3 and A4 show the case studies of sample C and D in Figure 8. These two 712 

samples also represent rural and urban areas. Compared with samples A and B, the prediction 713 

accuracy obtained for samples C and D is lower. The most significant misprediction shown in the 714 

enlargement area of sample C is the missing flood in the urban area (Figure A3). This 715 

misprediction exists in both patch- and resizing-based options. For sample D (Figure A4), the 716 

patch-based option successfully identified the flood extent of the downstream areas, whereas the 717 

resizing-based option mis-predicted most downstream areas. 718 

As can be seen in Figure 8, the model tends to perform better in certain catchment areas 719 

and worse in other catchment areas; however, the analysis of the four sample areas does not 720 

suggest a clear relationship between the prediction accuracy and certain terrain features or type 721 

of area (i.e. urban and rural areas). In most cases, the path-based option outperforms the resizing-722 

based option, whereas for certain catchment areas, both options show less accurate results at 723 

same locations. We suspect that this is due to lack of sufficient terrain feature variations in our 724 

dataset, making the model failing to generalize on these catchments. 725 
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 726 

Figure A3. Case study sample C 727 

 728 
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 729 

Figure A4. Case study sample D 730 

As mentioned in Section 4.2, several tests with and without terrain features were 731 

conducted for the baseline experiment to determine the optimal data-processing parameters. The 732 

results of these tests are presented as loss curves in Figure A5, in which the left plot shows the 733 

result of different c values, and the right plot shows the result of different terrain features. It is 734 

clear from the left plot that the model converges faster as the c decreases. However, the 735 

improvement on convergence speed becomes less significant when c < 0.01. The right plot 736 

suggests that models using multiple features converge faster than those using one feature or those 737 

without any feature. 738 
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 739 

Figure A5. The effect of data-processing parameters on model convergence. The S, A, and C 740 

represent slope, aspect, and curvature, respectively. 741 


