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Abstract

Convection is usually parameterized in global climate models, and there are often large discrepancies between results obtained

with different convection schemes. Conventional methods of comparing convection schemes using observational cases or directly

in 3D models do not always clearly identify parameterization strengths and weaknesses. In this paper we evaluate the response

of parameterizations to various perturbations rather than their behavior under particular strong forcing. We use the linear

response function method proposed by Kuang (2010) to compare twelve physical packages in five atmospheric models using

single-column model (SCM) simulations under idealized radiative-convective equilibrium conditions. The models are forced with

anomalous temperature and moisture tendencies. The temperature and moisture departures from equilibrium are compared

with published results from a cloud-resolving model (CRM). Results show that the procedure is capable of isolating the behavior

of a convection scheme from other physics schemes. We identify areas of agreement but also substantial differences between

convection schemes, some of which can be related to scheme design. Some aspects of the model linear responses are related

to their RCE profiles (the relative humidity profile in particular), while others constitute independent diagnostics. All the

SCMs show irregularities or discontinuities in behavior that are likely related to switches or thresholds built into the convection

schemes, and which do not appear in the CRM. Our results highlight potential flaws in convection schemes and suggest possible

new directions to explore for parameterization evaluation.

1



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

Characterizing Convection Schemes Using Their Responses to Imposed Tendency 
Perturbations  

Y. L. Hwong1, S. Song1,2, S. C. Sherwood1, A. J. Stirling3, C. Rio4, R. Roehrig4, C. L. Daleu5, 
R. S. Plant5, D. Fuchs1, P. Maher6, L. Touzé-Peiffer7 

1 Climate Change Research Centre, University of New South Wales, Sydney, Australia 
2 Center for Climate/Environment Change Prediction Research, Ewha Womans University, 
Seoul, South Korea 
3 Met Office, Exeter, UK 
4 CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France 
5 Department of Meteorology, University of Reading, Reading, UK 
6 Department of Mathematics, University of Exeter, Exeter, UK 
7 Laboratoire de Météorologie Dynamique, Sorbonne Université, CNRS, Paris, France 

Corresponding author: Yi-Ling Hwong (yiling.hwong@gmail.com) 

Key Points: 

• The linear response function method is applied in SCM simulations and is able to isolate 
the behavior of convection schemes.  

• Linear responses of the models are related to the mean state relative humidity in both 
shape and magnitude. 

• All SCMs show discontinuities in their responses which are likely related to switches or 
threshold built into convective parameterization. 
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Abstract 1 

Convection is usually parameterized in global climate models, and there are often large 2 
discrepancies between results obtained with different convection schemes. Conventional 3 
methods of comparing convection schemes using observational cases or directly in 3D models do 4 
not always clearly identify parameterization strengths and weaknesses. In this paper we evaluate 5 
the response of parameterizations to various perturbations rather than their behavior under 6 
particular strong forcing. We use the linear response function method proposed by Kuang (2010) 7 
to compare twelve physical packages in five atmospheric models using single-column model 8 
(SCM) simulations under idealized radiative-convective equilibrium conditions. The models are 9 
forced with anomalous temperature and moisture tendencies. The temperature and moisture 10 
departures from equilibrium are compared with published results from a cloud-resolving model 11 
(CRM). Results show that the procedure is capable of isolating the behavior of a convection 12 
scheme from other physics schemes. We identify areas of agreement but also substantial 13 
differences between convection schemes, some of which can be related to scheme design. Some 14 
aspects of the model linear responses are related to their RCE profiles (the relative humidity 15 
profile in particular), while others constitute independent diagnostics. All the SCMs show 16 
irregularities or discontinuities in behavior that are likely related to switches or thresholds built 17 
into the convection schemes, and which do not appear in the CRM. Our results highlight 18 
potential flaws in convection schemes and suggest possible new directions to explore for 19 
parameterization evaluation. 20 

 21 

Plain Language Summary 22 

The transport of heat up and down the atmosphere, called atmospheric convection, is a complex 23 
process. To simplify the representation of convection in global climate models (GCMs) scientists 24 
use “parameterization”, which is essentially mathematical equations of physical processes. 25 
However, there are many different ways to formulate these equations, and no agreement on 26 
which is better. In this work we aim to understand a few popular ways to parameterize 27 
convection. We extract one vertical column from five different GCMs and lightly tickle (perturb) 28 
it and then observe its responses. We found that different models respond very differently to the 29 
same tickling, and this tells us a lot about the model. Importantly, the specific perturbation that 30 
we used can single out the responses of convection-related equations from equations of other 31 
processes. All the models in our study have one thing in common: they are quite jumpy when 32 
tickled, especially at the top of the boundary layer where clouds start to form. We suspect the 33 
culprits are switches placed in the models that sometimes lead to sudden changes in their 34 
response. Our work highlights potentially problematic behavior that can give clues on how to 35 
make climate models better.  36 

 37 

1 Introduction 38 

Atmospheric deep convection is an important process that is still imperfectly understood. 39 
It generates most of the observed precipitation and is the main source of heating to balance 40 
radiative cooling. Global climate models (GCMs) usually have a horizontal resolution that is 41 
much bigger than individual convective clouds. This makes the representation of convection in 42 
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GCMs particularly challenging as it cannot be explicitly resolved. The collective effect of 43 
subgrid-scale convection on the resolved flow is expressed through parameterizations, which are 44 
approximate equations to capture the essence of unresolved processes in a realistic way. 45 
Arakawa (2004) defines convective parameterization as “an attempt to formulate the statistical 46 
effects of cumulus convection without predicting each individual cloud”. Convection 47 
parameterizations typically simulate subgrid-scale precipitation and adjust the vertical 48 
distribution of heat, moisture, and momentum (Kain & Fritsch, 1990). Most convection schemes 49 
used in GCMs today are mass-flux based and updated from schemes developed in the 1980s and 50 
1990s (Rio et al., 2019). More recently, new approaches to parameterize convection have been 51 
proposed, for example with the introduction of stochastic elements (e.g., Berner et al., 2017; 52 
Grell & Freitas, 2014) and new processes such as cold pools (e.g., Del Genio et al., 2015; 53 
Grandpeix & Lafore, 2010; Rio et al., 2013). There are also now attempts based on machine 54 
learning (e.g., Gentine et al., 2018; O’Gorman & Dwyer, 2018).  55 

 56 

The wide array of convection schemes employing different underlying assumptions is 57 
one of the major sources of uncertainties in GCMs. For instance, schemes often use different 58 
trigger functions and closure assumptions. As Arakawa (2004) points out, there are at least six 59 
types of convection schemes based on their closure assumptions alone. Trigger functions can be 60 
constructed using various variables such as convective available potential energy (CAPE), 61 
vertical velocity at the lifting condensation level (Bechtold et al., 2001; Kain & Fritsch, 1990), 62 
cloud work function (Arakawa & Schubert, 1974), and surface temperature and moisture (Tawfik 63 
& Dirmeyer, 2014). Certain assumptions that are widely used in convective parameterization 64 
have been found to be flawed. The quasi-equilibrium assumption (Arakawa & Schubert 1974; 65 
Emanuel et al., 1994), for example, has been recognized to be incomplete in some cases 66 
(Bechtold et al., 2014; Davies et al., 2013; Mapes, 1997; Raymond, 1995; Yano & Plant, 2012). 67 
Further, convection schemes inherently have adjustable parameters that can be “tuned”, in 68 
particular to allow simulation results to better match certain observed features of the Earth 69 
system such as clouds, temperature, and winds (e.g., Kain & Fritsch, 1990; Mauritsen et al., 70 
2012). All these factors have led to considerable differences in model outputs when different 71 
convection schemes were employed (e.g., Emanuel & Živković-Rothman, 1999). Convective 72 
parameterization has also been identified as one of the major contributors to the discrepancies in 73 
climate sensitivity predictions between GCMs (e.g., Bony & Dufresne, 2005; Boucher et al., 74 
2013; Vial et al., 2013). Studies have attributed the biases in various simulated variables, such as 75 
precipitation variability (DeMott et al., 2007; Wang & Zhang, 2013; Zhang & Mu, 2005), clouds 76 
(Chepfer et al., 2008; Zhang et al., 2010), convective organization (Bony et al., 2015), and the 77 
diurnal cycle of convection (Bechtold et al., 2014; Langhans et al., 2013; Rio et al., 2009), to the 78 
parameterization of convection.  79 

 80 

Conventional methods of comparing convection schemes typically use observational case 81 
studies, where model outputs are compared with a selection of relevant observed properties in 82 
the atmosphere (e.g., Grell & Freitas, 2014; Han & Pan, 2011; Kwon & Hong, 2017; Zhang & 83 
Wang, 2017; Zhang et al., 2011). However, this method relies on a sometimes difficult 84 
derivation of large-scale forcing and is based on a limited selection of observed situations. An 85 
alternative approach was suggested by Arakawa (2004), wherein he notes that differences 86 
between convection schemes could perhaps be better understood if they were expressed in a 87 
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common mathematical framework instead of the physical theories they were based on. Along 88 
these lines, Kuang (2010, hereafter K10) proposed the linear response function as an assessment 89 
method for convective parameterizations based on their behavior, i.e., how they actually react to 90 
atmospheric variations. There have been many studies that examined the convective responses of 91 
cloud-resolving models (CRMs) as well as convection schemes to perturbation of its large-scale 92 
environment (e.g., Derbyshire et al. 2004; Lambert et al., 2020; Redelsperger et al. 2002; Takemi 93 
et al. 2004; Tulich & Mapes, 2010).  94 

 95 

In this study, we base our approach on K10’s method and assess how it can be applied to 96 
explore the behavior of convection schemes in a systematic way. K10 points out that the 97 
responses of a cumulus ensemble to weak perturbations of its large-scale environment can be 98 
quite linear even though cumulus convection involves many non-linear processes. The behavior 99 
of a cumulus ensemble (i.e., its variation around a reference state) can therefore be approximated 100 
with a linear response function (or linear response matrix), M, which can be used to probe the 101 
mean response of a non-linear system to small imposed perturbations. The anomalous convective 102 
tendencies are given as 103 

 104 

 !"
!# = M" (1) 

 105 

where x is the anomalous state vector, i.e., vertical profiles of anomalous temperature T’ 106 
and moisture q’ corresponding to the vector of the anomalous temperature or moisture tendency 107 
(dT’/dt or dq’/dt). Prime indicates departure from the equilibrium state of the control 108 
(unperturbed) run and bold characters denote column vectors, e.g., q’ = q’(k), where k is the 109 
vertical levels. In K10’s experiments, small perturbations are applied to the tendencies of the 110 
thermodynamic variables, and maintained until the system reaches a new equilibrium. The 111 
anomalous convective tendencies (dx/dt) in this new equilibrium state then balance the additional 112 
perturbed forcing applied. The deviation of the temperature and moisture profiles from their 113 
profile in the control unperturbed run is x. To construct the matrix M, perturbations are applied to 114 
the temperature and moisture tendencies separately, using similarly shaped profiles that peak at 115 
successive models levels. The resulting vectors of dx/dt and x are stacked together so that 116 

 117 

 118 

In this matrix formulation, each column of Y represents a profile of the prescribed 119 
tendency perturbation that peaks at a given model level (dT’/dtsfc, … dT’/dttop, dq’/dtsfc, …, 120 
dq’/dttop)T, where the subscripts sfc and top denote the lowest and highest model levels, and the 121 
corresponding column of X is the corresponding state responses (T’sfc, …, T’top, q’sfc, …, q’top)T. 122 

 123 

 Y = MX (2) 
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Our study focuses on the temperature and moisture responses to small perturbations of 124 
convective tendencies using single-column model (SCM) simulations, following Herman and 125 
Kuang (2013, hereafter HK13). To be precise, we present the “response per unit perturbation” of 126 
the models, i.e., the M-1 matrix (see Appendix A of HK13). The overarching goal is to 127 
characterize and compare some widely used convection schemes using K10’s linear response 128 
function method. Further efforts to investigate the underlying mechanisms and assumptions of 129 
the individual schemes that may explain their behavior presented here form part of our ongoing 130 
work and will be presented in future publications. Twelve physical packages in five SCMs are 131 
tested. We also compare our results with the corresponding CRM (SAM6.8.2, 2 km resolution) 132 
results of K10. The focus on the steady state responses (M-1 matrix) of the SCMs in this paper 133 
allows us to easily recognize salient features of the schemes and locate discrepancies between 134 
them to gain insights into their behavior.  135 

 136 

The mean state used in this study is that of a radiative-convective equilibrium (RCE), in 137 
which the climate system is represented by a balance between radiative cooling and convective 138 
heating. RCE resembles the tropical atmosphere on a large scale, where there is no vertical 139 
motion on average (Manabe & Strickler, 1964). It is the simplest framework to describe the 140 
atmosphere and has been applied to study a myriad of climate phenomena such as convective 141 
self-aggregation (Wing et al., 2020), precipitation extremes (Pendergrass et al., 2016), and 142 
convective updraught velocities (Singh & O’Gorman, 2015). Besides comparing between 143 
convection schemes, we also compare simulations with different planetary boundary layer (PBL) 144 
and microphysics (MP) schemes.  145 

 146 

The specific objectives of this paper are: (1) to compare the RCE mean states of the 147 
different SCMs, (2) to examine and compare the steady state responses (T’ and q’) of the 148 
different schemes to small convective tendency perturbations, and (3) to test the sensitivity of the 149 
RCE mean state and the responses to the types of parameterization typically used in global 150 
models (convection, PBL, and MP). 151 

 152 

2 Methods 153 

2.1 Participating models and simulation setup 154 

The participating SCMs and their model physics are listed in Table 1. Further details on 155 
the convection schemes of the SCMs are presented in Table 2. For the Weather Research and 156 
Forecasting (WRF) model, five convection schemes are tested; for the Unified Model (UM), two 157 
convection schemes are tested; for the LMDZ model, three physical packages for convection and 158 
clouds are tested. This brings the total number of SCM cases to 12 (for brevity hereafter we will 159 
refer to these cases simply as “SCMs”). The Zhang-McFarlane deep convection in combination 160 
with the University of Washington (UW) shallow convection schemes are used in two SCMs – 161 
WRF and SCAM (the SCM version of the Community Atmosphere Model, CAM). In both cases 162 
the same PBL and MP schemes are also used so their model physics are matched as closely as 163 
possible. Two variations of the Betts-Miller convection scheme are tested: the Simplified Betts-164 
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Miller (SBM) scheme in UM and the Betts-Miller-Janjic (BMJ) scheme in WRF. These cases 165 
make for interesting comparisons of the same (or similar) scheme in two different models. 166 
 167 
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Table 1. SCMs and their model physics 168 

SCM cases and 
versions 

Convection scheme PBL scheme Microphysics / large-
scale scheme 

Other schemes 

LMDZ 5A Emanuel scheme 
(Emanuel, 1993) 

Eddy diffusion  
(Laval et al., 1981) 
with counter-gradient term 
(Deardorff, 1972) 
 

Sundqvist (1978) for 
liquid water, 
Zender and Kiehl (1997), 
Heymsfield and Donner 
(1990) for ice  

Log-normal cloud scheme of Bony 
and Emanuel (2001) 

6A Modified Emanuel scheme 
(Grandpeix et al., 2004) + cold pool 
parameterization (Grandpeix & 
Lafore, 2010; Rio et al., 2013) 

Pronostic eddy diffusion 
(Yamada, 1983) + mass-flux 
representation of thermals 
(Rio et al., 2010) 

Same as above Bi-gaussian cloud scheme of Jam et 
al. (2013) for cumulus clouds , log-
normal cloud scheme of Bony and 
Emanuel (2001) for deep and LS 
clouds 
 

6Ab Same as above Same as above Same as above + Jakob 
and Klein (2000) for the 
evaporation of 
precipitation  

Same as above 

SCAM (CAM, 
v.5.3) 

Zhang-McFarlane deep convection 
(Zhang & McFarlane, 1995) + UW 
shallow convection scheme (Park & 
Bretherton, 2009) 

UW Moist Turbulence 
scheme (Park & Bretherton, 
2009) 

Stratiform microphysical 
processes (Morrison & 
Gettelman, 2008) 

Cloud macrophysics scheme (Park et 
al., 2014) 

WRF (v. 
4.0.2) 

ZM Zhang-McFarlane (Zhang & 
McFarlane, 1995) + UW shallow 
convection scheme (Park & 
Bretherton, 2009) 

UW Moist Turbulence 
scheme (Park & Bretherton, 
2009) 

Stratiform microphysical 
processes (Morrison & 
Gettelman, 2008) 

 

KF Kain-Fritsch (Kain, 2004) 
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NT New-Tiedtke (Zhang & Wang, 
2017) 

Yonsei University (Hong et 
al., 2006) 

WRF Single-Moment 6-
class (Hong & Lim, 
2006) 

NSAS New Simplified Arakawa-Schubert 
(Han & Pan, 2011) 

BMJ Betts-Miller-Janjic (Betts, 1986; 
Betts & Miller, 1986; Janjic, 1994, 
2000) 

UM 
(v.11.6) 

SBM Simplified Betts-Miller (Frierson, 
2007) 

Lock et al. (2000) Single-moment scheme 
based on Wilson and 
Ballard (1999) 

PC2 cloud scheme 
(Wilson et al., 2008) 

MF UM 6A Mass-Flux scheme (Walters 
et al., 2019) 

CNRM (ARPEGE-
Climat v.6.4.1) 

Prognostic Condensates and 
Microphysics Transport (PCMT; 
Guérémy, 2011; Piriou et al., 2007; 
Roehrig et al., 2020) 

Prognostic eddy-diffusion 
(Cuxart et al., 2000) and dry 
and shallow convection with 
PCMT 

Single-moment, 5-class 
(Lopez, 2002) 

Cloud macrophysics (Bougeault, 
1981; Ricard & Royer, 1993) 

 169 

Table 2. Convection schemes and their main features  170 

SCM Convection 
scheme 

Brief description Closure 
assumption 

Triggering Entrainment / 
detrainment 

Shallow 
convection 
(Yes / No) 

Interaction with 
large-scale (LS) 
cloud scheme (Yes / 
No) 

LMDZ5A Emanuel scheme Episodic mixing and 
buoyancy sorting 
mass-flux scheme. 
Representation of an 
unsaturated 
downdraft. 

CAPE-based CIN-based Episodic mixing and 
buoyancy sorting. 

No No 
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LMDZ6A Modified Emanuel 
scheme + cold pool 
parameterization 
for deep 
convection 

Episodic mixing of 
Grandpeix et al. 
(2004) and coupling 
with cold pools: 
saturated updrafts 
and downdrafts 
happen in the 
environment of cold 
pools while the 
unsaturated 
downdraft falls into 
the cold pool region. 
EDMF type scheme 
for shallow 
convection. 

Available 
Lifting Power 
(ALP) at cloud 
base provided 
by boundary 
layer thermals 
and cold pools. 
 

When 
Available 
Lifting Energy 
(ALE) 
provided either 
by thermals or 
cold pools 
exceeds 
convective 
inhibition 
(ALE > CIN). 

Episodic mixing as 
described by 
Grandpeix et al. 
(2004) and 
detrainment of 
mixtures at level of 
neutral buoyancy. 

Yes. Thermal 
plume model 
that 
represents 
dry and 
shallow 
convection in 
a unified 
way. 

Yes. 
Bi-gaussian cloud 
scheme based on 
thermal properties to 
compute cloud 
fraction and 
precipitation in the 
LS scheme. 

LMDZ6Ab Same as 6A but 
with the 
parameterization of 
Jakob and Klein 
(2000) to account 
for cloud overlap 
in evaporation of 
precipitation. 

Same as above Same as above 
 
 

Same as above Same as above Same as 
above 

Same as above with 
the parameterization 
of Jakob and Klein 
(2000) to account 
for cloud overlap in 
evaporation of 
precipitation. 

SCAM Zhang-McFarlane 
(ZM) deep 
convection + UW 
shallow convection 

ZM is a mass-flux 
scheme and only 
considers deep 
convection. Specifies 
distribution of 
updrafts assuming all 
categories in the 
plume spectrum have 
same cloud base 
mass-flux. Assumes 
convection removes 
CAPE at exponential 
rate with specified 

ZM: CAPE-
based  
 
UW: CIN-based 
mass-flux 
closure 

ZM: Threshold 
value for CAPE 
exceeded for 
air parcel lifted 
from level of 
highest moist 
static energy 
 
 
UW: CIN-
based trigger  

ZM: Each updraft 
has characteristic 
entrainment rate 
(ER). Detrains cloud 
liquid and ice. 

No, when 
ZM scheme 
is used alone. 
Yes, when 
combined 
with the UW 
shallow 
scheme. 

Yes. Convection 
scheme detrains 
cloud and ice at 
cloud top, which are 
then used by the MP 
scheme. 
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adjustment time 
scale. 
 
UW is a mass-flux 
shallow convection 
scheme. Includes 
momentum mixing. 
Entrainment depends 
on vertical velocity of 
updraft.   

WRF ZM + UW  
Same as above 

Same as above Same as above Same as above Same as 
above 

Yes, same as above 

Kain-Fritsch (KF) A simple cloud 
model with moist 
updrafts and 
downdrafts. Includes 
simple microphysics. 
Perturbation 
temperature based on 
horizontal and 
vertical moisture 
convergence. 
Minimum cloud 
depth varies 
according to cloud 
base temperature. 
Updated downdraft 
formulation from 
original KF scheme. 

CAPE-based Parcel vertical 
velocity (which 
has dependence 
on LS w) is 
positive over a 
specified cloud 
depth (typically 
3 km). 

Minimum ER 
imposed and 
variable ER based 
on sub-cloud layer 
convergence. 

Yes  Yes, same as above 

New-Tiedtke (NT) Updated version of 
the Tiedtke mass-flux 
based scheme. 
Updates include 
trigger functions and 
closure for deep and 
shallow convection. 

CAPE-based Net moisture 
convergence is 
positive and 
unstable 
parcels present 
in air in lower 
layers. 

Entrainment and 
detrainment depends 
on environmental 
relative humidity 
(RH). 
 
 

Yes Yes, same as above 
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Convective 
adjustment time 
depends on vertical 
velocity averaged in 
updraft and cloud 
depth.  

New Simplified 
Arakawa-Schubert 
(NSAS) 

Updated from 
Simplified AS 
scheme that uses only 
one type of cloud 
(deepest) instead of 
an ensemble. Shallow 
and deep convection 
uses a mass-flux 
scheme. Increased 
threshold for mass-
flux at cloud base and 
remove random 
cloud-top selection to 
enhance deep 
convection. 

Based on cloud 
work function 
quasi-
equilibrium.  

Based on 
threshold for 
cloud work 
function, also 
has some 
dependency on 
LS w and low-
level moisture. 

Entrainment and 
detrainment depend 
on environmental 
RH. 

Yes Yes, same as above  

Betts-Miller-Janjic 
(BMJ) 

Based on Betts-
Miller convective 
adjustment scheme.  
Parameters for target 
moisture profile and 
relaxation time are 
variable and depend 
on cloud efficiency. 
Moisture profile for 
shallow convection 
requires entropy 
change to be small 
and non-negative. 

CAPE-based Three 
conditions: 
CAPE 
available, 
threshold for 
cloud depth 
exceeded, 
moist 
soundings. 

N/A Yes No 

UM Simplified Betts-
Miller (SBM) 

A simplified version 
of the Betts-Miller 

CAPE-based Positive CAPE 
trigger 

N/A Yes No 
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scheme. Profiles of 
temperature and 
moisture are relaxed 
to a fixed RH 
(typically 70%) over 
a given relaxation 
time. 

6A Mass-Flux 
(MF) 

Based on Gregory 
and Rowntree (1990). 
Single bulk plume 
mass-flux scheme 
with diagnosis for 
shallow, deep states 
depending on the 
depth reached by an 
undilute parcel 
ascent. Also a mid-
level scheme for 
initiation above the 
boundary layer top. 

CAPE-based,  
with a variable 
timescale for 
CAPE removal 
dependent on 
resolved ascent 
(although no 
ascent assumed 
in these SCM 
experiments). 

Convection 
triggered from 
top of boundary 
layer when a 
dilute parcel 
ascent exceeds 
a threshold 
buoyancy at the 
next level 
(currently set to 
0.2 K). 
 

Fixed entrainment 
profile, a mixing 
detrainment profile 
that depends on the 
entrainment, and an 
adaptive detrainment 
term that acts to 
increase parcel 
buoyancy once it 
starts to decline to 
reflect detrainment 
of less buoyant 
plumes from the 
‘bulk’ population. 
(Derbyshire et al., 
2011). 

Yes No initiation from 
LS cloud, but 
detrained liquid and 
frozen condensate 
from convective 
plume provides 
increments to LS 
cloud condensates 
and fractions 
(Wilson & Ballard, 
1999). 
 

CNRM PCMT Main concepts based 
on buoyancy 
(triggering, mass-
flux, entrainment-
detrainment). 
Condensates and 
convective vertical 
velocity are 
prognostic, providing 
memory effect.  

CAPE-based Buoyancy-
based. 
Triggered when 
convective 
updraft vertical 
velocity is 
positive. 

Buoyancy sorting 
(Bretherton et al., 
2004) 

Yes 
(continuous 
approach) 

Yes. Convective MP 
consistently mirrors 
the LS MP. LS 
condensates are 
entrained in the 
convective updraft, 
while convective 
condensates are 
detrained in the 
environment.  

171 
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Following HK13, we first perform an RCE simulation (referred to below as PreRCE) for 172 
each model to find its steady state (radiative cooling equals convective heating), then use this 173 
state to initiate the control and perturbation experiments. For the control and perturbation runs, 174 
we replace the interactive radiative scheme in all models with an idealized constant radiative 175 
cooling profile of Qrad = -1.5 K day-1 from the surface to 200 hPa; from there, decreasing linearly 176 
to zero at and above 100 hPa. A temperature and moisture relaxation to the models’ respective 177 
PreRCE profiles is imposed near and above the tropopause. The inverse relaxation time constant 178 
is zero from surface to approximately 160 hPa and then increases linearly to 0.5 day-1 at and 179 
above the 100 hPa level (see Figure 1 in HK13). This adjustment serves to prevent unrealistic 180 
temperature and moisture values due to weak convective activity in these regions (HK13). Note 181 
that for the PreRCE run we leave the handling of stratospheric temperature and moisture profiles 182 
to the judgement of each modeller. Tests using the five WRF cases reveal that M-1 is not 183 
sensitive to this part of the profile (not shown).  184 

 185 

The sea surface temperature (SST) used in all models is 28℃. Surface sensible and latent 186 
heat fluxes (SH and LH, respectively) are computed using a bulk aerodynamic formula: 187 

 188 
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 189 

where ⍴, p, T, q and > are, respectively, the air density, pressure, temperature, specific 190 
humidity and the Exner function, with their subscripts s and 1 referring to surface and lowest 191 
model level, respectively; Ch and Ce are the surface exchange coefficients for heat and moisture, 192 
respectively; U is the near surface wind speed; qsat(Ts, ps) is the saturation specific humidity at 193 
surface temperature and pressure; cp is the heat capacity of dry air and Lv is the latent heat of 194 
water vaporization. We used a fixed value of 0.001 for the exchange coefficients Ch and Ce and 195 
constant of 4.8 m s-1 for the near surface wind U. This removes any surface exchange feedback 196 
caused by winds. The horizontal mean wind speeds are relaxed to a vertically uniform value of 197 
4.8 m s-1 for zonal and 0 m s-1 for meridional wind, with a relaxation time constant of 3 h.  198 

 199 

Our approach assumes that closely examining model behavior under RCE conditions (w 200 
= 0) will be helpful for characterizing model physics behavior. However, a few convection 201 
schemes in WRF—specifically, the Kain-Fritsch and New Simplified Arakawa-Schubert 202 
schemes—use mechanisms that involve the large-scale vertical velocity in their convection 203 
triggering functions (see Table 2), even though this is arguably unphysical (Emanuel et al., 204 
1994). Our experimental setup is possibly not well suited to such schemes, since they require 205 
non-zero vertical velocity (i.e., a departure from local RCE) to behave properly. The WRF SCM, 206 
however, does have small fluctuating w values in its individual grids due to the 3 x 3 horizontal 207 
grid stencil that it uses (described in Hacker & Angevine, 2013), which are sufficient to trigger 208 
convection in those schemes. Although the w values remain small (~ 0.1 cm s-1 in individual 209 
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grids, almost zero averaged over all grids) compared to those in nature, we believe that this is a 210 
reasonable test of any scheme since the average condition of the atmosphere on a large scale is 211 
close to RCE (i.e., no large scale w).  212 

 213 

2.2 Perturbation experiment 214 

We apply the method described in HK13 to get the T and q responses to small 215 
perturbation of convective tendencies (“inverse technique”). The procedure is briefly described 216 
here. We first use the PreRCE state to initiate a control run with no perturbations. For the 217 
perturbation runs, we initiate the same way but force the models with small, steady perturbations, 218 
separately, in temperature (dT/dt) and moisture (dq/dt) tendencies at every time step until a new 219 
RCE is reached. The applied perturbation follows that of HK13 and is the sum of a delta and 220 
Gaussian function. The form of the perturbation applied at the j-th model level is as follows: 221 

 222 
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 223 

where pi is the local pressure, pj is the pressure at model level j, and EA@ is a delta function 224 
at the j-th model level. The amplitudes of the perturbations are 0.5 K day-1 for temperature 225 
tendency perturbations and 0.2 g kg-1 day-1 for moisture tendency perturbations. The profile of a 226 
perturbation that peaks at a given model level is hence the respective amplitude multiplied by the 227 
function in Equation 5 (see Figures 2a, 3a). For brevity, in this paper we refer to a perturbation 228 
profile that peaks at pressure level p as “perturbation at pressure level p”. For instance, 229 
“perturbation at 850 hPa” denotes a perturbation profile where the magnitude of the perturbation 230 
peaks at 850 hPa.  231 

 232 

Positive and negative perturbations are applied at every model level in separate runs. The 233 
anomalous state response vectors T’ and q’ are then the differences of the time-averaged T and q 234 
profiles between the perturbation and control runs. We ensure that the simulation lengths and 235 
averaging windows used in the models are long enough to attain sufficient signal-to-noise ratio 236 
(see Table 3). The anomalies of the positive and negative perturbation runs are averaged to 237 
obtain the best-estimate T and q responses presented in this paper; they can also be compared to 238 
assess linearity. Note that linearity is assessed following formula B1 in HK13: 239 

 240 

 R@S(T) = H′@V(T) + H′@W(T) (6) 

 241 

where R′@(T)is the discrepancy for perturbation applied at the j-th model level, H′@(T)is 242 
the T or q anomaly for the perturbation at that level, with the +/– subscript denoting positive or 243 
negative perturbation, respectively. R = 0 indicates perfect linearity. Detailed investigation into 244 
linearity is beyond the scope of this study. We merely ensure that the linearity of our models is 245 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

satisfactory and comparable to that of the SCMs in HK13 (Figure B7 in HK13). For a few 246 
models (UM-MF, SCAM, and LMDZ) we reduced the perturbation amplitudes to 0.2 K day-1 and 247 
0.1 g kg-1 day-1 to improve linearity. Additionally for SCAM, results are the average of an 248 
ensemble of five members after a series of random noise is added to specific humidity over the 249 
whole perturbation period, based on the procedure described in Appendix B4 in HK13 but with a 250 
longer period for each random perturbation. This additional step improved the linearity of the 251 
system, bringing the linearity of SCAM closer to that of the other SCMs.  252 

 253 

Table 3 summarizes the simulation details of the SCMs.  254 

 255 

Table 3. Simulation details of the SCMs 256 

SCM Time 
step 
(sec) 

Vertical 
resolution  

Perturbation 
amplitudes  
(K d-1, g kg-1 d-1) 

Perturbation 
application 
period (day)a 

Time for control 
and perturbation 
runs to reach 
new RCE (day) 

Averaging window 
for mean state and 
anomaly 
calculations (day) 

LMDZ 
(x3)  

600 79 levels, up 
to 1.5 hPa 

0.2, 0.1 600 100 500 

SCAM  300 60 levels, up 
to 3 hPa 

0.2, 0.1 6,500b 300 3,000 

WRF 
(x5) 

300 74 levels, up 
to 6 hPa 

0.5, 0.2 1,000 300c 700 

UM-
SBM 

600 55 levels, up 
to 48 hPa  

0.5, 0.2 500 250 250 

UM-
MF 

600 55 levels, up 
to 48 hPa  

0.2, 0.1 500 250 250 

CNRM 900 91 levels, up 
to 1 hPa 

0.5, 0.2 1,000 200 800 

a After reinitialization from PreRCE state. Models require different simulation lengths to reach new equilibrium, 257 
which we leave to the judgement of individual modellers 258 
b Longer runs needed for equilibrium to be reached due to random noise application 259 
c Varies between convection schemes, but all WRF schemes attain new RCE  by around day 300 260 

 261 

As mentioned in Section 1, we present the responses in the form of the matrix M-1, which 262 
shows the steady state responses per unit perturbation. To construct M-1, we multiply both sides 263 
of Equation 2 by Y-1 and then again by M-1 to get M-1 = XY-1. Y-1 is a diagonal matrix where the 264 
diagonal elements are the inverses of the total power input for perturbation of a given model 265 
level in the units of W m-2. Additionally, we multiply M-1 by the standard power inputs of the 266 
SAM CRM (noting that the total power input to each model is different owing to the different 267 
vertical resolutions) so that the matrices of the SCMs are expressed in the more intuitive units of 268 
K or g kg-1 (instead of K / [W m-2] or [g kg-1] / [W m-2]) and are directly comparable to that of 269 
the CRM. 270 
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 271 

2.3 Individual scheme sensitivity tests 272 

We anticipate that the SCM behaviors examined here will largely be determined by their 273 
convective schemes but this is not guaranteed a priori. To test this, in addition to comparing the 274 
behavior of the SCMs as configured in Table 1, we also run two separate sets of simulations with 275 
alternate PBL and MP schemes. We run this part of the study only in WRF, as it is the only 276 
model system that provides multiple options for each parameterization and allows switching 277 
between schemes. We run these tests for only two perturbation levels: 850 and 650 hPa. As the 278 
radiative profile is prescribed, radiation schemes are not considered here. Four PBL schemes are 279 
tested: Yonsei University (YSU), Mellor-Yamada-Nakanishi-Niino level 2.5 (MYNN2) with the 280 
eddy-diffusivity mass-flux (EDMF) option enabled, Asymmetrical Convective Model version 2 281 
(ACM2), and Grenier-Bretherton-McCaa (GBM). Four MP schemes are also tested: the WRF 282 
Single-Moment 6-class (WSM6), Kessler, Thompson, and Morrison 2-moment schemes. Each of 283 
the four convection schemes in WRF (Kain-Fritsch, Betts-Miller-Janjic, New-Tiedtke, New 284 
Simplified Arakawa-Schubert) is paired with the four PBL (with default MP) and then four MP 285 
(with default PBL) schemes, yielding a total of 32 combinations. The WRF Zhang-McFarlane 286 
scheme is excluded from this part of the study as it can only be paired with one PBL scheme. 287 
The results of these sensitivity tests are presented in Section 6. 288 

 289 

3 RCE mean states 290 

We begin by examining the RCE mean state of the SCMs for temperature and relative 291 
humidity (RH), as shown in Figure 1. These are calculated from the temporal averages of the 292 
state variables after the models have reached RCE in the control run (see Table 3). For the 293 
temperature profiles, saturation equivalent potential temperatures (θes) are shown instead of 294 
temperatures as they are more informative and show the spread better (in a temperature plot the 295 
curves are indistinguishable from each other). Note that for a given pressure there is a unique, 296 
monotonic relationship between θes and absolute temperature T. The mean states of the CRM are 297 
shown for comparison (Figure 1a, d). The SCMs are generally colder than the CRM, probably 298 
due to the warmer SST used in K10’s experiment (K10 used an SST of 29.5°C as opposed to 299 
28°C in his SCM experiments in HK13. Sensitivity tests show that using SST = 29.5°C does not 300 
change the pattern of the perturbation results by much. For consistency with HK13’s SCM 301 
experiments we used SST = 28°C). The profiles are all near moist-adiabatic but there are 302 
significant departures (Figure 1b, c). In the region of scientific interest to this study (below 160 303 
hPa), a maximum θes difference of around 25 K (~ 5 K in T) is detected around the surface 304 
regions (below 900 hPa) and around 20 K (~ 8 K in T) in the free troposphere (except for UM-305 
SBM). UM-SBM has an outlying RCE temperature profile that is consistently warmer than the 306 
other SCMs between the lifting condensation level (LCL) and tropopause. As UM-MF and UM-307 
SBM simulations are identical except for the convection scheme, it is realistic to assume this is 308 
not an implementation error. Despite the warm bias in UM-SBM, this SCM is included in this 309 
study as the pattern of the perturbation results is the primary interest (we further show in Section 310 
5 that no correlation was found between the mean state temperature and the perturbation results). 311 
Nevertheless, this warm bias should be borne in mind in interpreting UM-SBM’s results. Apart 312 
from UM-SBM, the spread in RCE temperature profiles among the SCMs is consistent with 313 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

other similar studies (Daleu et al., 2015; Wing et al., 2020). Even among the WRF cases, which 314 
use the same experimental setups except for the convection scheme, there is a similar spread 315 
throughout the column.  316 

 317 

 318 

Figure 1. RCE profiles for saturation equivalent potential temperature (a – c) and relative 319 
humidity (d – f) of the SAM CRM (a, d) and the SCMs (b, e). The anomalies of the SCMs from 320 
their ensemble mean (mean of all SCMs) are shown in c, f.  321 

 322 

A large spread is also found in the RCE RH profiles (Figure 1e, f), similar to what HK13 323 
found, and consistent with results of comparable studies (Emanuel & Živković-Rothman, 1999; 324 
Rennó et al., 1994; Sobel & Bretherton, 2000; Wing et al., 2020). The RH values of the SCMs 325 
range between 56% and 88% at the surface levels and between 6% and 85% in the mid-326 
troposphere. CNRM, UM-MF, UM-SBM, and WRF-BMJ are generally moister than the other 327 
SCMs in the free troposphere, while WRF-KF, WRF-ZM, and LMDZ5A are generally drier. 328 
Again, the WRF cases diverge considerably in their RH profiles despite identical simulation 329 
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setups. A kink in the RH profile around the cloud base level (~ 850 – 950 hPa) is detected in the 330 
CRM and the SCMs, albeit generally steeper in the SCMs. In a few SCMs these coincide with a 331 
slight inversion in their temperature profiles, although this is not always evident. The SCMs in 332 
our experiment are generally drier than the CRM, except for CNRM. The RH profiles of the 333 
SCMs also frequently display kinks in the free troposphere, which are not found in the CRM, 334 
e.g., ~ 600 hPa for UM-MF and WRF-ZM, ~ 700 hPa for WRF-NT. The RCE mean precipitation 335 
rates of the SCMs lie between 3.92 – 5.14 mm day-1 (H̅	= 4.78, σ = 0.38), similar to the SCM 336 
values of the RCE Model Intercomparison Project of Wing et al. (2020) and consistent with the 337 
expected precipitation rates diagnosed from the prescribed radiative profile. 338 

 339 

The two cases involving the Zhang-McFarlane convection scheme (WRF-ZM and 340 
SCAM) display similar temperature profiles and comparable shape in their RH profiles, although 341 
WRF-ZM is consistently drier than SCAM by around 10 – 20% in the free troposphere. Given 342 
that these two SCMs use largely the same model physics (Convection, PBL, and MP schemes), 343 
the differences in their mean state could be due to numerics or the way the schemes are 344 
implemented. The same applies for the two Betts-Miller cases (WRF-BMJ and UM-SBM), 345 
which also display quite different temperature and RH profiles, although in this case the models 346 
use different PBL and MP schemes. Additionally, the BMJ and SBM convection schemes—347 
although based on the same concept of relaxation toward a reference profile—differ considerably 348 
in their implementation. The two LMDZ6A versions (6A and 6Ab) display almost identical 349 
temperature and RH profiles, while the profiles of LMDZ5A differ considerably from those of 350 
the LMDZ6A versions. 351 

 352 

It is difficult to diagnose the cause of the diverse RCE mean states among the SCMs 353 
using only their profiles in Figure 1. In order to investigate this further, we next present in 354 
Section 4 the linear responses outlined in Section 2, which convey richer information about the 355 
models behavior. We will explore whether the RCE mean states and linear responses are related 356 
in Section 5, and investigate the impact of PBL and MP schemes on the RCE mean states in 357 
Section 6.  358 

 359 

4 Temperature and moisture responses to perturbations 360 

4.1 Key aspects of the SCM responses 361 

In this section we present vertical profiles of the T and q responses (i.e., departure from 362 
RCE profiles presented in Section 3) resulting from temperature and moisture tendency 363 
perturbations at two particular levels (850 and 650 hPa), for the SAM CRM and four selected 364 
SCMs (Figures 2 and 3). The goal is to illustrate a few high-level observations in a more intuitive 365 
format before delving into the full results. The complete M-1 matrices of all models and a more 366 
detailed analysis of their behavior are presented in Section 4.2. Overall, the responses vary 367 
greatly among the models. Here, for each variable (T or q response) we show the responses of 368 
the SAM CRM from K10, one SCM that closely resembles the CRM (CNRM for T response, 369 
WRF-BMJ for q response), and one that differs greatly from it (UM-MF for T response, WRF-370 
NSAS for q response).  371 
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 372 

 373 

Figure 2. Profiles of the T responses to temperature (top) and moisture (bottom) tendency 374 
perturbations at 850 (red) and 650 (blue) hPa. The shapes of the perturbations are shown in (a) 375 
and (e). Responses of the SAM CRM (b, f), CNRM (c, g) and UM-MF (d, h) are shown here.  376 

 377 
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 378 

Figure 3. As in Figure 2 but for q responses of the SAM CRM (b, f), WRF-BMJ (c, g) and 379 
WRF-NSAS (d, h). 380 

 381 

As K10 pointed out, the CRM responds to both heating and moistening perturbations by 382 
warming throughout the column, approximating the difference between two moist adiabats 383 
(Figures 2b, f). The attendant q responses roughly resemble the expected change in specific 384 
humidity computed using the corresponding change in T, if RH remains the same as in the 385 
reference state (Figures 3b, f). CNRM and WRF-BMJ largely echo this CRM behavior in their T 386 
and q responses, respectively (Figures 2c, g; Figures 3c, g). The observation that WRF-BMJ 387 
responds in a similar way to the CRM is perhaps unsurprising, given that the shift in the CRM’s 388 
response profiles largely conforms to the difference between two moist adiabats. This is the way 389 
Betts-Miller type schemes are constructed, where convective activity acts to relax the 390 
atmospheric state back to a reference profile, often a moist adiabat (Betts 1986; Betts and Miller, 391 
1986). We elaborate further on the behavior of WRF-BMJ and CNRM in Section 4.2.2.  392 

 393 

By contrast, UM-MF and WRF-NSAS exhibit significantly different behavior compared 394 
to the CRM. UM-MF shows cool anomalies above the heating levels (Figure 2d). When 395 
moistening is applied, its T response drops abruptly to zero around 650 hPa, above which the 396 
change in T appears to intensify (Figure 2h). This happens for both perturbation levels. WRF-397 
NSAS shows sharp negative anomalies in its q responses around 850 hPa when heating or 398 
moistening is applied (Figure 3d, h), again for both perturbation levels.  399 

 400 
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Nevertheless, there are a few similarities between the four SCMs and the CRM. 401 
Perturbations applied at the higher level (650 hPa) induce stronger responses, likely because 402 
convective damping is weaker at higher altitudes, making the convection less able to counter the 403 
applied forcing at those levels. A greater change in the equilibrium state is then required to 404 
sufficiently alter the convection. All four SCMs display the greatest q responses at the surface 405 
levels where the specific humidity itself is largest.  406 

 407 

One notable difference between the four SCMs and the CRM is the sharp kinks in SCM 408 
responses, commonly around the model-predicted cloud base level (850 – 950 hPa), but also in 409 
the mid-troposphere in UM-MF. These kinks often appear to divide the responses into distinctive 410 
regions, signalling a level shift in sensitivity. In UM-MF, for example, the T responses either 411 
decrease (for heating perturbation, Figure 2d) or increase (for moistening perturbation, Figure 412 
2h) dramatically above the kink around 600 hPa. This characteristic is not observed in the CRM, 413 
whose responses are generally smoother and do not appear to have discontinuities, except for a 414 
slight kink in its T response when perturbing 650 hPa (Figure 2b), which could be because 415 
applied heating produces a small inversion that reduces the T response just above it. The 416 
presence of sharp kinks in the SCMs and not the CRM suggests that the kinks probably reflect 417 
“switches” or other threshold behavior common in convective parameterizations. 418 

 419 

4.2 Matrices of T and q responses 420 

In this section, we present the M-1 matrix, which gives a more complete overview of the 421 
SCMs’ behavior. For plotting, we divide M-1 into four quadrants: T response to heating 422 
perturbation (Figure 4), q response to heating (Figure 5), T response to moistening (Figure 6), 423 
and q response to moistening (Figure 7). Basically, the quadrants show the T or q response 424 
profiles for successive perturbation levels stacked next to each other, with the main diagonal 425 
representing the local responses (i.e., responses at pressure level p to perturbation applied at p). 426 
The profiles in Figures 2 and 3 comprise two columns of these matrices: the x-axis in these 427 
figures is the perturbation level and the y-axis the response level. First, we present the broad 428 
features that are largely similar between the models (Section 4.2.1); then, notable differences 429 
between the models are presented (Section 4.2.2); finally, we compare the matrices of SCMs 430 
with similar or comparable model physics (Section 4.2.3).   431 

 432 
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 433 

Figure 4. M-1 quadrants of T responses to temperature tendency perturbation, in the units of K. x-434 
axis is perturbation level, y-axis is response level.  435 

 436 
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 437 

Figure 5. As in Figure 4, but for q responses to temperature tendency perturbation, in the units of 438 
g kg-1.  439 

 440 
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 441 

Figure 6. As in Figure 4, but for T responses to moisture tendency perturbation, in the units of K. 442 
 443 
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 444 

Figure 7. As in Figure 4, but for q responses to moisture tendency perturbation, in the units of g 445 
kg-1. 446 

 447 

4.2.1 Similarities between models 448 

We first examine if the features presented in Section 4.1 are valid across all perturbation 449 
levels and models. Overall, as noted before, the CRM and SCMs all show a general tendency 450 
toward stronger T and q responses when perturbations are applied higher in the troposphere 451 
(Figures 4 – 7, increasing warmer colors towards the right columns of the matrices), and changes 452 
in q responses are generally biggest at the surface levels where moisture content is the biggest 453 
(Figures 5 and 7, warmer-colored horizontal layers close to surface), although sudden surges in q 454 
response are sometimes observed higher up. CNRM and Betts-Miller type schemes (WRF-BMJ 455 
and UM-SBM) behave most similarly to the CRM (d, h, and j in Figures 4 – 7), especially in 456 
their T responses. We offer a potential explanation for this in Section 4.2.2. 457 

 458 
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Additional similarities between the models can now also be observed when scrutinizing 459 
their complete M-1 matrices. In general, upper-tropospheric heating produces strong upper-460 
tropospheric warming responses in all models (Figure 4, warmer colors in upper right corners, 461 
indicating stronger positive T responses), but inconsistent lower-tropospheric warming. Lower-462 
tropospheric heating, on the other hand, leads to weak lower-tropospheric warming, but usually 463 
bigger upper-tropospheric warming. In other words, in the upper troposphere larger T responses 464 
are required to balance the imposed heating there, while heating applied in the lower troposphere 465 
requires much smaller T responses to stabilize. Also, heating applied at any level tends to 466 
increase the moisture below the perturbation level (Figure 5, red lower right triangles indicating 467 
positive q responses) and reduce it above, but to varying degrees among the models.  468 

 469 

Next we examine the responses to moistening perturbations (Figures 6 and 7). Overall, 470 
the T responses to moistening are the most consistent across models of the four response types, 471 
and moreover are relatively uniform across a wide range of perturbation levels (Figure 6). This 472 
indicates that moistening tends to produce warming responses that are independent of where 473 
forcing is applied, while (as with the response to heating perturbations) increasing with height. 474 
Moistening also tends to provoke a stronger q response at and/or below the moistening level, 475 
sometimes with a weaker response above (Figure 7).  476 

 477 

The above observations can be explained with the following physical interpretation. The 478 
difference in local T responses to heating perturbations in the upper and lower troposphere 479 
indicates strong lower tropospheric damping and weak upper tropospheric damping as noted 480 
earlier. Note that weaker damping is indicated by warmer colors in the figures (i.e., bigger 481 
responses required to compensate for the imposed perturbation). The increase in moisture below 482 
a heating level is also expected since heating stabilizes the atmosphere locally, inhibiting 483 
convection and trapping moisture below the heating level, leading to drying of the air above. The 484 
near-invariance of the response of T to the moistening level is interesting and the reason not 485 
obvious, but suggests that moisture added at any level ends up benefitting deep convection 486 
throughout the column.   487 

 488 

4.2.2 Differences between models 489 

Next we analyze the notable differences between the models. First, we note that the 490 
outlying behavior of UM-MF in its T response (horizontal discontinuity around 600 hPa and cool 491 
anomalies above heating levels; Figures 4g and 6g) and WRF-NSAS in its q responses 492 
(exceedingly strong, mostly negative, q responses around 850 hPa, Figures 5f and 7f) described 493 
in Section 4.1 is now observable across all perturbation levels. In general, the matrices of the 494 
SCMs are not as smooth as the CRM, containing more splotchy patterns that indicate jumpy 495 
responses, with discontinuities sometimes evident with respect to forcing level (vertical stripes) 496 
and sometimes with respect to response level (horizontal stripes). This is most apparent in the 497 
lower troposphere, possibly because responses in these layers are more dependent on 498 
contributions from different physics schemes (e.g., PBL and convection schemes). The 499 
inconsistent responses in the lower levels could be reflective of the different ways schemes 500 
represent shallow convection, downdrafts, and the evaporation of precipitation.  501 
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 502 

The kink around cloud base (~ 900 hPa) noted in Section 4.1 is clearly visible as a 503 
horizontal stripe across all perturbation levels and in all SCMs, most prominently in their q 504 
responses (Figures 5 and 7) but in a few cases also their T responses (Figures 4 and 6). 505 
Responses below this divide are often near constant and weaker than the rest of the column for T 506 
change (cooler-colored horizontal layers near surface in Figures 4 and 6) and stronger for q 507 
change (warmer-colored horizontal layers near surface in Figures 5 and 7). As mentioned, these 508 
discontinuities are not observed in the CRM, indicating that they probably reflect switches or 509 
threshold-like behavior common in convective parameterization, or perhaps deficiencies in the 510 
coupling to the PBL schemes. Our speculation of switches as the cause for these discontinuities 511 
is also supported by analyzing the linearity of the SCMs’ responses (not shown). As mentioned 512 
in Section 2.2, we ensure that the responses are linear to a large extent (calculated with Equation 513 
6). Nevertheless, non-linearities are sometimes detected and we found that they often coincide 514 
with the heights of the discontinuities. This suggests that switches—which are inherently non-515 
linear—could be the common cause for both the discontinuities and response non-linearity.  516 

 517 

It is noteworthy that the discontinuity around the LCL is more pronounced in the q 518 
responses than the T responses. This echoes findings of GCM studies, where moisture errors in 519 
convective regions are usually larger than temperature errors, possibly a consequence of 520 
deficiencies in the formulation of the entrainment and detrainment processes of moisture in some 521 
convection schemes (Gregory, 1997). For example, in a mass-flux based approach, errors in 522 
estimating the apparent moisture sink (Q2 in the notation of Yanai et al., 1973) can arise when 523 
the effect of entrainment into the areas near cloud base is not properly represented, leading to an 524 
underestimation of drying in regions below 800 hPa and overestimation above this level 525 
(Gregory & Miller, 1989). This has consequences in the way a convection scheme behaves when 526 
additional heating or moistening is imposed in our experiment.  527 

 528 

A few SCMs also display kinks or  discontinuities in their T responses around the 529 
freezing level, which are not present in the CRM: around 650 hPa for WRF-NT, and around 600 530 
hPa for WRF-ZM, UM-MF, and SCAM (c, e, g, and i in Figures 4 and 6). For the latter models T 531 
responses near the freezing level are generally weak (cooler color stripe), while for WRF-NT 532 
they are strong (warmer color stripe). All four SCMs use plume-based mass-flux schemes with 533 
CAPE closure, although the location of these anomalies near the freezing level suggests a 534 
possible role for microphysics and phase transitions around the freezing level.  535 

 536 

Overall, we note two main groups of SCMs: the first displays smoother responses 537 
(especially in their T responses) that are more similar to the CRM, and the second exhibits more 538 
jumpy and disjointed behavior. As mentioned, the former consists of SCMs employing Betts-539 
Miller adjustment type schemes (WRF-BMJ and UM-SBM) and CNRM. The remaining models 540 
belong to the latter group, and all employ mass-flux based convection schemes. A steep decrease 541 
in T response (at times negative) immediately above the imposed heating is often detected in the 542 
second group, most evident in WRF-KF, WRF-NSAS, UM-MF, and LMDZ6A (blue hues in b, f, 543 
g, and i in Figure 4). The discontinuity in responses (horizontal stripe) mentioned before is also 544 
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more prominent in the second group. These behaviors may be a reflection of the way convection 545 
balances the imposed forcing. In mass-flux schemes, where it is mainly the subsidence term that 546 
balances the forcing, this can be achieved either through modification of the mass-flux shape or 547 
the environmental profile (or a mixture of the two). Where the mass-flux shape is less flexible, 548 
the environment has to be modified substantially to accommodate the forcing; where the mass-549 
flux shape is more adaptive, less modification to the environment is required. It will be a subject 550 
of future research to identify the correct balance between these two.  551 

 552 

The simpler assumptions of Betts-Miller adjustment-type schemes might result in more 553 
efficient balancing of the applied perturbations. We speculate that this could be due to how the 554 
closures are applied in the BM schemes for deep convection. In UM-SBM, the CAPE closure is 555 
applied by ensuring enthalpy conservation, which is achieved by either shifting the temperature 556 
reference profile (a cooling effect), or by reducing the precipitation rate computed from the 557 
moisture relaxation (a drying effect). Both methods are applied with a constant change to the 558 
convective tendencies at each vertical level between the ascent level and the level of neutral 559 
buoyancy. In WRF-BMJ, the enthalpy conservation is broadly similar to UM-SBM, as the 560 
applied enthalpy correction is smooth between the vertical levels. The closure of the BM 561 
schemes might explain why they are more effective in balancing the imposed forcing. The 562 
smooth CRM-like response of CNRM is interesting, as it is the only mass-flux scheme that 563 
exhibits smooth responses. What sets it apart from the schemes in the second group is its 564 
consistent use of buoyancy as the forcing term in the scheme design, including triggering 565 
condition, mass-flux calculation, entrainment and detrainment rates (Guérémy, 2011). It is 566 
possible that this smoother and continuous treatment of convection enhances the scheme’s ability 567 
to respond locally to perturbations and could have contributed to its CRM-like responses. 568 
However, further tests are required to confirm this. 569 

 570 

4.2.3 Comparison of SCMs with similar physics 571 

We now analyse the M-1 matrices of similar or comparable SCMs: the three LMDZ cases 572 
(LMDZ5A, 6A, and 6Ab), the two Betts-Miller cases (WRF-BMJ and UM-SBM) and two 573 
Zhang-McFarlane cases (SCAM and WRF-ZM). Since these groups of SCMs share related 574 
convection schemes, they might be expected to produce similar results. 575 

 576 

The three LMDZ versions share the same deep convection scheme but with different 577 
ways of handling shallow convection and associated clouds, and cold pools (Tables 1 and 2). 578 
They display significantly different responses (k, l, m in Figures 4 – 7). Two additional 579 
parameterizations are introduced in LMDZ6A that were not available in LMDZ5A: the 580 
representation of dry and shallow convection by a thermal plume model, and near-surface cold 581 
pools created by the evaporation of precipitation. Indeed, differences in response between 582 
LMDZ5A and LMDZ6A are the largest at low levels (below 800 hPa), with LMDZ6A 583 
displaying weaker T and q responses. The big discontinuity in the q responses of LMDZ5A 584 
around cloud base (950 hPa, purple line in Figures 5k, 7k) appears to be attenuated in LMDZ6A, 585 
perhaps an effect of the new parameterizations which are active at this level in LMDZ6A. The T 586 
responses to perturbations above 500 hPa are also stronger at high levels in LMDZ6A than 587 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

LMDZ5A, which could be related to the different representation of entrainment between the two 588 
versions (Grandpeix et al., 2004).  589 

 590 

LMDZ6A displays unusually strong q responses within its shallow convective cloud 591 
layer (between 800 and 600 hPa) when perturbations are applied at certain levels (dark red 592 
blocks in Figures 5l, 7l). Its T responses also show unusual behavior in this layer, with a clear 593 
horizontal discontinuity at around 600 hPa and irregular responses below (800 – 600 hPa, 594 
Figures 4l, 6l), for example negative anomalies are observed when heating perturbations are 595 
applied below 800 hPa (blue hues in Figure 4l). In fact, our perturbation experiments have shed 596 
light on a problematic behavior of LMDZ6A that was not identified earlier with traditional 1D 597 
case-studies nor 3D experiments. Following these results, further investigation pointed to 598 
potential flaws in the representation of the evaporation of precipitation in the large-scale cloud 599 
scheme of LMDZ6A, which also handles shallow clouds. In LMDZ6A, evaporation of 600 
precipitation has two limitations: (1) it assumes that precipitation falls into clear sky, which 601 
could potentially overestimate evaporation in the shallow cloud layer, (2) at a given level it is not 602 
possible to saturate a fractional area greater than the maximum cloud fraction above, which can 603 
lead to underestimation of evaporation. LMDZ6Ab is a slightly modified version of LMDZ6A 604 
where a new scheme, inspired by Jakob and Klein (2000), has been introduced to take into 605 
account the overlap between clouds in the formation and evaporation of precipitation, thus 606 
addressing the two limitations outlined above. Our results here show that this new development 607 
has a significant effect on the model behaviour, improving its q responses between 800 and 600 608 
hPa  (l and m in Figures 4 – 7), as well as the linearity of the responses (not shown). This implies 609 
that the representation of the evaporation of precipitation may be an important factor in the 610 
response of a model to a modification of its environment. Note also that the RCE mean states of 611 
LMDZ6A and LMDZ6Ab are almost identical, showing that their M-1 matrices have captured 612 
important features of the models which are not obvious by only scrutinizing their mean states. 613 

 614 

The two Betts-Miller SCMs employ related convection schemes but in two different 615 
SCM architectures and with otherwise different model physics. Even though they both exhibit 616 
behavior that is close to the CRM, there are telling differences between them. While their T 617 
responses are largely similar, they display quite different q responses. The q responses of UM-618 
SBM to moistening applied at  mid-levels (800 – 400 hPa) are more localized (dark red diagonal 619 
in Figure 7h), i.e., a peak in forcing is attenuated by a peak in response in the same region, 620 
whereas WRF-BMJ displays more uniform q responses to moistening (Figure 7d), more similar 621 
to the CRM. While these two models have similar convection schemes, the implementation of 622 
the two schemes is different enough that we would not expect a priori for the perturbation 623 
responses to be the same. Compared to the original Betts-Miller scheme, UM-SBM is a 624 
simplified version while WRF-BMJ is more complex. One possible explanation for the different 625 
q responses in these two cases could be that our experiments have picked up on the changes 626 
implemented by Janjic (2000) in the BMJ scheme that include a more sophisticated formulation 627 
of the moisture profile and variable relaxation time. It is also possible that other model 628 
differences play a role, although we think this is less likely (see Section 6). 629 

 630 
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The two Zhang-McFarlane SCMs employ nominally identical model physics in two 631 
different SCM model systems (WRF vs. CAM). As we would hope, they exhibit largely similar 632 
behavior (e and i in Figures 4 – 7). Although not identical, they are still significantly more 633 
similar to each other than to the other SCMs. In any case, their M-1 matrices are more similar 634 
than their RCE profiles in Figure 1, again suggesting that linear responses may provide a clearer 635 
window into model physics than mean profiles. A slight horizontal discontinuity around the 636 
freezing level (~ 600 hPa) in the T responses is visible in both SCMs (e and i in Figures 4 and 5). 637 
Given the location of this discontinuity, one possible explanation could be the interaction 638 
between the Zhang-McFarlane deep and the UW shallow convection schemes. To test this, using 639 
WRF we reran the experiments with only the Zhang-McFarlane deep convection scheme 640 
switched on and the UW shallow convection scheme switched off. Results show that the 641 
horizontal discontinuity around the freezing level remains present (not shown). We further tested 642 
altering a constant that defines the freezing level in the ZM scheme, which shifted the horizontal 643 
stripe to the new specified freezing level, confirming that it is caused by the ZM scheme. As 644 
mentioned before, such discontinuities could indicate threshold setting in the scheme; in the ZM 645 
scheme, for example, a threshold is implemented to restrict precipitation production only to 646 
clouds that extend beyond the freezing level (Zhang & McFarlane, 1995), which could explain 647 
our results.  648 

 649 

We note that the physical explanations presented in Section 4 are preliminary and 650 
speculative at this point. Nonetheless, they serve as useful hypotheses to guide ongoing research. 651 
The main takeaway from this section is that the idealized framework based on the linear response 652 
function that we have applied is able to illuminate and locate areas of agreement and differences 653 
between model physics, which can provide insights into physical processes or ways to simplify 654 
or improve current convective parameterizations.  655 

 656 

5 Relationship between RCE mean states and responses 657 

We noted in the previous section a couple of examples where aspects of model behavior 658 
changes were more evident in the linear responses than in RCE mean states (temperature and 659 
RH) described in Section 3. In this section we examine more generally if the linear responses can 660 
be linked to the RCE mean states in any way. One aspect that is well documented is the 661 
interaction between environmental humidity and convection. Convective activity has been shown 662 
to be sensitive to environmental humidity in observational studies (Brown & Zhang, 1997; 663 
Parsons et al., 2000; Sherwood et al., 2004) and experimental analyses using CRMs (Tompkins, 664 
2001; Grabowski 2003). Derbyshire et al. (2004), for example, found a significant impact of 665 
mid-tropospheric humidity on convective activity, where a dry RH inhibits deep convection and 666 
encourages shallow convection instead. A recent study by Wolding et al. (2020) found a cyclical 667 
behavior of moisture and convection which points to a joint evolution of the two variables. In our 668 
experiment, we found a large spread in the SCMs’ RH profiles as well as their responses. 669 
Convection plays a role in influencing both. However, we do not know if they (RH and T, q 670 
responses) respond in similar fashion. This section addresses this question. Specifically, do a 671 
model’s temperature and moisture responses to heating and moistening perturbations correlate 672 
with its RCE mean state? 673 
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 674 

The first aspect we examine is whether the shape of a model’s mean RH profile is linked 675 
to the shape of its responses. As pointed out in Section 3, the mean RH profiles often contain 676 
kinks. We found that these kinks almost always coincide with discontinuities in the linear 677 
responses (horizontal stripes in the M-1 matrices). These kinks are ubiquitous at cloud base but 678 
can also be observed at ~ 700 hPa for WRF-NT, ~ 800 hPa for WRF-NSAS, ~ 600 hPa for 679 
WRF-ZM, SCAM, and UM-MF, and ~ 500 hPa for LMDZ5A. This collocation of RH kinks and 680 
discontinuities in linear responses are found in both T and q responses to heating and moistening 681 
perturbations. The smooth M-1 quadrants of the CRM are likely related to its smooth RH profile. 682 
Additionally, the size of the kinks in the RH profile appears to have an impact on the size of the 683 
kinks in the responses: for example, the big RH kinks around 800 hPa of WRF-NSAS and 684 
around 600 hPa of UM-MF (Figure 1e) coincide with strong discontinuities in their responses at 685 
the same heights (f and g in Figures 4 – 7), while the smaller RH kinks around 600 hPa of WRF-686 
NT, WRF-ZM, and SCAM coincide with smaller or less obvious discontinuities in their 687 
responses. The even smaller RH kink of WRF-BMJ around 600 hPa hardly registers in its 688 
responses. The correspondence appears to fade away in higher altitudes (above 500 hPa): for 689 
example, the RH kinks around 450 and 350 hPa of WRF-NT, around 450 hPa of WRF-NSAS,  690 
and around 400 hPa of WRF-KF are not noticeably associated with discontinuities in their 691 
respective model responses. This is probably because the amount of moisture available at these 692 
higher altitudes is too small for any sharp changes to be registered in the responses.   693 

 694 

Now that we have seen that the shape of the RCE mean RH profile is linked to the linear 695 
responses, next we examine if there is a correlation between the magnitude of these two 696 
components in either temperature or moisture. This will tell us whether, if a model’s 697 
environment is warmer or moister, it will also respond more strongly to heating or moistening 698 
perturbations. To this end, we correlate the RCE θes and RH values of all the models at specific 699 
pressure levels with their responses at various levels and averaged over all perturbation levels, 700 
i.e., the average of a horizontal stripe in a M-1 quadrant (negative anomalies are set to zero to 701 
avoid ambiguity in interpreting the correlations). We compute the Spearman correlation 702 
coefficient of these correlations as it is more suitable for non-parametric data and less sensitive 703 
to outliers than Pearson correlation coefficient (Kokoska & Zwillinger, 2000), although both 704 
methods for computing the coefficients return similar results for our experiment. Eight common 705 
pressure levels were selected between 1000 and 200 hPa, in intervals of 100 hPa. This yields 706 
eight 8 x 8 correlation matrices, one for each combination of RCE variable (θes or RH), forcing 707 
variable (dT/dt or dq/dt) and response variable (-′[  or 6′[ ), with the matrix entry in the i-th column 708 
and j-th row representing the correlation coefficient between the RCE variable at pressure level 709 
pi and response at pressure level pj. In other words, an entry in our correlation matrix denotes the 710 
Spearman correlation coefficient rij between two data series Ai and Bj:  711 

 712 

 \A@ 	= 	']\\(^A, _@) (7) 

 713 

where ^A = [N`&A , N`PA , . . . , N`&bA ], with ai representing the RCE value (θes or RH) at 714 
pressure level pi and m1, m2, …, m13 denoting the 13 models in our study (CRM and 12 SCMs); 715 
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and _@ = [c`&
@ , c`P

@ , . . . , c`&b
@ ], with bj representing the mean response (-′[  or 6′[	to dT/dt or dq/dt 716 

perturbation) at pressure level pj for the models.  717 

 718 

We found significant correlations (p-value < .05) only between the RCE RH and q 719 
responses to applied heating, shown in Figure 8. The other correlation matrices contain mostly 720 
weak correlations (|rij| < .5) and are not explored here. Apart from in the boundary layer, RCE 721 
RH is positively correlated with q responses locally and at levels higher up, evident by the red 722 
tiles in and above the main-diagonal. That is, a high RCE RH at level p tends to correspond to 723 
strong q responses at p and above, or a strong q response at p tends to correlate with high RH 724 
values at p and below. The local correlations suggest that high RCE RH values at certain levels 725 
indicate that convection is acting strongly and introducing moisture near those levels, and thus 726 
when convection is slightly enhanced via a temperature or moisture tendency perturbation, the q 727 
responses at those levels are also bigger due to the bigger effect of convection there. The strong 728 
positive correlations above the main diagonal are interesting. These results suggest high RH at 729 
level p permits convection to penetrate that level more easily, which leads to stronger q 730 
responses above p. Another interpretation, albeit more ambiguous, is that a strong influence of 731 
convection at level p causes a big q response at p (i.e., local correlations), as well as higher RH at 732 
p and below due to convectively induced subsidence. Interestingly, the same correlations are not 733 
observed for T responses. In other words, while the shape of the RCE RH profile reflects that of 734 
both T and q responses, the magnitude of mean RH reflects only the magnitude of q responses.   735 

 736 

 737 

Figure 8. Correlation matrix of RCE RH and q responses to temperature tendency perturbation. 738 
An entry in the i-th column and j-th row represents the correlation between the RCE RH values 739 
of the SCMs at pressure level i and their mean q responses at pressure level j. Significant 740 
correlations (p-value < .05) are shown in black boxes. 741 

 742 
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6 Sensitivity to PBL and MP schemes 743 

Here we present results from the tests to determine the role of schemes other than 744 
convection schemes in a model’s linear response, as described in Section 2.3. Specifically, this 745 
section addresses the question: do a model’s RCE mean state and responses to heating and 746 
moistening perturbations change significantly when different PBL or microphysics (MP) 747 
schemes are used? 748 

 749 

We first present the sensitivity of the RCE mean states to the choice of PBL and MP 750 
schemes (Figures 9 and 10). Figure 9 shows clearly that the impact of the other schemes on the 751 
mean state temperature, especially the microphysics scheme, is small compared to that of the 752 
convection scheme. The RCE profiles of RH do show some sensitivity to choice of PBL and MP 753 
schemes, but at different heights of the troposphere (Figure 10). For PBL sensitivity, differences 754 
are more prominent in the lower- to mid-troposphere (below 500 hPa). For MP sensitivity, 755 
divergence between the MP schemes appears mostly in the upper troposphere (above 500 hPa). 756 
This is consistent with expectations that the treatment of convective outflows and cloud 757 
hydrometeors will be most important to the water vapor budget in the upper troposphere where 758 
vapor amounts are smallest. Overall, the RCE temperature (θes) profiles are predominantly 759 
decided by the convection scheme while the RH profiles can be influenced by the PBL and MP 760 
schemes at different elevations. 761 

 762 
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 763 

Figure 9. RCE saturation equivalent potential temperatures sensitivity of WRF-KF (a, e), WRF-764 
NT  (b, f), WRF-NSAS  (c, g), and WRF-BMJ  (d ,h) to PBL (top) and MP (bottom) schemes. 765 

 766 
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 767 

Figure 10. As in Figure 9 but for RCE relative humidity  768 

 769 

Next, we present the sensitivity of T and q responses to the choice of PBL and MP 770 
schemes (Figures 11 and 12). To explore this we only perturbed the two levels shown in Figures 771 
2 and 3 (850 and 650 hPa). As perturbing both levels return similar results, only results from the 772 
850 hPa perturbation case are shown. We also combine the results for temperature and moisture 773 
tendency perturbations and show only the average as their sensitivities are very similar. Overall, 774 
the responses are not sensitive to MP schemes (Figure 12), and slightly more sensitive to PBL 775 
schemes (Figure 11). WRF-KF is not sensitive to changes in either PBL or MP schemes. For 776 
WRF-NT, WRF-NSAS, and WRF-BMJ, the responses to temperature and moisture tendency 777 
perturbations when combined with different PBL schemes retain their general shape, except for 778 
the case of ACM2 PBL scheme, which shows outlying q response when combined with WRF-779 
NT.  780 

 781 
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 782 

Figure 11. Sensitivity to PBL schemes of T (top) and q (bottom) responses to perturbations at 783 
850 hPa (averaged between temperature and moisture tendency perturbations) for WRF-KF (a, 784 
e), WRF-NT (b, f), WRF-NSAS (c, g), and WRF-BMJ (d, h). 785 

 786 
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 787 

Figure 12. As in Figure 11 but for sensitivity to MP schemes 788 

 789 

In summary, we find that the T and q responses are much more sensitive to the 790 
convection schemes than the PBL or MP schemes, indicating that our perturbation experiments 791 
can isolate the impact of convection schemes. This is also true for the RCE RH profile, but only 792 
at low and mid levels, above which it is affected by microphysics. However, there are important 793 
caveats to these findings. These experiments have only been conducted in the WRF model, 794 
which has a modular design and relatively independent physics schemes. The same insensitivity 795 
might not hold in other models that employ a more integrated approach in the design of its model 796 
physics, where there is a tighter coupling between the schemes. See, for example, the differences 797 
between the response matrices of LMDZ6A and LMDZ6Ab, where only the large-scale cloud 798 
scheme has been modified. Note, however, the large-scale cloud scheme in LMDZ also handles 799 
shallow clouds (in the WRF cases shallow clouds are handled by the convection scheme), hence 800 
it is still reasonable to postulate that convective parameterization (including convective MP) 801 
dominates the linear responses at least in the lower- and mid-troposphere. Also, the weak 802 
sensitivity to PBL and MP schemes is most likely exaggerated by our experimental setup. 803 
Specifically, the use of RCE with an idealized radiative cooling profile, and a constrained surface 804 
flux computation. If these sensitivity tests are repeated with interactive radiation, surface wind 805 
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and exchange coefficients, sensitivity to PBL and MP schemes becomes more significant (see 806 
Appendix A).  807 

 808 

7 Conclusions 809 

The overall goal of this paper is to advance our understanding of what can be learned 810 
about model physics from single-column models (SCMs) run in radiative-convective equilibrium 811 
(RCE) configurations. The objectives are threefold: first, to compare the RCE mean states of a 812 
few SCMs containing state-of-the-art physics currently used in atmospheric modeling; second, to 813 
compare and examine the behavior of the SCMs by observing their steady temperature and 814 
moisture responses to small temperature and moisture tendency perturbations (M-1 matrices) 815 
using the linear response framework (Kuang 2010; Herman & Kuang 2013); and third, to 816 
determine which physical schemes control the RCE mean state and/or linear responses.  817 

 818 

In terms of the first objective, similar to other recent intercomparison studies (e.g., Wing 819 
et al., 2020) we found substantial differences between the SCMs in their RCE temperature and 820 
relative humidity (RH) profiles, with ~ 5 K differences in absolute temperature in the near-821 
surface levels and ~ 8 K in the free troposphere (with the exception of one outlying SCM) and 822 
free-tropospheric RH spanning nearly the entire possible range (0 – 100%). Even between the 823 
SCMs that use similar convection schemes, the difference in their RCE profiles is nontrivial: the 824 
two Zhang-McFarlane cases (WRF-ZM and SCAM) show similar shapes in their RH profiles but 825 
WRF-ZM is consistently somewhat drier than SCAM and the temperatures vary by several K at 826 
some levels, while the RH profiles of the two Betts-Miller cases (Betts-Miller-Janjic in WRF and 827 
Simplified Betts-Miller in UM) differ in both shape and magnitude.   828 

 829 

In addressing the second and third objectives, we arrive at the following main 830 
conclusions: 831 

 832 

1. The idealized SCM testing framework appears capable of isolating the behavior of 833 
convection schemes, thus enabling direct evaluation of these schemes against CRM or 834 
LES reference calculations. 835 

2. This framework identifies areas of agreement, but also substantial differences in 836 
behavior among the models, which in some cases can be related to scheme design. 837 

3. Some linear responses correlate with the RCE mean profiles (RH in particular), while 838 
others do not and hence constitute independent information. While the RCE RH 839 
profile is strongly influenced by the convection scheme, it is more sensitive to other 840 
physics schemes than are the linear responses. The RCE temperature profile is 841 
however insensitive to schemes other than the convection scheme, in this setup. 842 

4. Almost all SCMs show irregularities or discontinuities in behavior that are likely 843 
related to switches or thresholds built into the convection scheme(s), and which do 844 
not appear in the SAM CRM. 845 
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 846 

These conclusions will now be briefly discussed in turn.  847 

 848 

First, our experiments manage to largely isolate the behavior of the convection schemes 849 
in the SCMs. We found multiple lines of evidence for this. In the WRF model, the temperature 850 
and moisture responses to applied heating and moistening vary greatly among the convection 851 
schemes but do not deviate much when different microphysics (MP) or planetary boundary layer 852 
(PBL) schemes are used. This shows that—although in some cases the PBL scheme exerts some 853 
influence—the T and q responses are predominantly decided by the convection scheme. Also, the 854 
linear responses of the same or comparable convection schemes (the two Zhang-McFarlane and 855 
Betts-Miller cases) are considerably more alike than their RCE profiles are, supporting this 856 
finding.  857 

 858 

Second, our framework highlights the areas of agreement and disagreement between the 859 
SCMs, and between them and the CRM, which can potentially be linked to the convection 860 
scheme design of the SCMs. The SCMs in our experiment generally reproduce the broad 861 
behavior of the CRM, albeit to different degrees. Their responses are often not as smooth and 862 
contain more splotchy and irregular patterns. Nevertheless, many SCMs exhibit behavior that is 863 
closer to the CRM than the SCMs in HK13. In general, heating perturbations lead to more 864 
diverse responses among the SCMs than do moistening ones. These disparities in response point 865 
to the different characteristics of the convection schemes and provide clues as to where to focus 866 
further investigations. Overall, two main groups emerge from inspecting their responses: the first 867 
group exhibits smooth responses akin to that of the CRM and the second displays more jumpy 868 
responses. The former group includes two variations of an adjustment-type convection scheme 869 
(Betts-Miller) and a buoyancy-based mass-flux convection scheme (CNRM), while the latter 870 
contains only mass-flux based convection schemes with CAPE closures. A scheme’s 871 
responsiveness in the vertical might hold the key to the smoothness of its response. The CRM-872 
like responses of the Betts-Miller cases point to the efficiency of adjustment-type schemes to 873 
counteract the applied localized perturbations, while the dependency of the mass-flux based 874 
schemes on vertically integrated quantities perhaps hindered their responsiveness and contributed 875 
to their bumpier responses. Our experiments also highlight important discrepancies between the 876 
three versions of the LMDZ model that employ different physical packages, uncovering 877 
shortcomings in LMDZ6A that previous studies using traditional methods have not discovered. 878 
Notably, LMDZ6A and LMDZ6Ab display almost identical RCE mean states, but very different 879 
linear responses, with LMDZ6A exhibiting abnormally strong q responses within the shallow 880 
convective cloud layer. Following an update in the way evaporation of precipitation is 881 
represented in the model (LMDZ6Ab), a marked improvement in the model’s moisture responses 882 
in the shallow cloud layer was observed, demonstrating the usefulness of our framework in 883 
parameterization development.  884 

 885 

Third, some aspects of the linear responses correspond to features of the RCE mean 886 
profiles, while others do not and can be regarded as independent diagnostics. As mentioned 887 
above our experimental setup can isolate the behavior of the convection scheme. This is also true 888 
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for the RCE temperature profiles although they provide less information about the differences 889 
between convection schemes. It is partially true for the RH profiles, where the convection 890 
scheme has the strongest influence, but only at low and mid-level altitudes, above which the MP 891 
scheme plays a significant role. In other words, multiple physics schemes could potentially exert 892 
control on a model’s RCE mean state, whereas its T and q responses depend mainly on the 893 
convection scheme. It is unclear how to physically interpret links between the RCE mean profile 894 
and linear responses, since either could affect the other. The extent to which the models’ diverse 895 
RCE mean states directly influence their responses is hard to estimate. Like HK13, we did not 896 
attempt to tune the parameters of the SCMs to bring their mean states closer to each other1. 897 
Nonetheless, in our experiments we found evidence that the two measures are correlated to some 898 
extent, particularly the RCE RH profiles and the perturbation responses. The responses 899 
correspond to the model’s RH profile in two ways. First, the shape of the RH profile is related to 900 
the shape of the responses in the sense that kinks in the RH profiles often locally coincide with 901 
kinks in the responses (both T and q responses). The models that display more uniform responses 902 
also produce smoother RH profiles in RCE (the SAM CRM, Betts-Miller schemes, and CNRM). 903 
Second, the magnitude of RH is positively correlated with the magnitude of q (but not T) 904 
responses locally, as well as higher above, suggesting that a wetter environment corresponds 905 
with convective activity that introduces moisture locally, and hence when we apply perturbation 906 
the models with bigger RH react more vigorously in their moisture response, possibly caused by 907 
detrainment. It is noteworthy that the shape of RH corresponds to the shape of both T and q 908 
responses, while the magnitude of RH is linked only to the magnitude of q responses. This 909 
implies that the two moisture-related variables (RH and q responses) tend to behave in a 910 
consistent manner, while T responses can be regarded as a complementary diagnostic.  911 

 912 

Fourth, all SCMs in our study show discontinuities in their behavior that are likely 913 
associated with switches or thresholds embedded in the convection scheme design, and which are 914 
not observed in the CRM. Although the responses of our SCMs are linear to a large extent, the 915 
locations (heights) of the bigger non-linearities often coincide with discontinuities in their 916 
responses, suggesting a common cause. Since switches are inherently non-linear, it is reasonable 917 
to suggest that they are a possible explanation for both non-linearity and response discontinuities. 918 
These discontinuities manifest themselves as horizontal stripes in the M-1 matrices, which often 919 
divide the responses into regions with distinctive behaviors. For example, a discontinuity is 920 
observed around the model-predicted cloud base level in all the SCMs. In a few SCMs, 921 
discontinuity is also observed around the freezing level, indicating an inability of the scheme to 922 
respond smoothly to phase transition. Admittedly, the vertical transport of heat and moisture 923 
through transitioning levels is challenging to parameterize (Neggers et al., 2017). To simplify 924 
matters, convection schemes often use switch-like mechanisms in their design. Thresholds are 925 
also a common feature used for the triggering of deep convection. For example the Arakawa-926 
Schubert scheme uses the threshold value for a concept called cloud work function to trigger 927 
convection (Arakawa & Cheng, 1993). Suhas and Zhang (2014) analyze the triggering systems 928 
of a few widely-used convection schemes and found that some of their performance can be 929 
improved by optimising the threshold values used. Ultimately, these threshold values are often 930 

 
1 The vertical resolution of a model likely also has an impact on its responses, which we also did not standardize 
between the SCMs. 
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subjective and sometimes arbitrary. They are at best ad-hoc limitations placed in a scheme to 931 
represent processes that we do not yet fully understand, and our experiment captures this flaw.  932 

 933 

By expanding on the experiments of HK13 to a few widely-used models and convection 934 
schemes, we demonstrate that the idealized framework based on a model’s responses to small 935 
heating and moistening perturbations is a useful approach to study the behavior of models and 936 
their parameterizations. In this study we compare our results to the CRM (2 km resolution) 937 
results of K10 as it is the most viable option available to us. However, we caution that these 938 
CRM results cannot be regarded as the “truth”, as past studies have shown that CRMs can 939 
potentially return different results depending on model resolution (Fan et al., 2017; Lebo & 940 
Morrison, 2015; Varble et al., 2014) and other parameterized physics such as the microphysics 941 
schemes (Khain et al., 2015; Kim et al., 2014; Liu & Moncrieff, 2007). There is a need for more 942 
studies to be done—large-eddy simulations (LES), for example—to verify K10’s results. 943 
Nevertheless, the T and q responses presented here are a simple and helpful way to characterize 944 
and evaluate convection schemes. Clues for deficiencies in a scheme can be diagnosed from the 945 
irregularities in the M-1 matrices and the location of these irregularities could provide guidance in 946 
examining the causes of errors in model physics. Further investigations into potential  physical 947 
explanations for the behaviors identified here form part of our ongoing work. 948 
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 962 

Appendix A 963 

We report here the impact of our idealized experimental procedure on the sensitivity of 964 
the responses to PBL and MP schemes. Specifically, we show the effects of the idealized 965 
radiative profile and surface flux computation. In the first set of simulations we enabled 966 
interactive radiation and kept the idealized surface flux computation (following Equations 3 and 967 
4); in the second set of simulations we kept the idealized radiative profile and enabled fully 968 
interactive surface flux computation. These simulations were carried out with two WRF cases: 969 
WRF-KF (a mass-flux scheme) and WRF-BMJ (an adjustment-type scheme).  970 
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 971 

Results are shown in Figures A1 and A2. For both SCMs, PBL and MP schemes affect 972 
results when either the radiation or surface wind and exchange coefficients are made interactive, 973 
but to varying degrees. For WRF-KF, the responses are sensitive to the choice of MP scheme 974 
when the radiation is interactive, likely due to the impact of cloud changes on radiation (which 975 
are negated in the idealized setup), while fully interactive surface fluxes only slightly decrease 976 
the sensitivity. For WRF-BMJ, the responses are significantly more sensitive to the choice of 977 
PBL scheme and slightly more sensitive to the choice of MP scheme when either of the idealized 978 
settings is disabled. In any case, applying both idealized settings decreases the dependence of the 979 
responses on PBL and MP schemes.  980 
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 981 

Figure A1. WRF-KF sensitivities comparison for (a) ideal radiation and surface fluxes, (b) 982 
interactive radiation and ideal surface fluxes, and (c) fully interactive surface fluxes and ideal 983 
radiation. As in Section 6, responses to dT/dt and dq/dt perturbations are averaged. PBL 984 
sensitivities are shown in first and second rows, and MP sensitivities in third and fourth rows.  985 
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 986 

Figure A2. As in Figure A1 but for WRF-BMJ. 987 
 988 
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