Investigation of Water Evaporation and Salt Precipitation at CO2 Geological Storage Condition

Zhe Wang¹, Panrui Yang¹, Huirong Guo¹, Qian Zhou¹, Linlin Lin², and Min Yuan¹

¹China University of Geosciences

²Shandong Provincial Lunan Geology and Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources NO.2 Geological Brigade)

November 22, 2022

Abstract

CO2 geological storage is a promising method to dispose excess CO2 in the atmosphere, and the existence of brine in deep saline aquifer and below oil reservoir may lead to salt precipitation in pore space for dry-out formation. Water diffusion coefficient is helpful to evaluate salt precipitation. However, limited previous data cant satisfy the need of CO2 geological storage. Raman quantitative spectroscopy is used to observe water diffusion in CO2 in a high-pressure capillary cell and corresponding diffusion coefficients are obtained at 10-50 MPa and 353.15-433.15 K. Diffusion coefficient is temperature and pressure dependent, and also increases linearly with the reciprocal of CO2 density. Free volume theory and PC-SAFT EOS are utilized to establish a thermodynamic model for water diffusion in CO2, and it predicts diffusion coefficient accurately at 10-50 MPa and 353.15-433.15 K. Besides, diffusion coefficient is used to evaluate when salt precipitation occurs and salt precipitation process is observed in a one-dimensional capillary tube and a two-dimensional micromodel respectively.

Investigation of Water Evaporation and Salt Precipitation at CO₂ Geological Storage Condition

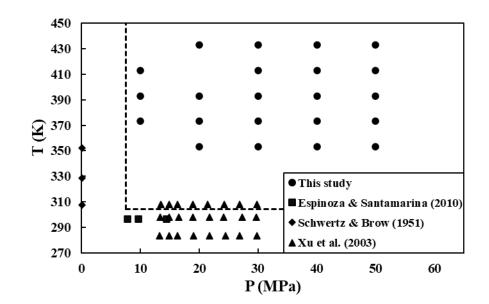
4 Zhe Wang¹, Panrui Yang¹, Huirong Guo¹[†], Qian Zhou¹, Linlin Lin² and Min Yuan¹

- ⁵ ¹School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- ⁶ ²Shandong Provincial Lunan Geology and Exploration Institute (Shandong Provincial Bureau of
- 7 Geology and Mineral Resources NO.2 Geological Brigade), 272100, Yanzhou, China
- 8 Corresponding author: Huirong Guo (<u>hrguo@cug.edu.cn</u>)

9 Key Points:

- 22 diffusion coefficient data are obtained at 10-50 MPa and 353.15-433.15 K.
- Diffusion coefficient is used to predict when salt precipitation occurs at a site of Alberta
 Basin.
- Salt precipitation for CO₂ dry-out was observed in a capillary tube and a micromodel respectively.

15 Abstract


- 16 CO_2 geological storage is a promising method to dispose excess CO_2 in the atmosphere, and the
- 17 existence of brine in deep saline aquifer and below oil reservoir may lead to salt precipitation in
- 18 pore space for dry-out formation. Water diffusion coefficient is helpful to evaluate salt
- 19 precipitation. However, limited previous data can't satisfy the need of CO_2 geological storage.
- Raman quantitative spectroscopy is used to observe water diffusion in CO_2 in a high-pressure
- capillary cell and corresponding diffusion coefficients are obtained at 10-50 MPa and 353.15-
- 433.15 K. Diffusion coefficient is temperature and pressure dependent, and also increases
- 23 linearly with the reciprocal of CO_2 density. Free volume theory and PC-SAFT EOS are utilized
- to establish a thermodynamic model for water diffusion in CO_2 , and it predicts diffusion
- coefficient accurately at 10-50 MPa and 353.15-433.15 K. Besides, diffusion coefficient is used to evaluate when salt precipitation occurs and salt precipitation process is observed in a one-
- dimensional capillary tube and a two-dimensional micromodel respectively.

28 **1 Introduction**

CO₂ concentration increases clearly in the atmosphere for huge energy demand (Guyant 29 et al., 2015; Roels et al., 2014), and for now, injecting CO₂ into geological formations is a 30 promising method to mitigate CO₂ emission, including saline aquifer, producing/depleted oil 31 field and coal bed (Bai et al., 2018; Miri et al., 2015; Muller et al., 2009). For saline aquifer and 32 oil filed, dissolution is a major mechanism, including CO₂ dissolution in brine and oil (Guo et al., 33 2016; Han & Mcpherson, 2009) and when CO₂ contacts brine, CO₂ plume displaces brine and 34 interphase mass transfer exists between CO₂ and brine (Pruess & Müller, 2009) which means dry 35 CO_2 dissolves into water and also dries out water at the same time (Ott et al., 2015). CO_2 36 37 evaporating water increases brine concentration, and when salt concentration reaching salt solubility, salt precipitation will occur (Muller et al., 2009) which has a obvious effect on CO₂ 38 injectivity and storage safety (Gaus, 2010). Generally, salt precipitation near injection wells does 39 impair injectivity (Jeddizahed & Rostami, 2016; Muller et al., 2009) while that near reservoir 40 covers is beneficial for storage safety (Gaus, 2010). Water evaporation rate, in other words, 41 diffusion coefficient in CO₂ is desired for evaluating salt precipitation and CO₂ geological 42 storage. 43

There are limited studies about water diffusion in CO_2 in previous study. Xu et al. (2003) utilized NMR to observe the sample cells to obtain the water diffusion coefficient at 283.15 K,

- 46 298.15 K and 308.15 K and 13-30 MPa. Espinoza and Santamarina (2010) observed the
- 47 instantaneous droplet volume and surface area to evaluate the water diffusion coefficient in CO_2
- 48 at the pressure of 7.8-14.4 MPa and temperature of 296.5±1.5 K. Schwertz and Brow (1951)
- 49 observed the alteration of liquid level in an isothermal atmosphere of CO_2 and measured the
- water diffusion coefficient at 1 bar and temperature of 307.45 K, 328.55 K and 352.35 K.
- 51 According to Fig. 1, most previous experimental data are out of CO₂ supercritical condition
- so which is the major condition for CO_2 in geological storage. These experimental data are not
- suitable for the reservoir condition of CO_2 geological storage.

54

55 **Figure 1.** Pressure and temperature in previous study and this study (Espinoza & Santamarina,

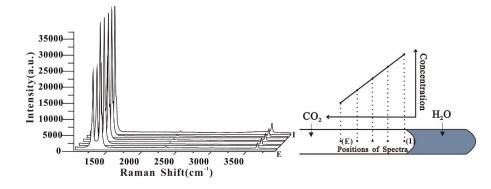
⁵⁶ 2010; Schwertz & Brow, 1951; Xu et al., 2003). Dashed line: pressure and temperature of CO₂

57 supercritical condition.

Partly like the previous study (Lu et al., 2013), Raman quantitative is used to obtain water 58 concentration profile in CO₂ in this study. Differently, there is a steady-state and semi-infinite 59 diffusion in gas phase, and Fick's first law is suitable to explain the diffusion phenomenon. 60 According to Fick's First Law, diffusion flux and concentration gradient need to be measured to 61 calculate diffusion coefficient, and for steady-state diffusion, the flux and concentration gradient 62 are constant. Water diffusion process is observed at 10-50 MPa and 353.15-433.15 K, and based 63 on the concentration profiles and water change rate, corresponding diffusion coefficients are 64 obtained. Based on free volume theory and SAFT EOS, a thermodynamic model for water 65 diffusion was established and is able to predict water diffusion coefficient accurately at 10-50 66 MPa and 353.15-433.15 K. With the help of this model, the calculated data is used to predict 67 when salt precipitation occurs at Alberta Basin site 11. What's more, salt precipitation is 68 investigated in a one-dimensional capillary tube and two-dimensional micromodel to observe the 69 salt crystal variation and distribution in porous media. 70

71

72 2 Materials and Methods


73 2.1 Sample preparation and spectra collection

Procedures of sample preparation and material are same as sample loading of (Lu et al.,
2013), but procedures of Raman spectra collection and diffusion coefficient calculation are
different.

After sample loading, the sample is kept at the experimental P-T condition for 1-2 days. When the concentration gradient and interface change rate are constant, there reaches a steadystate diffusion in the gas phase which accords with Fick's first law. Five certain spots at a constant distance are chosen to collect Raman spectra to obtain water concentration profile in gas phase (Fig. 2), and at the same time, alteration of interface with time is recorded for calculation
of diffusion flux. Positions for spectra should be changed with the changing interface, for the

⁸³ purpose of making distance between interface and positions constant.

For spectra processing, areas of water peak $(3600-3680 \text{ cm}^{-1})$ and CO₂ peak $(1150-1500 \text{ cm}^{-1})$ are obtained to calculate the ratio of area PAR [H₂O/(H₂O+CO₂)]. Raman quantitative factors have been measured to calculate water concentration in our previous study (Wang et al., 2018).

88

Figure 2. Spectra of diffusion about water in CO_2 . From the interface to the end, the area of

water decreases linearly. It indicates concentration of water in CO_2 decreases linearly, and it comes to a steady-state diffusion.

92 2.2 Calculation of water diffusion coefficient

93 Fick's first law is

94
$$J = -D\frac{dC}{dl}$$
(1)

95 J is diffusion flux; C is concentration of solute; l is distance; D is diffusion coefficient.

96 Diffusion flux means the velocity of water decreasing. Thus:

97
$$\frac{\Delta L \times A}{v_m^L} = D \times \frac{\Delta C}{\Delta l} \times \Delta t \times A$$
(2)

98 ΔL is the alteration of water length, m; *A* is the area of tube section, m²; V_m^L is mole 99 volume of water, cm³/mol; Δt is the alteration of time, s; *D* is diffusion coefficient, m²/s; *C* is 100 concentration of water in carbon dioxide, mol/m³; Δl is the alteration of distance in different 101 observation positions, m.

102 Raman quantitative factors (Wang et al., 2018) and PAR are used to calculate the 103 concentration of water in CO₂.

104
$$C = \frac{x_{H_2O}}{(1 - x_{H_2O}) \times V_m^G}$$
(3)

105 Then

106
$$\Delta C = C_2 - C_1 = \frac{x_2}{(1 - x_2) \times V_m^G} - \frac{x_1}{(1 - x_1) \times V_m^G}$$
(4)

107 According to Fick's first law, the equation is written as

108
$$\frac{\Delta L}{\Delta t} = \frac{\frac{x_1}{(1-x_1)} - \frac{x_2}{(1-x_2)}}{\Delta l} \times D \times \frac{V_m^L}{V_m^G}$$
(5)

109 Thus, the concentration gradient in gas phase is:

110
$$K_1 = \frac{\frac{x_1}{(1-x_1)} - \frac{x_2}{(1-x_2)}}{\Delta l}$$
(6)

In the study, the diffusion flux of water is expressed as the variation of interface, which 111 is: 112

113
$$K_2 = \frac{\Delta L}{\Delta t} \tag{7}$$

According to (5), (6) and (7), diffusion coefficient is: 114

115
$$D = \frac{K_2 V_m^G}{K_1 V_m^L}$$
 (8)

2.3 Observation of salt precipitation 116

117 Salt precipitation is observed in a capillary tube as a single pore and a micromodel as a two dimensional porous medium. Load the brine into the capillary tube and micromodel. 118

Evacuate the air and inject into CO_2 , and maintain the pressure and temperature using the 119

heating-cooling stage and pressure pump. Observe the salt precipitation process until the all 120

water is evaporated. 121

3 Results 122

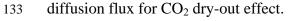
3.1 Diffusion observation 123

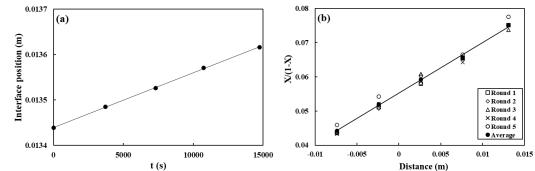
In this study, there is a steady-state diffusion for water in CO_2 . Because CO_2 124

concentration in water reaches solubility, no more CO₂ dissolves in water 1-2 days later (Lu et 125

al., 2013), and the variation of water volume is completely caused by water dissolving into CO₂. 126

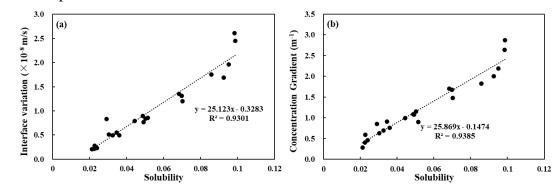
Interface changes with time linearly which means water volume also decreases with time linearly 127


(Fig. 3a) and diffusion flux is constant. Besides, according to the measured water concentration 128


profiles, concentration decreases linearly with distance away from the interface, and fitted 129 concentration gradient is generally constant for every round (Fig. 3b). Moreover, water

130

concentration gradient in CO₂ and interface change rate are relevant to water solubility in CO₂ 131


(Wang et al., 2018) (Fig. 4). The relationship can be used to calculate concentration gradient and 132

134

Figure 3. Diffusion observation at 40 MPa, 413.15 K. (a) Interface changes with time; (b) Water concentration profiles in CO₂.

137

Figure 4. (a) The relationship between interface change rate (representing diffusion flux, K_2) and water solubility in CO₂; (b) The relationship between water concentration gradient in CO₂ (K_1) and water solubility in CO₂ (Wang et al., 2018).

141 3.2 Calculated diffusion coefficients

By observing the process of the diffusion, water diffusion coefficients in CO_2 were obtained from 10 to 50 MPa and 353.15 to 433.15 K (Table 1).

-							
	T(K)	10 MPa	20 MPa	30 MPa	40 MPa	50 MPa	
	353		3.02	1.76	1.37	1.41	
	373	12.13	3.96	2.55	1.91	1.89	
	393	13.18	4.60	3.29	2.41	2.26	
	413	14.41		3.46	2.96	2.60	
	433		7.18	4.12	3.50	2.90	

144 **Table 1.** Calculated water diffusion coefficient in carbon dioxide $(10^{-8} \text{ m}^2/\text{s})$.

According to calculated results, there's a certain relationship between diffusion coefficient and temperature. The result indicates that at 10 to 50 MPa and 353.15 to 433.15 K, the diffusion coefficient increases linearly with temperature at the same pressure and the slope decreases with increasing pressure (Fig. 5a). Besides, diffusion coefficient decreases obviously with the increasing pressure at the same temperature (Fig. 5b). At low pressure, pressure affects diffusion coefficient more than temperature. Effect of pressure can not be neglected which is different from CO_2 diffusion in water (Lu et al., 2013).

Diffusion coefficient is also affected by the density of solvent, and with density increasing, diffusion coefficient decreases (Yang et al., 2000). Comparing diffusion coefficient in this study and CO_2 density, there's a linear relationship between diffusion coefficient and the reciprocal of CO_2 density (Fig. 5c). It is significant to use CO_2 density to calculate diffusion coefficient in different temperature and pressure. Comparing between calculation from density and experiment measurement, the average standard deviation is 3.71%.

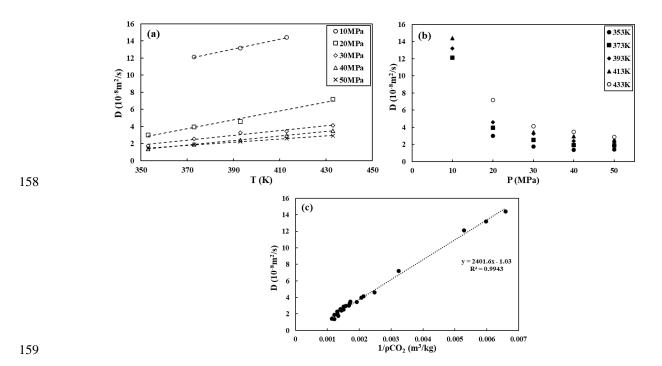
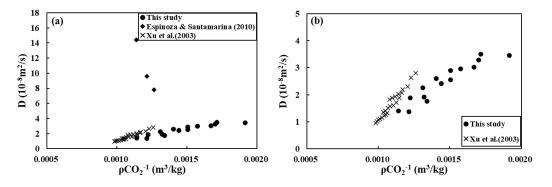



Figure 5. The relationship between thermodynamic parameters and water diffusion coefficient in CO_2 . (a) Temperature; (b) Pressure; (c) CO_2 density.

162 3.3 Comparison with previous study

163 Temperature and pressure of previous study (Espinoza & Santamarina, 2010; Xu et al., 164 2003) are different from those in this study and experimental data can't be compared directly 165 through pressure and temperature. According to the relationship between diffusion coefficient 166 and CO_2 density, it's feasible to replace temperature and pressure with density to compare with 167 previous experimental data. Fig. 6 shows data of Xu et al. (2003) are similar with this study. 168 Comparing the function of diffusion coefficient with density and Xu et al. (2003), the average 169 standard deviation is 8.28%.

170

171 **Figure 6.** Comparison with previous experimental data.

172 3.4 Diffusion model of water in CO₂

Based on a generalized free-volume model, self-diffusion coefficient can be expressed as (Liu et al., 2002):

175
$$D_{self} = A_D \sqrt{\frac{kT}{3.14M}} \left(V^* + \frac{V_f}{\gamma} \right) exp \left(-\frac{\gamma V^*}{V_f} - 2\alpha \varphi \right)$$
(9)

176 D_{self} is the self-diffusion coefficient for fluid; A_D is a constant; k is Boltzmann constant; 177 M is the molar mass; R is the gas constant; V^* is the molar critical free volume; γ is a numerical 178 factor; V_f is the free volume; φ is the mean potential energy.

According the EOS, the compressibility factor (Z) is expressed by attractive (Z^a) and repulsive (Z^r) compressibility. According to the GvdW theory, the Z is expressed as (Liu et al., 2002):

182
$$Z = V(\frac{\partial lnv_f}{\partial V})_{T,N} - \frac{V}{2kT} \left(\frac{\partial \varphi}{\partial V}\right)_{T,N} = Z^r + Z^a$$
(10)

183 Combining PC-SAFT, Eq. 10 is written as:

184
$$Z = mV(\frac{\partial lnv_f}{\partial V})_{T,N} - \frac{V}{2kT}\left(\frac{\partial \varphi}{\partial V}\right)_{T,N} = mZ^r + Z^a \qquad (11)$$

The free volume theory is correlated with equation of state to evaluate the self-diffusion
coefficient of fluid. The PC-SAFT EOS is introduced to correlate the free volume theory.
According to the PC-SAFT EOS, the PC-SAFT equation is expressed by the residual Helmholtz
energy (Gross & Sadowski, 2001).

189
$$a^{res} = a^{hs} + a^{chain} + a^{dis} + a^{sas}$$
(12)

190 a^{res} , a^{hs} , a^{chain} , a^{dis} , a^{sas} are the residual, hard-sphere term, chain term, dispersive 191 term and association interaction term hemholtz energy, respectively.

192
$$a^{res} = -mln\left(\frac{V_f}{V}\right) - \frac{\varphi}{2} \tag{13}$$

193
$$mln\left(\frac{V_f}{V}\right) = m\frac{3\eta^2 - 4\eta}{(1-\eta)^2} = -a^{hs}$$
 (14)

194 *m* is the segment parameter in PC-SAFT; η is the reduced density in PC-SAFT (Liu et 195 al., 2002).

Based on the previous study about water and CO₂ self-diffusion coefficients (Kazimierz
Krynicki et al., 1978; Robb & Drickamer, 1951; Woolf & Dyo, 1974), modified parameters are
listed at Table 2.

	CO_2	Water
α	0.116699	0.138828
A_D	0.843494	117.728

199 **Table 2.** Parameters for CO₂ and water self-diffusion models.

The self-diffusion model is extended to calculate the mutual diffusion coefficient. Mutual diffusion coefficient is mainly determined by solvent property. When water dissolves into CO_2 , water molecule replaces CO_2 molecule and can be regarded as CO_2 molecule, and the model of water diffusion in CO_2 is based on CO_2 self-diffusion model. But the activation energy of water is different from that of CO_2 . The water diffusion coefficient can be obtained as:

205
$$D_{12} = A_{D,1} \sqrt{\frac{kT}{3.14M_{12}}} \left(V^* + \frac{V_1^f}{\gamma} \right) exp\left(-\frac{\gamma V^*}{V_1^f} - \varphi_{12} \right)$$
(15)

206
$$M_{12} = \frac{2M_1M_2}{M_1 + M_2} \tag{16}$$

207
$$\varphi_{12} = \frac{2\left(-m_1 \ln\left(\frac{V_1^f}{V_1}\right) \alpha_{12} - \beta \alpha_2^{res}\right)}{T^*}$$
(17)

$$208 T^* = \frac{T}{\frac{\varepsilon_{12}}{k}} (18)$$

209 $\frac{\varepsilon_{12}}{k} = (1 - a_1) \sqrt{\frac{\varepsilon_1 \varepsilon_2}{k^2}}$ (19)

210 T^* is the reduced temperature of solvent; φ_{12} is the attractive potential energy; ε_1 , ε_2 are 211 parameters for CO₂ and water respectively from PC-SAFT.

212 β is dependent on temperature in the following equation:

213
$$\beta = c_1 + c_2 T^2$$
 (20)

Based on experimental data in this study, modified parameters are listed at Table 3.

Table 3. Parameters for model of water diffusion in CO₂.

α_{12}	a_1	<i>c</i> ₁	<i>C</i> ₂	
-0.24687	4.45404	-0.03805	1.28×10^{-6}	

216	Based on the obtained model, the average deviation between calculated data and
217	experimental data is 4.82%, but the average deviation between the model and Xu et al.(2003) is
218	57.99% (Table 4). This model can predict water diffusion coefficient in CO_2 accurately at 10-50
210	

MPa and 353.15-433.15 K and can't predict that at low pressure and temperature.

Table 4. Relative deviation between the model and experimental data.

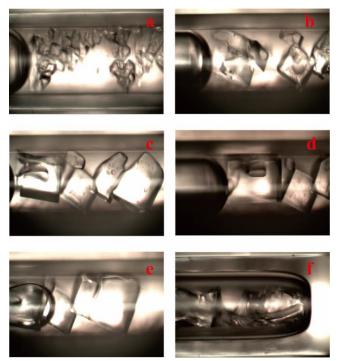
	This s	tudy	Xu et al. (2003)			
P (MPa)	T (K)	Relative Deviation (%)	P (MPa)	T (K)	Relative Deviation (%)	
10	373.15	2.65	13.2	283.15	59.86	
10	393.15	1.72	14.83	283.15	59.72	
10	413.15	1.29	16.26	283.15	59.91	
20	353.15	6.69	18.98	283.15	59.24	
20	373.15	0.25	21.77	283.15	59.35	
20	393.15	9.11	24.49	283.15	59.55	
20	433.15	7.85	26.87	283.15	95.86	
30	353.15	9.83	29.8	283.15	58.10	

30	373.15	0.60	13.33	298.15	57.83
30	393.15	2.97	14.83	298.15	55.63
30	413.15	8.74	16.46	298.15	53.60
30	433.15	3.25	18.91	298.15	53.24
40	353.15	16.55	21.77	298.15	54.80
40	373.15	7.60	24.15	298.15	55.32
40	393.15	4.54	27.28	298.15	54.27
40	413.15	0.70	29.73	298.15	54.32
40	433.15	5.28	13.47	308.15	57.12
50	353.15	0.89	14.9	308.15	56.81
50	373.15	5.59	16.33	308.15	53.26
50	393.15	4.28	18.91	308.15	54.56
50	413.15	3.10	21.43	308.15	53.52
50	433.15	2.53	24.28	308.15	54.47
			26.87	308.15	55.49
			29.8	308.15	56.00

221 3.5 Evaluation of salt precipitation

222 Water diffusion coefficient in CO₂ can be used to calculate the time when precipitation occurs. Alberta Basin in Canada is a case for CO₂-H₂S saline aquifer storage (Stefan Bachu; John 223 J. Carroll, 2005). Site 11 is used to apply the experimental data, because the P-T condition of 224 Site 11 is similar with this study and CO_2 is the major content (82%) of the gas in this site. 225 Pressure is 24.68 MPa and temperature is 376.15 K in this site, and water diffusion coefficient in 226 CO_2 is 3.273×10^{-8} m²/s. Based on the relationship between solubility (Wang et al., 2018) and 227 concentration gradient, the concentration gradient $\frac{\frac{x_1}{(1-x_1)V_{CO_2}} - \frac{x_2}{(1-x_2)V_{CO_2}}}{\Delta l}$ in this P-T condition is 228 $\frac{0.7197}{76.901 \times 10^{-6}} = 9358.79 \ mol/m^4$. Diffusion flux can be obtained as: 229

230
$$J = D \frac{\partial C}{\partial l} = 3.273 \times 10^{-8} \times 9358.79 = 3.0631 \times 10^{-4} \ mol/(s \cdot m^2)$$
 (21)


For simplification, a one-dimensional pore is chosen for evaluation, and the water length is regards as 2 cm, and salt in brine is NaCl. The salinity is 2.276 mol/kg while the salt solubility in water is 6.699 mol/kg (Sawamura et al., 2007), and for salt precipitation, water is supposed to dissolve 66.0%.

237
$$t = \frac{0.0132/(18.416 \times 10^{-6})}{3.0678 \times 10^{-4}} = 2.3364 \times 10^{6} s = 27 \text{ day}$$
(23)

According to the calculation result, salt precipitation will occur 27 days after starting injecting CO_2 in to saline aquifer. Comparing with the project period, the salt precipitation occurs too early and will impair CO_2 injectivity.

241 3.6 Observation of salt precipitation in capillary tube

For observing the whole process of salt precipitation, small amount of high salinity 242 solution is used for sample preparation. The length of solution in tube is 3.8 mm and the salinity 243 244 is 5 mol/kg, while the experimental pressure and temperature is 20 MPa and 373.15 K. 139 hours after injecting CO₂, large amount of small crystals appears instantaneously in the solution (Fig. 245 7a), and crystals grows to be several large cubic crystals with evaporation (Fig. 7b-e). During 246 growing, crystals are becoming more and more angular and the growing process takes about 43 247 hours after crystals appear. At the same time, the water is evaporating, and when none liquid 248 water exists, precipitated crystals are in gas phase, and at the end of tube, crystals are irregular 249 250 (Fig. 7f). According to the result, for salt precipitation, gas can only go through the pore between crystals and pipe well, and the displacement rate is weakened clearly because crystals occupy 251 much pore pace and decreases CO₂-brine interface area. 252

253

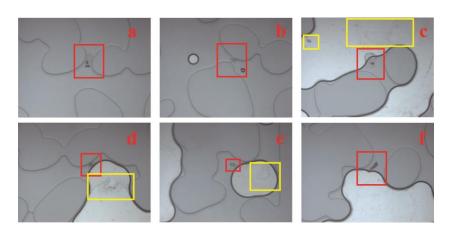
Figure 7. Pictures of salt precipitation process.

255 3.7 Observation of salt precipitation in micromodel

A physical rock type of micromodel is used to observe salt precipitation location in porous media. The porosity of the micromodel is 0.57. The chip is saturated with 4 mol/kg NaCl solution and is injected with pure CO₂. The temperature is 294.15 ± 1 K and pressure is 2 MPa. When injecting CO₂ into the pore space, the displacement phenomenon is different from that in capillary tube, and at the CO₂-brine mixture zone, there does not exist a specific complete gas-

liquid interface. When CO_2 starts to entry into the brine, CO_2 is surrounded by brine and then,

gas saturation becomes larger and brine is surrounded by CO_2 until all brine is dissolved or displaced.


The gas phase is the earliest precipitation zone and salt aggregates form in the gas phase and near the CO_2 interface. Salt in gas phase is a thin coat on the surface which has little influence on permeability which has little effect on CO_2 injection. During the first stage, CO_2 is surrounded by brine and salt precipitation occurs at the whole gas bubble especially at the interface. With the CO_2 and brine flowing, the salt does not move at all.

In the aqueous phase, salt precipitation is more likely to occur at the pore throat (fig.8a,

b) and gas-liquid interface (fig.8d-f) which does weaken permeability and impair CO_2 injectivity.

The salt moves with the flow, and when measuring the permeability after the salt precipitation,

- the permeability decreases more than five times mostly due to the accumulation of salt in pore
- throat.

274

Figure 8. Salt precipitation in the micromodel. Red squares are salt in aqueous phase and yellow means salt in gas phase.

277 **5 Conclusions**

Water diffusion in CO_2 at 10-50 MPa and 353.15-433.15 K is observed by Raman quantitative spectroscopy and 22 diffusion coefficient data are obtained. Diffusion coefficient increases with temperature and reciprocal of density linearly and decreases with pressure. Based on free volume theory and PC-SAFT EOS, a thermodynamic diffusion model for water diffusion in CO_2 is established and may predict water diffusion coefficient in CO_2 accurately at 10-50 MPa and 353.15-433.15 K.

At the Alberta Basin site 11 injection well, calculated diffusion coefficient is applied to evaluate when salt precipitation occurs, and it will occur 27 days after CO_2 injection which does weaken CO_2 injectivity. Salt precipitation observation presents precipitated crystals decrease pore size dramatically and salt accumulates at the pore throat and gas-liquid interface which weaken CO_2 mass transfer obviously.

289 Acknowledgments, Samples, and Data

This work was supported by the National Sciences Foundation of China (No. 41472218, 41672244) and the Fundamental Research Funds for National Universities, China University of Geosciences (Wuhan). All the data for this research are included in this submitted paper.

293 **References**

- Bai, B., Wu, H., & Li, X. (2018). Investigation on the relationship between wellhead injection
 pressure and injection rate for practical injection control in CO₂ geological storage
 projects. Geofluids, 2018. https://doi.org/10.1155/2018/4927415
- Espinoza, D. N., & Santamarina, J. C. (2010). Water-CO₂-mineral systems: Interfacial tension,
 contact angle, and diffusion-Implications to CO₂ geological storage. Water Resources
 Research, 46(7). https://doi.org/10.1029/2009WR008634
- Gaus, I. (2010). Role and impact of CO₂-rock interactions during CO₂ storage in sedimentary
 rocks. International Journal of Greenhouse Gas Control, 4(1), 73–89.
 https://doi.org/10.1016/j.ijggc.2009.09.015
- Gross, J., & Sadowski, G. (2001). Perturbed-chain SAFT: An equation of state based on a
 perturbation theory for chain molecules. Industrial and Engineering Chemistry Research,
 40(4), 1244–1260. https://doi.org/10.1021/ie0003887
- 306Guo, H., Huang, Y., Chen, Y., & Zhou, Q. (2016). Quantitative Raman Spectroscopic307Measurements of CO_2 Solubility in NaCl Solution from (273.15 to 473.15) K at p =308(10.0, 20.0, 30.0, and 40.0) MPa. Journal of Chemical and Engineering Data, 61(1), 466–309474. https://doi.org/10.1021/acs.jced.5b00651
- Guyant, E., Han, W. S., Kim, K. Y., Park, M. H., & Kim, B. Y. (2015). Salt precipitation and
 CO₂ brine flow distribution under different injection well completions. International
 Journal of Greenhouse Gas Control, 37, 299–310.
 https://doi.org/10.1016/j.ijggc.2015.03.020
- Han, W. S., & Mcpherson, B. J. (2009). Optimizing geologic CO₂ sequestration by injection in
 deep saline formations below oil reservoirs. Energy Conversion and Management,
 50(10), 2570–2582. https://doi.org/10.1016/j.enconman.2009.06.008
- Jeddizahed, J., & Rostami, B. (2016). Experimental investigation of injectivity alteration due to
 salt precipitation during CO₂ sequestration in saline aquifers. Advances in Water
 Resources, 96, 23–33. https://doi.org/10.1016/j.advwatres.2016.06.014
- Kazimierz Krynicki, B. Y., Green, C. D., Sawyer, D. W., Krynicki, K., Green, C. D., & Sawyer,
 D. W. (1978). Pressure and temperature dependence of self-diffusion in water. Faraday
 Discuss. Chem. Soc., 66, 199. https://doi.org/10.1039/DC9786600199
- Liu, H., Silva, C. M., & Macedo, E. A. (2002). Generalised free-volume theory for transport
 properties and new trends about the relationship between free volume and equations of
 state. Fluid Phase Equilibria, 202(1), 89–107. https://doi.org/10.1016/S0378 3812(02)00083-3
- Lu, W., Guo, H., Chou, I. M., Burruss, R. C., & Li, L. (2013). Determination of diffusion
 coefficients of carbon dioxide in water between 268 and 473K in a high-pressure
 capillary optical cell with in situ Raman spectroscopic measurements. Geochimica et
 Cosmochimica Acta, 115, 183–204. https://doi.org/10.1016/j.gca.2013.04.010

Miri, R., van Noort, R., Aagaard, P., & Hellevang, H. (2015). New insights on the physics of salt precipitation during injection of CO₂ into saline aquifers. International Journal of Greenhouse Gas Control, 43, 10–21. https://doi.org/10.1016/j.ijggc.2015.10.004

- Muller, N., Qi, R., Mackie, E., Pruess, K., & Blunt, M. J. (2009). CO₂ injection impairment due
 to halite precipitation. Energy Procedia, 1(1), 3507–3514.
 https://doi.org/10.1016/j.egypro.2009.02.143
- Ott, H., Roels, S. M., & de Kloe, K. (2015). Salt precipitation due to supercritical gas injection: I.
 Capillary-driven flow in unimodal sandstone. International Journal of Greenhouse Gas
 Control, 43, 247–255. https://doi.org/10.1016/j.ijggc.2015.01.005
- Pruess, K., & Müller, N. (2009). Formation dry-out from CO₂ injection into saline aquifers: 1.
 effects of solids precipitation and their mitigation. Water Resources Research, 45(3), 1–
 11. https://doi.org/10.1029/2008WR007101
- Robb, W. L., & Drickamer, H. G. (1951). Diffusion in CO₂ up to 150-atmospheres pressure. The
 Journal of Chemical Physics, 19(12), 1504–1508. https://doi.org/10.1063/1.1748110
- Roels, S. M., Ott, H., & Zitha, P. L. J. (2014). μ-CT analysis and numerical simulation of drying
 effects of CO₂ injection into brine-saturated porous media. International Journal of
 Greenhouse Gas Control, 27, 146–154. https://doi.org/10.1016/j.ijggc.2014.05.010
- Sawamura, S., Egoshi, N., Setoguchi, Y., & Matsuo, H. (2007). Solubility of sodium chloride in
 water under high pressure. Fluid Phase Equilibria, 254(1–2), 158–162.
 https://doi.org/10.1016/j.fluid.2007.03.003
- Schwertz, F. A., & Brow, J. E. (1951). Diffusivity of water vapor in some common gases. The
 Journal of Chemical Physics, 19(5), 640–646. https://doi.org/10.1063/1.1748306
- Stefan Bachu; John J. Carroll. (2005). In-situ phase and thermodynamic properties of resident
 brine and acid gases (CO₂ and H₂S) injected into geological formations in western
 Canada. Greenhouse Gas Control Technologies, 1, 49–451.
- Wang, Z., Zhou, Q., Guo, H., Yang, P., & Lu, W. (2018). Determination of water solubility in
 supercritical CO₂ from 313.15 to 473.15 K and from 10 to 50 MPa by in-situ quantitative
 Raman spectroscopy. Fluid Phase Equilibria, 476, 170–178.
 https://doi.org/10.1016/j.fluid.2018.08.006
- Woolf, B. Y. L. A., & Dyo, T. (1974). Tracer Diffusion of Tritiated Water (THO) in Ordinary
 Water (H₂O) und & Pressure, 784–796.
- Xu, B., Nagashima, K., DeSimone, J. M., & Johnson, C. S. (2003). Diffusion of water in liquid
 and supercritical carbon dioxide: An NMR study. Journal of Physical Chemistry A,
 107(1), 1–3. https://doi.org/10.1021/jp021943g
- Yang, X. N., Coelho, L. A. F., & Matthews, M. A. (2000). Near-critical behavior of mutual
 diffusion coefficients for five solutes in supercritical carbon dioxide. Industrial and
 Engineering Chemistry Research, 39(8), 3059–3068. https://doi.org/10.1021/ie990705d
- 368

369