A Strategy to Improve the GOES-R Land Surface Temperature Product with All Weather Information in Near Real Time

Anand K Inamdar¹

$^{1}\mathrm{CISESS}$

November 28, 2022

Abstract

LST is routinely retrieved from the GOES-R Advanced Baseline Imager (ABI) long wave spectral channels. Since the product is available only under clear sky conditions, large gaps exist in the data stream which correspond to contamination by clouds. However, continuous estimates of LST data are still vitally needed for several applications such as drought monitoring ,vegetation growth, and crop yield estimation etc. Studies have shown that LST tracks with corresponding changes in incident solar radiation or more specifically changes in surface absorbed solar radiation with good correlation irrespective of sky conditions (clear or cloudy). In the present study, a scheme is developed to fill in the large spatio-temporal gaps in the LST time series using surface solar absorption parameter (SSA) retrieved in near real time from other satellites. Validation of retrieved LST values over all of the SURFRAD stations reveal RMS errors of less than 1 K.

1	A Strategy to Improve the GOES-R Land Surface Temperature Product with All-weather
2	Information in Near Real Time
3	
4	Anand K. Inamdar
5	North Carolina Institute of Climate Sciences, Asheville
6	
7	Abstract
8	
9	LST is routinely retrieved from the GOES-R Advanced Baseline Imager (ABI) long wave spectral
10	channels. Since the product is available only under clear sky conditions, large gaps exist in the
11	data stream which correspond to contamination by clouds. However, continuous estimates of
12	LST data are still vitally needed for several applications such as drought monitoring ,vegetation
13	growth, and crop yield estimation etc. Studies have shown that LST tracks with corresponding
14	changes in incident solar radiation or more specifically changes in surface absorbed solar
15	radiation with good correlation irrespective of sky conditions (clear or cloudy). In the present
16	study, a scheme is developed to fill in the large spatio-temporal gaps in the LST time series
17	using surface solar absorption parameter (SSA) retrieved in near real time from other satellites.
18	Validation of retrieved LST values over all of the SURFRAD stations reveal RMS errors of less
19	than 1 K.
20	
21	

22 1. Introduction

23 Land surface temperature (LST) has been recognized as an essential climate variable (ECV) by the Global Climate Observing System (GCOS) due to its importance in hydrology, 24 25 meteorology and climatology. LST and its diurnal variability are key to understanding of 26 land-atmosphere interactions, including the exchange of water and energy at the surface 27 (Mannstein, 1987), climate change (Hansen et al. 1995), and hydrological processes. As a 28 result, LST has been used in numerous applications (Kerr, 2000) from modeling and land 29 cover change studies to applications in geology and epidemiology. However, many of these studies are reliant upon satellite measurements due to limited spatial coverage of in situ 30 31 networks (Li et al., 2013).

32

33 Satellite retrievals of LST are available from a variety of polar orbiting and geostationary sensors. Bulk of the methods are based on a combination of thermal infrared channels and 34 35 other ancillary parameters like water vapor. The new generation of advanced geostationary satellites such as GOES-R, GOES-S (US), HIMAWARI series (Japan) are providing reasonable 36 estimates of global LST under clear sky conditions. However the presence of clouds limit the 37 quantity and quality of remotely sensed LST measurements. To date, there have been very 38 39 few studies on the retrieval of LST under cloudy skies. Jin (2000) proposed a spatial 40 neighboring pixel approach to estimate LST under cloudy skies from polar-orbiting satellites. 41 A drawback of this approach was sacrificing the homogeneity in the surrounding pixels. Lu 42 et al (2011) employed a temporal neighboring pixel approach by taking advantage of the expanded temporal domain offered by geostationary satellites. However, these studies 43 were based on a surface energy balance approach that require parameterization of surface 44

45 fluxes, which are not readily available. While microwave sensors can measure LST under 46 clouds, their spatial resolution is too course and overly sensitive to surface roughness and 47 moisture and thus have limited applicability. Zhang et al (2015) developed a method to obtain LST under clouds based on a one-dimensional diffusion equation that estimates the 48 temporal evolution of surface temperature using net surface solar radiation. This method 49 50 based on estimation of thermal inertia worked best over homogeneous bare soils. Recently 51 Wang et al (2019) developed a technique employing solar-cloud-satellite geometry and 52 applied it to MODIS and Landsat-8 data to derive LST under clouds obtaining an rms 53 accuracy of 4.9 K. In the present study, we attempt to extend the analysis of surface energy 54 balance approach (Zhang et al 2015) to heterogenous land-cover by incorporating time series of LST retrieved under clear skies, and the diurnal cycle of surface solar absorption 55 56 (SSA) observed from Geostationary Satellites (Inamdar & Guillevic 2015 – hereafter refered 57 to as IG15) under all sky conditions.

58

59 2. Input Data

60 Satellite

61 1) GOES-R Visible channel scaled radiance counts from Level 1B data.

62 2) CERES: TOA broadband SW flux from the Flashflux Single Scanner Footprint (SSF)
63 data (https://ceres-tool.larc.nasa.gov/ord-

64 tool/products?CERESProducts=FLASH_SSF)

65 Ancillary

1) MODIS precipitable water from the 5-min 5 km swath data (MOD05/MYD05)

67 2) MODIS Aerosol Optical Depths (MOD08/MYD08)

68 Table 1. List of in situ stations used in this study.

Station ID	Name	State	Network	Latitude	Longitude
SGP	Southern Great Plains	ОК	SURFRAD	36.60	- 97.48
DRA	Desert Rock	NV	SURFRAD	36.62	- 116.01
BOS	Table Mountain	CO	SURFRAD	40.12	-105.23
BON	Bondville	IL	SURFRAD	40.05	-88.37
FPK	Fort Peck	MT	SURFRAD	48.30	-105.10
SXF	Sioux Falls	SD	SURFRAD	43.73	-96.62
GCR	Goodwin Creek	MS	SURFRAD	34.25	-89.87
PSU	Penn. State	PA	SURFRAD	40.72	-77.93

69 3. Methodology

70 Methodology consists of mainly three primary steps: (1) the estimation of TOA

71 broadband SW radiation through matching up GOES-R pixels with CERES footprint in

near real-time, (2) the computation of surface net SW radiation or SSA from TOA SW

73	flux through applying the CERES TOA-to-surface algorithms (IG15 study), and (3)
74	employing the strong correlation between the SSA and LST to fill in LST values for
75	missing or cloud-contaminated scenes. Details are provided below:
76	3.1 TOA Broadband SW Flux
77	GOES-R data files provide scaled radiance counts (not raw counts) at half km resolution
78	from which channel 2 radiance can be derived using a scaling factor and offset provided
79	in the nectddf file. But we will not need them here, since we will directly match up the
80	CERES broadband SW flux with the scaled radiance counts. The broadband SW flux
81	from GOES-R can be evaluated from the linear regression between scaled radiance
82	counts and CERES broadband flux. The collocation criteria for the matching are similar
83	to the ones used earlier for the IG15 study, albeit slightly tighter:
84	- The time difference between observation times for CERES and GOES is less than 10
85	minutes;
86	- The difference in viewing zenith angles between the two instruments is less than 10
87	degrees to reduce directional effects;
88	- The standard deviation of the radiances of GOES pixels within the bounding CERES
89	coarser pixel is less than 10% of the domain mean value;
90	- The difference between the maximum and the minimum count values in the GOES
91	domain is less than 20% of the domain mean value to avoid mixed pixels and undetected
92	clouds.

93	The detailed arguments provided in the earlier study (IG15) against using the angular
94	directional model (ADM) for radiance to flux conversion still hold for the present study.
95	And regression is performed directly between the broadband flux and GOES-R scaled
96	radiance counts. The key difference from the prior study is doing away with dependance
97	on the nature of surface property as represented by the use of the Normalized Difference
98	Vegetation Index (NDVI). In a future version of this study, it is planned to use
99	dependency on surface reflectance in the red, blue and green band, as reported in (Wu et
100	al 2019) to improve the accuracy.
101	3.2 TOA to Surface Algorithm
102	We employ the same model described before (IG15), namely "SW Model A" in the
102 103	We employ the same model described before (IG15), namely "SW Model A" in the CERES processing chain to estimate the fraction of absorbed solar radiation. The model
103	CERES processing chain to estimate the fraction of absorbed solar radiation. The model
103 104	CERES processing chain to estimate the fraction of absorbed solar radiation. The model is based on detailed radiative transfer calculations (Li et al 1993) and requires additional
103 104 105	CERES processing chain to estimate the fraction of absorbed solar radiation. The model is based on detailed radiative transfer calculations (Li et al 1993) and requires additional ancillary inputs of column precipitable water, aerosol optical depth and cosine of solar
103 104 105 106	CERES processing chain to estimate the fraction of absorbed solar radiation. The model is based on detailed radiative transfer calculations (Li et al 1993) and requires additional ancillary inputs of column precipitable water, aerosol optical depth and cosine of solar zenith angle. Precipitable water has been retrieved by combining data from both Terra
103 104 105 106 107	CERES processing chain to estimate the fraction of absorbed solar radiation. The model is based on detailed radiative transfer calculations (Li et al 1993) and requires additional ancillary inputs of column precipitable water, aerosol optical depth and cosine of solar zenith angle. Precipitable water has been retrieved by combining data from both Terra (MOD05) and Aqua (MYD05) platforms and interpolated to produce 0.05 deg lat/lon
103 104 105 106 107 108	CERES processing chain to estimate the fraction of absorbed solar radiation. The model is based on detailed radiative transfer calculations (Li et al 1993) and requires additional ancillary inputs of column precipitable water, aerosol optical depth and cosine of solar zenith angle. Precipitable water has been retrieved by combining data from both Terra (MOD05) and Aqua (MYD05) platforms and interpolated to produce 0.05 deg lat/lon grid at GOES-R observational times. For aerosol optical we used the monthly average

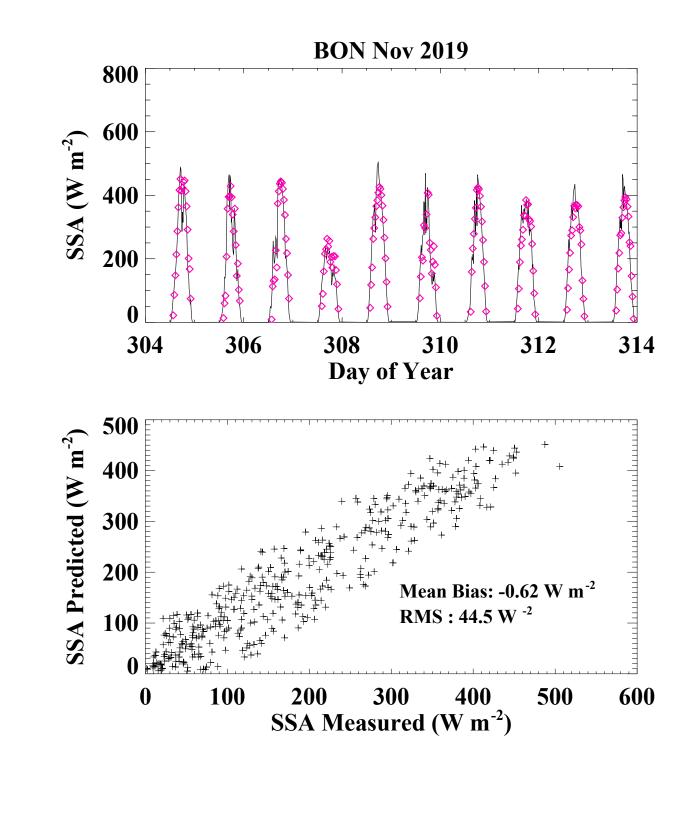
3.3 Filling in Missing LST Values

Diurnal evolution of LST is driven by the changes in the incoming solar radiation or SSA
parameter triggered by changes in insolation due to clouds (Zhang et al 2015). Studies

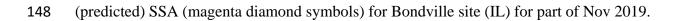
114		have revealed (see figures in section 4.2) that changes in LST are linearly correlated with
115		changes in the SSA parameter irrespective of sky conditions. We split the diurnal range
116		of variations into an ascending leg (sunrise to time of maximum LST) and a descending
117		leg (time of peak LST to near sunset).
118	4.	Results and Discussion
119		
120	4.1	TOA Outgoing Shortwave Radiation from GOES-R
121		
122		The relationship between the outgoing CERES-measured SW radiation and aggregated
123		GOES-R visible channel scaled radiance counts has been calibrated using matched
124		observations as described in the previous section under all-sky conditions. The
125		relationship between the two variables is very strongly correlated. Throughout the present
126		study, the strength of correlation between a pair of variables is represented by the
127		Pearson's correlation coefficient (\mathbf{R}) expressed as the covariance between the two
128		variables divided by the product of their standard deviations. Higher value closer to 1
129		represents a strong positive correlation and a value closer to -1 represents a strong
130		negative correlation. Correlation between the GOES-R visible channel scaled radiance
131		counts and the collocated CERES SW radiation over the CONUS domain (not shown) is
132		characterized by a very high \boldsymbol{R} value close to 1.

133 4.2 Validation of SSA

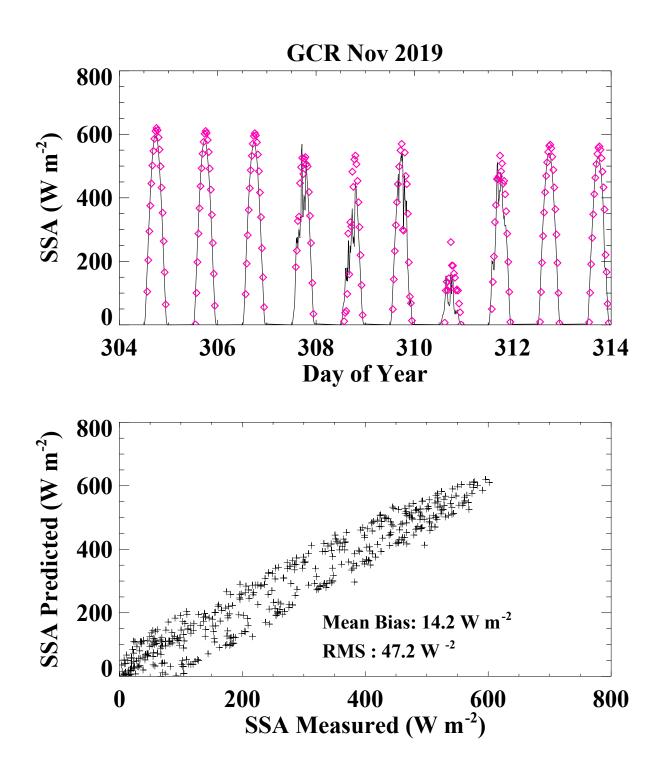
134	SSA values have been retrieved from TOA broadband SW flux as outlined before. The
135	accuracy of the SSA parameter retrieved has been evaluated (fig. $1 - 2$ and table 2)
136	against surface measurements from radiometers at all eight SURFRAD sites for Nov
137	2019. Figs 1 and 2 show the time series of SSA on the top panel for a ten-day period
138	during the month for Bondville (IL) and Goodwyn Creek (MS) sites. The continuous dark
139	lines represent the in situ measurements while the magenta-colored diamond symbols
140	refer to the values calculated from the model. The bottom panels depict scatter plots of
141	pairs of values shown in the top panel, but for all the days during the month. The mean
142	RMS error for all sites is less than 50 W m^{-2} . The error statistics are comparable or
143	sometimes even better than those of IG15 study for all sites, in spite of the simplified
144	treatment to derive the TOA SW radiation.



147 Fig 1. Top: Time series of in situ measured SSA (Wm⁻²) (solid dark line) and modeled



Abscissa units are day of year in UTC format. Bottom: Scatter plot of measured versus predicted
SSA (W m⁻²) utilizing data for all days of the month.



153 Fig 2. Same as Fig 2, but for the Goodwyn Creek (MS) site

154

155

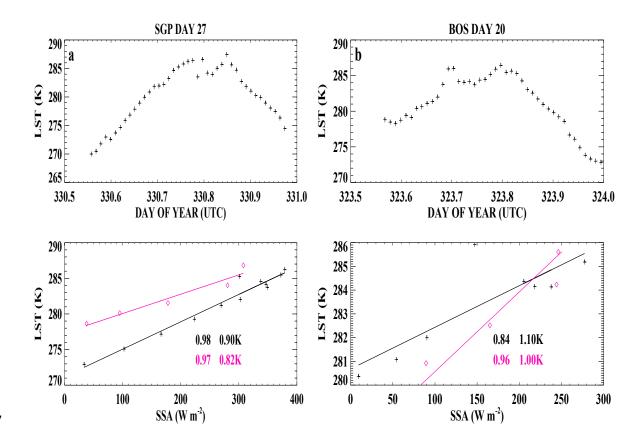
- 156 Table 2. Summary of mean error statistics for SSA (mean bias and RMS) for the month of Nov
- 157 2019 for all SURFRAD sites

	Station ID	Mean Bias (Predicted-	RMS (W m ⁻²)
		Measured W m^{-2})	
	SGP	-3.7	46
	DRA	-5.6	46.6
	BOS	1.6	51.2
	BON	-0.6	44.5
	SXF	-4.5	47.8
	FPK	-16.4	44.2
	GCR	13.3	47.2
	PSU	20.4	41.4
158			
159			

160

161 4.3 *SSA* – *LST Correlation*

162 A sampling of 4 sites (SGP, BOS, SXF and FPK) with day-time variations in LST for specific 163 days of the month have been chosen to demonstrate the strong coupling between SSA and LST 164 changes. There are 2 panels for each site and the top panel of each marked (**a,b,c,d**) shows the 165 time series of in-situ measurements of LST. The bottom panels show the correlations between 166 the in-situ LST and corresponding modeled SSA values split into the ascending (black symbols) 167 and descending (magenta symbols) domains. The corresponding solid lines for each are the mean 168 regression fit lines which will be used to fill in the missing LST slots. The two pairs of inset 169 numbers in the each bottom panel represent the mean Pearson's correlation coefficient (\mathbf{R}) as 170 described in section 4.1, and the rms error for the filled LST series. Specifically, days with 171 challenging situations characterized by diurnal LST variability due to presence of clouds as shown by the time series of in situ LST have been chosen for demonstration. However, 172 173 correlation has been performed for all days in the month and the mean R and rms error have been 174 tabulated in table 3 for each of the 8 SURFRAD sites. It is observed that the correlations are in the high range above 0.8 for most stations for both ascending and descending branch and the 175 176 mean rms errors are also below about 1 K.



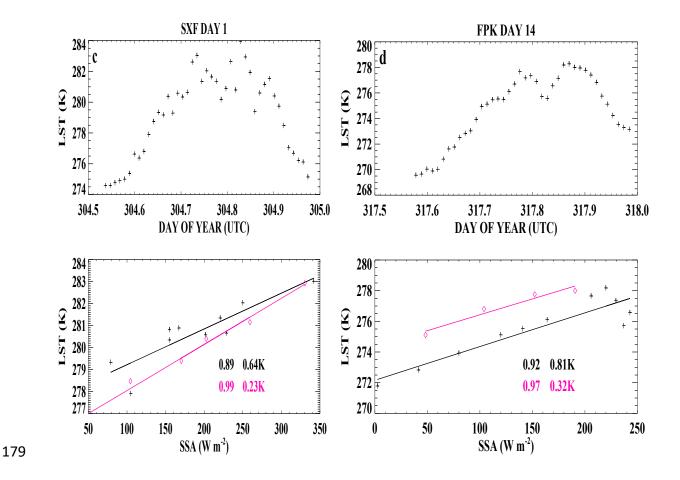


Fig 3. Top panel of each figure (a,b,c,d) shows in situ LST (K) for the specified site and day marked at the top. Bottom panels of each (a,b,c,d) shows correlation between SSA and LST for each of the ascending (sunrise to peak LST of day in dark line) and descending (time of peak LST to near sunset hour in magenta line). The symbols are the in situ measurements and continuous lines represent mean linear regression fits. Pairs of numbers inset refer to the Pearson's correlation coefficient and RMS error for each of the ascending and descending legs.

187

Table 3. Mean Pearson's correlation coefficient between modeled SSA and LST for ascending
(ASC) and descending (DSC) legs using data for all days in the month. The corresponding mean
error statistics (RMS) of regression fits are also shown in the last 2 columns.

Station ID	R (ASC)	R(DSC)	RMS (ASC) (K)	RMS (DSC) (K)
SGP	0.94	0.96	0.67	0.49
DRA	0.99	0.97	0.72	0.53
BOS	0.79	0.86	1.04	1.35
BON	0.89	0.88	1.06	0.77
SXF	0.91	0.84	0.8	0.58
FPK	0.83	0.9	0.84	0.41
GCR	0.94	0.91	0.72	0.83
PSU	0.9	0.89	0.77	0.56

196 5. Conclusions

In the present study we have developed a possible strategy to enhance the operational
GOES-R LST product including the all-weather conditions. The strategy relies on the
strong coupling between the surface absorbed solar radiation and changes in LST. The

200	study makes use of an algorithm (IG15) designed and developed earlier to retrieve SSA
201	from the single narrowband visible channel of GOES-8 and GOES-10 satellites and
202	extends the approach to the current GOES-R. Since GOES-R has many additional
203	channels than its predecessor, it is possible to further improve the accuracy of LSTs
204	through adding other channels. Further research will also explore to enhance the accuracy
205	of the TOA broadband flux from geostationary platforms through including surface
206	reflectance from MODIS channels. This approach can be extended to all of the current
207	generation of geostationary satellites such as the HIMWARI and METEOSAT third
208	generation (MTG) series satellites.
209	Acknowledgements: This work was supported by NOAA through the Cooperative
210	Institute for Satellite Earth System Studies (CISESS) - North Carolina under
211	Cooperative Agreement NA19NES4320002. The ARM/SGP and SURFRAD data
212	were obtained from the ARM/SGP web site
213	(https://adc.arm.gov/discovery/#/results/meas_category_code::radio) and
214	ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/ respectively. The CERES/FLASHFLUX
215	data was obtained through https://ceres-tool.larc.nasa.gov/ord-
216	tool/products?CERESProducts=FLASH_SSF. Authors are grateful for constructive
217	comments provided by the internal reviewers at NOAA which helped a great deal in
218	improving the quality of presentation.
219	

223	
224	
225	References
226	
227	Augustine, J. A.; Deluisi, J. J.; Long, C. N. SURFRAD — A national surface radiation budget
228	network for atmospheric research, Bull. Amer. Meteor. Soc., 2000, 81, 2341–2357.
229	
230	Diamond, H. J., T. R. Karl, M. A. Palecki, C. B. Baker, J. E. Bell, R. D. Leeper, D. R. Easterling, J.
231	H. Lawrimore, T. P. Meyers, M. R. Helfert, G. Goodge, and P. W. Thorne, 2013: U.S. Climate
232	Reference Network after one decade of operations: status and assessment. Bull. Amer.
233	<i>Meteor. Soc.,</i> 94, 489-498. doi: <u>10.1175/BAMS-D-12-00170.1</u>
234	
235	Hansen, J., M. Sato, and R. Ruedy, 1995: Long-term changes of the diurnal temperature
236	cycle: Implications about mechanisms of global climate change. Atmos. Res., 37, 175-209,
237	doi:10.1016/0169-8095(94)00077-Q.
238	
239	Inamdar A. K. and P. C. Guillevic. Net Surface Shortwave Radiation from GOES Imagery—
240	Product Evaluation Using Ground-Based Measurements from SURFRAD. Remote Sensing.
241	2015; 7(8):10788-10814. doi: <u>10.3390/rs70810788</u>
242	
243	Kratz, D. P., P. W. Stackhouse, S. K. Gupta, A. C. Wilbur, P. Sawaengphokhai, and G. R.
244	McGarragh, 2014: The fat longwave and shortwave flux (FLASHFlux) data product: single-

245	scanner footprint fluxes., J. Appl. Meteor. Climatol, pp. 1059-1079.
246	DOI: <u>https://doi.org/10.1175/JAMC-D-13-061.1</u>
247	
248	
249	Li, Z.; Leighton, H.G.; Cess, R.D. Surface net solar radiation estimated from satellite
250	measurements: Comparisons with tower observations. J. Clim. 1993, 6, 1764–1772.
251	
252	Li, Z., B. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, J. A. Sobrino, 2003: Satellite-
253	derived land surface temperature: Current status and perspectives, Remote Sens. Environ,
254	131 , 14-37, https://doi.org/10.1016/j.rse.2012.12.008
255	
256	Lu, L.; Venus, V.; Skidmore, A.; Wang, T.; Luo, G. Estimating land-surface temperature
257	under clouds using MSG/SEVIRI Observations. Int. J. Appl. Earth Obs. 2011, 13, 265–276.
258	
259	Mannstein H. (1987) Surface Energy Budget, Surface Temperature and Thermal Inertia.
260	In: Vaughan R.A. (eds) Remote Sensing Applications in Meteorology and Climatology.
261	NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 201. Springer,
262	Dordrecht
263	
264	Menglin Jin, and R. E. Dickinson, A generalized algorithm for retrieving cloudy sky skin
265	temperature from satellite thermal infrared radiances. J. Geophys. Res., 105, 27037 – 27047,
266	2000.
267	

268	Safieddine, S., A. C. Parracho, M. George and others, Artificial Neural Networks to retrieve
269	land and sea skin temperature from IASI. Remote Sens., 12, 2777. doi:10.3390/rs12172777,
270	2020.
271	
272	Zhao-Liang Li, Bo-Hui Tang, Hua Wu, Huazhong Ren, Guangjian Yan, Zhengming Wan, Isabel
273	F. Trigo, José A.Sobrino, Satellite-derived land surface temperature: Current status and
274	perspectives, Remote Sensing of Environment, Volume 131, 2013, pp. 14-37
275	
276	Y.H. Kerr, J.P. Lagouarde, F. Nerry, C. Ottle, Land surface temperature retrieval techniques
277	and applications, D.A. Quattrochi, J.C. Luvall (Eds.), Thermal remote sensing in land surface
278	processes, CRC Press, Boca Raton, Fla. (2000), pp. 33-109
279	
280	Wang, T., S. Jiancheng, M. Ya, H. Letu, C. Edward, J. Dabin, Z. Tianjie, and X. Chuan,
281	Recovering land surface temperature under cloudy skies considering the solar-cloud-satellite
282	geometry: Application to MODIS and Landsat-8 data, J. Geophys. Res., 124, 3401-3416,
283	doi: /10.1029/2018JD028976_2019.
284	
285	Wu, H. and W. Ying. Benchmarking machine learning algorithms for instantaneous net
286	surface shortwave radiation retrieval using remote sensing data. Remote Sensing. 2019, 11,
287	
	2520 – 2540, doi:10.3390/rs11212520.
288	2520 – 2540, doi:10.3390/rs11212520.

290	Zhang, X., J. Pang, and L. Li, Estimation of Land Surface Temperature under Cloudy Skies
291	Using Combined Diurnal Solar Radiation and Surface Temperature Evolution, Remote
292	Sens. 2015 , 7(1), 905-921; doi: <u>10.3390/rs70100905</u>
293	
294	
295	
296	
297	
298	