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Abstract

We present a discrete-domain approach to three-phase displacements and hysteresis in porous media. In this method, constrained

energy minimization leads to evolution equations for local saturations that describe a wide range of three-phase displacements,

including pressure- and saturation-controlled displacement with or without preservation of one of the defending phases. Under

action of global saturation constraints, irreversible displacements lead to significant fluid redistribution, as well as abrupt

fluctuations of both the three-phase saturation paths and the corresponding capillary pressures. These features are a consequence

of Haines jumps with cooperative behavior that occur at pore scale in three-phase systems. The method is a fast and convenient

way to investigate hysteresis behavior of three-phase displacement in porous media. As free energy is an extensive property,

the framework links pore and core scales and provide a means to achieve upscaled three-phase displacements for higher-order

hysteresis loops, which rarely is obtained in time-consuming three-phase measurements or pore-scale simulations.
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Abstract
We present a discrete-domain approach to three-phase displacements and hysteresis
in porous media. Constrained energy minimization leads to evolution equations for
local saturations that describe a wide range of three-phase displacements, including
pressure- and saturation-controlled displacement with or without preservation of one
of the defending phases. Under action of global saturation constraints, irreversible
displacements lead to significant fluid redistribution, as well as abrupt fluctuations
of both the three-phase saturation paths and the corresponding capillary pressures.
These features are a consequence of Haines jumps with cooperative behavior that
occur at pore scale in three-phase systems. The method is a fast and convenient way
to investigate hysteresis behavior of three-phase displacement in porous media. As free
energy is an extensive property, the framework links pore and core scales and provide a
means to achieve upscaled three-phase displacements for higher-order hysteresis loops,
which rarely is obtained in time-consuming three-phase measurements or pore-scale
simulations.

Plain Language Summary

Knowledge of the way three fluids move through the pore space inside porous
rocks is crucial to describe oil recovery and CO2 storage processes in subsurface reser-
voirs. Because of the complex pore structure, interfaces between fluids do not generally
recede (drainage) in the same way as they advance (imbibition), upon reversal of dis-
placement direction. This means that the displacement is irreversible and depends
on the history of fluid displacements. This is called hysteresis. At macroscopic scale,
hysteresis is often quantified by the difference in capillary pressure-saturation curves
between drainage and imbibition. The extent of hysteresis is a collective effect of many
reversible and irreversible displacement events at pore scale. Hysteresis in two-phase
fluid systems has been the subject of many previous studies. Here, we present a method
to describe irreversible displacement and hysteresis in three-phase systems. Based on
thermodynamics, we describe hysteresis as irreversible transitions across barriers in an
energy landscape exhibiting metastability. Constrained minimization results in sat-
uration evolution equations that collectively describe various irreversible three-phase
displacements and corresponding capillary pressure-saturation curves. We envision
that the approach is a suitable upscaling tool for relating three-phase hysteresis be-
havior from pore scale with macroscopic scale.

1 Introduction

An inherent challenge with multiphase flow processes in porous media, such as
water-alternate-gas invasions for oil recovery or CO2 injection for geologic storage,
is that fluid displacements are irreversible, that is, they are history-dependent and
exhibit hysteresis (Spiteri & Juanes, 2006). Hysteresis can be rate-dependent or rate-
independent. Here, we examine rate-independent hysteresis in three-phase systems
based on an energy landscape exhibiting metastability and barriers. Thus, we ap-
proach fluid displacements quasi-statically as a series of small changes of pressure or
saturation. This is a reasonable approximation for slow displacement at pore scale
where capillary forces typically dominate over viscous forces and gravity (Hilfer &
Øren, 1996). At darcy (or, core) scale, hysteresis in two-phase systems emerges as
the difference between drainage and imbibition capillary pressure curves (Pαβ(Sβ)-
curves), where capillary pressure is the difference in phase pressures p between non-
wetting (α) and wetting (β) phases (i.e., Pαβ = pα − pβ), and Sβ is wetting-phase
saturation. Collectively, the shape of Pαβ(Sβ)-curves depends on porous structure,
pore-scale fluid displacements, saturation history and wetting state. Morrow (1970)
interpreted Pαβ(Sβ)-curves thermodynamically as a sequence of reversible and irre-
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versible pore-scale fluid displacements, termed “isons” and “rheons”, respectively, that
describe transitions between capillary equilibrium states (i.e., local energy minima).
Here, isons describe smooth changes of capillary pressure and saturation, while rheons,
being responsible for energy dissipation and hysteresis (Morrow, 1970), describe insta-
bilities that arise when a fluid invades a pore region accompanied by abrupt pressure
jumps and spontaneous fluid redistributions in other parts of the pore space at almost
constant saturation. This phenomenon, also called Haines jumps with cooperative
behavior (Haines, 1930), has been investigated in two-phase flow in numerous experi-
mental and numerical studies (e.g., Morrow, 1970; Måløy et al., 1992; Moebius & Or,
2012; Armstrong & Berg, 2013; Andrew et al., 2015; Berg et al., 2013; Zacharoudiou
& Boek, 2016; Cueto-Felgueroso & Juanes, 2016; Helland et al., 2017; Holtzman et al.,
2020, and others).

For three-phase flow, hysteresis and irreversible displacements are more com-
plex and much less explored. This is due to several reasons. Displacement behavior
vary significantly with immiscible and near-miscible fluid systems, spreading and non-
spreading oils, and different wetting orders of the three phases (Keller et al., 1997;
Hui & Blunt, 2000; van Dijke & Sorbie, 2002; Khishvand et al., 2016; Alhosani et
al., 2019; Scanziani et al., 2020). At the pore scale, double displacements (Øren &
Pinczewski, 1995; Keller et al., 1997; Khishvand et al., 2016; Helland & Jettestuen,
2016; Helland et al., 2019), where a continuous phase displaces a second isolated phase
that displaces a third continuous phase, and multiple displacement chains (van Dijke
& Sorbie, 2003; Scanziani et al., 2020; Jettestuen et al., 2020), where the continuous
phases displace a chain of several isolated fluid ganglia, make three-phase flow dif-
ferent to two-phase flow. Further, three-phase experiments are time-consuming and
challenging, while three-phase pore-scale simulations are computationally demanding
(Helland et al., 2019; Jettestuen et al., 2020). They both rely on having established
the relevant two-phase saturation history prior to the investigation. Finally, a two-
phase displacement occurs with saturation change in one of two directions, while a
three-phase saturation path can take infinitely many directions. Thus, measuring a
sufficient amount of Pαβ(Sβ)-curves for main and nested hysteresis loops in three-phase
systems at relevant conditions is hardly achievable.

The standard approach to deal with hysteresis of Pαβ(Sβ)-curves is to use corre-
lations, equipped with a hysteresis loop logic model and a trapping model relating end-
point saturations (e.g., Land, 1968; Lenhard, 1992; Skjæveland et al., 2000; Helland &
Skjæveland, 2004; Spiteri et al., 2008; Lomeland & Ebeltoft, 2013, and others). While
this is practical, it requires several fitting parameters that lacks a firm physical basis.
Other approaches seek to eliminate hysteresis by adding new state variables based
on Minkowski functionals (like interfacial area) in the incomplete Pαβ(Sβ)-function
(Hassanizadeh & Gray, 1993; McClure et al., 2018), whereas emerging theories circum-
vent Pαβ(Sβ)-curves and hysteresis completely (Hansen et al., 2018). Cueto-Felgueroso
and Juanes (2016) developed a two-phase discrete-domain model for hysteresis that
describes Haines jumps as irreversible transitions among metastable states in a rugged
energy landscape. The method envisions the porous medium as a discrete set of com-
partments, each with their own given energy function and local saturation. This fa-
cilitates simulations of pressure-controlled displacement, which calculates saturations
for a prescribed series of capillary pressures, and saturation-controlled displacement,
which mimics displacement at infinitesimally low rate and calculates capillary pressures
for a prescribed series of global saturations. The latter displacement mode enforces
a global saturation constraint that leads to fluid redistribution among compartments
(cooperative behavior) and pressure fluctuations, consistent with saturation-controlled
pore-scale simulations (Helland et al., 2017). Discrete-domain methods can be viewed
as upscaling procedures from pore to core scales, as compartment energies are exten-
sive properties (Cueto-Felgueroso & Juanes, 2016). These methods have also been
used in other scientific fields (Puglisi & Truskinovsky, 2005; Dreyer et al., 2010, 2011;
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Fraternali et al., 2011). In this work, we present a discrete-domain approach to charac-
terize three-phase displacements with hysteresis. We show that metastability and the
inclusion of various saturation constraints gives rise to irreversible three-phase displace-
ments with cooperative behavior and fluid redistribution, accompanied by fluctuations
of capillary pressures and saturation trajectories.

2 Method

We consider a porous medium saturated with three continuous fluids, gas (g), oil
(o) and water (w), that are connected to their respective fluid reservoirs. Assuming the
multiphase system is isothermal with incompressible fluids of constant composition, a
thermodynamic potential for a Gibbs-like free energy is

G =
∑

α=g,o,w

(−pαVα + Fα) , (1)

where pα is pressure and Vα is volume of phase α. Here, we introduce the phase-specific
Helmholtz free energy, Fα, which models the energy contribution from phase α to the
fluid/fluid and fluid/solid interfacial free energies. This splitting strategy borrows ideas
from pore-scale modelling of three-phase displacement where interfacial properties, like
interfacial tension and contact angle, are formulated as the sum of individual phase
contributions (Helland & Jettestuen, 2016; Helland et al., 2019; Jettestuen et al.,
2020). We also assume this Helmholtz energy is a function of its own phase volume
only, i.e., Fα = Fα(Vα), in accordance with previous work (Cueto-Felgueroso & Juanes,
2016; Morrow, 1970).

Following Cueto-Felgueroso and Juanes (2016), let us now divide the porous
medium into N compartments with equal pore volumes Vp. The global (or, average)

phase saturation is Sα = 1
N

∑N
i=1 sα,i where sα,i is local saturation of phase α in

compartment i. We introduce phase-specific compartment energy densities fα,i as

functions of their own saturations, fα,i = fα,i(sα,i), so that Fα = Vp
∑N
i=1 fα,i(sα,i).

Similarly, for Gibbs energy we obtain Gα = Vp
∑N
i=1 gα,i. With this compartment

description, equation (1) becomes

G = Vp

N∑
i=1

( ∑
α=g,o,w

gα,i

)
= Vp

N∑
i=1

( ∑
α=g,o,w

(−pαsα,i + fα,i(sα,i))

)
. (2)

Minimization of G with respect to sα,i yields an equation per saturation per compart-
ment. The resulting set of 3N equations is uncoupled and neglects that the sum of
phase saturations must equal one in all compartments. To handle this problem, still
by treating the compartment saturations sα,i as independent variables, we introduce
N constraints that couple the three saturations together in each compartment:

1

2

( ∑
α=g,o,w

sα,i − 1

)2

= 0, i = 1, . . . , N. (3)

In the numerical model, we set the left-hand side of equations (3) equal to a small
positive number ε. The method of Lagrange multipliers is a suitable approach to solve
such constrained minimization problems. Thus, we introduce the function

L(s,λλλ) = Vp

N∑
i=1

 ∑
α=g,o,w

(−pαsα,i + fα,i(sα,i))−
λi
2

 ∑
β=g,o,w

sβ,i − 1

2
 , (4)

where s is a vector of the 3N compartment saturations and λλλ = [λ1, . . . , λN ] is a vector
of Lagrange multipliers corresponding to the N constraints (3). Minimization of L
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with respect to each sα,i amounts to solving ∂L
∂sα,i

= 0. Parameterizing the solutions
in iteration-time t yields 3N evolution equations for the compartment saturations:

∂sα,i
∂t

= pα + λi

 ∑
β=g,o,w

sβ,i − 1

− ∂fα,i
∂sα,i

, (5)

where α = g, o, w and i = 1, . . . , N . We solve equations (5) for given pressures pα
and energies fα,i to find equilibrium states of the compartment saturations, using the
explicit Euler method for the iteration-time steps. We assume equations (5) have
been made dimensionless by scaling with a characteristic pressure. As we calculate
equilibrium states, this scaling will only impact the rate of convergence while the
solutions remain the same.

The compartment saturations reach equilibrium states when
∂sα,i
∂t = 0. Equa-

tions (5) imply that this occurs when the capillary pressures for all fluid pairs αβ =
go, ow, gw satisfy

Pαβ = pα − pβ = −
(
∂fβ,i
∂sβ,i

− ∂fα,i
∂sα,i

)
, i = 1, . . . , N. (6)

When the third phase is absent or immobile, dsα,i = −dsβ,i, and we can write equa-

tions (6) as Pαβ = −∂(fα,i+fβ,i)∂sβ,i
. This is the equilibrium states for a two-phase system,

consistent with the single saturation approach of Cueto-Felgueroso and Juanes (2016).

The energy functions fα,i(sα,i) contain concave and convex segments (peaks and
valleys) to describe metastability in a rugged energy landscape. Stable and metastable
states satisfy equations (6). In addition, the free interfacial energy must belong to
convex segments with local minima of Gibbs free energy. In the two-phase case these

valleys satisfy ∂2fi
∂s2β,i

≥ 0 where fi = fα,i + fβ,i. A peak in fi represents an energy

barrier that must be overcome in a transition from the current to the next, adjacent,
metastable state. In the three-phase system, where fi = fg,i+fo,i+fw,i, the metastable
states satisfy equations (6) while the second derivative of the interfacial free energy
with respect to the relevant compartment saturation is positive for all phase pairs go,
ow, and gw, respectively:(

∂2fi
∂s2o,i

)
sw,i

≥ 0,

(
∂2fi
∂s2w,i

)
sg,i

≥ 0, and

(
∂2fi
∂s2w,i

)
so,i

≥ 0. (7)

Here, the subscripted variable outside the paranthesis is held constant in the derivation.
Equation (7) is the equilibrium locus, that is, the states that correspond to equilibrium
compartment saturations for any phase pressure combination.

3 Three-phase displacement protocols

Equations (5) offer the opportunity to investigate various three-phase displace-
ment modes, like invasion under preservation of a constant global saturation, or in-
vasion controlled by prescribed global saturations. Introducing a global saturation
constraint for one or more phases α,

Sα =
1

N

N∑
i=1

sα,i = const, (8)

will couple the saturation equations for the different compartments together. Despite
global saturations are fixed under such constraints, significant redistribution of lo-
cal saturations among compartments can occur, possibly accompanied by three-phase
capillary pressure fluctuations. Here we apply equations (5) to a range of different
three-phase displacement protocols.
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3.1 Gas-pressure controlled displacement (PG)

This case prescribes all phase pressures pg, po and pw. Gas invasion (retraction)
occurs by increasing (decreasing) pg in small specified steps ∆p after each converged
state of equations (5). The N compartment constraints (3) must hold for all iteration
times. Thus,

d

dt

1

2

( ∑
α=g,o,w

sα,i − 1

)2
 =

( ∑
α=g,o,w

sα,i − 1

) ∑
α=g,o,w

∂sα,i
∂t

= 0. i = 1, . . . , N. (9)

Combining equations (5) and (9) yields expressions for the Lagrange multipliers that
we update in every iteration step:

λi = −

∑
α=g,o,w

(
pα −

∂fα,i
∂sα,i

)

3

( ∑
α=g,o,w

sα,i − 1

) , i = 1, . . . , N. (10)

3.2 Gas-pressure controlled displacement with constant global oil sat-
uration (PGSO)

This case prescribes phase pressures pg and pw. As for the previous case, gas in-
vasion (retraction) occurs by increasing (decreasing) pg stepwise after each equilibrium
state. We preserve global oil saturation So by enforcing constraint (8) on the oil phase,
while treating the oil pressure po as the associated Lagrange multiplier. Together with
equations (3) we now have N + 1 constraints that must hold for all iteration times.
Equation (8) implies that

∂So
∂t

=
∂

∂t

(
1

N

N∑
i=1

so,i

)
=

1

N

N∑
i=1

∂so,i
∂t

= 0. (11)

By inserting the evolution equations (5) into equations (11) and (9), we obtain

po +
1

N

N∑
i=1

λi

( ∑
α=g,o,w

sα,i − 1

)
=

1

N

N∑
i=1

∂fo,i
∂so,i

(12)

and

pg + po + pw + 3λi

( ∑
α=g,o,w

sα,i − 1

)
=

∑
α=g,o,w

∂fα,i
∂sα,i

, i = 1, . . . , N, (13)

respectively. Equations (12) and (13) constitute N + 1 equations that we solve for the
Lagrange multipliers po and λ1, . . . , λN in every iteration step.

3.3 Gas-saturation controlled displacement (SG)

This case prescribes phase pressures po and pw. Gas invasion (retraction) occurs
by increasing (decreasing) global gas saturation Sg in small specified steps ∆s after
each converged state of equations (5), while we calculate pg. For each target gas
saturation, we initialize the compartment gas saturations as sg,i ± ∆s and adjust
the compartment oil and water saturations correspondingly, so,i ∓ ∆s/2 and sw,i ∓
∆s/2. Obviously, the compartment saturations at equilibrium will differ from this
initial configuration. Equation (8) enforces the target global gas saturation, so that
pg becomes the associated Lagrange multiplier. Thus,

pg +
1

N

N∑
i=1

λi

( ∑
α=g,o,w

sα,i − 1

)
=

1

N

N∑
i=1

∂fg,i
∂sg,i

. (14)

Equations (13) and (14) constitute N + 1 equations that provide solutions for pg and
λ1, . . . , λN in every iteration step.
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3.4 Gas-saturation controlled displacement with constant global oil sat-
uration (SGSO)

This case prescribes water pressure pw and calculates pg and po. Gas invasion
(retraction) occurs by increasing (decreasing) the global gas saturation Sg in small
specified steps ∆s after each equilibrium state, while global oil saturation So is fixed.
For each target gas saturation, we initialize compartment saturations as sg,i±∆s and
sw,i ∓ ∆s. We enforce equation (8) on both the gas and oil phases, so that both pg
and po are Lagrange multipliers. Together with equations (3) we now have N + 2
constraints. Equations (12), (13) and (14) constitute the N + 2 equations from which
we calculate the Lagrange multipliers pg, po, λ1, . . . , λN in every iteration step.

4 Results

We apply the method to elucidate three-phase displacements and hysteresis be-
havior for the previously described displacement protocols, using oscillatory energy
density functions to capture energy barriers and metastability. To this end, we make
advantage of the energy functions employed in the single-saturation, two-phase ap-
proach (Cueto-Felgueroso & Juanes, 2016):

fi(si) = si log si + (1− si) log (1− si)− ωsi − ci cos (Kπsi) , i = 1, . . . , N, (15)

where si is the wetting-phase compartment saturation, ω represents the strength of
the wetting state, K reflects the number of minima in each compartment, and ci, i =
1, . . . , N , describe the barriers between energy minima that are responsible for the
hysteresis. If ω varies among compartments, the system has a fractional wetting state,
whereas a constant and uniform ω (as we use in this work) describes a uniform wetting
state.

In the multiple saturation approach, we construct phase-specific energy contri-
butions fα,i(sα,i) that ensure the equilibrium solutions (6) for fluid pair αβ are con-
sistent with the solutions from the single-saturation approach for two-phase systems
using equation (15). We accomplish this with

fα,i(sα,i) = sα,i log sα,i − ωαsα,i − cα,i cos (Kαπsα,i) , α = g, o, w, i = 1, . . . , N, (16)

where the parameters for each fluid pair αβ satisfy K = Kα = Kβ , ω = ωβ − ωα,
and ci = cα,i + cβ,i (for even integers K). As we explore displacements constrained by
stepwise saturation changes ∆s, we specify a saturation interval [smin, smax] that we
require all compartment saturations to be located within. If a compartment saturation
reaches one of these limits, that compartment is static and excluded from the further
saturation evolution based on equations (5) and Lagrange multipliers. Thus, the num-
ber of possible metastable states decreases toward the end of the displacement process,
possibly accompanied by more severe pressure fluctuations. Here, we use smin = 0.001
and smax = 0.999. This approach also offers a means to include residual saturations
that may vary with compartment. The simulations presented here achieve equilibrium
states when all compartment saturations change by less than 10−8 during an iteration
step.

First, we demonstrate the discrete-domain method on a small number of compart-
ments for a water-wet state where oil is intermediate-wet phase and gas is non-wetting
phase (Hui & Blunt, 2000; van Dijke & Sorbie, 2002). This implies ωw > ωo > ωg and
cw,i > cg,i > co,i > 0, i = 1, . . . , N . We set N = 3, K = 4, ωw = 11, ωo = 6, ωg = 1,
cw = [0.1, 0.2, 0.3], co = [0.001, 0.03, 0.05], and cg = (cw + co) /2. We simulate a two-
phase oil/water hysteresis loop consisting of primary drainage and imbibition by apply-
ing evolution equations (5) on the two phases, using ∆p = 0.1 for pressure-controlled
displacement and ∆s = 0.005 for saturation-controlled displacement. Figure 1(a)
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shows that pressure-controlled Haines jumps create irreversible saturation jumps at
constant pressure. Such an event is a jump in one of the compartment saturations
across an energy barrier separating two metastable states of Gibbs free energy, while
the other compartment saturations stay in their energy valleys. Overall, this generates
a stepwise staircase shape on the Pow(Sw)-curves, where steep and smooth curve seg-
ments represent reversible displacements within the same energy valleys. Haines jumps
in saturation-controlled mode occur as abrupt, irreversible pressure drops (drainage)
or increases (imbibition) at constant global saturation. While these events also create a
jump across an energy barrier in one compartment, the other compartment saturations
move in the opposite direction to maintain the global target saturation. Hence, fluid
redistribution among compartments occurs. Reversible displacements follow the same
branches of the Pow(Sw)-curves as the pressure-controlled displacements. Overall, the
Pow(Sw)-curves obtain nonmonotonic sawtooth shapes which we also observe in the
evolution of compartment saturations.

We proceed with corresponding three-phase displacements by introducing gas at
Sw = 0.4 after the pressure-controlled imbibition. Figure 1(b) presents results for a
gas invasion-retraction hysteresis loop using both PG and SG displacement protocols.
The Pgo(1− Sg)- and Pgw(1− Sg)-curves have identical shapes and differ only by the
constant Pow. They display similar behavior as the two-phase case. Energy barriers
connecting the equilibrium locus of Gibbs free energy represent instabilities. In three-
phase systems we cannot construct these barriers because compartment-saturation
paths are not known a priori. This differs from two-phase systems where saturation
changes in one of two directions. A Haines jump in SG mode occurs when the satura-
tion state in one compartment jumps across a barrier to another state in the neighbor
energy valley, while compensating saturation changes occur in the other compartments
to maintain the global, target gas saturation. For the transition of states during gas in-
vasion marked by magenta and cyan circles in Figure 1(b), sg,1 increases at the expense
of lower so,1 and sw,1 in compartment 1, while in the other compartments sg,2 and sg,3
decrease at the expense of higher so,2, sw,2, so,3 and sw,3. The global saturation paths
show that the overall result for this change of states is slightly higher Sg and Sw and
lower So. This emerges as a characteristic feature for Haines jumps in SG mode: Gas
invasion (retraction) occurs with accompanying water invasions displacing oil, or oil
invasions displacing water, leading to abrupt directional changes of the saturation path
(that is, oil and water saturation jumps). Reversible displacements within the same en-
ergy valleys aim at driving the saturation path back on track so that equilibrium states
in PG and SG modes coincide between Haines jumps. The main observation is that
saturation paths in SG mode display a characteristic stepwise staircase shape, while in
PG mode they consist of gas-saturation jumps intertwined with more steady satura-
tion changes. Differences in compartment-saturation evolution confirm the behavior:
SG mode shows significant fluid redistribution among compartments and saturation
fluctuations, while PG mode shows stepwise, monotonically increasing or decreasing
compartment saturations.

The parameters ωα and cα,i in equation (16) make it possible to explore hysteretic
three-phase displacements at other realistic wetting states. A weakly oil-wet system
(Hui & Blunt, 2000; van Dijke & Sorbie, 2002), where water is intermediate-wetting
phase and gas non-wetting phase, requires ωo > ωw > ωg, cg,i > 0 > co,i > cw,i, and
cg,i > |cw,i|, i, . . . , N . In a strongly oil-wet system (Hui & Blunt, 2000; van Dijke &
Sorbie, 2002), where gas is intermediate-wetting phase and water non-wetting phase,
we must have ωo > ωg > ωw, cg,i > 0 > co,i > cw,i, and |co,i| < cg,i < |cw,i|, i, . . . , N .
To explore three-phase hysteresis for these oil-wet states, we use a slightly larger system
with N = 6 and K = 8. Further, ωo = 11, cw,i is evenly spaced between cw,1 = −0.15
and cw,6 = −0.01, and co,i = −0.001, i = 1, . . . , 6. Then, for the weakly oil-wet state,
ωw = 6, ωg = 1, and cg,i = −1.2cw,i, and for the strongly oil-wet state, ωw = 1,
ωg = 6, and cg,i = −0.5cw,i, i = 1, . . . , 6. We add a water-wet case for comparison,
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with parameters ωw = 11, ωo = 6, ωg = 1, cw,i evenly spaced between cw,1 = 0.01 and
cw,6 = 0.15, co,i = 0.001, and cg,i = (cw,i + co,i) /2, i = 1, . . . , 6. Figure 2 presents
two- and three-phase results from simulations of these wetting states, using ∆p = 0.05
in PG mode and ∆s = 0.0025 in SG mode. These steps are sufficiently small to cap-
ture all metastable states. The three-phase hysteresis loops begin at Sw = 0.5 on the
pressure-controlled two-phase imbibition curve. The capillary pressure curves capture
the expected differences in pressure levels for the different wetting states, and they all
show the same characteristic Haines jump behavior. In SG mode, the three-phase cap-
illary pressure curves and saturation paths fluctuate due to Haines jumps. For intervals
with reversible displacements both the capillary pressure curves and saturation paths
coincide in PG and SG mode. The compartment-saturation profiles show fluctuations
in SG mode, particularly for the water-wet state, which indicates fluid redistribution
among compartments, while for PG mode, these curves are stepwise and monotonic
curves. Further, the compartment-saturation profiles exhibit hysteresis and show that
fluid distributions vary with wetting state.

Along with the hysteresis loops, we also simulate gas invasion in PG mode from
Sw = 0.3 and Sw = 0.7 to investigate saturation-dependencies of the three-phase cap-
illary pressures in the presence of hysteresis. Simple capillary-tube bundle models,
where hysteresis is absent, predict that two of the capillary pressures are functions of
one saturation, as follows (Hui & Blunt, 2000; van Dijke & Sorbie, 2002): Pgo(Sg) and
Pow(Sw) (water-wet state), Pow(So) and Pgw(Sg) (weakly oil-wet state), and Pgo(So)
and Pgw(Sw) (strongly oil-wet state). In each case, the remaining capillary pressure
is a function of two saturations. However, our simulated results deviate from this
idealized description, which we attribute to the inherent hysteresis of the method and
chosen energy functions. Instead we find that all three capillary pressures depend on
two saturations. For example, the simulated saturation paths at constant Pow in Fig-
ure 2 shows that Pow depends on two saturations although significant oil displacement
(especially in the water-wet system) indicates strong Sw-dependency. Further, the
Pgo(1 − Sg)-curves (water-wet state) and Pgw(Sw)-curves (strongly oil-wet state) for
the three PG-based gas invasions do not coincide, implying that also these capillary
pressures are functions of two saturations.

Finally, we explore three-phase PGSO and SGSO displacements in a large water-
wet system with constant global oil saturation So = 0.3, established after a two-phase
pressure-controlled imbibition. We use N = 24, K = 14, ωw = 26, ωo = 14, ωg = 2,
cw,i evenly spaced between cw,1 = 0.05 and cw,24 = 0.15, co,i evenly spaced between
co,1 = 0.001 and co,24 = 0.05, and cg,i = (co,i + cw,i) /2, i = 1, . . . , 24. To capture
all metastable states of this large system, we use ∆s = 0.001 (SGSO) and ∆p = 0.05
(PGSO). Figure 3(a) shows Pow(Sw)-curves for two-phase hysteresis loops, as well as
results from the subsequent PGSO- and SGSO-simulations of main and nested three-
phase hysteresis loops for gas invasions and gas retractions. For these displacement
protocols all three capillary pressures vary during the displacement. Even in PGSO
mode, Pgo and Pow display nonmonotonic variations, implying significant redistribu-
tion of the globally preserved oil phase. A sharp increase (or, drop) of Pgo leads to
a corresponding drop (or, increase) of Pow for prescribed Pgw. For gas invasion in
PGSO mode Pow increases almost monotonically, while Pgo vary nonmonotonically
around the same pressure level. Three-phase pore-scale simulations of the same pro-
cess explain this observation (Helland et al., 2019): A double displacement in which
gas displaces a disconnected oil phase through wide and narrow pore channels, that in
turn pushes oil/water interfaces further into narrower pore spaces, leads to nonmono-
tonic Pgo and increasing Pow. The three-phase capillary pressure curves from SGSO
simulations display a more irregular sawtooth structure than the two-phase curves due
to significant oil redistribution among compartments. The so,i(1 − Sg)-curves show
that this redistribution generally is different in PGSO and SGSO simulations so that
the corresponding three-phase capillary pressure curves also deviate from each other.
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For this system we also simulate main and nested hysteresis loops with PG and
SG mode, starting at So = 0.7 from the two-phase pressure-controlled imbibition. In
this case, the capillary pressure curves for PG and SG modes are more aligned with
each other and they also display a more regular sawtooth structure, see Figure 3(b).
Because the saturation paths for gas invasion and gas retraction vary, nested hystere-
sis loops are not fully contained within the main hysteresis loop. This is in contrast
to the PGSO and SGSO cases where the saturation path is enforced. The SG and
SGSO simulations in Figure 3 display severe pressure fluctuations near the end of the
displacement processes. This is an effect of excluding compartments where saturations
have reached their limits smin or smax, which significantly reduces the number of pos-
sible metastable states in subsequent calculations. Still, SG simulations of this large
system exhibit less significant capillary pressure fluctuations in most of the saturation
interval, while the stepwise, staircase features of the saturation paths in SG mode are
less prominent, compared with smaller systems (Figures 1 and 2). Thus, increasing
the system size (that is, N and K) yields smaller fluctuations because the density
and number of metastable states increases, while hysteresis persists. This shows the
potential of the discrete-domain approach as a method for upscaling three-phase capil-
lary pressure curves with hysteresis from pore to larger scales where such fluctuations
vanish.

5 Conclusions

This work presents a discrete-domain approach to three-phase displacements with
rate-independent hysteresis in porous media. Constrained energy minimization leads
to evolution equations for compartment saturations that collectively describe a wide
range of three-phase displacements, including reversible and irreversible pressure- and
saturation-controlled displacements with or without preservation of one of the de-
fending phases. Saturation-controlled invasion, which mimics flow controlled by low
rate, shows that three-phase irreversible displacements occur with significant fluid re-
distribution among compartments. This leads to abrupt capillary pressure jumps as
previously seen in two-phase systems, and in addition, abrupt saturation changes and
fluctuating saturation paths, which we find is a new characteristic feature for three-
phase displacements. Both pressure and saturation jumps decrease with increasing
system size. Three-phase displacements with a preserved saturation exhibit the most
substantial fluid redistributions, and in these cases both pressure- and saturation-
controlled displacement generate nonmonotonic capillary pressure curves, consistent
with quasi-static pore-scale simulations (Helland et al., 2019). The presented discrete-
domain approach is a fast and tractable method to investigate three-phase hysteresis
in porous media. A current drawback is that the compartments are not spatially
correlated and hence they are all accessible for invasion. In future work we will use
spatially dependent energy functions from pore-scale experiments and simulations to
evaluate effects of wetting state on three-phase irreversible displacement. As compart-
ment energies are extensive quantities, establishing a direct link between pore scale
and the compartmental description will provide a reliable upscaling method. Finally,
compartment energies tailored to match pore-scale data will reveal whether the energy
functions themselves exhibit hysteresis and if they require other state variables (like
interfacial area) to describe uniquely drainage and imbibition.
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Figure 1. Pressure and Volume Error assuming analytically calculated interface configuration.

(a): Oil volume. (b): Oil Pressure.
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Figure 1. Demonstration of the discrete-domain approach with N = 3 and K = 4. (a)

Left: Capillary pressure curves for primary drainage and imbibition in a two-phase oil-water sys-

tem. Middle: Gibbs free energy for compartment 1 (blue), 2 (red) and 3 (green), as functions of

compartment water saturations for the three Pow shown by large circles on the Pow(Sw)-curves.

The convex segments are the equilibrium locus (bold curves), the concave segments are energy

barriers (dash-dotted curves), and the circles show the three metastable compartment states for

the corresponding three Pow shown on the Pow(Sw)-curves. Right: Evolution of local saturations

for compartment 1 (blue), 2 (red) and 3 (green). (b) Top, left: Three-phase capillary pressure

curves for a gas invasion-retraction hysteresis loop, using PG and SG displacement modes. Gas

invasion occurs at Sw = 0.4 after oil/water imbibition. Top, middle: Equilibrium locus of Gibbs

free energy, obtained from equation (7), for compartment 1 (blue), 2 (red) and 3 (green), as func-

tions of compartment liquid saturations for the three capillary pressures shown by large circles

on the Pαβ(1 − Sg)-curves. Top, right: Three-phase saturation paths. Bottom row: Evolution

of local saturations for compartment 1 (blue), 2 (red) and 3 (green) for the gas invasions with

displacement modes SG (solid curves) and PG (dashed curves).

–14–



manuscript submitted to Water Resources Research

manuscript submitted to Geophysical Research Letters

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

Pressure-controlled

Saturation-controlled

0 0.2 0.4 0.6 0.8 1

-12

-10

-8

-6

-4

-2

0

2

Pressure-controlled

Saturation-controlled

0 0.2 0.4 0.6 0.8 1
-18

-16

-14

-12

-10

-8

-6

-4
Pressure-controlled
Saturation-controlled

  0.2

  0.4

  0.6

  0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

SG

PG

  0.2

  0.4

  0.6

  0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

SG

PG

  0.2

  0.4

  0.6

  0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

SG
PG

0 0.2 0.4 0.6 0.8 1

0

5

10

15

0 0.2 0.4 0.6 0.8 1

-5

0

5

10

15

20

0 0.2 0.4 0.6 0.8
-15

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

0.3

0.6

0.9

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

0.3

0.6

0.9

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Water-wet state: Weakly oil-wet state: Strongly oil-wet state:

Figure 3. Pressure... .

–4–Figure 2. Application of the discrete-domain approach to water-wet (left column), weakly oil-

wet (middle column), and strongly oil-wet (right column) states, using N = 6 and K = 8. First

row: Two-phase oil/water capillary pressure curves for primary drainage and imbibition from

pressure- and saturation-controlled simulations, representing the displacement history before gas

invasion. Second row: Saturation paths for hysteresis loops of gas invasion (from Sw = 0.5) and

gas retraction from PG- and SG-simulations, as well as saturation paths from PG-simulations

of gas invasions at Sw = 0.3 (dashed curves) and Sw = 0.7 (dash-dotted curves). Third row:

Capillary pressure curves for the hysteresis loops and the gas invasions from Sw = 0.3 (dashed

curves, Pgo in green and Pgw in black) and Sw = 0.7 (dash-dotted curves, Pgo in green and Pgw

in black). Fourth, fifth and sixth row: Evolution of local saturations in a compartment subset

{1, 2, 3} during the hysteresis loops with SG (solid curves) and PG (dashed curves) displacement

protocols.
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Figure 3. Three-phase hysteresis behavior during alternate gas invasions and gas withdrawals

for the case with N = 24 and K = 14. (a) Top, left: Two-phase oil/water capillary pres-

sure curves for primary drainage and imbibition representing the displacement history before

gas invasion. Top, right: Three-phase saturation paths from simulations with constant global

oil saturation (PGSO and SGSO). Second row: Three-phase capillary pressure curves for the

main hysteresis loop and a nested hysteresis loop from PGSO and SGSO simulations. Third

row: Evolution of local saturations in a subset of compartments {1, 4, 10, 14} during the first gas

invasion for displacement protocols SGSO (solid curves) and PGSO (dashed curves). (b) Sat-

uration paths (left) and capillary pressure curves (right) from PG- and SG-simulations of two

gas invasion/withdrawal cycles, demonstrating nested hysteresis-loop behavior for three-phase

displacements. Initial global water saturations for the first gas invasions are Sw = 0.7 (PGSO and

SGSO) and Sw = 0.3 (PG and SG).
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