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Abstract

Characterising the location of the outer boundary of the outer radiation belt is a key aspect of improving radiation belt models

and helps to constrain our understanding of the mechanisms by which the source and seed electron populations are transported

into the radiation belts. In this paper, we hypothesise that there are statistical differences in the electron distribution function

across the radiation belt outer boundary, and thus analyse electron flux data from the THEMIS (Time History of Events and

Macroscale Interactions during Substorms) satellites to identify this location. We validate our hypothesis by using modelled

electron L* values to approximately characterise the differences between electron distribution functions inside and outside of the

radiation belts. Initially, we perform a simple statistical analysis by studying the radial evolution of the electron distribution

functions. This approach does not yield a clear discontinuity, thus highlighting the need for more complex statistical treatment

of the data. Subsequently, we employ machine learning (with no dependence on L*) to test a range of candidate outer boundary

locations. By analysing the performance of the models at each candidate location, we identify a statistical boundary at [?]8

Earth radii, with results suggesting some variability. This statistical boundary is typically further out than those used in current

radiation belt models.
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Abstract15

Characterising the location of the outer boundary of the outer radiation belt is a16

key aspect of improving radiation belt models and helps to constrain our understand-17

ing of the mechanisms by which the source and seed electron populations are transported18

into the radiation belts. In this paper, we hypothesise that there are statistical differ-19

ences in the electron distribution function across the radiation belt outer boundary, and20

thus analyse electron flux data from the THEMIS (Time History of Events and Macroscale21

Interactions during Substorms) satellites to identify this location. We validate our hy-22

pothesis by using modelled electron L* values to approximately characterise the differ-23

ences between electron distribution functions inside and outside of the radiation belts.24

Initially, we perform a simple statistical analysis by studying the radial evolution of the25

electron distribution functions. This approach does not yield a clear discontinuity, thus26

highlighting the need for more complex statistical treatment of the data. Subsequently,27

we employ machine learning (with no dependence on radial position or L*) to test a range28

of candidate outer boundary locations. By analysing the performance of the models at29

each candidate location, we identify a statistical boundary at ≈ 8 RE, with results sug-30

gesting some variability. This statistical boundary is typically further out than those used31

in current radiation belt models.32

Plain Language Summary33

Earth’s magnetic field traps highly-energetic particles in a doughnut shaped region,34

referred to as ‘the radiation belts’. Our work focuses on the outer belt, comprised of elec-35

trons. Many spacecraft orbit within this region, exposing them to potential damage. To36

mitigate this, the radiation belts must be understood and modelled. The outer bound-37

ary is crucial to modelling, driving changes in radiation belt activity. The boundary is38

also important because its location helps us to understand which processes form the ra-39

diation belts.40

In this paper, we analyse electron data measured by satellites to identify the lo-41

cation of the radiation belt’s outer boundary by using simple statistical methods and ma-42

chine learning. Our results show that simple statistical methods cannot be used to de-43

duce an outer boundary. Using machine learning, we test many candidate boundary lo-44

cations and by quantifying the model performances at each of these locations, we are able45
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to identify a statistical boundary location. This boundary is located at approximately46

8 Earth radii away from the planet, which is typically further out than the boundaries47

currently used by radiation belt models, although our analysis suggests the boundary48

location may be variable.49

1 Introduction50

Earth’s radiation belts typically manifest as two toroidal regions of magnetically51

confined, energetic plasma. The outer radiation belt (ORB) comprises a highly dynamic52

electron population, where fluxes can change by orders of magnitudes on minute timescales53

(Blake et al., 1992). The relativistic electrons commonly observed in the ORB pose a54

threat to spacecraft via surface charging and electrostatic discharges between internal55

components (Frederickson et al., 1991; Baker, 2001; Eastwood et al., 2017). As the well-56

used geostationary and medium earth orbits overlap with the ORB, there is significant57

interest in being able to accurately model and forecast its electron properties.58

There exist a number of radiation belt models, including: Salammbô (Beutier &59

Boscher, 1995; Boscher et al., 2000; Bourdarie et al., 2005); VERB (Versatile Electron60

Radiation Belt) (Subbotin & Shprits, 2009); STEERB (Storm-Time Evolution of Elec-61

tron Radiation Belt) (Su et al., 2010b,a, 2011); DREAM (Dynamic Radiation Environ-62

ment Assimilation Model) (Reeves et al., 2012), and BAS-RBM (British Antarctic Sur-63

vey’s Radiation Belt Model) (Glauert et al., 2014). One of the critically important as-64

pects of defining the boundary conditions for these models is the outer boundary of the65

ORB (OBORB), since this boundary acts as a time dependent source for the simulations.66

There are two aspects of specifying this boundary condition. Firstly, the location67

must be specified either in physical or adiabatic invariant coordinates, and secondly the68

source distribution must be specified for the chosen boundary location. Typically, a bound-69

ary location is chosen around geosynchronous orbit or an equivalent position in adiabatic70

invariant coordinates, and the source distribution is taken from either a model output71

(e.g., Vette, 1991) or observational data. The model boundary locations used do not nec-72

essarily correspond to the physical outer boundary, but instead are chosen to maximise73

the amount of data available to construct the source distribution (more recently this has74

been data from geosynchronous orbit or the apogee of the Van Allen Probes mission).75

Importantly, there may be physical processes outside of the arbitrary, data-maximising76
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boundary location which cannot be included through these modelling approaches. Un-77

til radiation belt models capture the entire physics of the radiation belts, they will have78

difficulty in predicting future behaviour, since they will be limited to using reanalysis79

of past behaviour rather than being able to fully model the dynamics into the future.80

Determining the extent of the outer radiation belt relative to the location of the81

tail plasma sheet may help to identify mechanisms which may provide the crucial trapped82

seed population (Jaynes et al., 2015). Since Earth’s plasma sheet is known to be an im-83

portant source of electrons that ultimately form the radiation belt, though the precise84

mechanism of transport is not well understood (e.g., Forsyth et al., 2014, 2016; Sergeev85

et al., 2015).86

Given the importance of the OBORB, and the lack of empirical investigation into87

its location, we here attempt to identify a statistical boundary location. This investiga-88

tion is built upon the following hypotheses about the ORB and its electron content:89

1. The distribution function of the trapped radiation belt electron population dif-90

fers from the distribution function of the untrapped electrons.91

2. There exists statistically - or explicitly - a radial limit at which the distribution92

functions of trapped and untrapped electrons will diverge.93

Here, trapped electrons refer to radiation belt electrons which exhibit closed drifting and94

bouncing trajectories, as opposed to the untrapped electrons, whose drift paths lead to95

them being lost to different magnetospheric regions. A further point of note is that dif-96

ferent distribution functions for the untrapped electrons have been observed between dawn97

and dusk, due to electrons injected in the midnight sector being lost to the magnetopause98

without reaching the dusk sector (Li et al., 2010; Sorathia et al., 2017). Thus, compar-99

ing the differences in the distribution functions between dawn and dusk should allow us100

to identify the radial extent of the bound electrons more easily.101

In Section 2 the data and data processing will be discussed. In Section 3.1 the cur-102

rent definition of what constitutes the radiation belt (i.e., where a trajectory has a de-103

fined L*) is used to set a benchmark for the type of differences between the ORB and104

untrapped distribution functions. In Section 3.2 the statistical radial evolution of the dis-105

tribution function is presented. In Section 3.3, machine learning (ML) is employed as106

a hypothesis testing tool and a statistical boundary location is found for both the dawn107
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and dusk MLT sectors. Finally, we will summarise and make concluding remarks in Sec-108

tions 4 and 5.109

2 Data110

Given that this investigation requires data over a large range of radial distances,111

we use data from the Time History of Events and Macroscale Interactions during Sub-112

storms (THEMIS) spacecraft (publicly available through NASA’s CDAWeb archive). The113

distribution functions are derived from electron flux data from the electrostatic analyser114

(ESA) to give us the energy range 10 eV to 30 keV and the solid state telescope (SST)115

to give us the energy range 30 keV to 719 keV (Angelopoulos, 2008; McFadden et al.,116

2008). Data is taken from THEMIS probes A, D and E between 2007/09/27 and 2019/09/29,117

whilst data from probes B and C is taken up till 2010, at which point they were moved118

to a lunar orbit (Russell & Angelopoulos, 2014). Note that for the L* analysis in Sec-119

tion 3.1, data is only used up until 2017 due to the availability of OMNI data in the SpacePy120

L* calculator (Morley et al., 2010). Qualitatively, this limitation is very unlikely to af-121

fect the results.122

This investigation will focus on identifying the equatorial boundary location, and123

will use data from the dawn and dusk MLT sectors. We use the spacecraft’s position in124

GSM co-ordinates to specify dawn and dusk data (6 and 18 ±3 MLT hours), and we use125

geomagnetically-aligned (GEOMAG) co-ordinates to specify data from the magnetic equa-126

torial region (Z = 0 ± 0.5 RE). This latter step is done to ensure that the region we127

are sampling corresponds to the magnetic equator in the appropriate coordinate system.128

To construct the distribution functions for the electrons we convert the omni-directional

differential electron energy flux (DEF, eV/cm2 · s · sr · eV ) into phase-space density

(PSD, s3/m6) as follows:

PSD =
DEF · 106 ·m2

e

2E2
(1)

where E is the measured energy of electrons (in Joules) and me is the rest mass of an129

electron.130

Figure 1 presents the equatorial plane (left) and radial (right) distribution of the131

THEMIS data used. From this, we note that the data is not evenly distributed, but in-132

stead has a radial bias with a maximum ≈ 11.5 RE. This distribution is expected given133

the orbital parameters of the various spacecraft. Two spacecraft (probes D and E) have134
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their apogee at ≈ 11.5 RE, meaning that they are travelling most slowly at this region135

and so the density of measurements is higher. Probes B and C have apogee at ≈ 30 and136

19 RE, and so their measurements of the inner magnetosphere are more spatially sparse.137

Probe A has an orbit with apogee at ≈ 10 RE.138

In the following analysis, it will be important to ensure that results are not biased139

by the radial sampling. To address this, we construct ensembles of randomly sub-sampled140

data. In each of dawn and dusk, we take n radial bins between 5−13.5 RE (the amount141

of available data drops after this radial limit). We find the bin with the fewest samples,142

m (where m ≈ 3000 if n = 20). We then construct a new dataset by randomly sub-143

sampling m points from every bin 100 times (with replacement). This new dataset is now144

uniformly populated in radial distance.145

Such ensemble sampling addresses positional biases of the spacecraft measurements.146

Furthermore, we maintain the underlying statistical properties of the PSD distributions147

in each of the radial bins (Efron & Tibshirani, 1986). There also exist biases in the MLT148

distribution of the data. However, these biases are much smaller than the radial biases149

(as can be seen in figure 1), and the distribution functions are expected to show less of150

a trend with MLT than radius, so we do not mitigate for them.151
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Figure 1. The left plot presents the distribution of magnetically equatorial data samples in

GSM co-ordinates, with a representation of Earth’s day- (white) and night-side (black). The

right plot presents the same data, but explicitly showing the radial distribution.
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3 Analysis152

In this section we explore various methods which might be used to identify the lo-153

cation of the OBORB. Each method involves comparing the electron distribution func-154

tion within various (quasi-) radial limits. We look at this through the lens of the hypothe-155

ses in Section 1. Initially, we use a non-empirical method based upon the evaluation of156

L* (Roederer, 1967) to investigate our hypotheses within the typical adiabatic invari-157

ant coordinate framework. Following this, we use radial binning to observe the radial158

evolution of the electron distribution function and look for discontinuous behaviour sig-159

nifying the OBORB. Lastly, we employ machine learning methods as a tool for search-160

ing for the radial position of the OBORB through a hypothesis testing approach (though161

not the same hypotheses as in Section 1)162

3.1 L* Analysis163

Our study focuses on finding the radial extent of the ORB in real space (cf. adi-164

abatic invariant space) by analysing positional differences in the electron distribution func-165

tion. This naturally leads to using L* to classify whether data is inside or outside of the166

radiation belts. L* is a modelled property of magnetically trapped particles, which is used167

to define the extent of the radiation belts (Roederer, 1967; Roederer & Zhang, 2014; Roed-168

erer & Lejosne, 2018). In a dipole field, the modelled L* corresponds to the radial dis-169

tance of the point where the drift path of an electron intersects the magnetic equator.170

Employing L* as a definition of the radiation belts themselves allows us to characterise171

the electron distribution functions within and without the ORB.172

To incorporate the information L* provides (whether or not the electrons are on173

a closed drift-path), we employ seven magnetic field models to determine L* for a given174

datapoint (calculated using the IRBEM library/technique Roederer & Zhang, 2014; Al-175

bert et al., 2018; ?). These models are: T89 (N. Tsyganenko, 1989); OPQuiet (Olson &176

Pfitzer, 1974); T96 (N. A. Tsyganenko, 1995); OSTA (Ostapenko & Maltsev, 1997); T01Quiet177

(N. A. Tsyganenko, 2002); T01Storm (N. A. Tsyganenko et al., 2003), and T05 (N. A. Tsy-178

ganenko, 2005). These models range from being analytic (OPQUIET) to quite heavily179

solar wind/geomagnetic index parameterised (T05). Given the seven models used, we180

specify that so long as at least four models returns a finite L* value, the datapoint cor-181

responds to a trapped drift trajectory for at least some of the electrons measured, and182
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is therefore within the radiation belts. This choice was made by plotting the radial dis-183

tribution of the L* occurrence with different constraints on the number of models required184

to determine if L* was defined for a given data-point. From such plots, we picked the185

most conservative number of models (four) where we observed the evolution of the dis-186

tribution not to change (i.e., the results from choosing four, five or six models were qual-187

itatively equivalent, see supporting information for more details).188

Figure 2 presents the results of the L* analysis. We have employed the sub-sampling189

method described in Section 2, with n = 20, to ensure that there is no sampling bias190

in the results. In panel a of Figure 2, the L* occurrence distribution and median L* val-191

ues (based on the 4-model agreement criteria) are plotted over the range of radial dis-192

tances. Below 8 RE, > 90% of the data is located within the radiation belts (in that it193

has a valid L* value in 4 of the 7 magnetic field models). The occurrence fraction of L*194

values show a monotonically decreasing relationship with increasing radial distance (ex-195

cept > 12 RE), supporting the idea that there are generally fewer closed drift paths at196

large distances from the Earth. We speculate that the increasing occurrence above 12 RE197

and the decreasing median L* values above 11.5 RE are spurious and represent some of198

the issues in trying to solely use modelling to define the OBORB (further issues with us-199

ing current magnetic field models are highlighted in Albert et al., 2018).200

Panels b-e in Figure 2 present comparisons between dawn/dusk and inside/outside201

of the ORB (on the basis of L* being defined or not). Comparing vertically (i.e., pan-202

els b with d, and c with e) shows the difference between dawn (top) and dusk (bottom).203

There is a clear enhancement of the ≈ 10 keV seed population electrons (Jaynes et al.,204

2015) at dawn which is not present at dusk. There is also a depletion of the ≈ 1 keV205

source population electrons (Jaynes et al., 2015) which only appears outside of the ra-206

diation belts. The medians of the THEMIS SST data (> 30 keV), follow a power-law-207

type distribution as other works have found (e.g., Whittaker et al., 2013; Zhao et al., 2019).208

Comparing between inside and outside of the radiation belts, the main differences (aside209

from the aforementioned depletion of source population electrons) are the typically more210

variable PSDs at energies . 100 keV outside the belt compared to inside. In contrast,211

the PSDs above this energy are much less variable outside the belt compared to inside.212

The distribution functions also have a shallower gradient and more variability inside of213

the radiation belt, highlighting a considerably more enhanced electron population.214
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Figure 2. Panel a presents the radial distribution of datapoints where L* is defined (i.e., the

electrons are on closed field lines) normalised per radial bin, as well as the median L* value in

each bin. The following box-plots present the per-energy-channel distribution and median trend-

line of PSD at dawn and dusk, for data with and without a defined L*, respectively. These plots

have a vertical line separating the ESA and SST instrument measurements. The box-plots rep-

resent dawn (b and c) and dusk (d and e), with the alternate line representing the median of the

other for comparison.

3.2 Näıve Analysis215

To investigate the OBORB, we calculate the median and interdecile (i.e., 10 to 90th216

percentile) range of data in nine radial bins between 5−13.5 RE. These results are pre-217

sented in Figure 3. These distributions are calculated using the random sub-sampling218

technique described in section 2, with n = 9, to ensure comparable statistics between219

each of the bins.220

We find significant radial evolution in both the dawn and dusk distribution func-221

tions. Both display flattening over the mid-range energies, suggesting either wave-particle222

interactions (Meredith et al., 2020), or the plasma sheet source (Kurita et al., 2011). The223
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Figure 3. The median and interdecile range of PSD in dawn and dusk, binned by radial

distance. The black vertical line represents the break between data from the ESA and SST in-

struments.

notable difference between dawn and dusk is the pronounced bulge in the dawn distri-224

bution at ≈ 10 keV, mirrored in the interdecile ranges of the dawn data. We observe225

that the dawn and dusk distributions diverge with increasing radial distance up to r ≈226

9.7 RE, after which they converge to similar distributions. At low radial distances, the227

dawn and dusk data may be more consistent because most of the data is inside the ra-228

diation belts, and equivalently at the higher radial distance most of the data is likely to229

be outside of the radiation belts. We observe that the dawn data exhibits the elbow at230

lower radial limits, and suggest that this may be the contribution of untrapped electrons.231

This is supported by the dusk distribution converging to the enhancement as the radial232

limit is increased beyond the expected limit of the OBORB and trapped electrons.233

The distribution function at 5.0−5.9 RE is very different in form from that at 12.6−234

13.5 RE, but the change in form occurs gradually, with no obvious discontinuity as a func-235

tion of radial distance. This may imply that either there is not a hard boundary, or that236

the boundary location is highly variable. By not finding such a marker, we infer that this237

simplistic approach isn’t best suited to locating the OBORB.238
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3.3 Machine Learning Analysis239

With the previous method unable to find a clear radial distinction between elec-240

tron populations, we now employ machine learning. We approach this much like hypoth-241

esis testing - a variety of radial limits are proposed as potential OBORBs (hypotheses)242

and empirically tested to determine which is most appropriate (the validity of an OBORB243

radial location, and how we might determine it, are discussed below). We constrain the244

data to the SST energy channels before applying machine learning, ensuring the results245

are not biased by lower energy particles, strongly affected by the E × B drift (Roed-246

erer & Zhang, 2014).247

Our empirical analysis for a single set of proposed dawn and dusk radial limits is248

as follows:249

1. Make a hypothesis by selecting a candidate radial limit for the OBORB (e.g., 7 RE250

in the dusk or dawn sector).251

2. Label each datapoint with a 0 if the measurement was made inside of the candi-252

date radial limit, else label it with a 1. These class labels form the targets that253

a machine learning model (explained later in the text) will try to predict on the254

basis of the electron distributions.255

3. Combine the dawn and dusk labelled data into a single dataset.256

4. Provide a machine learning model each of the electron distribution functions as257

features (i.e., what the model will use to form a prediction). Each input is a 1 di-258

mensional array of the values of PSD at each energy.259

5. Train the machine learning model for the given set of input features (electron dis-260

tribution functions) and targets (whether the data is inside or outside the chosen261

radial limit). The training set corresponds to 80% of the data, allowing for model262

performance to be quantified on an un-seen test set (the remaining 20% of the data).263

6. Quantify the model performance of estimating whether a datapoint is inside or264

outside the chosen radial distance using un-seen electron distribution functions from265

the testing set. Metrics quantify the differences between the model-predicted class266

labels (0/1, inside/outside) with the class labels prescribed by the boundary lo-267

cation choices.268
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Note that the neither the radial boundary locations, nor the radial locations of the mea-269

surements are provided to the machine learning model. Instead, the model tries to im-270

prove classification accuracy by inferring differences in the input features (PSD at each271

energy) between each set of class labels. By considering how well the model performs,272

we are assessing how much information is present in the electron distribution functions273

about the chosen radial distance. As electron distribution functions are expected to show274

the greatest difference either side of the OBORB, this in turn provides a measure for how275

good an approximation the chosen radial distance is for the OBORB.276

Each model used in the following analysis is a gradient-boosted (Friedman, 2001)277

ensemble of decision trees (Belson, 1959) implemented using the LightGBM framework278

for Python (Ke et al., 2017). For each set of hypothetical boundary locations, a new model279

is trained, but the model architecture remains the same. Each ensemble is comprised of280

256 decision trees (chosen to exceed suggestions from Oshiro et al., 2012, since Light-281

GBM is cheap to run), which each contain 32 leaf nodes. Each model is gradient boosted282

using the dart algorithm (Rashmi & Gilad-Bachrach, 2015), where gradient boosting is283

a method of constructing the ensemble such that each subsequent decision tree in the284

ensemble is trained to correct for mis-classified predictions from the previous decision285

trees.286

To test a large range of hypotheses we implement the above method in a training287

loop, stepping through each combination of dawn and dusk radial locations between 6288

to 12 RE (in increments of 0.2 RE). By investigating the model performances over this289

range of plausible OBORB locations, we can assess the existence or otherwise of an OBORB,290

and whether the location can be constrained to a certain radial distance range. The ex-291

istence of an OBORB can be judged by the magnitude of the quantified model perfor-292

mances; if models perform well, then it suggests that an OBORB or OBORB region ex-293

ists. Once validated, the location of the OBORB can be constrained by comparing the294

relative skill of the different models and seeing if a particular set of boundary locations295

leads to models which perform better. Where we find radial limits with the best model296

performance, we know that these locations correspond to a split which maximises the297

differences in the distribution function data between the two classes (i.e., inside/outside,298

0/1). In our context, this would represent the statistical OBORB.299
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Before detailing the results, we present the distribution of data obtained by our var-300

ious radial limits. Figure 4 presents the proportion of data labelled as ‘inside’ at each301

dawn and dusk limit. There is a noticeable increase in the fraction of data within the302

radial limit at ≈ 11.5 RE. This is due to the radial bias in the data distribution pre-303

sented in 1. Generally the central regions of the plot have balanced data distributions.304

This distribution will be important in evaluating the performance metrics to ensure that305

they are not biased by having uneven class distributions.306
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Figure 4. A 2D histogram presenting the fraction of data classed as inside the radiation belts,

as determined by various radial limits. The radial limits are independently chosen for dawn and

dusk.

To quantify our model performances, we employ a variety of binary classification307

metrics: Accuracy, Gilbert Skill Score (GSS), G-mean, F-measure and Critical Success308

Index (CSI) (Gilbert, 1884; Kubat et al., 1998; Lewis & Gale, 1994). These metrics (aside309

from accuracy) have been chosen because they are designed to take into account class310

imbalances. Since different metrics focus on quantifying different aspects of predictive311

performance (see how the different metrics are constructed in Appendix A), we present312

the results of multiple metrics to get a more complete view of the model performances.313

We also consider the inverted F-measure and CSI to account for the fact that they only314

consider one correct classification label (namely, the true positive predictions, ignoring315

the true negative predictions), and finally an aggregated metric comprised of the geo-316

metric mean of results from all metrics used. These metrics can all be derived from a317

confusion matrix of the results of our binary classification. See Appendix A for further318

details of the metrics and how they relate to confusion matrices.319
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Figure 5 presents the results of our machine learning analysis. Each panel presents320

a 2D histogram of the performance of a metric at each combination of dawn and dusk321

boundary conditions. Over-plotted are well as six contours evenly-spaced between the322

70−100th percentiles of the data. By all the metrics used, there are models which per-323

form relatively high for at least a subset of the hypothesised boundary locations. The324

GSS has the lowest numeric model performance, but still has a constrained region of per-325

formance exceeding 0.7 (a score of 0 would represent no-skill and -1/3 is the lowest pos-326

sible value). Aside from the GSS, each metric is constrained to the range 0-1. If our ap-327

proach was flawed, and machine learning was not a suitable tool, we would expect to find328

that the models did not perform especially well at any location. Seeing as there are high-329

performing models (by each metric), we infer this as validation of our machine leaning330

approach. The contours of model performance presented allow us to constrain the lo-331

cations of best performance, which we attribute to the OBORB location. However, be-332

fore we analyse these contours we will discuss the issue of class imbalance.333

Of the traditional metrics used, it appears that the GSS and G-mean metrics per-334

form most robustly against the class imbalance, as can be seen by the lack of bias to-335

wards the upper right, or lower left areas (where the class imbalance is most pronounced).336

The average of the metrics also provides a class-balanced representation of the results.337

One thing to note from these results is the similarity between the accuracy, F-measure338

and CSI. This likely originates from the algebraic similarity between the definitions of339

these metrics (see Appendix A). By using the inverted versions of these metrics we ad-340

dress the class imbalance when we take our average of the results, and observe how sen-341

sitive the results are to the class imbalance (the metric behaviour completely changes342

by focusing on a different true class prediction). Accuracy is inadequate as a metric when343

used on imbalanced data, since it is easily biased. This bias can be demonstrated in the344

following hypothetical case. If one has 100 data points, split into two classes (0 and 1),345

with 99 points falling in the 0 class. Then a model trained on this data may obtain a346

predictive accuracy of 99% by predicting everything to be in the 0 class. If it is impor-347

tant to be able to correctly predict the other classification, then this model will have no348

skill, despite the high accuracy.349

Whilst we present all of the metric results in Figure 5, for convenience we will fo-350

cus the remaining discussion on the results of the average of the metrics, as this encap-351

sulates the trends between all of the metrics. We observe a bounded region of best-performance352
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Figure 5. 2D histograms presenting the machine learning model performance, through various

metrics. The average of the metrics presented in panel h represents the geometric mean of the

metrics presented in panels a-g. Over-plotted are six contours between the 70 − 100th percentiles

of the data, used to draw attention to the regions of best performance.
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between ≈ 6.9−9.1 RE in the dawn sector and ≈ 7.0−9.3 RE in the dusk sector. The353

contours show sharp decrease in the quantiles of performance outside of this area.354

4 Discussion355

For the sake of a clear methodology, we have generally made few comments on the356

results we’ve found. Here, we will start by discussing the machine learning aspect of this357

work, since it yields the most interesting results, and subsequently compare with the fea-358

tures found in our näıve analysis.359

In the machine learning analysis, we employed a fairly simple hypothesis testing360

approach to investigate various radial boundary locations for the OBORB. Our results361

suggest that a boundary exists, though its location may be highly variable. We infer that362

a variable boundary exists by the high skill scores (relative to the maximum value) which363

are distributed over a large range of potential radial limits. If instead, there was a softer364

boundary (i.e., a slow transition between the two characteristic distribution functions),365

we might still expect to see the smooth variation in the metric scores, but we would typ-366

ically expect the quantitative values to be lower (e.g., all less than 0.5), as the models367

would find it more difficult to characterise the subtle differences in the slowly changing368

distribution functions. Looking specifically at the average (geometric mean) of the met-369

rics in Figure 5h, the distribution is shifted slightly in favour of a larger radial limit at370

dusk than dawn, but is otherwise quite a symmetric shape. The ovoid shape of the con-371

tours suggest a tendency for the boundary to favour similar values at dawn and dusk,372

though the implicit variability highlights that this may be only a weak tendency (tak-373

ing the contours as the extrema of the variability, the dawn radial limit can be ±2 RE374

compared to dusk and vice versa the variability can be ±2.5 RE)375

The dawn-dusk asymmetries observed might be explained by similar dawn-dusk376

asymmetries in the magnetosphere (Walsh et al., 2014; Haaland et al., 2017; Staples et377

al., 2020). As we have excluded the lower energy particles from this portion of analy-378

sis, we do not expect this asymmetry to be due to E×B drift, since the curvature and379

gradient drifts are energy dependent and hence will dominate over the electric field drift.380

Instead, we speculate that this effect is due to asymmetries in the (partial) ring current,381

whose effect is to increase the magnetic field strength at larger radial distances. This causes382

the electrons to follow the field and drift further out because of the gradient drift expe-383
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rienced. The sense of the dawn-dusk asymmetry suggests it is not simply the result of384

the algorithm identifying the magnetopause rather than the OBORB - the magnetopause385

can be compressed to below 8 RE, but this happens much more frequently at dawn than386

dusk (Staples et al., 2020). Whilst there may be some contamination of the data due to387

sampling the magnetopause or solar wind, we infer that this is negligible, since electron388

populations (and hence their distribution functions) are very different. It is expected that389

the difference between electron distribution functions inside of the magnetosphere and390

those in the mangetosheath or solar wind is much bigger than the differences between391

distribution functions inside and outside the radiation belt. A more easily identifiable392

dichotomy of distribution functions would be picked out more significantly by the algo-393

rithm and so we assert that the boundary identified by the algorithm is not the mag-394

netopause, but the OBORB.395

Our identification of the OBORB at ≈ 8 RE is typically larger than the values cur-396

rently used in radiation belt modelling (e.g., Subbotin & Shprits, 2009; Shin & Lee, 2013;397

Glauert et al., 2014, 2018; Ozeke et al., 2014, 2018), suggesting that these modelling ef-398

forts are potentially missing radiation belt phenomena from the outer regions. Other em-399

pirical evidence, such as that in Sivadas et al. (2019), also support an OBORB location400

beyond the currently used limits (9−12 RE in their case). The OBORB being located401

further out opens up the possibility for smaller scale magnetotail behaviour (e.g., less402

severe substorms) to inject particles into the radiation belts, since they would not have403

to penetrate to such low L-shells. Such injections could lead to additional variability in404

the radiation belts (Turner et al., 2017; Jaynes et al., 2015) and to enhanced chorus wave405

activity in the outer regions (Meredith, 2002).406

In Figure 3, we observed a flattening of the PSD at the mid-range energies and spec-407

ulate that this is due to wave-particle interactions (WPIs). Given the energies of these408

electrons (10 − 30 keV) and their location (equatorial region, large radial distance) it409

is likely that whistler-mode chorus waves are the cause (Omura et al., 2008; Li et al., 2010,410

2011; Meredith et al., 2020). The flattening occurs asymmetrically between dawn and411

dusk, with dawn being affected at lower radial distances. Meredith et al. (2020) present412

results showing that both lower- and upper-band chorus have a large dawn-dusk asym-413

metry. These results also show that specifically the lower-band chorus intensity is high414

at the large radial distances where we continue to observe the flattening of the distri-415

bution. Our presented results extend to larger radial distances than Meredith et al. (2020)416
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or Li et al. (2010), into regions close to the magnetopause. Due to the sparseness of data417

and research into WPIs in this region, we cannot speculate on whether or lower-band418

chorus remains the dominant wave affecting the electrons but these results suggest that419

more investigation may be required.420

5 Conclusions421

This study provides the first in situ, empirically-constrained location for the outer422

boundary of the outer radiation belt using THEMIS ESA and SST measurements. Char-423

acterising this boundary location accurately is an important aspect of radiation belt mod-424

elling, as it forms a time-varying source of electrons.425

By applying simple statistical techniques, we observe significant radial evolution426

of the distribution functions, highlighting the intrinsic differences between the trapped427

(radiation belt) and untrapped electron populations. However, this approach did not yield428

a clear boundary location, instead showing a smooth transition between the two states.429

Such a transition signifies either a soft boundary, or a boundary with significant vari-430

ability.431

We employ machine learning (specifically, ensemble decision tree classification) in432

a hypothesis-testing framework, to assess whether there exists an identifiable change in433

electron distribution functions and hence outer boundary to the outer radiation belt, and434

where it may be located. The dataset was converted into 900 binary classification datasets,435

where data was labelled as either inside or outside of specified dawn and dusk radial lim-436

its (our hypothesised boundary locations). 900 machine learning models were then trained437

to learn this classification. Where the models perform better, we infer that our choices438

of boundary locations coincide more closely with identifiable changes in the electron dis-439

tribution functions and hence the true statistical boundary location. By aggregating a440

series of metrics (many designed specifically for imbalanced datasets) we find a region441

of best performance between ≈ 6.9−9.1 RE in the dawn sector and ≈ 7.0−9.3 RE in442

the dusk sector.443

These findings can better constrain the location of the OBORB used in the con-444

struction of radiation belt models, ensuring that they capture all of the physical processes445

in the radiation belts, and allowing future analyses to more appropriately capture the446
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dynamics of injection events and how they influence the behaviour of the outer radia-447

tion belt.448

Appendix A Metrics449

All of the metrics used in this study can be derived from a confusion matrix. A con-450

fusion matrix is made up of True Positives (TP), True Negatives (TN), False Positives451

(FP) and False Negatives (FN). How these correspond to model predictions can be seen452

in Table A1.453

Table A1. A symbolic representation of a confusion matrix, with acronyms TP, TN, FP, FN

referring to the different predictions True Positives, True Negatives, False Positives, and False

Negatives, respectively.

Model Prediction

0 1

True

Value

0 TP FN

1 FP TN

These relate to the following three commonly used, intermediary metrics and to454

HR, which is used as a correction factor in the Gilbert Skill Score to account for the ran-455

dom chance of correctly categorising a sample.456

precision =
TP

TP + FP
(A1)

recall =
TP

TP + FN
(A2)

specificity =
TN

TN + FP
(A3)

HR =
(TP + FP )(TP + FN)

TP + TN + FP + FN
(A4)

We now define the metrics, and also present simplifications of the expansion into457

forms using only the four values from the confusion matrix.458

Accuracy =
TP + TN

TP + TN + FP + FN
(A5)

G-mean =
√

recall · specificity =

√
TP · TN

(TP + FN)(TP + FP )
(A6)

F-measure =
2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
(A7)

GilbertSS =
TP − HR

TP + FN + FP − HR

=
TP · TN − FP · FN

(TN + FN + FP )(TP + FN + FP ) − FP · FN
(A8)

CSI =
TP

TP + FN + FP
(A9)
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The F-measure is the harmonic mean of the precision and recall and the G-mean459

is the geometric mean of the recall and specificity. On top of the proposed metrics, we460

also consider their values when the class labels are inverted, allowing us to investigate461

the robustness to the class imbalance (i.e., TP 7→ TN and FN 7→ FP and vice versa).462

Of metrics defined in Equations 6-10, we note that only the F-measure and CSI will be463

affected by this change, and so these are the only additional metric scores calculated.464
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1. Figure S1

Introduction

We present Figure S1 to support the choice of model numbers required to confirm an

L* existing for a given datapoint in Section 3.1 of the manuscripts. This figure presents

the fraction of data in a given radial bin which has an L* value associated with it. The

titles in each panel designate whether the distribution is for the dawn or dusk sector, as

well as the number of models being used to decide whether or not an L* exists for a given

datapoint. The models used are listed in Section 3.1.

When we use the least conservative measure of L* existing - if at least one model returns

an L* then L* exists for that point (despite 6 models not returning an L*) - then we obtain
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distributions in dawn and dusk that where ≈ 50% of the data measured at 11 RE has an

L*. In contrast, if we use the most conservative measure - requiring all of the models to

return an L* - then we obtain a distribution where even at 5 RE L* is only defined for

≈ 75% of the data. Both of these extremes present a picture of the radiation belts at

odds with the generally accepted view of the radiation belts, where at the lowest L-shells

almost all of the electrons are trapped, and at high L-shells the majority of the electrons

are un-trapped (Li & Hudson, 2019).

To decide which number of models to use in our L* analysis, we choose the least conser-

vative middle-ground between the extremes. We choose 4 models as this middle ground,

as it not only represents a majority agreement between the models, but because the dis-

tributions of requiring at least 5 or 6 models are qualitatively equivalent, showing little

evolution of the occurrence distribution.
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Figure S1. This figure presents the occurance fraction of L* values as a function of radial

distance, separated by MLT sector, and the number of models required to confirm whether a

point has an L* or not.
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