Quantifying nitrous oxide emissions in the U.S. Midwest - A top-down study using high resolution airborne in situ observations

Maximilian Eckl¹, Anke Roiger², Julian Kostinek², Alina Fiehn², Heidi Huntrieser², Christoph Knote³, Zachary Robert Barkley⁴, Stephen Ogle⁵, Bianca C. Baier⁶, Colm Sweeney⁷, and Kenneth J. Davis⁴

¹Deutsches Zentrum für Luft- un Raumfahrt ²Deutsches Zentrum für Luft- und Raumfahrt ³Ludwig-Maximilians-University ⁴Pennsylvania State University ⁵Colorado State University ⁶University of Colorado Boulder ⁷NOAA Global Monitoring Laboratory

November 21, 2022

Abstract

The U.S. Midwest, with its intensive agriculture, is a prominent source of nitrous oxide (N2O) but top-down and bottomup N2O emission estimates differ significantly. We quantify Midwest N2O emissions by combining observations from the Atmospheric Carbon and Transport-America campaign with model simulations to scale the Emissions Database for Global Atmospheric Research (EDGAR). In October 2017 we increased agricultural EDGAR version 4.3.2/5.0 emissions by a factor of $6.3\pm4.6/3.5\pm2.7$, resulting in Midwest N2O emissions of 0.42 ± 0.28 nmol m-2 s-1. In June/July 2019, a period when extreme flooding was occurring in the Midwest, EDGAR was increased by a factor of $11.4\pm6.6/9.9\pm5.7$, resulting in N2O emissions of 1.06 ± 0.57 nmol m-2 s-1. Agricultural emissions estimated with the process-based model DayCent (Daily version of the CENTURY ecosystem model) were larger than in EDGAR but still substantially smaller than our estimates. Due to the complexity of N2O emissions, further studies are necessary to fully characterize Midwest emissions.

Quantifying nitrous oxide emissions in the U.S. Midwest - A top-down study using high resolution airborne in situ observations

Maximilian Eckl¹, Anke Roiger¹, Julian Kostinek¹, Alina Fiehn¹, Heidi Huntrieser¹, Christoph Knote², Zachary R. Barkley³, Stephen M. Ogle⁴, Bianca C. Baier ^{5,6}, Colm Sweeney⁶, and Kenneth J. Davis^{3,7}

7	¹ Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre,
8	Oberpfaffenhofen, Germany
9	² Ludwig-Maximilians-University (LMU), Meteorological Institute, Munich, Germany
10	³ Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park,
10	
11	PA, USA
12	⁴ Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
13	⁵ Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder,
14	CO, USA
14	
15	⁶ NOAA Global Monitoring Laboratory, Boulder, CO, USA
16	⁷ Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA
17	Key Points:
17	

18	- Within the ACT-America project we gathered a unique airborne in situ N_2O data
19	set over the U.S. Midwest with enhancements up to 9 ppb
20	• N ₂ O emissions in the U.S. Midwest were on average 0.42 ± 0.28 nmol m ⁻² s ⁻¹ in

- N₂O emissions in the U.S. Midwest were on average 0.42 ± 0.28 nmol m⁻² s⁻¹ in Oct 2017 and 1.06 ± 0.57 nmol m⁻² s⁻¹ in Jun-Jul 2019
- Bottom-up estimates from EDGAR and the often four times higher DayCent underestimate U.S. Midwest N_2O emissions by factors up to 20

 $Corresponding \ author: \ Maximilian \ Eckl, \ \texttt{Maximilian.Eckl@dlr.de}$

24 Abstract

- The U.S. Midwest, with its intensive agriculture, is a prominent source of nitrous oxide
- $_{26}$ (N₂O) but top-down and bottom-up N₂O emission estimates differ significantly. We quan-
- $_{27}$ tify Midwest N₂O emissions by combining observations from the Atmospheric Carbon
- and Transport-America campaign with model simulations to scale the Emissions Database
- ²⁹ for Global Atmospheric Research (EDGAR). In October 2017 we increased agricultural
- EDGAR version 4.3.2/5.0 emissions by a factor of $6.3 \pm 4.6/3.5 \pm 2.7$, resulting in Mid-
- west N₂O emissions of 0.42 ± 0.28 nmol m⁻² s⁻¹. In June/July 2019, a period when extreme flooding was occurring in the Midwest, EDGAR was increased by a factor of $11.4\pm$
- treme flooding was occurring in the Midwest, EDGAR was increased by a factor of $11.4\pm$ $6.6/9.9\pm5.7$, resulting in N₂O emissions of 1.06 ± 0.57 nmol m⁻² s⁻¹. Agricultural emis-
- $_{33}$ 6.6/9.9±5.7, resulting in N₂O emissions of 1.06±0.57 nmol m⁻² s⁻¹. Agricultural emissions estimated with the process-based model DayCent (Daily version of the CENTURY
- ecosystem model) were larger than in EDGAR but still substantially smaller than our
- $_{36}$ estimates. Due to the complexity of N₂O emissions, further studies are necessary to fully
- 37 characterize Midwest emissions.

³⁸ Plain Language Summary

Nitrous oxide (N_2O) is the third most important anthropogenic greenhouse gas contribut-39 ing to the warming of the planet and the dominant man-made ozone-depleting substance 40 in the stratosphere. Its atmospheric concentrations have been rising since industrializa-41 tion mainly due to an increase in anthropogenic sources, with agriculture being the dom-42 inant source. The densely farmed U.S. Midwest plays an important role in the global N_2O 43 budget. However, previous studies that have collected observations of N_2O indicate that 44 estimates of surface emissions in the Midwest are substantially underestimating the truth. 45 In this study we combine unique aircraft-based N₂O measurements and model simula-46 tions to quantify Midwest emissions in October 2017 and June/July 2019. Agricultural 47 inventory estimates had to be increased by factors up to 20 to match observations, re-48 vealing a large underestimation in current inventories. An extreme flooding event in 2019 49 when the summer observations occurred may be responsible for some of this discrepancy. 50 Estimations of soil N_2O emissions calculated with a state-of-the-art biogeochemical model 51 show less underestimation but are still too low compared to the fluxes derived from the 52 aircraft observational data. 53

54 1 Introduction

Nitrous Oxide (N_2O) is the third most important anthropogenic greenhouse gas 55 (GHG) in terms of long-term radiative forcing (Myhre et al., 2013) and is the dominant 56 ozone depleting substance in the stratosphere (Ravishankara et al., 2009). Global N_2O 57 concentrations are 333 ppb as of April 2020, approximately a 20% increase since prein-58 dustrial times (MacFarling Meure et al., 2006; NOAA-ESRL, 2020). Anthropogenic sources 59 like agriculture and fossil fuel combustion contribute to this trend (Ciais et al., 2013). 60 In recent years, those N_2O emissions have increased at a higher rate than expected (Thompson 61 et al., 2019; Tian et al., 2020). Agricultural soil management associated with reactive 62 forms of nitrogen (N) (i.e. mineral fertilizer, livestock manure additions, and legumes) 63 accounts for half of global N_2O emissions (Paustian et al., 2016). Analyses of the iso-64 topic composition of N_2O indicate that the observed rise in global atmospheric N_2O con-65 centrations is mainly caused by the increased application of N-fertilizers (Park et al., 2012). 66

Bottom-up estimates, such as the Emissions Database for Global Atmospheric Re-67 search (EDGAR, 2020), use emission factors and activity data to calculate emissions. 68 However, the nature of N₂O soil emissions complicates their quantification. Agricultural 69 practices (e.g. fertilizer application rate, crop type) as well as meteorological and soil con-70 ditions (e.g. precipitation, soil moisture) directly influence emissions, resulting in large 71 temporal variability in N₂O surface fluxes (Stehfest & Bouwman, 2006). Process-based 72 biogeochemical models like DayCent (Daily version of the CENTURY ecosystem model) 73 provide a more sophisticated approach for estimation of N_2O emission by simulating soil 74 processes based on various environmental drivers. Nevertheless, fluxes at regional scale 75 are still highly uncertain due to insufficient direct observations (Reay et al., 2012). 76

The U.S. Midwest is one of the most intensively cultivated agricultural regions world-77 wide (FAO, 2020; USDA-NASS, 2020), thus contributing significantly to the global an-78 thropogenic N_2O emissions (Miller et al., 2012). Previous top-down studies indicate that 79 emissions in the Midwest are underestimated by EDGAR, but are highly uncertain on 80 the magnitude of this underestimation (Kort et al., 2008; Miller et al., 2012; Griffis et 81 al., 2013; Chen et al., 2016; Fu et al., 2017). Kort et al. (2008) showed that EDGAR ver-82 sion 32FT2000 underestimates emissions in May-June 2003 by a factor of 2.62 over the 83 central U.S. and southern Canada. Miller et al. (2012) derived scaling factors of 6.1 and 84 10.1 for EDGAR version 4 for June 2004 and June 2008, respectively. Fu et al. (2017) 85 concluded even higher scaling factors for agricultural EDGAR version 4.2 emissions in 86 the Corn Belt region of the Midwest, with scaling factors of 19.0-28.1 in June 2010. These 87 described top-down studies used tall tower measurements, characterized by long time se-88 ries over several months but limited in their spatial coverage. Only Kort et al. (2008) 89 used aircraft-based flask measurements, which provide some spatial (central U.S. and south-90 ern Canada) but limited temporal (May-June 2003) coverage. The large range in the quan-91 titative results show that Midwest N₂O surface fluxes are underestimated by EDGAR 92 inventories, but their true values are highly uncertain. 93

In this study we quantify N₂O emissions for several flights conducted in parts of 94 the U.S. Midwest in October 2017 and June/July 2019 with a top-down approach. Un-95 like previous studies which have relied on observations with limited spatial coverage, this 96 study uses continuous airborne in situ measurements of N_2O . By combining these ob-97 servations with forward model simulations, we optimize agricultural fluxes from EDGAR 98 version 4.3.2 and version 5.0 to quantify Midwest N_2O emissions. The employed method 99 was already successfully applied in several methane top-down studies (Barkley et al., 2017; 100 Barkley, Davis, et al., 2019; Barkley, Lauvaux, et al., 2019). The derived emission rates 101 102 are finally compared to flux estimates of direct soil emissions produced with EDGAR and the biogeochemical model DayCent (Parton et al., 1998; Del Grosso et al., 2001, 2011). 103

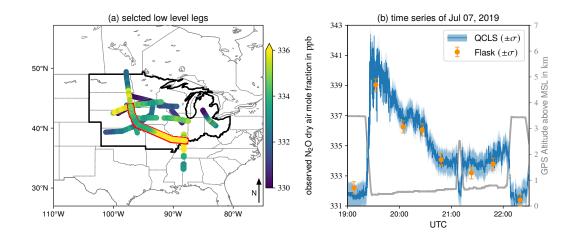


Figure 1. (a) Selected low level legs (at approx. 1000 ft AGL) of the ACT-America campaigns in 2017 and 2019, color-coded with observed N₂O dry air mole fractions. The study region (Midwest) is encircled by a thick black line. (b) Time series of N₂O dry air mole fraction of the flight on July 07, 2019 with error bars indicating ± 0.8 ppb and coincident NOAA/GML flask measurements of N₂O (± 0.4 ppb). The corresponding transect in (a) is encircled in red.

¹⁰⁴ 2 Data and Methods

105

2.1 Observational Data

We use measurements from the Atmospheric Carbon and Transport-America (ACT-106 America, https://act-america.larc.nasa.gov/) campaign. ACT-America includes 107 five airborne campaigns from 2016 to 2019, providing a rich data set of in situ and re-108 mote greenhouse gas measurements in all four seasons. During the fall 2017 (10 Oct -109 13 Nov) and summer 2019 (17 Jun - 27 Jul) field deployments, we collected approximately 110 60 h of in situ data onboard NASA's C-130 with an Aerodyne Quantum Cascade Laser 111 Spectrometer (QCLS) measuring N_2O mole fractions (among others) at 2 Hz with an un-112 certainty of 0.8 ppb (Kostinek et al., 2019). Every 3-10 minutes in-flight calibrations were 113 performed using standards that were cross-calibrated after the campaign against NOAA/GML 114 standards traceable to the NOAA-2006A scale (Hall et al., 2007). Additionally, during 115 each flight 6-12 whole-air flask samples were taken by NOAA/GML and measured for 116 trace gases including N_2O with an uncertainty of 0.4 ppb (Sweeney et al., 2015, 2018; Baier 117 et al., 2020). Those were merged into the QCLS time series to fill any data gaps. 118

For this study we selected four flights from 2017 (October) and six flights from 2019 119 (June/July). For each flight the C-130 flew low level legs well within the planetary bound-120 ary layer (PBL) ($\sim 1000 \, \text{ft}$ above ground level (AGL)) for at least 45 min during which 121 Midwest air was sampled. Figure 1a shows the selected transects, color-coded with ob-122 served N_2O dry air mole fractions. These flights cover most parts of the Midwest. Mole 123 fractions up to 341 ppb were observed (Figure 1b). We are not aware of comparable con-124 tinuous N₂O measurements spanning most of Midwest across two seasons, highlighting 125 the unique opportunity to quantify Midwest emissions with these data. 126

127 2.2 Model Setup

The Weather Research and Forecasting model with chemistry enabled version 4.0.2 (WRF-Chem; Grell et al. (2005)) is used to propagate N_2O enhancements emitted from emission inventories (Section 2.3) throughout the atmosphere. Initial N_2O concentra-

tions and the inflow at the boundaries of the model domain are set to zero. Thus, we 131 simulate only enhancements caused by emissions within the model domain. We treat N_2O 132 as a passive tracer due to its long atmospheric lifetime of ~ 116 years (Prather et al., 133 2015). The model domain consists of an outer and inner domain with a horizontal res-134 olution of $15 \,\mathrm{km} \times 15 \,\mathrm{km}$ and $3 \,\mathrm{km} \times 3 \,\mathrm{km}$, respectively. The outer domain, centered 135 over the Midwest, covers nearly the whole continental U.S., northern Mexico, and south-136 ern Canada (Figure 2a), whereas the extension and position of the inner domain is sep-137 arately chosen for each flight so that the low level legs are spaciously encapsulated. We 138 perform each simulation with three different meteorological initial and boundary con-139 ditions: The 5th generation atmospheric reanalysis data (ERA5, 2017; Hersbach et al., 140 2020), the North American Regional Reanalysis (NARR, 2005), and the Global Data As-141 similation System Final analysis (GDAS-FNL, 2015). As in Barkley, Davis, et al. (2019), 142 we use these different simulations to estimate model transport errors (Díaz-Isaac et al.. 143 2018). See the supporting information (SI) for additional information about the model 144 145 setup.

146

2.3 Emission Inventories

The prior N_2O surface emission estimates for the optimization were obtained from 147 EDGAR version 4.3.2 (EDGAR4.3.2, 2017; Janssens-Maenhout et al., 2019) and version 148 5.0 (EDGAR5.0, 2019; Crippa et al., 2020). For this study the different sectors in the 149 inventories were merged into three main sectors: agricultural E_{AGR} , anthropogenic non-150 agricultural E_{nonAGR} , and natural emissions E_N (see SI). We assume that these three 151 sectors cover all N_2O emissions in the model domain. EDGAR4.3.2 and EDGAR5.0 pro-152 vide monthly resolved N₂O fluxes from anthropogenic source (E_{AGR} and E_{nonAGR}) on 153 a $0.1^{\circ} \times 0.1^{\circ}$ grid for 2012 and 2015, respectively, but do not include fluxes from nat-154 ural sources. Hence, we supplemented both versions with yearly E_N on a 1° × 1° grid 155 from EDGAR version 2.0 (EDGAR2; Olivier et al. (1996, 1999)). All fluxes are assumed 156 to originate from the surface. 157

With the process-based, biogeochemical model DayCent we estimated daily direct 158 N_2O soil emissions from crop- and grassland on a $0.5^{\circ} \times 0.5^{\circ}$ grid in the Midwest from 159 2011 to 2015, which were aggregated to a monthly time step. The model simulates fluxes 160 of carbon and nitrogen between the atmosphere, vegetation, and soil thus deriving N_2O 161 emissions. Incorporating several environmental drivers, including weather patterns, agri-162 cultural practices, soil characteristics, and crop features, this approach provides a more 163 sophisticated estimate of soil emissions than the emission factor based EDGAR inven-164 tory. The GHG inventory of the United States Environmental Protection Agency (EPA, 165 2020) uses DayCent estimates of direct soil emissions for emissions reporting of agricul-166 tural soil N₂O to the UN Framework Convention on Climate Change. DayCent does not 167 calculate emissions from manure management, agricultural waste burning, indirect soil 168 emissions, and those associated with minor crops such as vegetables. The EPA inven-169 tory quantifies these sources and subsources with an emission factor approach. We es-170 timate their contribution by employing the yearly estimates from EPA, calculating their 171 relative fraction of the EPA direct soil emissions, and adding them to our monthly es-172 timates. As a result, our DayCent inventory properly accounts for the total agricultural 173 emissions, but not the spatial distribution of agricultural sources which are not estimated 174 by DayCent. 175

176

2.4 Optimization Technique

To solve for N₂O emissions, we use an approach similar to the optimization described in Barkley et al. (2017). First, we calculate the observed N₂O enhancements by subtracting a background from the measured absolute mole fraction. For each campaign we derive one background by taking the 2^{nd} percentile of all low level legs of the entire campaign (see SI). The background is defined campaign-wise rather than transect-wise because during some transects we were not able to measure background mole fractions as
we started a low level leg within a plume and did not exit the plume inside of the PBL
(Figure 1b).

With observed N₂O enhancements calculated, we then compare modeled N₂O en-185 hancements emitted from our prior emission estimate $(E_{AGR} + E_{nonAGR} + E_N)$ to the 186 observed enhancements. Differences between model and observed enhancements are then 187 minimized for each flight by scaling agricultural emissions E_{AGR} with a factor F_{AGR} thus 188 quantifying emissions. This process is reliant on the assumption that the discrepancy 189 between the observed and modeled N_2O is driven primarily by errors in the E_{AGR} . As 190 agricultural emissions are the dominant N_2O source in our flights, we scale E_{AGR} , as-191 suming that errors in E_{nonAGR} and E_N are inconsequential to the overall solution. The 192 complexity of N_2O soil emissions suggests that E_{AGR} exhibits a much higher uncertainty 193 than other sources (Butterbach-Bahl et al., 2013), supporting the presented approach. 194

As an equation, this optimization technique is described by calculating F_{AGR} through the minimization of the following cost function:

$$J(F_{AGR}) = |A_{obs} - \underbrace{\left(F_{AGR} \cdot A_{AGR} + A_{nonAGR} + A_N\right)}_{=A_{mod}(F_{AGR})}|\tag{1}$$

 A_{obs} and A_{mod} are the time integral along a transect of observed and modeled enhance-198 ments, respectively (e.g., area below plume in Figure 3a). A_{mod} consists of an agricul-199 tural portion A_{AGR} scaleable with F_{AGR} , a non-agricultural anthropogenic portion A_{nonAGR} , 200 and a natural portion A_N . We compare integrals rather than enhancements themselves 201 because we are interested in the amount of N_2O emitted in the atmosphere. Neither the 202 model transport nor the inventory is perfect and even small uncertainties in just one of 203 them could cause a shift or deformation in the alignment of the modeled plume relative to the observed plume. By minimizing the difference in the total N_2O enhancements rather 205 than the point-by-point absolute error, we preserve the capability to solve for total N_2O 206 emissions even when the modeled and observed plumes do not align. Due to the linear-207 ity between A_{AGR} and the area averaged E_{AGR} (see SI), a F_{AGR} derived with equation 208 1 denotes a F_{AGR} -folded E_{AGR} . 209

210 2.5 Uncertainty Assessment

We adopted the method of Barkley, Davis, et al. (2019) to assess uncertainties in our solutions. F_{AGR} is affected by uncertainties in the following variables:

- 1. observed background mole fraction
- 214 2. A_{nonAGR}
- 215 3. A_N

216

197

- 4. model transport
- 5. model wind speed and PBL height
- 6. spatial distribution in EDGAR emissions

We quantify the influence of uncertainties 1 to 4 by using a Monte Carlo approach. For 219 each flight we repeat the optimization 10 000 times with a perturbed background mole 220 fraction, A_{nonAGR} , and A_N . For the background we take the value derived from the ob-221 servations and add a normal random number with $\mu = 0$ ppb and $\sigma = \pm 0.5$ ppb for 222 2017 and $\sigma = \pm 0.9$ ppb for 2019. A_{nonAGR} and A_N are independently multiplied by 223 a factor drawn from a normal distribution with $\mu = 1.0$ and $\sigma = \pm 0.21$ and $\sigma = \pm 0.42$, 224 respectively. To account for the model transport error, we randomly select one of the three 225 model runs with different meteorological initial and boundary conditions, creating vari-226 ability in the plume shape. The resulting spread in F_{AGR} is used as its uncertainty. Ex-227 planations of the values that represent the uncertainties are in the SI. 228

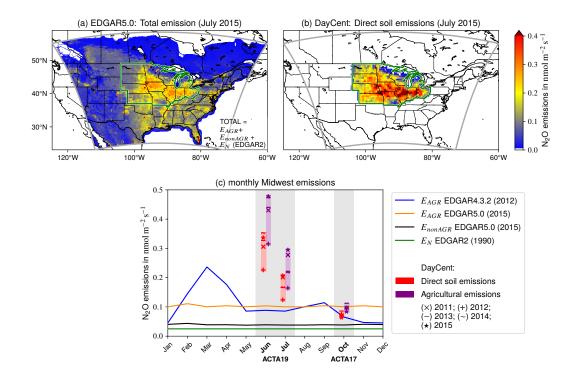


Figure 2. (a) EDGAR5.0 N₂O emissions (plus EDGAR2 E_N) within the model domain (gray box). The Midwest is encircled in green. (b) Direct soil emissions in July 2015 estimated with DayCent. (c) Monthly Midwest emissions. E_{nonAGR} in EDGAR4.3.2 is almost identical to EDGAR5.0. Total agricultural DayCent emissions are estimated utilizing the EPA GHG inventory (Section 2.3).

The modeled wind speed and PBL height uncertainty (source 5), cannot be cov-229 ered by the Monte Carlo simulation. Errors in these variables cause lower or higher sim-230 ulated enhancements thus producing biases. Following Barkley et al. (2017) we correct 231 for those biases by applying a correction factor based on the differences between the mod-232 eled and observed wind speed and PBL height. On average the modeled wind speed and 233 PBL height is 8% and 3% higher than observations, respectively. The impact of this cor-234 rection on our results is insignificant. Results and further explanations can be found in 235 the SI. 236

Our final source of uncertainty relates to uncertainties regarding errors in the spa-237 tial distribution of the fluxes in the prior inventory, and is difficult to quantify. However, 238 the mapping of emissions in EDGAR is based on several high-resolution proxy data sets 239 (Janssens-Maenhout et al., 2019). For this reason, we assume its spatial errors to be small. 240 Given the insignificant difference between modeled and observed wind speeds and PBL 241 heights, the good agreement between modeled and measured plume structures support 242 this assumption (see SI). Furthermore, because we quantify large area sources and not 243 point sources, slight misplacement in the inventory would only marginally affect our re-244 sults. At the same time, missing or strongly misplaced fluxes would produce errors that 245 are not considered in this study. 246

²⁴⁷ **3** Results and Discussion

248

3.1 Emission Inventory Comparison

Figure 2a shows prior July N_2O emissions in the outermost model domain from an-249 thropogenic EDGAR5.0 and natural EDGAR2 sources. Compared to EDGAR4.3.2 no 250 significant differences in the spatial distribution of emissions is seen, both versions just 251 differ in the strength of the surface fluxes. The largest surface fluxes are concentrated 252 in the Midwest, coinciding with the Corn Belt and its dominant agricultural emissions. 253 Figure 2b shows DayCent direct soil emissions in July 2015. Similar to EDGAR emis-254 sion maps, the Corn Belt within the Midwest is a prominent source of N_2O . We are not 255 able to perform a detailed comparison of the spatial distributions in EDGAR and Day-256 Cent as both do not cover the same set of sources. However, in terms of the overall mag-257 nitude, DayCent estimates much higher surface fluxes compared to EDGAR, despite con-258 taining fewer sources (gridded total agricultural DayCent emissions are not available; Sec-259 tion 2.3). 260

Figure 2c displays the monthly evolution of E_{AGR} , E_{nonAGR} , and E_N averaged over 261 the Midwest. Both EDGAR versions have an annual average E_{AGR} of approximately 0.10 nmol m⁻² s⁻¹. 262 However, unlike EDGAR5.0, EDGAR4.3.2 exhibits a strong seasonal cycle ranging from 263 $0.05 \,\mathrm{nmol}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$ in winter up to $0.24 \,\mathrm{nmol}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$ in spring. In spring, when most N-264 fertilizer is applied, the amount peaks, followed by a plateau during summer at $0.09 \,\mathrm{nmol}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$. 265 The harvest season in fall features a local peak at $0.11 \text{ nmol m}^{-2} \text{ s}^{-1}$. In a future EDGAR5.0 266 release a seasonal cycle for some crop related emissions will be implemented (Crippa et 267 al., 2020). E_{nonAGR} shows no significant change over the year and is on average $0.04 \,\mathrm{nmol}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$ 268 in both versions. Natural soil emissions account for $0.02 \,\mathrm{nmol}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$ per month. 269

From 2011 to 2015 DayCent emissions in the Midwest range between 0.23-0.35 nmol m⁻² s⁻¹, 270 $0.12-0.21 \text{ nmol m}^{-2} \text{ s}^{-1}$, and $0.06-0.08 \text{ nmol m}^{-2} \text{ s}^{-1}$ in June, July, and October respec-271 tively. June and July DayCent emissions are significantly larger than in EDGAR, de-272 spite manure management, indirect soil, and agricultural waste burning emissions not 273 being included. DayCent's October emissions are within the magnitude of agricultural 274 EDGAR emissions. We estimate total agricultural Midwest emissions from 2011 to 2015 275 by combining DayCent direct soil emissions and the EPA GHG inventory (Section 2.3), 276 resulting in 0.32–0.48 nmol $m^{-2} s^{-1}$, 0.16–0.30 nmol $m^{-2} s^{-1}$, and 0.08–0.11 nmol $m^{-2} s^{-1}$ 277 in June, July, and October, respectively. In June/July this is on average over four/two 278 times higher than EDGAR E_{AGR} estimates. The 2012 emissions are significantly lower 279 than in the other years causing the large range across years in the summer months. Dur-280 ing this year, the most extensive drought since the 1930s occurred across a large swath 281 of the U.S., including most of the Midwest, which lead to widespread harvest failure (NOAA-282 NCEI, 2020). This event might explain the low values and indicates that during an av-283 erage climatological year DayCent emissions are at the upper end of the range. Further-284 more, in contrast to EDGAR4.3.2 which states constant emissions in June and July, Day-285 Cent emissions are much higher in June than in July. This is consistent with the N_2O 286 climatology in Sweeney et al. (2015). 287

288

3.2 Model Optimization

Here, we provide an example of the model optimization process for Oct 10, 2017 289 (Figure 3a). In the eastern part of the Midwest N_2O enhancements up to 7 ppb were ob-290 served within the PBL. The slightly negative values at the beginning of the time series 291 occurred prior to the low level leg in the free troposphere. Our background is derived 292 293 from air within the PBL and is representative for the time and location of the campaign. Free tropospheric air might have a different history and hence different background which 294 can lead to negative values if we subtract our background. Model simulations with un-295 modified EDGAR emissions show only enhancements up to 1 ppb along the transect. How-296

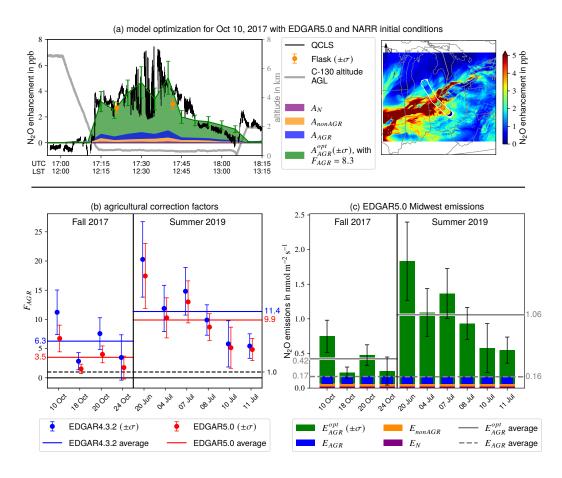


Figure 3. (a) Sample model optimization for Oct 10, 2017 with EDGAR5.0 (plus EDGAR2 E_N) and NARR initial conditions. The left panel shows the prior and optimized modeled N₂O enhancements along the flight track together with observed enhancements. The right panel shows a map of optimized modeled N₂O enhancements (from $E_{AGR}^{opt} + E_{nonAGR} + E_N$) at 300 m AGL at 17:30 UTC and the flight track color-coded with the observed enhancements. (b) Mean and standard deviation of agricultural correction factors F_{AGR} for the investigated research flights resulting from Monte Carlo simulations. (c) EDGAR5.0 Midwest N₂O emissions with optimized and prior E_{AGR} .

ever, by applying an agricultural correction factor F_{AGR} of 8.3 the model is able to reproduce our measurements. Optimizations of the remaining days can be found in the SI.

Figure 3b shows the mean and standard deviation for F_{AGR} of the Monte Carlo 299 simulations of the ten research flights for the two EDGAR versions. As both invento-300 ries have a comparable spatial distribution, factors vary due to differences in total emis-301 sions. EDGAR4.3.2 correction factors are considerably higher for October 2017 and slightly 302 higher for June/July 2019 than EDGAR5.0. For EDGAR4.3.2, F_{AGR} ranges from 2.9± 303 1.5 to 11.3 ± 3.8 in 2017, with an average factor of 6.3 ± 4.6 . EDGAR5.0 F_{AGR} is calculated to be lower but still ranges from 1.6 ± 0.8 to 6.8 ± 2.3 , with an average factor 305 of 3.5 ± 2.7 . For 2019 we modified EDGAR4.3.2 with a F_{AGR} between 5.5 ± 2.1 and 306 20.2 ± 6.3 and EDGAR5.0 between 4.9 ± 1.9 and 17.4 ± 5.5 . On average this denotes an 307 agricultural correction factor of 11.4 ± 6.6 and 9.9 ± 5.7 for EDGAR4.3.2 and EDGAR5.0, 308 respectively. Altogether, both EDGAR versions exhibit a significant underestimation of 309 agricultural emissions. Seasonal differences are likely one cause for the large difference 310 in correction factors between 2017 and 2019. Additionally, during the 2019 aircraft cam-311 paign, an extreme flooding event occurred that likely influenced our results (discussed 312 below). Although EDGAR4.3.2 exhibits a seasonal cycle, its agricultural correction fac-313 tor also varies considerably between 2017 and 2019. Hence, the seasonality is not cap-314 tured in the EDGAR inventory for the Midwest, which appears to be caused by the flood-315 ing. Figure 3c displays the EDGAR5.0 average Midwest emissions for each flight day with 316 non-optimized and optimized agricultural emissions. For EDGAR4.3.2 the optimized re-317 sult is (nearly) the same as both versions differ (nearly) only in their strength of E_{AGR} 318 which is adjusted in the course of the optimization. On average, optimized total N_2O 319 emissions are 0.42 ± 0.28 nmol m⁻² s⁻¹ in 2017 and 1.06 ± 0.57 nmol m⁻² s⁻¹ in 2019. 320

Optimized emissions for June/July 2019 are 2-3 times higher compared to Day-321 Cent emissions. Despite this, DayCent emissions are closer to our optimized emissions 322 compared to EDGAR during the same period. In contrast, DayCent and EDGAR emis-323 sions are both too low by a similar magnitude in October compared to our optimized results. Hence, as DayCent considers regional characteristics, it performs much better 325 on the regional scale in the summer than the emission factor approach that is used in 326 the EDGAR inventory. A more quantitative evaluation of DayCent would require sur-327 face flux calculations for 2017 and 2019 incorporating the corresponding regional con-328 ditions like weather, soil conditions, and N-fertilizer application rate and time. DayCent 329 has not been applied to estimate emissions specific to 2017 and 2019 so it is not clear 330 if the model would underestimate the values for these years although this may be the 331 case given the historical data from 2011–2015. 332

Fu et al. (2017) reported emissions of $3.00-4.38 \text{ nmol m}^{-2} \text{ s}^{-1}$ during June 1-20, 2010 333 for the Corn Belt, which is significantly higher than our estimates for June/July 2019. 334 Griffis et al. (2013) estimated the Corn Belt emissions to be around $2 \text{ nmol m}^{-2} \text{s}^{-1}$ and 335 $1 \text{ nmol m}^{-2} \text{ s}^{-1}$ in June/July 2010 and 2011, respectively, which is consistent with our 336 findings. Kort et al. (2008) and Miller et al. (2012) derived scaling factors for the cen-337 tral U.S. To be able to compare their results to ours, we estimated the corresponding 338 flux densities for the Midwest region using their scaling factors for the respective EDGAR 339 versions. Kort et al. (2008) derived $0.54 \text{ nmol m}^{-2} \text{ s}^{-1}$ for May/June 2003 and Miller et 340 al. (2012) 0.57/0.25 nmol m⁻² s⁻¹ and 0.94/0.53 nmol m⁻² s⁻¹ for June/July 2004 and 341 2008, respectively. Both studies show lower values than our estimate. Miller et al. (2012) 342 stated that maximum emissions occurred in June. Our DayCent calculations are also high-343 est in June. This could partly explain our lower estimates compared to Fu et al. (2017) 344 as we report for the end of June/beginning of July after the expected emission peak. More-345 over, Fu et al. (2017) only scaled Corn Belt emissions and kept other regions unmodi-346 fied which could lead to higher estimates, if they sampled other regions with lower emis-347 sion rates than the Corn Belt. Overall, our estimates are in the range of previous top-348 down studies. However, the spread among the studies is large. 349

The nature of soil N₂O emissions leads to significant temporal variability in the emis-350 sions that is not represented in the EDGAR inventory. Unlike EDGAR, DayCent is ca-351 pable of representing those variations to a certain extent. In our 2011–2015 calculations 352 the monthly standard deviations range from 10% in October to 21% in July, demon-353 strating the strong interannual variability. Furthermore, weather conditions in the study 354 domain in 2019 were unusually extreme. During the campaign, the U.S. was experienc-355 ing its wettest period in 125 years, with severe flooding in the Midwest (NOAA, 2020) 356 forcing the farmers to significantly delay planting in the affected regions (USDA, 2020) 357 and postponing the peak emission period. Depending on whether the zenith is shifted 358 closer to or further away from our investigated period in June/July this event may have 359 either amplified or lowered our emission estimates. Additionally, the above-average hu-360 midity might have enhanced soil N₂O emissions leading to higher estimates (Butterbach-361 Bahl et al., 2013). The influence of this flooding event cannot be quantified within this 362 study, as this would require more data over longer periods spanning the whole event. How-363 ever, in a follow-up study we plan to use DayCent simulations driven with those flood-364 ing conditions to gain insights on how soil N₂O emissions were affected. 365

366 4 Conclusion

Unique continuous in situ airborne N₂O measurements of ten research flights were 367 used to quantify N_2O emissions in the U.S. Midwest using a top-down approach. In Oc-368 tober 2017 and June/July 2019 agricultural Midwest emission were on average $6.3 \pm 4.6/3.5 \pm$ 369 2.7 and $11.4 \pm 6.6/9.9 \pm 5.7$ times higher than EDGAR4.3.2/EDGAR5.0 estimates re-370 sulting in 0.42 ± 0.28 nmol m⁻² s⁻¹ and 1.06 ± 0.57 nmol m⁻² s⁻¹ Midwest emissions, 371 respectively. Our 2019 estimates were most likely influenced by an extreme flooding event, 372 which is difficult to capture in EDGAR as the inventory uses a more climatological av-373 erage emissions dataset. Agricultural soil emissions estimated with DayCent in 2011– 374 2015 were 0.32-0.48, 0.16-0.30, and 0.08-0.11 nmol m⁻² s⁻¹ in June, July, and October, 375 respectively. Based on these historical emission estimates, this is higher than non-optimized 376 EDGAR emissions, but still significantly lower than our optimized fluxes. Our findings 377 are in the range of previous top-down estimates for the Corn Belt and central U.S. How-378 ever, a quantitative comparison of those studies show that the range of derived N_2O sur-379 face fluxes is large, likely due to the temporal complexity of N_2O soil emissions. 380

More N_2O focused studies are necessary to fully understand the drivers of Midwest 381 N_2O emissions and the most appropriate modeling methods to estimate emission pat-382 terns. To cover the high temporal variability on various scales, long term projects with 383 regular airborne measurements spanning wide areas of the Midwest are necessary. Com-384 bining a process-based model like DayCent capable of simulating the temporal and spa-385 tial variability of N_2O emissions, with extensive airborne and tall tower top-down stud-386 ies at selected spots and times, could be a cost effective approach that would limit the 387 number of flights needed to produce accurate estimates for the region and improve na-388 tional reporting of emissions (Ogle et al., 2020). As interest grows in expanding efforts 389 to reduce N_2O emissions (Kanter et al., 2020), improved quantification of N_2O surface 390 fluxes is mandatory for policy makers to be able to develop effective mitigation strate-391 gies. 392

393 Acknowledgments

³⁹⁴ The ACT-America project is a NASA Earth Venture Suborbital-2 project funded by NASA's

Earth Science Division (grant NNX15AG76G to the Pennsylvania State University). All

- ACT-America flask and in situ data used in this manuscript can be found online (at https://
- daac.ornl.gov/cgi-bin/dataset_lister.pl?p=37). We thank DLR VO-R for fund-

³⁹⁸ ing the young investigator research group "Greenhouse Gases".

399	References
400	Baier, B. C., Sweeney, C., Choi, Y., Davis, K. J., DiGangi, J. P., Feng, S., Weib-
400	ring, P. (2020). Multispecies Assessment of Factors Influencing Regional CO ₂
	and CH_4 Enhancements During the Winter 2017 ACT-America Campaign.
402	Journal of Geophysical Research: Atmospheres, 125, e2019JD031339. doi:
403	10.1029/2019JD031339
404	Barkley, Z. R., Davis, K. J., Feng, S., Balashov, N., Fried, A., DiGangi, J., Hal-
405 406	liday, H. S. (2019). Forward Modeling and Optimization of Methane Emis-
400	sions in the South Central United States Using Aircraft Transects Across
407	Frontal Boundaries. Geophysical Research Letters, $46(22)$, 13564–13573. doi:
409	10.1029/2019gl084495
410	Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Fried, A., Weibring, P.,
411	Dickerson, R. R. (2019). Estimating Methane Emissions From Underground
412	Coal and Natural Gas Production in Southwestern Pennsylvania. <i>Geophysical</i>
413	Research Letters, $46(8)$, $4531-4540$. doi: $10.1029/2019$ GL082131
414	Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Miles, N. L., Richardson, S. J.,
415	Maasakkers, J. D. (2017). Quantifying methane emissions from natural
416	gas production in north-eastern Pennsylvania. Atmospheric Chemistry and
417	<i>Physics</i> , 17(22), 13941–13966. doi: 10.5194/acp-17-13941-2017
418	Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-
419	Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do
420	we understand the processes and their controls? Philosophical Trans-
421	actions of the Royal Society B: Biological Sciences, 368, 20130122. doi:
422	10.1098/rstb.2013.0122
423	Chen, Z., Griffis, T. J., Millet, D. B., Wood, J. D., Lee, X., Baker, J. M., Wells,
424	K. C. (2016). Partitioning N_2O emissions within the U.S. Corn Belt using an
425	inverse modeling approach. Global Biogeochemical Cycles, 30(8), 1192–1205.
426	doi: $10.1002/2015$ gb005313
427	Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Thornton,
428	P. (2013). Carbon and Other Biogeochemical Cycles. In T. F. Stocker et
429	al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution
430	of Working Group I to the Fifth Assessment Report of the Intergovernmental
431	Panel on Climate Change (pp. 465–570). Cambridge, United Kingdom and
432	New York, NY, USA: Cambridge University Press.
433	Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M.,
434	Janssens-Maenhout, G. (2020). High resolution temporal profiles in the
435	Emissions Database for Global Atmospheric Research. Scientific Data, $7(121)$.
436	doi: $10.1038/s41597-020-0462-2$
437	Del Grosso, S. J., Parton, W. J., Keough, C. A., & Reyes-Fox, M. (2011). Spe-
438	cial features of the DayCent modeling package and additional procedures for parameterization, calibration, validation, and applications. In L. R. Ahuja
439	parameterization, calibration, validation, and applications. In L. R. Ahuja & L. Ma (Eds.), <i>Methods of Introducing System Models into Agricultural</i>
440	Research (pp. 155–176). Madison, WI, USA: American Society of Agron-
441	omy, Crop Science Society of America, Soil Science Society of America. doi:
442 443	10.2134/advagricsystmodel2.c5
444	Del Grosso, S. J., Parton, W. J., Mosier, A. R., Hartman, M. D., Brenner, J., Ojima,
444	D. S., & Schimel, D. S. (2001). Simulated Interaction of Carbon Dynamics
446	and Nitrogen Trace Gas Fluxes Using the DAYCENT Model. In M. Schaffer,
447	L. Ma, & S. Hansen (Eds.), Modeling Carbon and Nitrogen Dynamics for Soil
448	Management (pp. 303–332). Boca Raton, Florida, USA: CRC Press.
449	Díaz-Isaac, L. I., Lauvaux, T., & Davis, K. J. (2018). Impact of physical param-
450	eterizations and initial conditions on simulated atmospheric transport and
451	CO_2 mole fractions in the US Midwest. Atmospheric Chemistry and Physics,
452	18(20), 14813–14835. doi: 10.5194/acp-18-14813-2018
453	EDGAR. (2020). Emission Database for Global Atmospheric Research. Retrieved

454	from https://edgar.jrc.ec.europa.eu/ (last accessed: 20 Jul 2020)
455	EDGAR4.3.2. (2017). Emissions Database for Global Atmospheric Research, version
456	4.3.2. European Comission. Retrieved from https://edgar.jrc.ec.europa
457	.eu/overview.php?v=432_GHG doi: https://data.europa.eu/doi/10.2904/JRC
458	-DATASET-EDGAR
459	EDGAR5.0. (2019). Emissions Database for Global Atmospheric Research, version
460	5.0. European Comission. Retrieved from https://edgar.jrc.ec.europa
	.eu/overview.php?v=50_GHG doi: https://data.europa.eu/doi/10.2904/JRC
461	-DATASET-EDGAR
462	EPA. (2020). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018.
463	
464	United States Environmental Protection Agency. EPA 430-R-20-002. Retrieved
465	from https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas
466	-emissions-and-sinks-1990-2018
467	ERA5. (2017). Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth gen-
468	eration of ECMWF atmospheric reanalyses of the global climate. Copernicus
469	Climate Change Service Climate Data Store (CDS). Retrieved from https://
470	cds.climate.copernicus.eu/cdsapp#!/home (last accessed: 02 Mar 2020)
471	FAO. (2020). Food and Agriculture Organization of the United Nations - FAOSTAT.
472	Retrieved from http://www.fao.org/faostat/en/#compare (last accessed:
473	20 Jul 2020)
474	Fu, C., Lee, X., Griffis, T. J., Dlugokencky, E. J., & Andrews, A. E. (2017). Inves-
475	tigation of the N ₂ O emission strength in the U. S. Corn Belt. Atmospheric Re-
476	search, 194, 66–77. doi: 10.1016/j.atmosres.2017.04.027
477	GDAS-FNL. (2015). National Centers for Environmental Prediction, National
478	Weather Service, NOAA, U.S. Department of Commerce: NCEP GDAS/FNL
479	0.25 Degree Global Tropospheric Analyses and Forecast Grids, updated daily.
480	Research Data Archive at the National Center for Atmospheric Research,
481	Computational and Information Systems Laboratory. (last accessed: 28 May
482	2020) doi: 10.5065/D65Q4T4Z
483	Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
484	W. C., & Eder, B. (2005). Fully coupled "online" chemistry within
485	the WRF model. Atmospheric Environment, 39(37), 6957–6975. doi:
486	10.1016/j.atmosenv.2005.04.027
	Griffis, T. J., Lee, X., Baker, J. M., Russelle, M. P., Zhang, X., Venterea, R., & Mil-
487	let, D. B. (2013). Reconciling the differences between top-down and bottom-up
488	estimates of nitrous oxide emissions for the U.S. Corn Belt. <i>Global Biogeo</i> -
489	chemical Cycles, $27(3)$, 746–754. doi: 10.1002/gbc.20066
490	
491	Hall, B. D., Dutton, G. S., & Elkins, J. W. (2007). The NOAA nitrous oxide stan-
492	dard scale for atmospheric observations. Journal of Geophysical Research: At-
493	mospheres, 112, D09305. doi: 10.1029/2006JD007954
494	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J.,
495	Thépaut, JN. (2020). The ERA5 global reanalysis. Quarterly Journal of
496	the Royal Meteorological Society, 1–51. doi: $10.1002/qj.3803$
497	Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Den-
498	tener, F., Oreggioni, G. D. (2019). EDGAR v4.3.2 Global Atlas of the
499	three major greenhouse gas emissions for the period 1970–2012. Earth System
500	Science Data, $11(3)$, 959–1002. doi: 10.5194/essd-11-959-2019
501	Kanter, D. R., Ogle, S. M., & Winiwarter, W. (2020). Building on Paris: integrat-
502	ing nitrous oxide mitigation into future climate policy. Current Opinion in En-
503	vironmental Sustainability, 47, 1-6. doi: 10.1016/j.cosust.2020.04.005
504	Kort, E. A., Eluszkiewicz, J., Stephens, B. B., Miller, J. B., Gerbig, C., Nehrkorn,
505	T., Wofsy, S. C. (2008). Emissions of CH_4 and N_2O over the United States
506	and Canada based on a receptor-oriented modeling framework and COBRA-
507	NA atmospheric observations. <i>Geophysical Research Letters</i> , 35, L18808. doi:
508	10.1029/2008GL034031

509	Kostinek, J., Roiger, A., Davis, K. J., Sweeney, C., DiGangi, J. P., Choi, Y.,
510	Butz, A. (2019). Adaptation and performance assessment of a quantum and
511	interband cascade laser spectrometer for simultaneous airborne in situ observa-
512	tion of CH ₄ , C ₂ H ₆ , CO ₂ , CO and N ₂ O. Atmospheric Measurement Techniques,
513	12(3), 1767-1783. doi: $10.5194/amt-12-1767-2019$
514	MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van
515	Ommen, T., Elkins, J. (2006). Law Dome CO_2 , CH_4 and N_2O ice core
516	records extended to 2000 years BP. Geophysical Research Letters, 33(14). doi:
517	10.1029/2006GL026152
518	Miller, S. M., Kort, E. A., Hirsch, A. I., Dlugokencky, E. J., Andrews, A. E., Xu,
519	X., Wofsy, S. C. (2012). Regional sources of nitrous oxide over the United
520	States: Seasonal variation and spatial distribution. Journal of Geophysical
521	Research: Atmospheres, 117, D06310. doi: 10.1029/2011JD016951
522	Myhre, G., Shindell, D., Bréon, FM., Collins, W., Fuglestvedt, J., Huang, J.,
523	Zhang, H. (2013). Anthropogenic and Natural Radiative Forcing. In
524	T. F. Stocker et al. (Eds.), Climate Change 2013: The Physical Science Basis.
525	Contribution of Working Group I to the Fifth Assessment Report of the Inter-
526	governmental Panel on Climate Change (pp. 659–740). Cambridge, United
527	Kingdom and New York, NY, USA: Cambridge University Press.
528	NARR. (2005). National Centers for Environmental Prediction, National Weather
529	Service, NOAA, U.S. Department of Commerce: NCEP North American Re-
530	gional Reanalysis, updated monthly. Research Data Archive at the National
531	Center for Atmospheric Research, Computational and Information Systems
532	Laboratory. Retrieved from https://rda.ucar.edu/datasets/ds608.0 (last
533	accessed: 27 May 2020)
534	NOAA. (2020). National Centers for Environmental Information: Climate at a
535	Glance - Rankings. Retrieved from https://www.ncdc.noaa.gov/cag/ (last
536	accessed: 20 Jul 2020)
537	NOAA-ESRL. (2020). Combined Nitrous Oxide data from the NOAA/ESRL Global
538	Monitoring Division. Retrieved from https://www.esrl.noaa.gov/gmd/hats/
539	combined/N20.html (last accessed: 20 Jul 2020)
540	NOAA-NCEI. (2020). U.S. Billion-Dollar Weather and Climate Disasters. NOAA
541	National Centers for Environmental Information (NCEI). Retrieved from
542	https://www.ncdc.noaa.gov/billions/ doi: 10.25921/stkw-7w73
543	Ogle, S. M., Butterbach-Bahl, K., Cardenas, L., Skiba, U., & Scheer, C. (2020).
544	From research to policy: optimizing the design of a national monitoring system
545	to mitigate soil nitrous oxide emissions. Current Opinion in Environmental
546	Sustainability, 47, 28–36. doi: 10.1016/j.cosust.2020.06.003
547	Olivier, J. G. J., Bouwman, A. F., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J.,
548	Visschedijk, A. J. H., Zandveld, P. Y. J. (1999). Sectoral emis-
549	sion inventories of greenhouse gases for 1990 on a per country basis as well as on $1^{\circ} \times 1^{\circ}$. Environmental Science & Policy, $2(3)$, 241–263. doi:
550	10.1016/s1462-9011(99)00027-1
551	Olivier, J. G. J., Bouwman, A. F., van der Maas, C. W. M., Berdowski, J. J. M.,
552	Veldt, C., Bloos, J. P. J., Haverlag, J. L. (1996). Description of EDGAR
553	Version 2.0: A set of global emission inventories of greenhouse gases and
554	ozone-depleting substances for all anthropogenic and most natural sources
555	on a per country basis and on $1^{\circ} \times 1^{\circ}$ grid. National Institute of Public Health
556 557	and the Environment (RIVM) report no. 771060 002 / TNO-MEP report no.
558	R96/119. Retrieved from http://hdl.handle.net/10029/10497
559	Park, S., Croteau, P., Boering, K. A., Etheridge, D. M., Ferretti, D., Fraser, P. J.,
560	M., T. C. (2012). Trends and seasonal cycles in the isotopic compo-
561	sition of nitrous oxide since 1940. Nature Geoscience, 5(4), 261–265. doi:
562	10.1038/ngeo1421
563	Parton, W. J., Hartman, M., Ojima, D., & Schimel, D. (1998). DAYCENT and its

 19(1), 35–48. doi: 10.1016/S0921-8181(98)00040-X Paustian, K., Lehmann, J., Ogle, S. M., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532, 49–57. doi: 10.1038/nature17174 Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., Funke, B. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. Journal of Geophysical Research: Atmospheres, 120(11), 5693–5705. doi: 10.1002/2015jd023267 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science, 326(5949), 123–125. doi: 10.1126/science.1176985 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410–416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentrations from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl7ds.id=1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent	564	land surface submodel: description and testing. Global and Planetary Change,
 (2016). Climate-smart soils. Nature, 532, 49–57. doi: 10.1038/nature17174 Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., Funke, B. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. Journal of Geophysical Research: Atmospheres, 120(11), 5693–5705. doi: 10.1002/2015jd023267 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science, 326(5949), 123–125. doi: 10.1126/science.1176985 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410–416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentrations from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of	565	19(1), 35-48. doi: 10.1016/S0921-8181(98)00040-X
 Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., Funke, B. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. Journal of Geophysical Research: Atmospheres, 120(11), 5693–5705. doi: 10.1002/2015jd023267 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science, 326(5949), 123–125. doi: 10.1126/science.1176985 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410–416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentrations from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	566	Paustian, K., Lehmann, J., Ogle, S. M., Reay, D., Robertson, G. P., & Smith, P.
 A. R., Funke, B. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. Journal of Geophysical Research: Atmospheres, 120(11), 5693–5705. doi: 10.1002/2015jd023267 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science, 326(5949), 123–125. doi: 10.1126/science.1176985 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410–416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentrations from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	567	(2016). Climate-smart soils. Nature, 532, 49–57. doi: 10.1038/nature17174
 oxide including its variability. Journal of Geophysical Research: Atmospheres, 120(11), 5693-5705. doi: 10.1002/2015jd023267 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Cen- tury. Science, 326(5949), 123-125. doi: 10.1126/science.1176985 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410-416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207-228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155-5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	568	Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass,
 120(11), 5693-5705. doi: 10.1002/2015jd023267 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science, 326(5949), 123-125. doi: 10.1126/science.1176985 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410-416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207-228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentrations from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://dac.ornl.gov/cgi-bin/dsviewer.pl?ds.id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155-5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	569	A. R., Funke, B. (2015). Measuring and modeling the lifetime of nitrous
 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Cen- tury. Science, 326 (5949), 123–125. doi: 10.1126/science.1176985 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410–416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74 (3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	570	oxide including its variability. Journal of Geophysical Research: Atmospheres,
 (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science, 326 (5949), 123–125. doi: 10.1126/science.1176985 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410–416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74 (3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentrations from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	571	120(11), 5693-5705. doi: $10.1002/2015$ jd023267
 tury. Science, 326(5949), 123-125. doi: 10.1126/science.1176985 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410-416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74 (3), 207-228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155-5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	572	Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide
 Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. <i>Nature Climate Change</i>, 2(6), 410–416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. <i>Nutrient Cycling in Agroecosystems</i>, 74 (3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). <i>ACT-America: L2 In Situ Atmospheric Gas Concentra-</i> <i>tions from Flasks, Eastern USA</i>. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. <i>Journal of Geophysical Research: Atmospheres, 120</i>(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	573	(N_2O) : The Dominant Ozone-Depleting Substance Emitted in the 21st Cen-
 & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410-416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74 (3), 207-228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155-5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	574	tury. Science, 326(5949), 123–125. doi: 10.1126/science.1176985
 Nature Climate Change, 2(6), 410–416. doi: 10.1038/nclimate1458 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74 (3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	575	Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F.,
 Stehfest, E., & Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74 (3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	576	
 and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74 (3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	577	
 and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74 (3), 207–228. doi: 10.1007/s10705-006-9000-7 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	578	
 ⁵⁸¹ 74 (3), 207–228. doi: 10.1007/s10705-006-9000-7 ⁵⁸² Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., ⁵⁸³ Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- ⁵⁸⁴ tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. ⁵⁸⁵ Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 ⁵⁸⁶ doi: 10.3334/ORNLDAAC/1575 ⁵⁸⁷ Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., ⁵⁸⁸ Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from ⁵⁸⁹ aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference ⁵⁹⁰ Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. ⁵⁹¹ doi: 10.1002/2014jd022591 ⁵⁹² Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, ⁵⁹³ A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	579	
 Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	580	
 Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentra- tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	581	
 tions from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	582	
 Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1575 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	583	
 doi: 10.3334/ORNLDAAC/1575 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	584	•
 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	585	
 Tans, P. P. (2015). Seasonal climatology of CO₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	586	
 aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	587	
 Network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	588	
 doi: 10.1002/2014jd022591 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	589	
 Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Canadell, J. G. (2019). Acceleration of global N₂O emissions seen from 	590	
$_{593}$ A., Canadell, J. G. (2019). Acceleration of global $\rm N_2O$ emissions seen from	591	
two decades of atmospheric inversion. Nature Climate Change, $9(12)$, 993–998.		
595 doi: 10.1038/s41558-019-0613-7		
⁵⁹⁶ Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Sun-		
tharalingam, P., Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. <i>Nature</i> , 586, 248–256. doi:		
10 1020 /-41500 0200 0		
2020)		
⁶⁰³ 2020) ⁶⁰⁴ USDA-NASS. (2020). United States Department of Agriculture - National Agricul-		
tural Statistics Service - Statistics by State. Retrieved from https://www.nass		

.usda.gov/Statistics_by_State/index.php (last accessed: 23 Jul 2020)

606

Supporting Information for "Quantifying nitrous oxide emissions in the U.S. Midwest - A top-down study using high resolution airborne in-situ observations"

Maximilian Eckl¹, Anke Roiger¹, Julian Kostinek¹, Alina Fiehn¹, Heidi

Huntrieser¹, Christoph Knote², Zachary R. Barkley³, Stephen M. Ogle⁴,

Bianca C. Baier ^{5,6}, Colm Sweeney⁶, and Kenneth J. Davis^{3,7}

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

²Ludwig-Maximilians-University (LMU), Meteorological Institute, Munich, Germany

³Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA

⁴Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA

⁵Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, CO, USA

⁶NOAA Global Monitoring Laboratory, Boulder, CO, USA

⁷Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA

Corresponding author: M. Eckl, Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Münchener Straße 20, 82234 Weßling, Germany. (Maximilian.Eckl@dlr.de)

Contents of this file

X - 2

- 1. Text S1 to S5 $\,$
- 2. Figure S1 to S3
- 3. Tables S1 to S3

Introduction

Here we provide additional information on the employed model setup (Text S1), the EDGAR sectors (Text S2 and Table S1), the linear relationship between the tracer integral along a transect and the emission strength (Text S3 and Table S2), the uncertainties in the Monte Carlo simulations (Text S4), the influence of the bias correction on the results (Text S5 and Table S3), the background (Figure S1), and the model performance (Figure S2 and S3).

Text S1: Model setup

Simulations are performed with WRF-Chem version 4.0.2. The employed model physics configuration includes the Thompson scheme for microphysics, RRTMG for radiation, Kain-Fritsch for cumulus parameterization, MYNN 2.5 level TKE for PBL physics and the Noah land-surface model. Vertically, each domain encompasses 50 terrain-following layers, with a greater resolution near the ground. Two-way nesting enables information transfer between the domains. Moreover, we use the WRF Four Dimensional Data Assimilation (FDDA) feature to perform analysis nudging in the outer domain, to ensure an optimal meteorological model solution.

Text S2: EDGAR sector description

We merge the different EDGAR sectors into three main sectors: Agricultural E_{AGR} , nonagricultural anthropogenic E_{nonAGR} , and natural emissions E_N . E_{AGR} covers emissions from agricultural soils, indirect emissions from agricultural soils, manure management,

and agricultural waste burning, whereas E_{nonAGR} consists of all remaining anthropogenic EDGAR sectors, including (among others) road transportation, chemical processes, and power industry. E_N encompasses natural soil and ocean emissions. As emissions from oceans did not contribute to Midwest N₂O enhancements in our simulations, our E_N involves only natural soil emissions. The applied assumption that all those sources originate from the surface is valid except for aviation related emissions. Since those account for less than 0.3% of the yearly total EDGAR Midwest emissions, we excluded them from E_{nonAGR} under the assumption that this would not have a significant impact on our results. A detailed listing of all EDGAR sectors can be found in Table S1.

Text S3: Linearity of tracer integral and emission strength

For each flight the area summed agricultural emissions E_{AGR}^{sum} are linear to the corresponding tracer integral along a transect A_{AGR} . This implies that if agricultural emissions are scaled by a certain factor, the tracer integral is also scaled by this factor. To verify this, we simulated each flight day with a E_{AGR} multiplied by 10, 20, and 30 (F_{AGR}^E) and compared those factors with the resulting magnitude of enlargement in A_{AGR} (F_{AGR}^A). A linear regression between F_{AGR}^E and F_{AGR}^A (see Table S2) exhibits negligible residuals and a slope and y-intercept which differs insignificantly from one and zero, respectively, proving the equivalence of F_{AGR}^E and F_{AGR}^A .

Text S4: Uncertainties in Monte Carlo simulation

The uncertainties of the observed background ($\sigma = \pm 0.5$ ppb and $\sigma = \pm 0.9$ ppb for 2017

and 2019, respectively) are the standard deviation of all 2^{nd} low level leg percentiles of a whole campaign. The background uncertainties are dominated by large scale circulations and long term variability such as seasons, and are probably not normally distributed. However, too few observations prevent the determination of the actual distribution. Here, we assume that a normal distribution is the best first order guess. Janssens-Maenhout et al. (2019) states the relative 1σ uncertainty of total EDGAR4.3.2 N₂O emissions in the U.S. to be 21%. No sector-specific uncertainty is provided. Hence, we use this value as a rough estimate for the uncertainty of only non agricultural emissions. As we could not find uncertainty estimates for EDGAR5.0 and EDGAR2 we assume them to be the same and twice as in EDGAR4.3.2, respectively. For days with large agricultural correction factors F_{AGR} the uncertainties of E_{nonAGR} and E_N affect the results only marginally. Hence, this uncertainty analysis is implicitly based on the assumption that E_{nonAGR} and E_N

are well represented in the inventories compared to E_{AGR} . Following Butterbach-Bahl, Baggs, Dannenmann, Kiese, and Zechmeister-Boltenstern (2013) mainly N₂O emissions from soils account for the uncertainty in N₂O budgets on regional and national scales, which supports our assumption.

Text S5: Bias correction

Following Barkley et al. (2019), the bias due to an erroneous modeled wind speed and PBL height can be corrected with:

$$C_{mod}^{corr} = C_{mod} \cdot \frac{U_{mod} \cdot Z_{mod}}{U_{obs} \cdot Z_{obs}} \tag{1}$$

Here, C_{mod} is the modeled N₂O enhancement along a transect and C_{mod}^{corr} the corresponding bias corrected one, which is further used for the model optimization. U_{mod}/U_{obs} is the modeled/observed wind speed averaged along the transect. For the observed PBL height Z_{obs} we use in situ soundings conducted with the C-130 at the beginning, the end, and during the transect. For each flown sounding the PBL height is determined as the lowest (regarding altitude) significant maximum of the observed virtual potential temperature lapse rate profile. The average of all determined PBL heights defines Z_{obs} of the transect. For the modeled PBL height of a transect Z_{mod} we use the modeled profiles at the grid points closest to the flown soundings and perform the same approach as for Z_{obs} . However, there is a caveat here. We correct for model errors at the position of the aircraft at a certain time but we are simulating large areas for several days. The model error varies over space and time, thus, limiting the benefit of the posed bias correction. Table S3 summarizes the results of the bias correction.

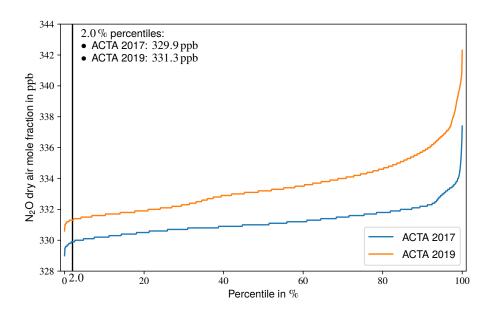


Figure S1. Percentiles for ACTA 2017 and ACTA 2019. Low level legs (at approx. 1000 ft AGL) of all conducted flights were merged and the corresponding percentiles were calculated.

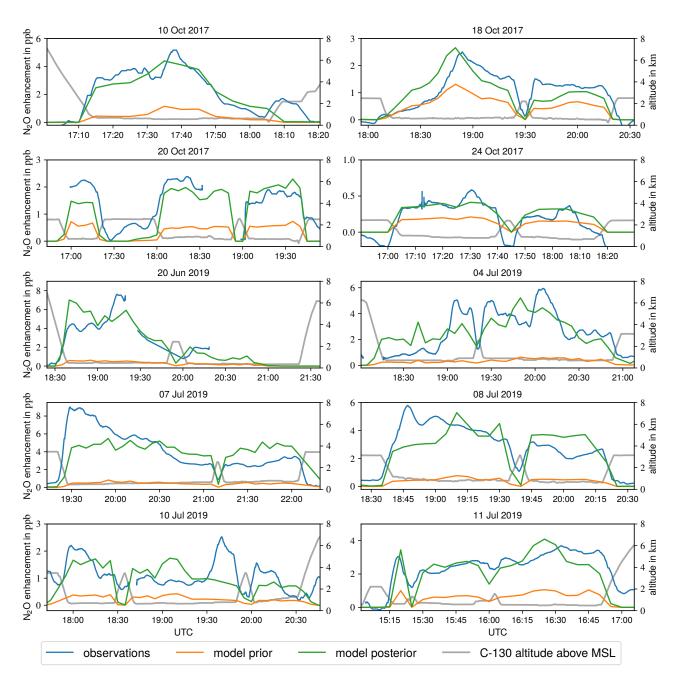


Figure S2. Observed vs. modeled N₂O enhancement (emitted from EDGAR4.3.2/EDGAR2 $E_{AGR} + E_{nonAGR} + E_N$) for each of the ten investigated flights. For an easier visual comparison the 5 min-moving average of the observations is shown. The modeled enhancements are the mean from the three model runs with different initial and boundary meteorological conditions (ERA5, GDAS-FNL, and NARR) on the closest grid points in space and time to each observation.

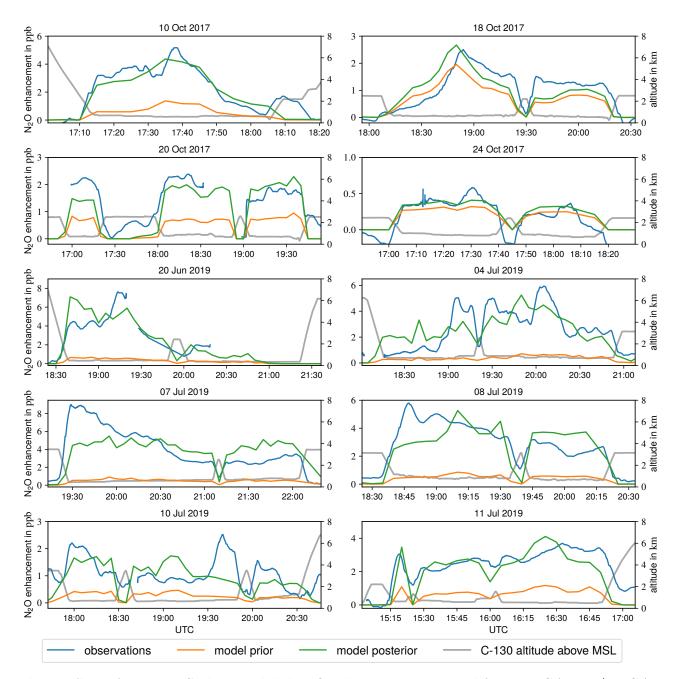


Figure S3. As Figure S2 but modeled N₂O enhancement emitted from EDGAR5.0/EDGAR2 $E_{AGR} + E_{nonAGR} + E_N.$

Table S1. Components of E_{AGR} , E_{nonAGR} , and E_N . If not otherwise specified, sectors are

included in EDGAR4.3.2 and EDGAR5.0. All existing EDGAR4.3.2/EDGAR5.0 $\rm N_2O$ sectors

are listed as well as all natural EDGAR2 sectors.

main sector	EDGAR sector	IPCC $(2006b)$ code			
$\overline{E_{AGR}}$	Manure management	3A2			
	Agricultural waste burning	3C1b			
	Agricultural soils	3C2 + 3C3 + 3C4 + 3C7			
	Indirect N_2O emissions from agriculture	3C5 + 3C6			
$\overline{E_{nonAGR}}$	Power industry	1A1a			
	Oil refineries and transformation industry	1A1b+1A1ci+1A1cii+1A5biii+1B1b+ 1B2aiii6+1B2biii3+1B1c			
	Combustion for manufacturing	1A2			
	Road transportation	1A3b			
	Railways, pipelines, off-road transport	1A3c+1A3e			
	Shipping	1A3d			
	Energy for buildings	1A4+1A5			
	Fuel exploitation	1B1a+1B2aiii2+1B2aiii3+1B2bi+ 1B2bii			
	Chemical processes	2B			
	Solvents and products use	2D3+2E+2F+2G			
	Solid waste landfills	4A+4B			
	Solid waste incineration	$4\mathrm{C}$			
	Waste water handling	4D			
	Indirect emissions from NO_x and NH_3	5A			
	Fossil fuel fires	5B			
$\overline{E_N}$	Natural soils (just EDGAR2)	-			
excluded	Aviation climbing and descent	1A3a_CDS			
	Aviation cruise	1A3a_CRS			
	Aviation landing and takeoff	1A3a_LTO			
	Aviation supersonic	1A3a_SPS			
	Oceans (just EDGAR2)	_			

Table S2. Results of a linear regression between F_{AGR}^E and F_{AGR}^A and their correlation R. Every flight day was simulated with a F_{AGR}^E of 10, 20, and 30 and the corresponding F_{AGR}^A was calculated. The regression was performed via a least squares polynomial fit. The residual is the squared Euclidean 2-norm. See Text S3 for a description of F_{AGR}^E and F_{AGR}^A .

EDGAR version	slope	slope-1	y-intercept	residual	R	R-1
v4.3.2 v5.0	1.0 1.0	$\begin{array}{c} -0.05\times 10^{-3} \\ 1.28\times 10^{-3} \end{array}$	$\begin{array}{c} -0.47\times 10^{-3} \\ -1.26\times 10^{-3} \end{array}$	0.02×10^{-3} 3.39×10^{-3}	$1.0 \\ 1.0$	$-0.02 \times 10^{-7} \\ -3.6 \times 10^{-7}$

Table S3. Modeled vs. observed wind speed and PBL height for each flight and the corresponding bias correction factor. In the model columns the first value belongs to the ERA5, the second to the GDAS-FNL, and the third to the NARR simulation.

Day	U_{obs} in m s ⁻¹	U_{mod} in m s ⁻¹	$\frac{U_{mod}}{U_{obs}}$	Z_{obs} in m	Z_{mod} in m	$\frac{Z_{obs}}{Z_{mod}}$	$\frac{U_{mod} \cdot Z_{mod}}{U_{obs} \cdot Z_{obs}}$
		5.2	1.5		1134	1.1	1.6
10 Oct 2017	3.5	3.0	0.9	1067	1319	1.2	1.1
		3.7	1.1		1325	1.2	1.3
		12.9	1.2		1106	0.8	0.9
18 Oct 2017	10.6	12.9	1.2	1417	1307	0.9	1.1
		12.8	1.2		1116	0.8	1.0
		17.9	1.4		963	0.8	1.0
20 Oct 2017	13.1	17.3	1.3	1273	1013	0.8	1.1
		17.2	1.3		1084	0.9	1.1
		15.9	1.0		1565	1.0	1.0
24 Oct 2017	15.7	15.9	1.0	1603	1716	1.1	1.1
		15.5	1.0		1668	1.0	1.0
		9.1	1.3		1024	0.7	0.9
20 Jun 2019	7.1	9.0	1.3	1480	1188	0.8	1.0
		8.4	1.2		1094	0.7	0.9
		5.1	1.0		1784	1.1	1.1
04 Jul 2019	4.9	4.3	0.9	1684	1944	1.2	1.0
		3.5	0.7		2080	1.2	0.9
		4.6	1.1		2417	1.3	1.4
07 Jul 2019	4.3	3.7	0.9	1889	2420	1.3	1.1
		3.5	0.8		2246	1.2	1.0
		10.2	1.1		1955	1.1	1.3
08 Jul 2019	9.0	10.1	1.1	1718	2055	1.2	1.3
		9.3	1.0		1994	1.2	1.2
		10.2	1.0		1956	1.1	1.1
10 Jul 2019	10.4	10.9	1.0	1767	1893	1.1	1.1
		10.2	1.0		2014	1.1	1.1
		7.3	1.1		1861	1.1	1.2
11 Jul 2019	6.7	5.8	0.9	1659	1638	1.0	0.9
		6.6	1.0		1608	1.0	1.0

X - 13

References

- Barkley, Z. R., Davis, K. J., Feng, S., Balashov, N., Fried, A., DiGangi, J., ... Halliday, H. S. (2019). Forward Modeling and Optimization of Methane Emissions in the South Central United States Using Aircraft Transects Across Frontal Boundaries. *Geophysical Research Letters*, 46(22), 13564–13573. doi: 10.1029/2019gl084495
- Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? *Philosophical Transactions of the Royal Society B: Biological Sciences*, 368, 20130122. doi: 10.1098/rstb.2013.0122
- Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., ... Oreggioni, G. D. (2019). EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. *Earth System Science Data*, 11(3), 959–1002. doi: 10.5194/essd-11-959-2019