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Abstract

The U.S. Midwest, with its intensive agriculture, is a prominent source of nitrous oxide (N2O) but top-down and bottom-

up N2O emission estimates differ significantly. We quantify Midwest N2O emissions by combining observations from the

Atmospheric Carbon and Transport-America campaign with model simulations to scale the Emissions Database for Global

Atmospheric Research (EDGAR). In October 2017 we increased agricultural EDGAR version 4.3.2/5.0 emissions by a factor of

6.3±4.6/3.5±2.7, resulting in Midwest N2O emissions of 0.42±0.28 nmol m-2 s-1. In June/July 2019, a period when extreme

flooding was occurring in the Midwest, EDGAR was increased by a factor of 11.4±6.6/9.9±5.7, resulting in N2O emissions

of 1.06±0.57 nmol m-2 s-1. Agricultural emissions estimated with the process-based model DayCent (Daily version of the

CENTURY ecosystem model) were larger than in EDGAR but still substantially smaller than our estimates. Due to the

complexity of N2O emissions, further studies are necessary to fully characterize Midwest emissions.
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Oberpfaffenhofen, Germany8
2Ludwig-Maximilians-University (LMU), Meteorological Institute, Munich, Germany9

3Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park,10

PA, USA11
4Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA12

5Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder,13

CO, USA14
6NOAA Global Monitoring Laboratory, Boulder, CO, USA15

7Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA16

Key Points:17

• Within the ACT-America project we gathered a unique airborne in situ N2O data18

set over the U.S. Midwest with enhancements up to 9 ppb19

• N2O emissions in the U.S. Midwest were on average 0.42±0.28 nmol m−2 s−1 in20

Oct 2017 and 1.06± 0.57 nmol m−2 s−1 in Jun-Jul 201921

• Bottom-up estimates from EDGAR and the often four times higher DayCent un-22

derestimate U.S. Midwest N2O emissions by factors up to 2023
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Abstract24

The U.S. Midwest, with its intensive agriculture, is a prominent source of nitrous oxide25

(N2O) but top-down and bottom-up N2O emission estimates differ significantly. We quan-26

tify Midwest N2O emissions by combining observations from the Atmospheric Carbon27

and Transport-America campaign with model simulations to scale the Emissions Database28

for Global Atmospheric Research (EDGAR). In October 2017 we increased agricultural29

EDGAR version 4.3.2/5.0 emissions by a factor of 6.3±4.6/3.5±2.7, resulting in Mid-30

west N2O emissions of 0.42±0.28 nmol m−2 s−1. In June/July 2019, a period when ex-31

treme flooding was occurring in the Midwest, EDGAR was increased by a factor of 11.4±32

6.6/9.9±5.7, resulting in N2O emissions of 1.06±0.57 nmol m−2 s−1. Agricultural emis-33

sions estimated with the process-based model DayCent (Daily version of the CENTURY34

ecosystem model) were larger than in EDGAR but still substantially smaller than our35

estimates. Due to the complexity of N2O emissions, further studies are necessary to fully36

characterize Midwest emissions.37

Plain Language Summary38

Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas contribut-39

ing to the warming of the planet and the dominant man-made ozone-depleting substance40

in the stratosphere. Its atmospheric concentrations have been rising since industrializa-41

tion mainly due to an increase in anthropogenic sources, with agriculture being the dom-42

inant source. The densely farmed U.S. Midwest plays an important role in the global N2O43

budget. However, previous studies that have collected observations of N2O indicate that44

estimates of surface emissions in the Midwest are substantially underestimating the truth.45

In this study we combine unique aircraft-based N2O measurements and model simula-46

tions to quantify Midwest emissions in October 2017 and June/July 2019. Agricultural47

inventory estimates had to be increased by factors up to 20 to match observations, re-48

vealing a large underestimation in current inventories. An extreme flooding event in 201949

when the summer observations occurred may be responsible for some of this discrepancy.50

Estimations of soil N2O emissions calculated with a state-of-the-art biogeochemical model51

show less underestimation but are still too low compared to the fluxes derived from the52

aircraft observational data.53
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1 Introduction54

Nitrous Oxide (N2O) is the third most important anthropogenic greenhouse gas55

(GHG) in terms of long-term radiative forcing (Myhre et al., 2013) and is the dominant56

ozone depleting substance in the stratosphere (Ravishankara et al., 2009). Global N2O57

concentrations are 333 ppb as of April 2020, approximately a 20 % increase since prein-58

dustrial times (MacFarling Meure et al., 2006; NOAA-ESRL, 2020). Anthropogenic sources59

like agriculture and fossil fuel combustion contribute to this trend (Ciais et al., 2013).60

In recent years, those N2O emissions have increased at a higher rate than expected (Thompson61

et al., 2019; Tian et al., 2020). Agricultural soil management associated with reactive62

forms of nitrogen (N) (i.e. mineral fertilizer, livestock manure additions, and legumes)63

accounts for half of global N2O emissions (Paustian et al., 2016). Analyses of the iso-64

topic composition of N2O indicate that the observed rise in global atmospheric N2O con-65

centrations is mainly caused by the increased application of N-fertilizers (Park et al., 2012).66

Bottom-up estimates, such as the Emissions Database for Global Atmospheric Re-67

search (EDGAR, 2020), use emission factors and activity data to calculate emissions.68

However, the nature of N2O soil emissions complicates their quantification. Agricultural69

practices (e.g. fertilizer application rate, crop type) as well as meteorological and soil con-70

ditions (e.g. precipitation, soil moisture) directly influence emissions, resulting in large71

temporal variability in N2O surface fluxes (Stehfest & Bouwman, 2006). Process-based72

biogeochemical models like DayCent (Daily version of the CENTURY ecosystem model)73

provide a more sophisticated approach for estimation of N2O emission by simulating soil74

processes based on various environmental drivers. Nevertheless, fluxes at regional scale75

are still highly uncertain due to insufficient direct observations (Reay et al., 2012).76

The U.S. Midwest is one of the most intensively cultivated agricultural regions world-77

wide (FAO, 2020; USDA-NASS, 2020), thus contributing significantly to the global an-78

thropogenic N2O emissions (Miller et al., 2012). Previous top-down studies indicate that79

emissions in the Midwest are underestimated by EDGAR, but are highly uncertain on80

the magnitude of this underestimation (Kort et al., 2008; Miller et al., 2012; Griffis et81

al., 2013; Chen et al., 2016; Fu et al., 2017). Kort et al. (2008) showed that EDGAR ver-82

sion 32FT2000 underestimates emissions in May-June 2003 by a factor of 2.62 over the83

central U.S. and southern Canada. Miller et al. (2012) derived scaling factors of 6.1 and84

10.1 for EDGAR version 4 for June 2004 and June 2008, respectively. Fu et al. (2017)85

concluded even higher scaling factors for agricultural EDGAR version 4.2 emissions in86

the Corn Belt region of the Midwest, with scaling factors of 19.0-28.1 in June 2010. These87

described top-down studies used tall tower measurements, characterized by long time se-88

ries over several months but limited in their spatial coverage. Only Kort et al. (2008)89

used aircraft-based flask measurements, which provide some spatial (central U.S. and south-90

ern Canada) but limited temporal (May-June 2003) coverage. The large range in the quan-91

titative results show that Midwest N2O surface fluxes are underestimated by EDGAR92

inventories, but their true values are highly uncertain.93

In this study we quantify N2O emissions for several flights conducted in parts of94

the U.S. Midwest in October 2017 and June/July 2019 with a top-down approach. Un-95

like previous studies which have relied on observations with limited spatial coverage, this96

study uses continuous airborne in situ measurements of N2O. By combining these ob-97

servations with forward model simulations, we optimize agricultural fluxes from EDGAR98

version 4.3.2 and version 5.0 to quantify Midwest N2O emissions. The employed method99

was already successfully applied in several methane top-down studies (Barkley et al., 2017;100

Barkley, Davis, et al., 2019; Barkley, Lauvaux, et al., 2019). The derived emission rates101

are finally compared to flux estimates of direct soil emissions produced with EDGAR102

and the biogeochemical model DayCent (Parton et al., 1998; Del Grosso et al., 2001, 2011).103
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Figure 1. (a) Selected low level legs (at approx. 1000 ft AGL) of the ACT-America cam-

paigns in 2017 and 2019, color-coded with observed N2O dry air mole fractions. The study region

(Midwest) is encircled by a thick black line. (b) Time series of N2O dry air mole fraction of the

flight on July 07, 2019 with error bars indicating ±0.8 ppb and coincident NOAA/GML flask

measurements of N2O (±0.4 ppb). The corresponding transect in (a) is encircled in red.

2 Data and Methods104

2.1 Observational Data105

We use measurements from the Atmospheric Carbon and Transport-America (ACT-106

America, https://act-america.larc.nasa.gov/) campaign. ACT-America includes107

five airborne campaigns from 2016 to 2019, providing a rich data set of in situ and re-108

mote greenhouse gas measurements in all four seasons. During the fall 2017 (10 Oct -109

13 Nov) and summer 2019 (17 Jun - 27 Jul) field deployments, we collected approximately110

60 h of in situ data onboard NASA’s C-130 with an Aerodyne Quantum Cascade Laser111

Spectrometer (QCLS) measuring N2O mole fractions (among others) at 2 Hz with an un-112

certainty of 0.8 ppb (Kostinek et al., 2019). Every 3-10 minutes in-flight calibrations were113

performed using standards that were cross-calibrated after the campaign against NOAA/GML114

standards traceable to the NOAA-2006A scale (Hall et al., 2007). Additionally, during115

each flight 6-12 whole-air flask samples were taken by NOAA/GML and measured for116

trace gases including N2O with an uncertainty of 0.4 ppb (Sweeney et al., 2015, 2018; Baier117

et al., 2020). Those were merged into the QCLS time series to fill any data gaps.118

For this study we selected four flights from 2017 (October) and six flights from 2019119

(June/July). For each flight the C-130 flew low level legs well within the planetary bound-120

ary layer (PBL) (∼1000 ft above ground level (AGL)) for at least 45 min during which121

Midwest air was sampled. Figure 1a shows the selected transects, color-coded with ob-122

served N2O dry air mole fractions. These flights cover most parts of the Midwest. Mole123

fractions up to 341 ppb were observed (Figure 1b). We are not aware of comparable con-124

tinuous N2O measurements spanning most of Midwest across two seasons, highlighting125

the unique opportunity to quantify Midwest emissions with these data.126

2.2 Model Setup127

The Weather Research and Forecasting model with chemistry enabled version 4.0.2128

(WRF-Chem; Grell et al. (2005)) is used to propagate N2O enhancements emitted from129

emission inventories (Section 2.3) throughout the atmosphere. Initial N2O concentra-130
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tions and the inflow at the boundaries of the model domain are set to zero. Thus, we131

simulate only enhancements caused by emissions within the model domain. We treat N2O132

as a passive tracer due to its long atmospheric lifetime of ∼ 116 years (Prather et al.,133

2015). The model domain consists of an outer and inner domain with a horizontal res-134

olution of 15 km × 15 km and 3 km × 3 km, respectively. The outer domain, centered135

over the Midwest, covers nearly the whole continental U.S., northern Mexico, and south-136

ern Canada (Figure 2a), whereas the extension and position of the inner domain is sep-137

arately chosen for each flight so that the low level legs are spaciously encapsulated. We138

perform each simulation with three different meteorological initial and boundary con-139

ditions: The 5th generation atmospheric reanalysis data (ERA5, 2017; Hersbach et al.,140

2020), the North American Regional Reanalysis (NARR, 2005), and the Global Data As-141

similation System Final analysis (GDAS-FNL, 2015). As in Barkley, Davis, et al. (2019),142

we use these different simulations to estimate model transport errors (Dı́az-Isaac et al.,143

2018). See the supporting information (SI) for additional information about the model144

setup.145

2.3 Emission Inventories146

The prior N2O surface emission estimates for the optimization were obtained from147

EDGAR version 4.3.2 (EDGAR4.3.2, 2017; Janssens-Maenhout et al., 2019) and version148

5.0 (EDGAR5.0, 2019; Crippa et al., 2020). For this study the different sectors in the149

inventories were merged into three main sectors: agricultural EAGR, anthropogenic non-150

agricultural EnonAGR, and natural emissions EN (see SI). We assume that these three151

sectors cover all N2O emissions in the model domain. EDGAR4.3.2 and EDGAR5.0 pro-152

vide monthly resolved N2O fluxes from anthropogenic source (EAGR and EnonAGR) on153

a 0.1° × 0.1° grid for 2012 and 2015, respectively, but do not include fluxes from nat-154

ural sources. Hence, we supplemented both versions with yearly EN on a 1°× 1° grid155

from EDGAR version 2.0 (EDGAR2; Olivier et al. (1996, 1999)). All fluxes are assumed156

to originate from the surface.157

With the process-based, biogeochemical model DayCent we estimated daily direct158

N2O soil emissions from crop- and grassland on a 0.5°×0.5° grid in the Midwest from159

2011 to 2015, which were aggregated to a monthly time step. The model simulates fluxes160

of carbon and nitrogen between the atmosphere, vegetation, and soil thus deriving N2O161

emissions. Incorporating several environmental drivers, including weather patterns, agri-162

cultural practices, soil characteristics, and crop features, this approach provides a more163

sophisticated estimate of soil emissions than the emission factor based EDGAR inven-164

tory. The GHG inventory of the United States Environmental Protection Agency (EPA,165

2020) uses DayCent estimates of direct soil emissions for emissions reporting of agricul-166

tural soil N2O to the UN Framework Convention on Climate Change. DayCent does not167

calculate emissions from manure management, agricultural waste burning, indirect soil168

emissions, and those associated with minor crops such as vegetables. The EPA inven-169

tory quantifies these sources and subsources with an emission factor approach. We es-170

timate their contribution by employing the yearly estimates from EPA, calculating their171

relative fraction of the EPA direct soil emissions, and adding them to our monthly es-172

timates. As a result, our DayCent inventory properly accounts for the total agricultural173

emissions, but not the spatial distribution of agricultural sources which are not estimated174

by DayCent.175

2.4 Optimization Technique176

To solve for N2O emissions, we use an approach similar to the optimization described177

in Barkley et al. (2017). First, we calculate the observed N2O enhancements by subtract-178

ing a background from the measured absolute mole fraction. For each campaign we de-179

rive one background by taking the 2nd percentile of all low level legs of the entire cam-180

paign (see SI). The background is defined campaign-wise rather than transect-wise be-181
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cause during some transects we were not able to measure background mole fractions as182

we started a low level leg within a plume and did not exit the plume inside of the PBL183

(Figure 1b).184

With observed N2O enhancements calculated, we then compare modeled N2O en-185

hancements emitted from our prior emission estimate (EAGR+EnonAGR+EN ) to the186

observed enhancements. Differences between model and observed enhancements are then187

minimized for each flight by scaling agricultural emissions EAGR with a factor FAGR thus188

quantifying emissions. This process is reliant on the assumption that the discrepancy189

between the observed and modeled N2O is driven primarily by errors in the EAGR. As190

agricultural emissions are the dominant N2O source in our flights, we scale EAGR, as-191

suming that errors in EnonAGR and EN are inconsequential to the overall solution. The192

complexity of N2O soil emissions suggests that EAGR exhibits a much higher uncertainty193

than other sources (Butterbach-Bahl et al., 2013), supporting the presented approach.194

As an equation, this optimization technique is described by calculating FAGR through195

the minimization of the following cost function:196

J(FAGR) = |Aobs − (FAGR ·AAGR +AnonAGR +AN )︸ ︷︷ ︸
=Amod(FAGR)

| (1)197

Aobs and Amod are the time integral along a transect of observed and modeled enhance-198

ments, respectively (e.g., area below plume in Figure 3a). Amod consists of an agricul-199

tural portion AAGR scaleable with FAGR, a non-agricultural anthropogenic portion AnonAGR,200

and a natural portion AN . We compare integrals rather than enhancements themselves201

because we are interested in the amount of N2O emitted in the atmosphere. Neither the202

model transport nor the inventory is perfect and even small uncertainties in just one of203

them could cause a shift or deformation in the alignment of the modeled plume relative204

to the observed plume. By minimizing the difference in the total N2O enhancements rather205

than the point-by-point absolute error, we preserve the capability to solve for total N2O206

emissions even when the modeled and observed plumes do not align. Due to the linear-207

ity between AAGR and the area averaged EAGR (see SI), a FAGR derived with equation208

1 denotes a FAGR-folded EAGR.209

2.5 Uncertainty Assessment210

We adopted the method of Barkley, Davis, et al. (2019) to assess uncertainties in211

our solutions. FAGR is affected by uncertainties in the following variables:212

1. observed background mole fraction213

2. AnonAGR214

3. AN215

4. model transport216

5. model wind speed and PBL height217

6. spatial distribution in EDGAR emissions218

We quantify the influence of uncertainties 1 to 4 by using a Monte Carlo approach. For219

each flight we repeat the optimization 10 000 times with a perturbed background mole220

fraction, AnonAGR, and AN . For the background we take the value derived from the ob-221

servations and add a normal random number with µ = 0 ppb and σ = ±0.5 ppb for222

2017 and σ = ±0.9 ppb for 2019. AnonAGR and AN are independently multiplied by223

a factor drawn from a normal distribution with µ = 1.0 and σ = ±0.21 and σ = ±0.42,224

respectively. To account for the model transport error, we randomly select one of the three225

model runs with different meteorological initial and boundary conditions, creating vari-226

ability in the plume shape. The resulting spread in FAGR is used as its uncertainty. Ex-227

planations of the values that represent the uncertainties are in the SI.228
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Figure 2. (a) EDGAR5.0 N2O emissions (plus EDGAR2 EN ) within the model domain

(gray box). The Midwest is encircled in green. (b) Direct soil emissions in July 2015 estimated

with DayCent. (c) Monthly Midwest emissions. EnonAGR in EDGAR4.3.2 is almost identical to

EDGAR5.0. Total agricultural DayCent emissions are estimated utilizing the EPA GHG inven-

tory (Section 2.3).

The modeled wind speed and PBL height uncertainty (source 5), cannot be cov-229

ered by the Monte Carlo simulation. Errors in these variables cause lower or higher sim-230

ulated enhancements thus producing biases. Following Barkley et al. (2017) we correct231

for those biases by applying a correction factor based on the differences between the mod-232

eled and observed wind speed and PBL height. On average the modeled wind speed and233

PBL height is 8 % and 3 % higher than observations, respectively. The impact of this cor-234

rection on our results is insignificant. Results and further explanations can be found in235

the SI.236

Our final source of uncertainty relates to uncertainties regarding errors in the spa-237

tial distribution of the fluxes in the prior inventory, and is difficult to quantify. However,238

the mapping of emissions in EDGAR is based on several high-resolution proxy data sets239

(Janssens-Maenhout et al., 2019). For this reason, we assume its spatial errors to be small.240

Given the insignificant difference between modeled and observed wind speeds and PBL241

heights, the good agreement between modeled and measured plume structures support242

this assumption (see SI). Furthermore, because we quantify large area sources and not243

point sources, slight misplacement in the inventory would only marginally affect our re-244

sults. At the same time, missing or strongly misplaced fluxes would produce errors that245

are not considered in this study.246
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3 Results and Discussion247

3.1 Emission Inventory Comparison248

Figure 2a shows prior July N2O emissions in the outermost model domain from an-249

thropogenic EDGAR5.0 and natural EDGAR2 sources. Compared to EDGAR4.3.2 no250

significant differences in the spatial distribution of emissions is seen, both versions just251

differ in the strength of the surface fluxes. The largest surface fluxes are concentrated252

in the Midwest, coinciding with the Corn Belt and its dominant agricultural emissions.253

Figure 2b shows DayCent direct soil emissions in July 2015. Similar to EDGAR emis-254

sion maps, the Corn Belt within the Midwest is a prominent source of N2O. We are not255

able to perform a detailed comparison of the spatial distributions in EDGAR and Day-256

Cent as both do not cover the same set of sources. However, in terms of the overall mag-257

nitude, DayCent estimates much higher surface fluxes compared to EDGAR, despite con-258

taining fewer sources (gridded total agricultural DayCent emissions are not available; Sec-259

tion 2.3).260

Figure 2c displays the monthly evolution of EAGR, EnonAGR, and EN averaged over261

the Midwest. Both EDGAR versions have an annual average EAGR of approximately 0.10 nmol m−2 s−1.262

However, unlike EDGAR5.0, EDGAR4.3.2 exhibits a strong seasonal cycle ranging from263

0.05 nmol m−2 s−1 in winter up to 0.24 nmol m−2 s−1 in spring. In spring, when most N-264

fertilizer is applied, the amount peaks, followed by a plateau during summer at 0.09 nmol m−2 s−1.265

The harvest season in fall features a local peak at 0.11 nmol m−2 s−1. In a future EDGAR5.0266

release a seasonal cycle for some crop related emissions will be implemented (Crippa et267

al., 2020). EnonAGR shows no significant change over the year and is on average 0.04 nmol m−2 s−1
268

in both versions. Natural soil emissions account for 0.02 nmol m−2 s−1 per month.269

From 2011 to 2015 DayCent emissions in the Midwest range between 0.23–0.35 nmol m−2 s−1,270

0.12–0.21 nmol m−2 s−1, and 0.06–0.08 nmol m−2 s−1 in June, July, and October respec-271

tively. June and July DayCent emissions are significantly larger than in EDGAR, de-272

spite manure management, indirect soil, and agricultural waste burning emissions not273

being included. DayCent’s October emissions are within the magnitude of agricultural274

EDGAR emissions. We estimate total agricultural Midwest emissions from 2011 to 2015275

by combining DayCent direct soil emissions and the EPA GHG inventory (Section 2.3),276

resulting in 0.32–0.48 nmol m−2 s−1, 0.16–0.30 nmol m−2 s−1, and 0.08–0.11 nmol m−2 s−1
277

in June, July, and October, respectively. In June/July this is on average over four/two278

times higher than EDGAR EAGR estimates. The 2012 emissions are significantly lower279

than in the other years causing the large range across years in the summer months. Dur-280

ing this year, the most extensive drought since the 1930s occurred across a large swath281

of the U.S., including most of the Midwest, which lead to widespread harvest failure (NOAA-282

NCEI, 2020). This event might explain the low values and indicates that during an av-283

erage climatological year DayCent emissions are at the upper end of the range. Further-284

more, in contrast to EDGAR4.3.2 which states constant emissions in June and July, Day-285

Cent emissions are much higher in June than in July. This is consistent with the N2O286

climatology in Sweeney et al. (2015).287

3.2 Model Optimization288

Here, we provide an example of the model optimization process for Oct 10, 2017289

(Figure 3a). In the eastern part of the Midwest N2O enhancements up to 7 ppb were ob-290

served within the PBL. The slightly negative values at the beginning of the time series291

occurred prior to the low level leg in the free troposphere. Our background is derived292

from air within the PBL and is representative for the time and location of the campaign.293

Free tropospheric air might have a different history and hence different background which294

can lead to negative values if we subtract our background. Model simulations with un-295

modified EDGAR emissions show only enhancements up to 1 ppb along the transect. How-296
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(a) model optimization for Oct 10, 2017 with EDGAR5.0 and NARR initial conditions

Figure 3. (a) Sample model optimization for Oct 10, 2017 with EDGAR5.0 (plus EDGAR2

EN ) and NARR initial conditions. The left panel shows the prior and optimized modeled N2O

enhancements along the flight track together with observed enhancements. The right panel shows

a map of optimized modeled N2O enhancements (from Eopt
AGR + EnonAGR + EN ) at 300 m AGL

at 17:30 UTC and the flight track color-coded with the observed enhancements. (b) Mean and

standard deviation of agricultural correction factors FAGR for the investigated research flights

resulting from Monte Carlo simulations. (c) EDGAR5.0 Midwest N2O emissions with optimized

and prior EAGR.
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ever, by applying an agricultural correction factor FAGR of 8.3 the model is able to re-297

produce our measurements. Optimizations of the remaining days can be found in the SI.298

Figure 3b shows the mean and standard deviation for FAGR of the Monte Carlo299

simulations of the ten research flights for the two EDGAR versions. As both invento-300

ries have a comparable spatial distribution, factors vary due to differences in total emis-301

sions. EDGAR4.3.2 correction factors are considerably higher for October 2017 and slightly302

higher for June/July 2019 than EDGAR5.0. For EDGAR4.3.2, FAGR ranges from 2.9±303

1.5 to 11.3±3.8 in 2017, with an average factor of 6.3±4.6. EDGAR5.0 FAGR is cal-304

culated to be lower but still ranges from 1.6± 0.8 to 6.8± 2.3, with an average factor305

of 3.5 ± 2.7. For 2019 we modified EDGAR4.3.2 with a FAGR between 5.5 ± 2.1 and306

20.2±6.3 and EDGAR5.0 between 4.9±1.9 and 17.4±5.5. On average this denotes an307

agricultural correction factor of 11.4±6.6 and 9.9±5.7 for EDGAR4.3.2 and EDGAR5.0,308

respectively. Altogether, both EDGAR versions exhibit a significant underestimation of309

agricultural emissions. Seasonal differences are likely one cause for the large difference310

in correction factors between 2017 and 2019. Additionally, during the 2019 aircraft cam-311

paign, an extreme flooding event occurred that likely influenced our results (discussed312

below). Although EDGAR4.3.2 exhibits a seasonal cycle, its agricultural correction fac-313

tor also varies considerably between 2017 and 2019. Hence, the seasonality is not cap-314

tured in the EDGAR inventory for the Midwest, which appears to be caused by the flood-315

ing. Figure 3c displays the EDGAR5.0 average Midwest emissions for each flight day with316

non-optimized and optimized agricultural emissions. For EDGAR4.3.2 the optimized re-317

sult is (nearly) the same as both versions differ (nearly) only in their strength of EAGR318

which is adjusted in the course of the optimization. On average, optimized total N2O319

emissions are 0.42± 0.28 nmol m−2 s−1 in 2017 and 1.06± 0.57 nmol m−2 s−1 in 2019.320

Optimized emissions for June/July 2019 are 2–3 times higher compared to Day-321

Cent emissions. Despite this, DayCent emissions are closer to our optimized emissions322

compared to EDGAR during the same period. In contrast, DayCent and EDGAR emis-323

sions are both too low by a similar magnitude in October compared to our optimized324

results. Hence, as DayCent considers regional characteristics, it performs much better325

on the regional scale in the summer than the emission factor approach that is used in326

the EDGAR inventory. A more quantitative evaluation of DayCent would require sur-327

face flux calculations for 2017 and 2019 incorporating the corresponding regional con-328

ditions like weather, soil conditions, and N-fertilizer application rate and time. DayCent329

has not been applied to estimate emissions specific to 2017 and 2019 so it is not clear330

if the model would underestimate the values for these years although this may be the331

case given the historical data from 2011–2015.332

Fu et al. (2017) reported emissions of 3.00–4.38 nmol m−2 s−1 during June 1-20, 2010333

for the Corn Belt, which is significantly higher than our estimates for June/July 2019.334

Griffis et al. (2013) estimated the Corn Belt emissions to be around 2 nmol m−2 s−1 and335

1 nmol m−2 s−1 in June/July 2010 and 2011, respectively, which is consistent with our336

findings. Kort et al. (2008) and Miller et al. (2012) derived scaling factors for the cen-337

tral U.S. To be able to compare their results to ours, we estimated the corresponding338

flux densities for the Midwest region using their scaling factors for the respective EDGAR339

versions. Kort et al. (2008) derived 0.54 nmol m−2 s−1 for May/June 2003 and Miller et340

al. (2012) 0.57/0.25 nmol m−2 s−1 and 0.94/0.53 nmol m−2 s−1 for June/July 2004 and341

2008, respectively. Both studies show lower values than our estimate. Miller et al. (2012)342

stated that maximum emissions occurred in June. Our DayCent calculations are also high-343

est in June. This could partly explain our lower estimates compared to Fu et al. (2017)344

as we report for the end of June/beginning of July after the expected emission peak. More-345

over, Fu et al. (2017) only scaled Corn Belt emissions and kept other regions unmodi-346

fied which could lead to higher estimates, if they sampled other regions with lower emis-347

sion rates than the Corn Belt. Overall, our estimates are in the range of previous top-348

down studies. However, the spread among the studies is large.349
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The nature of soil N2O emissions leads to significant temporal variability in the emis-350

sions that is not represented in the EDGAR inventory. Unlike EDGAR, DayCent is ca-351

pable of representing those variations to a certain extent. In our 2011–2015 calculations352

the monthly standard deviations range from 10 % in October to 21 % in July, demon-353

strating the strong interannual variability. Furthermore, weather conditions in the study354

domain in 2019 were unusually extreme. During the campaign, the U.S. was experienc-355

ing its wettest period in 125 years, with severe flooding in the Midwest (NOAA, 2020)356

forcing the farmers to significantly delay planting in the affected regions (USDA, 2020)357

and postponing the peak emission period. Depending on whether the zenith is shifted358

closer to or further away from our investigated period in June/July this event may have359

either amplified or lowered our emission estimates. Additionally, the above-average hu-360

midity might have enhanced soil N2O emissions leading to higher estimates (Butterbach-361

Bahl et al., 2013). The influence of this flooding event cannot be quantified within this362

study, as this would require more data over longer periods spanning the whole event. How-363

ever, in a follow-up study we plan to use DayCent simulations driven with those flood-364

ing conditions to gain insights on how soil N2O emissions were affected.365

4 Conclusion366

Unique continuous in situ airborne N2O measurements of ten research flights were367

used to quantify N2O emissions in the U.S. Midwest using a top-down approach. In Oc-368

tober 2017 and June/July 2019 agricultural Midwest emission were on average 6.3±4.6/3.5±369

2.7 and 11.4±6.6/9.9±5.7 times higher than EDGAR4.3.2/EDGAR5.0 estimates re-370

sulting in 0.42 ± 0.28 nmol m−2 s−1 and 1.06 ± 0.57 nmol m−2 s−1 Midwest emissions,371

respectively. Our 2019 estimates were most likely influenced by an extreme flooding event,372

which is difficult to capture in EDGAR as the inventory uses a more climatological av-373

erage emissions dataset. Agricultural soil emissions estimated with DayCent in 2011–374

2015 were 0.32–0.48, 0.16–0.30, and 0.08–0.11 nmol m−2 s−1 in June, July, and October,375

respectively. Based on these historical emission estimates, this is higher than non-optimized376

EDGAR emissions, but still significantly lower than our optimized fluxes. Our findings377

are in the range of previous top-down estimates for the Corn Belt and central U.S. How-378

ever, a quantitative comparison of those studies show that the range of derived N2O sur-379

face fluxes is large, likely due to the temporal complexity of N2O soil emissions.380

More N2O focused studies are necessary to fully understand the drivers of Midwest381

N2O emissions and the most appropriate modeling methods to estimate emission pat-382

terns. To cover the high temporal variability on various scales, long term projects with383

regular airborne measurements spanning wide areas of the Midwest are necessary. Com-384

bining a process-based model like DayCent capable of simulating the temporal and spa-385

tial variability of N2O emissions, with extensive airborne and tall tower top-down stud-386

ies at selected spots and times, could be a cost effective approach that would limit the387

number of flights needed to produce accurate estimates for the region and improve na-388

tional reporting of emissions (Ogle et al., 2020). As interest grows in expanding efforts389

to reduce N2O emissions (Kanter et al., 2020), improved quantification of N2O surface390

fluxes is mandatory for policy makers to be able to develop effective mitigation strate-391

gies.392
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. . . Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of495

the Royal Meteorological Society , 1–51. doi: 10.1002/qj.3803496

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Den-497

tener, F., . . . Oreggioni, G. D. (2019). EDGAR v4.3.2 Global Atlas of the498

three major greenhouse gas emissions for the period 1970–2012. Earth System499

Science Data, 11 (3), 959–1002. doi: 10.5194/essd-11-959-2019500

Kanter, D. R., Ogle, S. M., & Winiwarter, W. (2020). Building on Paris: integrat-501

ing nitrous oxide mitigation into future climate policy. Current Opinion in En-502

vironmental Sustainability , 47 , 1–6. doi: 10.1016/j.cosust.2020.04.005503

Kort, E. A., Eluszkiewicz, J., Stephens, B. B., Miller, J. B., Gerbig, C., Nehrkorn,504

T., . . . Wofsy, S. C. (2008). Emissions of CH4 and N2O over the United States505

and Canada based on a receptor-oriented modeling framework and COBRA-506

NA atmospheric observations. Geophysical Research Letters, 35 , L18808. doi:507

10.1029/2008GL034031508

–13–



manuscript submitted to Geophysical Research Letters

Kostinek, J., Roiger, A., Davis, K. J., Sweeney, C., DiGangi, J. P., Choi, Y., . . .509

Butz, A. (2019). Adaptation and performance assessment of a quantum and510

interband cascade laser spectrometer for simultaneous airborne in situ observa-511

tion of CH4, C2H6, CO2, CO and N2O. Atmospheric Measurement Techniques,512

12 (3), 1767–1783. doi: 10.5194/amt-12-1767-2019513

MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van514

Ommen, T., . . . Elkins, J. (2006). Law Dome CO2, CH4 and N2O ice core515

records extended to 2000 years BP. Geophysical Research Letters, 33 (14). doi:516

10.1029/2006GL026152517

Miller, S. M., Kort, E. A., Hirsch, A. I., Dlugokencky, E. J., Andrews, A. E., Xu,518

X., . . . Wofsy, S. C. (2012). Regional sources of nitrous oxide over the United519

States: Seasonal variation and spatial distribution. Journal of Geophysical520

Research: Atmospheres, 117 , D06310. doi: 10.1029/2011JD016951521
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Introduction

Here we provide additional information on the employed model setup (Text S1), the

EDGAR sectors (Text S2 and Table S1), the linear relationship between the tracer integral

along a transect and the emission strength (Text S3 and Table S2), the uncertainties in

the Monte Carlo simulations (Text S4), the influence of the bias correction on the results

(Text S5 and Table S3), the background (Figure S1), and the model performance (Figure

S2 and S3).

Text S1: Model setup

Simulations are performed with WRF-Chem version 4.0.2. The employed model physics

configuration includes the Thompson scheme for microphysics, RRTMG for radiation,

Kain-Fritsch for cumulus parameterization, MYNN 2.5 level TKE for PBL physics and the

Noah land-surface model. Vertically, each domain encompasses 50 terrain-following layers,

with a greater resolution near the ground. Two-way nesting enables information transfer

between the domains. Moreover, we use the WRF Four Dimensional Data Assimilation

(FDDA) feature to perform analysis nudging in the outer domain, to ensure an optimal

meteorological model solution.

Text S2: EDGAR sector description

We merge the different EDGAR sectors into three main sectors: Agricultural EAGR, non-

agricultural anthropogenic EnonAGR, and natural emissions EN . EAGR covers emissions

from agricultural soils, indirect emissions from agricultural soils, manure management,
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and agricultural waste burning, whereas EnonAGR consists of all remaining anthropogenic

EDGAR sectors, including (among others) road transportation, chemical processes, and

power industry. EN encompasses natural soil and ocean emissions. As emissions from

oceans did not contribute to Midwest N2O enhancements in our simulations, our EN in-

volves only natural soil emissions. The applied assumption that all those sources originate

from the surface is valid except for aviation related emissions. Since those account for

less than 0.3 % of the yearly total EDGAR Midwest emissions, we excluded them from

EnonAGR under the assumption that this would not have a significant impact on our results.

A detailed listing of all EDGAR sectors can be found in Table S1.

Text S3: Linearity of tracer integral and emission strength

For each flight the area summed agricultural emissions Esum
AGR are linear to the correspond-

ing tracer integral along a transect AAGR. This implies that if agricultural emissions are

scaled by a certain factor, the tracer integral is also scaled by this factor. To verify this, we

simulated each flight day with a EAGR multiplied by 10, 20, and 30 (FE
AGR) and compared

those factors with the resulting magnitude of enlargement in AAGR (FA
AGR). A linear re-

gression between FE
AGR and FA

AGR (see Table S2) exhibits negligible residuals and a slope

and y-intercept which differs insignificantly from one and zero, respectively, proving the

equivalence of FE
AGR and FA

AGR.

Text S4: Uncertainties in Monte Carlo simulation

The uncertainties of the observed background (σ = ±0.5 ppb and σ = ±0.9 ppb for 2017
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and 2019, respectively) are the standard deviation of all 2nd low level leg percentiles of a

whole campaign. The background uncertainties are dominated by large scale circulations

and long term variability such as seasons, and are probably not normally distributed.

However, too few observations prevent the determination of the actual distribution. Here,

we assume that a normal distribution is the best first order guess. Janssens-Maenhout et

al. (2019) states the relative 1 σ uncertainty of total EDGAR4.3.2 N2O emissions in the

U.S. to be 21 %. No sector-specific uncertainty is provided. Hence, we use this value as a

rough estimate for the uncertainty of only non agricultural emissions. As we could not find

uncertainty estimates for EDGAR5.0 and EDGAR2 we assume them to be the same and

twice as in EDGAR4.3.2, respectively. For days with large agricultural correction factors

FAGR the uncertainties of EnonAGR and EN affect the results only marginally. Hence,

this uncertainty analysis is implicitly based on the assumption that EnonAGR and EN

are well represented in the inventories compared to EAGR. Following Butterbach-Bahl,

Baggs, Dannenmann, Kiese, and Zechmeister-Boltenstern (2013) mainly N2O emissions

from soils account for the uncertainty in N2O budgets on regional and national scales,

which supports our assumption.

Text S5: Bias correction

Following Barkley et al. (2019), the bias due to an erroneous modeled wind speed and

PBL height can be corrected with:

Ccorr
mod = Cmod ·

Umod · Zmod

Uobs · Zobs

(1)
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Here, Cmod is the modeled N2O enhancement along a transect and Ccorr
mod the corresponding

bias corrected one, which is further used for the model optimization. Umod/Uobs is the

modeled/observed wind speed averaged along the transect. For the observed PBL height

Zobs we use in situ soundings conducted with the C-130 at the beginning, the end, and

during the transect. For each flown sounding the PBL height is determined as the lowest

(regarding altitude) significant maximum of the observed virtual potential temperature

lapse rate profile. The average of all determined PBL heights defines Zobs of the transect.

For the modeled PBL height of a transect Zmod we use the modeled profiles at the grid

points closest to the flown soundings and perform the same approach as for Zobs. However,

there is a caveat here. We correct for model errors at the position of the aircraft at a

certain time but we are simulating large areas for several days. The model error varies

over space and time, thus, limiting the benefit of the posed bias correction. Table S3

summarizes the results of the bias correction.
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Figure S1. Percentiles for ACTA 2017 and ACTA 2019. Low level legs (at approx. 1000 ft

AGL) of all conducted flights were merged and the corresponding percentiles were calculated.
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Figure S2. Observed vs. modeled N2O enhancement (emitted from EDGAR4.3.2/EDGAR2

EAGR + EnonAGR + EN) for each of the ten investigated flights. For an easier visual comparison

the 5 min-moving average of the observations is shown. The modeled enhancements are the mean

from the three model runs with different initial and boundary meteorological conditions (ERA5,

GDAS-FNL, and NARR) on the closest grid points in space and time to each observation.
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Figure S3. As Figure S2 but modeled N2O enhancement emitted from EDGAR5.0/EDGAR2

EAGR + EnonAGR + EN .
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Table S1. Components of EAGR, EnonAGR, and EN . If not otherwise specified, sectors are

included in EDGAR4.3.2 and EDGAR5.0. All existing EDGAR4.3.2/EDGAR5.0 N2O sectors

are listed as well as all natural EDGAR2 sectors.

main sector EDGAR sector IPCC (2006b) code

EAGR Manure management 3A2
Agricultural waste burning 3C1b
Agricultural soils 3C2+3C3+3C4+3C7
Indirect N2O emissions from agriculture 3C5+3C6

EnonAGR Power industry 1A1a

Oil refineries and transformation industry
1A1b+1A1ci+1A1cii+1A5biii+1B1b+
1B2aiii6+1B2biii3+1B1c

Combustion for manufacturing 1A2
Road transportation 1A3b
Railways, pipelines, off-road transport 1A3c+1A3e
Shipping 1A3d
Energy for buildings 1A4+1A5

Fuel exploitation
1B1a+1B2aiii2+1B2aiii3+1B2bi+
1B2bii

Chemical processes 2B
Solvents and products use 2D3+2E+2F+2G
Solid waste landfills 4A+4B
Solid waste incineration 4C
Waste water handling 4D
Indirect emissions from NOx and NH3 5A
Fossil fuel fires 5B

EN Natural soils (just EDGAR2) –

excluded Aviation climbing and descent 1A3a CDS
Aviation cruise 1A3a CRS
Aviation landing and takeoff 1A3a LTO
Aviation supersonic 1A3a SPS
Oceans (just EDGAR2) –
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Table S2. Results of a linear regression between FE
AGR and FA

AGR and their correlation R.

Every flight day was simulated with a FE
AGR of 10, 20, and 30 and the corresponding FA

AGR was

calculated. The regression was performed via a least squares polynomial fit. The residual is the

squared Euclidean 2-norm. See Text S3 for a description of FE
AGR and FA

AGR.

EDGAR slope slope−1 y-intercept residual R R-1
version

v4.3.2 1.0 −0.05 × 10−3 −0.47 × 10−3 0.02 × 10−3 1.0 −0.02 × 10−7

v5.0 1.0 1.28 × 10−3 −1.26 × 10−3 3.39 × 10−3 1.0 −3.6 × 10−7
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Table S3. Modeled vs. observed wind speed and PBL height for each flight and the

corresponding bias correction factor. In the model columns the first value belongs to the ERA5,

the second to the GDAS-FNL, and the third to the NARR simulation.

Day Uobs in m s−1 Umod in m s−1 Umod

Uobs
Zobs in m Zmod in m Zobs

Zmod

Umod·Zmod

Uobs·Zobs

5.2 1.5 1134 1.1 1.6
10 Oct 2017 3.5 3.0 0.9 1067 1319 1.2 1.1

3.7 1.1 1325 1.2 1.3

12.9 1.2 1106 0.8 0.9
18 Oct 2017 10.6 12.9 1.2 1417 1307 0.9 1.1

12.8 1.2 1116 0.8 1.0

17.9 1.4 963 0.8 1.0
20 Oct 2017 13.1 17.3 1.3 1273 1013 0.8 1.1

17.2 1.3 1084 0.9 1.1

15.9 1.0 1565 1.0 1.0
24 Oct 2017 15.7 15.9 1.0 1603 1716 1.1 1.1

15.5 1.0 1668 1.0 1.0

9.1 1.3 1024 0.7 0.9
20 Jun 2019 7.1 9.0 1.3 1480 1188 0.8 1.0

8.4 1.2 1094 0.7 0.9

5.1 1.0 1784 1.1 1.1
04 Jul 2019 4.9 4.3 0.9 1684 1944 1.2 1.0

3.5 0.7 2080 1.2 0.9

4.6 1.1 2417 1.3 1.4
07 Jul 2019 4.3 3.7 0.9 1889 2420 1.3 1.1

3.5 0.8 2246 1.2 1.0

10.2 1.1 1955 1.1 1.3
08 Jul 2019 9.0 10.1 1.1 1718 2055 1.2 1.3

9.3 1.0 1994 1.2 1.2

10.2 1.0 1956 1.1 1.1
10 Jul 2019 10.4 10.9 1.0 1767 1893 1.1 1.1

10.2 1.0 2014 1.1 1.1

7.3 1.1 1861 1.1 1.2
11 Jul 2019 6.7 5.8 0.9 1659 1638 1.0 0.9

6.6 1.0 1608 1.0 1.0
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