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Abstract

Uncertainty estimation is an important part of practical hydrogeology. With most of the subsurface unobservable, attempts at

system characterization will invariably be incomplete. Uncertainty estimation, then, must quantify the influence of unknown

parameters, forcings, and structural deficiencies. In this endeavour, numerical modeling frameworks support an unparalleled

degree of subsurface complexity and its associated uncertainty. When boundary uncertainty is concerned, however, the nu-

merical framework can be restrictive. The interdependence of grid discretization and the enclosing boundaries make exploring

uncertainties in their extent or nature difficult. The Analytic Element Method (AEM) may be an interesting complement, as it

is computationally efficient, economic with its parameter count, and does not require enclosure through finite boundaries. These

properties make AEM well-suited for comprehensive uncertainty estimation, particularly in data-scarce settings or exploratory

studies. In this study, we explore the use of AEM for flow field uncertainty estimation, with a particular focus on boundary

uncertainty. To induce versatile, uncertain regional flow more easily, we propose a new element based on conformal mapping.

We then include this element in a simple Python-based AEM toolbox and benchmark it against MODFLOW. Coupling AEM

with a Markov Chain Monte Carlo (MCMC) routine using adaptive proposals, we explore its use in a synthetic case study. We

find that AEM permits efficient uncertainty estimation for groundwater flow fields, and its analytical nature readily permits

continuing analyses which can support Lagrangian transport modelling or the placement of numerical model boundaries.
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Key Points: 9 

• In this study, we explore the use of the Analytic Element Method (AEM) for 10 

hydrogeological uncertainty estimation using a MCMC algorithm 11 

• We include a flexible element based on conformal mapping for the influence of uncertain 12 

regional flow in a simple Python-based AEM toolbox 13 

• We find that AEM can be a useful tool for direct steady-state uncertainty estimation or 14 

act as a support tool during model creation 15 
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Abstract 17 

Uncertainty estimation is an important part of practical hydrogeology. With most of the 18 

subsurface unobservable, attempts at system characterization will invariably be incomplete. 19 

Uncertainty estimation, then, must quantify the influence of unknown parameters, forcings, and 20 

structural deficiencies. In this endeavour, numerical modeling frameworks support an 21 

unparalleled degree of subsurface complexity and its associated uncertainty. When boundary 22 

uncertainty is concerned, however, the numerical framework can be restrictive. The 23 

interdependence of grid discretization and the enclosing boundaries make exploring 24 

uncertainties in their extent or nature difficult. The Analytic Element Method (AEM) may be an 25 

interesting complement, as it is computationally efficient, economic with its parameter count, 26 

and does not require enclosure through finite boundaries. These properties make AEM well-27 

suited for comprehensive uncertainty estimation, particularly in data-scarce settings or 28 

exploratory studies. In this study, we explore the use of AEM for flow field uncertainty estimation, 29 

with a particular focus on boundary uncertainty. To induce versatile, uncertain regional flow 30 

more easily, we propose a new element based on conformal mapping. We then include this 31 

element in a simple Python-based AEM toolbox and benchmark it against MODFLOW. Coupling 32 

AEM with a Markov Chain Monte Carlo (MCMC) routine using adaptive proposals, we explore its 33 

use in a synthetic case study. We find that AEM permits efficient uncertainty estimation for 34 

groundwater flow fields, and its analytical nature readily permits continuing analyses which can 35 

support Lagrangian transport modelling or the placement of numerical model boundaries. 36 

  37 
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1 Introduction 38 

Groundwater modelling plays an important role in practical hydrogeology. In a discipline in which 39 

neither the system nor its properties can be observed in its entirety, it is the task of models to 40 

establish spatial and temporal continuity between point-wise information. Where only few 41 

observations are available, uncertainty dominates the system characterization. These 42 

uncertainties must be quantified to endow any information derived from models with the correct 43 

confidence intervals. 44 

Sources of model uncertainty are manifold and somewhat elusive, but arise from three main 45 

sources: unknown subsurface parameters (parametric uncertainty: e.g., Linde et al. 2017; Renard 46 

2007), unknown boundary conditions and forcings (forcing uncertainty: e.g., Guillaume et al. 47 

2016; Vrugt et al. 2008), and model structural inadequacies (conceptual uncertainty; e.g., Höge, 48 

Guthke, and Nowak 2019). In practice, hydrogeologists tend to devote most resources to 49 

parametric uncertainty, focusing on the ambiguity in sediment parameters such as hydraulic 50 

conductivity. Where forcing uncertainty is considered, it is rarely explored beyond the addition 51 

of white noise to perturb model predictions. This omission can be problematic, since the 52 

influence of forcing uncertainty may be indistinguishable from (e.g., Erdal and Cirpka 2016) or 53 

even eclipse (e.g., Peeters and Turnadge 2019) the effects of parametric uncertainty. 54 

While all models of unisolated systems require boundary conditions in some form, the specific 55 

requirements depend on the chosen modelling framework. Numerical models place particularly 56 

stringent requirements, demanding a finite domain along which specified boundary conditions 57 

are enforced. Such boundaries are rarely well-defined in reality. Common pragmatic choices are 58 
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prescribed hydraulic head conditions inter- and extrapolated from marginal observation wells, or 59 

no-flow boundaries along anticipated streamlines. Since the nature of these boundaries 60 

intertwines them closely with the extent of the model grid, they do not lend themselves readily 61 

to the exploration of uncertainty in their extent or nature without adjusting the grid as well. 62 

Prescribed in- or outflow boundary conditions would be a more versatile choice to represent the 63 

uncertain influence of regional flow in a finite domain, but are very difficult to inform and 64 

consequently rarely used. Recognizing this limitation, simulation frameworks such as 65 

MODFLOW 6 (Langevin et al. 2017) have since implemented multi-level setups which allow the 66 

use of simpler, large-scale models to inform the flow boundaries of the main area of interest. 67 

This shifts the boundary problem up the hierarchy, but at additional computational expense. 68 

In search of a remedy, an interesting alternative may be found in the analytic element method 69 

(AEM: Haitjema 1995; Strack 1989, 2017). Instead of discretizing the model domain into cells or 70 

finite elements, AEM constructs a complex-valued, scale-invariant analytic solution to the flow 71 

field. This is achieved through superposition (addition) of simpler solutions, the eponymous 72 

analytic elements (Figure 1). While initially developed for two-dimensional, steady-state settings, 73 

AEM has since been extended to support three-dimensional model domains (Haitjema 1985), 74 

smooth inhomogeneities (Craig 2009), and transient dynamics (Furman and Neuman 2003). AEM 75 

code has been distributed in modelling frameworks such as TIMML (Bakker 2006; Bakker and 76 

Strack 2003), Visual AEM (Craig et al. 2009), or AnAqSim (Fitts et al. 2015). 77 
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In the context of forcing uncertainty, AEM has the desirable property that it does not demand 78 

enclosure through finite, specified boundaries. Traditionally, regional flow is implemented as 79 

infinite, uniform flow, and subsequently deformed through the placement of farfield elements 80 

outside the immediate domain of interest. In principle, this method can induce highly complex 81 

flow fields, but is not very well suited for practical uncertainty estimation due to its indirect 82 

nature. More substantial changes to regional flow would require changing the position and 83 

rotation of the farfield elements. 84 

In this study, our objective is two-fold: we strive to (i) demonstrate the intrinsic suitability of AEM 85 

for Bayesian inference, capitalizing on its naturally low parameter count and computational 86 

efficiency. Its natural approach to complexity (start simple, add more complexity as required) can 87 

make it more suitable for exploratory analyses than numerical models, which are often used the 88 

 

Figure 1. Example of how a AEM model is constructed. The influences of distinct elements (left) can be super-imposed to obtain 
a single, more complex solution (right, bottom left). Certain elements like prescribed head boundaries require additional 
preparation to ensure they induce the desired effect (see Section 2.1.8). 
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other way around (start complex, then simplify by aggregating grid parameters). Towards this 89 

end, we (ii) propose a new element based on a Möbius transformation, which can directly induce 90 

curving, diverging, or converging regional base flow within a circular model domain of arbitrary 91 

size. This improves AEM’s suitability for the exploratory analysis of boundary uncertainty. 92 

We subsequently demonstrate the use of AEM and this element for the inference of local, two-93 

dimensional, steady state flow fields. We provide a modular Python code coupling a simple AEM 94 

implementation to a MCMC routine, intended for preliminary explorations of plausible flow fields 95 

during model conceptualization, or simple Bayesian flow field inference in data-scarce 96 

environments. 97 

2 Theory 98 

In this section, we will outline the basic concepts of AEM and some of the most common elements 99 

(Section 2.1). The derivations summarized here are mainly based on and explored in much 100 

greater detail in the seminal works of Otto Strack (1989, 2017). For our Python implementation, 101 

we largely follow the object-oriented procedure suggested by Bakker & Kelson (2009). We 102 

present the uncertainty estimation algorithm used in this study in Section 2.2. Variables in bold 103 

notation denote vectors, matrices, or vector- or matrix-valued functions, while standard notation 104 

is reserved for scalar-valued variables and functions. The derivatives of all elements presented in 105 

the following are listed in Appendix 1 (supporting information). 106 

2.1 Analytic Element Method 107 

As opposed to conventional numerical models, the Analytic Element Method (AEM) does not 108 

seek a solution in terms of hydraulic head, but instead computes a complex valued potential 109 
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𝛀 = 𝚽 + 𝑖𝚿 (1) 

where 𝚽 is the discharge (or hydraulic) potential, 𝚿 is the stream function, which corresponds 110 

to the flow direction, and 𝑖 = √−1 is the imaginary unit. At the heart of the method lies the 111 

superposition of simple liear differential equations – the eponymous analytic elements – to yield 112 

more intricate solutions: 113 

𝛀 = ∑ 𝒇𝑒(𝒛; 𝜽𝑒)

𝐸

𝑒=1

 (2) 

where 𝐸 is the number of analytic elements, and 𝒇𝑒 is the function for a specific analytic element 114 

parameterized by 𝜽𝑒 and evaluated at 𝒛, a vector of complex-valued coordinates: 115 

𝒛 = 𝒙 + 𝑖𝒚. (3) 

where 𝐱 and 𝐲 are two coordinate components. The conversion of hydraulic potential 𝚽 into 116 

hydraulic heads 𝝓 depends on the aquifer type (Eq. 8.12 and 8.13, Strack 1989): 117 

𝝓 =
𝜱 +

1
2 𝑘𝐻2

𝑘𝐻
 (confined, 𝜱 ≥

1

2
𝑘𝐻2) (4) 

𝝓 = √
2𝜱

𝑘
 (unconfined, 𝜱 <

1

2
𝑘𝐻2) (5) 

where 𝑘 is the hydraulic conductivity and 𝐻 is the thickness of the aquifer. Its inverse is: 118 

𝜱 = 𝑘𝐻𝝓 −
1

2
𝑘𝐻2 (confined, 𝝓 ≥ 𝐻) (6) 

𝜱 =
1

2
𝑘𝝓2 (unconfined, 𝝓 < 𝐻) (7) 

Analytic elements can be broadly classified into two group. Some elements like extraction wells, 119 

line sinks, or area sinks only have to induce a relative change, for example extract a certain net 120 

amount of water. As such, they can simply be added to the stack and induce the desired flow 121 
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response. We will refer to such elements as relative elements. Other elements, like prescribed 122 

head boundary conditions, no-flow boundaries, or inhomogeneities must enforce an absolute 123 

condition at certain locations. These elements must adapt themselves to the influence of other 124 

elements. We will refer to such elements as absolute elements. The strength values of absolute 125 

elements can be found by setting up a system of linear equations, which we will describe in 126 

Section 2.1.8. 127 

In the following, we will present a number of elements which will be used in this study. We will 128 

restrict our analysis to circular model domains, but note that all elements except the newly 129 

introduced Möbius base can operate on arbitrary – even infinite – domains. 130 

2.1.1 Uniform base flow (relative) 131 

Many analytic elements require some sort of background potential or base flow. A classic choice 132 

in AEM is uniform regional flow with specified direction, offset, and gradient: 133 

𝛀 = 𝑄𝒛 exp(−𝑖𝛼) +
Φ𝑚𝑖𝑛 + Φ𝑚𝑎𝑥

2
 (8) 

𝑄 =
Φ𝑚𝑎𝑥 − Φ𝑚𝑖𝑛

2𝑟𝑑
 (9) 

where 𝛼 is the flow’s rotation in radians relative to the eastern axis, 𝑟𝑑 is the radius of the circular 134 

domain, and Φ𝑚𝑖𝑛 and Φ𝑚𝑎𝑥 are the minimum and maximum discharge potential. These 135 

potentials can alternatively be obtained by defining a minimum and maximum hydraulic head 136 

ϕ𝑚𝑖𝑛 and ϕ𝑚𝑎𝑥, then converting them to hydraulic potentials with Equation (6) or (7). The 137 

second right-hand side term in Equation (8) offset the potential to the range between Φ𝑚𝑖𝑛 and 138 

Φ𝑚𝑎𝑥. An example of this flow is illustrated in Figure 2a. 139 



manuscript submitted to Water Resources Research 

9 

2.1.2 Möbius base flow (relative) 140 

Analytic elements can be superimposed on fields obtained from conformal mapping (e.g., Olver 141 

2018). Conformal mapping is a class of angle-preserving transformations which can convert grids 142 

in the complex plane – or, more specifically, simple complex potential fields such as flow on the 143 

 

Figure 2. Various analytic elements used in this study. (a) uniform base flow, (b) Möbius base flow, (c) rate-specified extraction 
well, (d) polygonal inhomoheneity (lower), (e) polygonal inhomogeneity (higher), (f) prescribed head boundary, (g) no-flow 
boundary, (h) areal sink (negative), and (i) areal sink (positive). All elements are shown for confined conditions, and all elements 
from (c) onwards use uniform base flow. Solutions for the stream function are not valid inside areal sinks (h, i) and have been 
masked inside the element. Elements which add or remove water from the system (wells, line sinks, area sinks) induce branch 
cuts, discontinuities in the stream function from the element westwards.  



manuscript submitted to Water Resources Research 

10 

unit square from east to west – into more complex shapes, while preserving the validity of the 144 

solution. Classic example of such methods are Schwarz-Christoffel transformations (SC: e.g., 145 

Driscoll and Trefethen 2009) and Möbius transformations. 146 

To obtain more complex regional flow than the uniform flow defined in Section 2.1.1, we chain a 147 

Schwarz-Christoffel transformation with a Möbius transformation. First, the Schwarz-Christoffel 148 

transformation maps the unit square onto the unit disk. Then, the Möbius transformation 149 

deforms the flow inside the unit disk. This process is illustrated in Figure 3. 150 

For computational purposes, we are mainly interested in the inverse of these maps: from the 151 

deformed unit disk (representing points in the model domain 𝒛, Figure 3c) back onto the unit 152 

square (yielding the corresponding complex potential 𝛀, Figure 3a). The first step consists of 153 

casting the model domain back onto the unit disk through translation and scaling: 154 

𝒛𝑢𝑑 =
𝒛 − 𝑧𝑑

𝑟𝑑
 (10) 

where 𝒛 are coordinates in the model domain, 𝑧𝑑 is the center and 𝑟𝑑 the radius of the circular 155 

model domain. The inverse Möbius transformation is defined as: 156 

𝜦 = 𝑴−1(𝒛𝑢𝑑; 𝑎, 𝑏, 𝑐, 𝑑) =
−𝑑𝒛𝑢𝑑 + 𝑏

𝑐 − 𝑎
 (11) 

where 𝜦 are the complex coordinates on the standard unit disk (Figure 3b), and 𝑎, 𝑏, 𝑐, and 𝑑 are 157 

the Möbius coefficients. These coefficients can be computed by defining three reference points 158 

on the standard unit circle (e.g., points A, B, and C in Figure 3b) and their images on the edge of 159 

the transformed Möbius unit disk (i.e., A, B, and C in Figure 3c). Instead of working with the 160 

complex-valued coordinates on the unit circle, it is easier to express them in terms of polar 161 

coordinates of unit length and angle 𝜑: 162 
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𝑍𝜑 = 𝑃(𝜑) = cos 𝜑 + 𝑖 sin 𝜑 (12) 

If we consider the static reference points in Figure 3b 163 

𝐴 ∶= 𝜆𝐴 =  cos(−0.25𝜋) + 𝑖 sin(−0.25𝜋) 

𝐵 ∶= 𝜆𝐵 =  cos(+0.25𝜋) + 𝑖 sin(+0.25𝜋) 

𝐶 ∶= 𝜆𝐶 = cos(+0.75𝜋) + 𝑖 sin(+0.75𝜋) 

(13) 

we can express their images on the Möbius unit circle of Figure 3c similarly 164 

𝑧𝐴 =  cos(𝜑𝐴) + 𝑖 sin(𝜑𝐴) 

𝑧𝐵 =  cos(𝜑𝐵) + 𝑖 sin(𝜑𝐵) 

𝑧𝐶 = cos(𝜑𝐶) + 𝑖 sin(𝜑𝐶) 

(14) 

Consequently, we can specify the Möbius transformation through three variables only: 𝜑𝐴, 𝜑𝐵, 165 

and 𝜑𝐶. We can then calculate the desired Möbius coefficients: 166 

[
𝑎 𝑏
𝑐 𝑑

] = [
𝑧𝐵 − 𝑧𝐶 𝑧𝐴𝑧𝐶 − 𝑧𝐴𝑧𝐵

𝑧𝐵 − 𝑧𝐴 𝑧𝐴𝑧𝐶 − 𝑧𝐶𝑧𝐵
]

−1

∙ [
𝜆𝐵 − 𝜆𝐶 𝜆𝐴𝜆𝐶 − 𝜆𝐴𝜆𝐵

𝜆𝐵 − 𝜆𝐴 𝜆𝐴𝜆𝐶 − 𝜆𝐶𝜆𝐵
] (15) 

We may then map the standard unit disk onto the unit square with an inverse Schwarz-Christoffel 167 

transformation (Fong 2019) 168 

 

Figure 3. Illustration of the conformal mapping from the unit square (a) through the unit disk (b) to the Möbius-transformed 
unit disk (c). The control points A, B, and C in the unit disk (b) and the Möbius-transformed unit disk (c) define the coefficients 
for the Möbius transformation. The forward transformations 𝑺𝑪 and 𝑴 are listed in Appendix 2. 
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𝛀𝑢𝑠 = 𝑺𝑪−1(𝜦) =
1 − 𝑖

−𝐾𝑒
𝐹 (𝒄 = cos−1 (

1 + 𝑖

√2
𝜦) , 𝑚 =

1

√2
) + 1 − 𝑖 (16) 

where 𝛀𝑢𝑠 is the complex potential on the unit square, 𝐹(𝒄, 𝑚) is the incomplete Legendre 169 

elliptical of the 1st kind with argument 𝒄 and parameter 𝑚: 170 

𝐹(𝒄, 𝑚) = ∫
1

√1 − 𝑚 sin2 𝑡

𝒄

0

𝑑𝑡 (17) 

and 𝐾𝑒 = 𝐹(𝑐 = 0.5𝜋, 𝑚 = 0.5) ≈ 1.854. This transformation is illustrated in Figure 3a and b. 171 

𝛀𝑢𝑠 may then be transformed into a user-specified range: 172 

𝛀 = (Φ𝑚𝑎𝑥 − Φ𝑚𝑖𝑛) (𝛀𝑢𝑠 + 1) 2⁄ + Φ𝑚𝑖𝑛 (18) 

A further examples of a Möbius base flow is shown in Figure 2b. 173 

2.1.3 Extraction or injection wells (relative) 174 

Wells are among the simplest analytic elements. The standard form of this element is (Equation 175 

24.8, Strack 1989): 176 

𝛀 = −
𝑄

2𝜋
ln(𝒛 − 𝑧𝑤𝑒𝑙𝑙) + 𝐶 (19) 

where 𝑄 is a positive or negative real-valued discharge, 𝑧𝑤𝑒𝑙𝑙 is the location of the well in terms 177 

of complex coordinates, and 𝐶 is a real constant. To recognize the need for the constant, consider 178 

the effect of the logarithm: If 𝒛 = 𝑧𝑤𝑒𝑙𝑙, the hydraulic potential is negative infinity, if 179 

‖𝒛 − 𝑧𝑤𝑒𝑙𝑙‖ → ∞, the hydraulic potential approaches positive infinity. 180 

This constant is usually combined with other additive constants in Equation (2) and determined 181 

by specifying a reference point of (assumed) known hydraulic potential in the so-called farfield, 182 

outside the area of interest. Defining this reference point is not a trivial task (Bakker et al. 2016; 183 

Haitjema 1995). 184 
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For practical purposes, we propose a slight adaptation. We adjust Equation (19) so that its 185 

influence on the discharge potential is zero at a distance of ‖𝑧 − 𝑧𝑤𝑒𝑙𝑙‖ = 𝑟𝑖 by subtracting the 186 

induced potential at this distance, which yields: 187 

𝛀 = −
𝑄

2𝜋
(ln(𝒛 − 𝑧𝑤𝑒𝑙𝑙) − ln(𝑟𝑖)) (20) 

where 𝑟𝑖 is the radius at which we assume the induced drawdown to become zero. Outside the 188 

range of 𝑟𝑖, the hydraulic potential increases to positive infinity, so its value should be selected 189 

cautiously. By default, we set 𝑟𝑖 = 2𝑟𝑑. An example of this element is illustrated in Figure 2c. 190 

2.1.4 Inhomogeneities (absolute) 191 

As the subsurface can be heterogeneous, we may wish to create zones of piece-wise constant 192 

hydraulic conductivity. Towards this end, we can define zones of discontinuous hydraulic 193 

conductivity enclosed by a polygon: 194 

𝛀 = ∑ [
𝑠𝑗

4𝜋𝑖
((𝒁𝑗 + 1) ln (

𝒁𝑗 − 1

𝒁𝑗 + 1
) − (𝒁𝑗+1 − 1) ln (

𝒁𝑗+1 − 1

𝒁𝑗+1 + 1
))]

𝑁𝑗

𝑗=1

 (21) 

Where 𝑁𝑗 is the number of vertices spanning up the polygon, 𝑠𝑗 are the strengths of each vertex, 195 

and  196 

𝒁𝑗 =
2𝒛 − (𝑧𝑗−1 + 𝑧𝑗)

𝑧𝑗 − 𝑧𝑗−1
 (22) 

where 𝑧𝑗 is the 𝑗th vertex of a closed polygon, so that 𝑧0 = 𝑧𝑁𝑗
 and 𝑧𝑁𝑗+1 = 𝑧1. The vertices’ 197 

strengths 𝑠𝑗 are determined as part of the linear system (see Section 0) to enforce the desired 198 

discontinuity between the conductivity outside (𝑘−) and inside (𝑘+) the polygon. Examples for 199 

inhomogeneities of lower and higher conductivity are illustrated in Figure 2d and Figure 2e. 200 
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2.1.5 Prescribed head boundaries (absolute) 201 

Line sinks inject or remove water along a line. As such, they can be used to simulate infiltration 202 

or exfiltration, for example from rivers, or to induce prescribed head boundaries. The extraction 203 

rate along a segment of the line element can be spatially varying (e.g., Janković and Barnes 1999; 204 

Strack 2018). In this study, we will use the constant rate formulation, and string together multiple 205 

segments of a line sink to implement spatially-varying extraction rates. Strack (1989) expresses 206 

the induced complex potential of line elements in terms of local coordinates: 207 

𝒁 =
2𝒛 − (𝑧1 + 𝑧2)

𝑧2 − 𝑧1
 (23) 

where 𝒁 is the local coordinate, 𝒛 the corresponding original coordinate, and 𝑧1 and 𝑧2 the 208 

original coordinates of the segment’s start and end points. This is a small conformal mapping, 209 

projecting the line sink onto the real axis between −1 and +1, and transforming all evaluation 210 

points accordingly. Using these local coordinates, the induced potential is defined as (eq. 8.479, 211 

Strack 2017): 212 

𝛀 = 𝑠
𝐿

4𝜋
((𝒁 + 1) ln(𝒁 + 1) − (𝒁 − 1) ln(𝒁 − 1) + 2) (24) 

where 𝑠 is the strength of the line sink and 𝐿 = |𝑧2 − 𝑧1| its length in global coordinates. Similarly 213 

to the well element, this element’s induced hydraulic potential increases unbounded with 214 

distance. As a consequence, we subtract the effect an influence radius similarly to Section 2.1.3: 215 

𝛀 = 𝑠
𝐿

4𝜋
((𝒁 + 1) ln(𝒁 + 1) − (𝒁 − 1) ln(𝒁 − 1) − (

2𝑟𝑖

𝐿
+ 2) ln (

2𝑟𝑖

𝐿
+ 2) + (

2𝑟𝑖

𝐿
) ln (

2𝑟𝑖

𝐿
)) (25) 

where 𝑟𝑖  is the distance of the zero influence point from the segment’s end point in terms of 216 

global coordinates. This element can be used for prescribed head boundaries (as an absolute 217 

element) or as a specified flow line sink (as a relative element). We may further extend 218 
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Equation (25) by introducing a connectivity parameter 0 ≤ 𝑐 ≤ 1 to scale each segment’s 219 

injection or extraction strength 𝑠 after the linear system has been solved. A connectivity of 0 220 

means the flow field is unaffected by the prescribed head boundary, a connectivity of 1 implies 221 

the flow field is fully controlled at the prescribed head boundary. An example of this element is 222 

illustrated in Figure 2f. 223 

2.1.6 No-flow boundaries (absolute) 224 

Line doublets create discontinuities in the complex potential while maintaining the mass balance. 225 

These elements can be used to create zonal inhomogeneities or no-flow boundaries. Their 226 

complex potential influence can be derived as (Strack 1989): 227 

𝛀 =
𝑠

4𝜋𝑖
((𝒁 + 1) ln (

𝒁 − 1

𝒁 + 1
) − (𝒁 − 1) ln (

𝒁 − 1

𝒁 + 1
)) (26) 

where 𝑠 is the element’s real-valued strength, and 𝒁 are localized coordinates of Equation (23). 228 

No-flow boundaries are absolute elements and can be obtained by chaining together several such 229 

segments in sequence. The no-flow condition is enforced by requiring that the gradient of the 230 

hydraulic potential across each segment must be zero (see Section 0). An example of such an 231 

element is illustrated in Figure 2g. 232 

2.1.7 Area sinks (relative) 233 

Area sinks are among the more complicated elements. Similar to inhomogeneities, they are 234 

defined based on closed polygons (Eq. 8.598, Strack 2017): 235 

𝛀 = −
𝑄

32𝜋𝑖
∑ 𝐿𝑗

2(𝒁𝑗 − �̅�𝑗)𝑯(𝒁𝑗)

𝑁𝑗

𝑗=1

+
𝑄𝐴

2𝜋
ln(𝒛 − 𝑧1) (27) 



manuscript submitted to Water Resources Research 

16 

where 𝑄 is the designated flux rate per area, 𝐿𝑗 is the length of the side from vertex 𝑗 − 1 to 𝑗, 236 

𝒁𝑗 is calculated according to Equation (22), �̅�𝑗 is its complex complement, 𝐴 is the area enclosed 237 

by the polygon, and 𝑯(𝒁𝑗) is calculated according to: 238 

𝑯(𝒁𝑗) = (𝒁𝑗 + 1) ln (
𝒁𝑗 − 1

𝒁𝑗 + 1
) + 2 ∑ ln (

𝒁𝑚 − 1

𝒁𝑚 + 1
)

𝑁𝑗

𝑚=𝑗+1

+ 2 (28) 

Examples of this element are illustrated in Figure 2h and Figure 2i. 239 

2.1.8 Solving the system of linear equations 240 

As we established in the beginning of Section 2.1, some elements must enforce absolute 241 

conditions at certain locations and thus depend on the influences of all other elements. To 242 

simultaneously satisfy the conditions imposed by these elements, their strengths 𝒔 are estimated 243 

jointly as part of a linear system of equations (e.g., Bakker and Kelson 2009; Strack 1989): 244 

𝑨 ∙ 𝒔 = 𝒙 (29) 

where 𝑨 is a 𝑁 × 𝑁 matrix, 𝑁 is the number of the absolute elements’ line segments or polygon 245 

vertices, 𝒔 is a vector of length 𝑁 containing all absolute segments’ strength parameters 𝑠, and 𝒙 246 

is a vector of length 𝑁 specifying the conditions to be met. 247 

To assemble 𝑨, each entry of the 𝑛th row contains the influence of the other absolute elements 248 

on the 𝑛th absolute control point (the center of a line segment or a polygon vertex) at unit 249 

strength (𝑠 = 1). For segments of no-flow boundaries, each corresponding row is filled with the 250 

hydraulic potential gradient 𝜕𝚽 𝜕𝒏⁄  along the segment’s normal vector 𝒏. The required 251 

derivatives of all elements are reported in Appendix 1. For prescribed head boundaries and 252 

inhomogeneities, each row contains influences on the hydraulic potential 𝚽 ( Figure 4, Step 2). A 253 

special case applies for the diagonal entries corresponding to inhomogeneities. To these entries, 254 
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a term specifying the discontinuity of hydraulic conductivity is added (𝑘− (𝑘+ − 𝑘−)⁄ , see 255 

Section 2.1.4). 256 

The target vector 𝒙 is assembled so that each absolute element’s conditions are fulfilled: 257 

• For prescribed head boundaries, the target hydraulic potential at the segment is 258 

calculated according to Equation (6) or (7), depending on aquifer type. Then, the 𝚽 259 

induced by the independent elements is subtracted from the target potential. 260 

•  For no-flow boundaries, the target is set to − 𝜕𝚽 𝜕𝒏⁄ , the negative gradient induced by 261 

all relative elements on the segment ( Figure 4, Step 3).  262 

• For inhomogeneities, the target hydraulic potential at the vertex is set to the 𝚽 induced 263 

by the independent elements times −1.  264 

With 𝑨 and 𝒙 defined, a standard linear solver can be used to obtain the unknown strength 265 

parameters 𝒔. 266 

2.2 Bayesian inference 267 

Bayesian statistics are a formalized way of assigning probability densities, which can be 268 

interpreted as a plausibility metric, to different alternative hypotheses, often defined as a vector 269 

of unknown parameters 𝜽 = [𝜃1, … , 𝜃𝐷]⏉, where 𝐷 is the number of uncertain parameters. 270 

When the number of hypotheses is infinite, for example in the case of continuous variables, 271 

Bayesian  inference works with probability densities instead. These densities are defined through 272 

so-called probability density functions (pdf). Bayes’ Theorem formalizes the process of updating 273 

one’s state of knowledge by combining initial belief – the prior 𝑝(𝜽) – with new information – 274 

the likelihood 𝑝(𝒚|𝜽) – to obtain the posterior pdf 𝑝(𝜽|𝒚) after normalization through the model 275 

evidence 𝑝(𝒚): 276 
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The prior is generally user-specified, and the likelihood is evaluated based on a user-defined 277 

function which specifies the probability of obtaining the observations made (𝒚) given the current  278 

 279 

 
Figure 4. Schema for setting up the system of linear equations, illustrated in an example with two relative elements (Möbius 

base flow, extraction well) and two absolute elements (no-flow boundary, prescribed head boundary). After the elements are 

defined (Step 1), we create the 𝑨 matrix by specifying the mutual influences of the absolute elements’ segments onto each 

other (Step 2). Similarly, we construct the target 𝒙 vector by evaluating and correcting the influence of the relative elements 

on the absolute elements’ segments (Step 3). Finally, we can solve the linear system 𝑨 ∙ 𝒔 = 𝒙 for 𝒔 (Step 4). In this figure, 𝒏 

denotes a segment’s normal vector, and × denotes the dot product. 

𝑝(𝜽|𝒚) =
𝑝(𝜽)𝑝(𝒚|𝜽)

𝑝(𝒚)
 (30) 
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hypothesis 𝜽. Unfortunately, it is generally impossible to solve Equation (30) analytically. The 280 

model evidence is rarely known, and it is not always possible to find a tractable analytic 281 

formulation for the posterior 𝑝(𝜽|𝒚).  282 

2.2.1 MCMC 283 

However, even if Equation (30) does not have a closed form solution, inference methods such as 284 

MCMC can still sample from the unknown posterior (e.g., Kruschke 2015). This is useful because 285 

a sufficiently large sample set from a random distribution can act as a surrogate for the 286 

distribution itself, and consequently be used to infer its properties. 287 

MCMC achieves this by starting from an initial hypothesis – the start point 𝜽0 – then exploring 288 

similar hypotheses nearby by sampling from a proposal distribution, exploring the 289 

neighbourhood of the current hypothesis. This proposal distribution can, for example, be 290 

Gaussian: 291 

𝜽𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙~𝒩(𝜽𝑘−1, 𝜮) (31) 

where 𝒩(𝝁, 𝜮) defines a (possibly multivariate) normal distribution with mean 𝝁 = 𝜽𝑘−1 (the 292 

previous hypothesis) and (co)variance 𝜮. ‘~’ represents ‘sampled from’, and the subscript 𝑘 293 

denotes the current iteration, or entry in the chain. MCMC then assembles a chain of samples by 294 

comparing each new hypothesis (the proposal) with the chain’s last entry (the reference), and 295 

accepts or rejects the proposal based on its unnormalized posterior density relative to the 296 

reference. If the proposal density is symmetric (it is equally probable to jump from the reference 297 

to the proposal than from the proposal to the reference), the acceptance probability 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 can 298 

be calculated as: 299 
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𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = min (1,
𝑝(𝜽𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙)𝑝(𝒚|𝜽𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙)

𝑝(𝜽𝑘−1)𝑝(𝒚|𝜽𝑘−1)
) (32) 

Equation (32) states that if the proposal is more plausible than the reference, the proposal is 300 

automatically accepted (𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = 1) and appended to the chain (𝜽𝑘 = 𝜽𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙). If it is less 301 

plausible, it is either accepted with a probability equal to the posterior density ratio (𝑝𝑎𝑐𝑐𝑒𝑝𝑡 <302 

1) and appended to the chain (𝜽𝑘 = 𝜽𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙), or rejected, in which case the reference is 303 

appended to the chain once more (𝜽𝑘 = 𝜽𝑘−1). 304 

2.2.2 Adaptive proposals 305 

A practical challenge in MCMC is that if the proposal distribution is sub-optimal, the chain will 306 

reject an inordinate amount of proposals, and consequently contain only very few unique 307 

samples. To avoid this issue, we implement our MCMC routine with an adaptive proposal 308 

distribution, gradually adjusting the proposal’s covariance 𝜮 so that a desired acceptance rate is 309 

achieved. Towards this end, we estimate an uncorrelated covariance matrix 𝜮𝑢𝑛𝑖𝑞𝑢𝑒 (i.e., all off-310 

diagonal entries are set to zero) from the unique samples in the chain at regular intervals, then 311 

scale it with an adjustable factor 𝑓. The adjustable factor is increased if the acceptance rate was 312 

too high during the last interval, and decreased if it was too low: 313 

𝜮 = 𝑓𝜮𝑢𝑛𝑖𝑞𝑢𝑒 (33) 

Since it has been shown that adjustable proposals can corrupt the ergodic property, which is 314 

critical to the proper functioning of MCMC, it is important that the adjustments vanish 315 

asymptotically (e.g., Andrieu and Thoms 2008). For 𝜮𝑢𝑛𝑖𝑞𝑢𝑒 this should occur automatically as 316 

the number of samples increases, and for the adjustable factor 𝑓 we achieve this by reducing the 317 

magnitude of its update exponentially: 318 
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𝑓𝑐 = 𝑓𝑐−1 (𝑎−𝑐 (
𝑟𝑎𝑡𝑖𝑜𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑟𝑎𝑡𝑖𝑜𝑡𝑎𝑟𝑔𝑒𝑡
− 1) + 1) (34) 

where 𝑎 > 1 is a scalar which defines the speed of the decay, 𝑐 is the current adjustment cycle, 319 

𝑟𝑎𝑡𝑖𝑜𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 the percentage of accepted proposals since the last iteration, and 𝑟𝑎𝑡𝑖𝑜𝑡𝑎𝑟𝑔𝑒𝑡 the 320 

desired percentage of accepted proposals. 321 

3 Examples 322 

In this section, we illustrate the performance of the algorithm for two test cases. For the first test 323 

case, we benchmark our Python AEM code against MODFLOW, a well-established numerical 324 

finite-volume (FVM) framework. In the second test case, we demonstrate the performance of the 325 

AEM model and the MCMC inference mechanism in a synthetic test case. The codes for both 326 

scenarios are provided under a DOI which does not yet exist, see acknowledgements. 327 

3.1 Benchmarking 328 

For benchmarking, we compare the results from our Python AEM implementation to the results 329 

of a steady-state MODFLOW 6 model (Bakker et al. 2016; Langevin et al. 2017) at varying grid 330 

resolutions. Towards this end, we design a simple synthetic model employing every element 331 

described in Section 2.1 except the base flow elements (uniform or Möbius), as they are 332 

redundant in a domain enclosed by absolute boundaries (a prerequisite of the numerical 333 

reference). A schematic illustration of the benchmarking model is illustrated in Figure 5a, and the 334 

results compared to different resolutions of uniformly-sized hexagonal grids are shown in Figure 335 

5b-d. 336 

The results indicate that our AEM code can faithfully reproduce the FVM predictions, and that 337 

conversely the FVM results converge towards the AEM solution at finer grid sizes. This is mainly  338 
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owed to the inability of rougher grid sizes to reproduce the boundaries and features in Figure 5a 339 

as faithfully as finer resolutions. We do however note that unstructured grids – which may adopt 340 

 

Figure 5. Illustrations of the benchmarking test case. To define a system which can be equivalently evaluated numerically, we 
embed a square area enclosed by two no-flow and two prescribed head boundaries within (functionally irrelevant) uniform 
flow. The model domain includes an area sink, an imhomogeneity, and an injection well (a). We compare the AEM results (solid 
line; b, c, d) with three FVM grids of different cell sizes (dashed line): 30 m (b), 10 m (c), and 3 m (d). The finer the cell resolution, 
the more the FVM results converge towards the AEM solution. The discrepancies arise because numerical grid sizes determine 
how well flow-relevant features can be resolved. 
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the cell size and shape locally to reproduce features more prescisely – can yield solutions closer 341 

to AEM more efficiently than the uniform regular grids shown here. 342 

3.2 Synthetic test case 343 

To illustrate the potential of AEM for practical groundwater field inference, we apply the 344 

algorithm in a synthetic test case. Revisiting the motivating issue of uncertain boundary 345 

conditions, we design our synthetic site as local part of a larger catchment, with limited head 346 

information and poorly defined boundary conditions. Such scenarios abound in hydrogeological 347 

practice. 348 

The water table is assumed to be observed at an extraction well and three surrounding 349 

observation wells (Figure 6a). Towards the north-west, a river of unknown connectivity intersects 350 

the domain. This river is implemented as a prescribed head boundary with four support nodes 351 

for the interpolation of the river’s connectivity. The river is embedded in an inhomogeneity of 352 

unknown hydraulic conductivity. In the south, we prescribe a no-flow boundary representing an 353 

impermeable geological formation. 354 

We define priors centered around the true solution (Table S1, supporting information), 355 

independent Gaussian observation errors (μ = 0m, σ = 0.15m), and a MCMC chain length of 356 

10,000. The original proposal distribution is listed in Table S2 (supporting information). 357 

The results are illustrated in (Figure 6b-d). The RMSE (0.021 𝑚) and bias (−0.004 𝑚) reflect the 358 

model’s lack of structural error, but a glance at its uncertainty (Figure 6c) reveals the ambiguity 359 

in the system’s states. Uncertainty in the groundwater field is lowest between the observation 360 

wells, then swiftly increases towards the domain’s edges.  361 

Although this synthetic scenario is somewhat simplistic, we can illustrate some of the potential 362 

of AEM beyond simple groundwater field inference. Figure 6d illustrates a selection of uncertain  363 
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Figure 6. Schematic illustration (a) and results (b, c, d, e) for the synthetic test case. The model is implemented on a Möbius 
base with an areal inhomogeneity, an extraction well, a prescribed head boundary with spatially interpolated connectivity, and 
a no-flow boundary. Hydraulic heads are observed at three observation wells and the pumping well. Subplots (b) and (c) show 
the posterior mean and standard deviation of hydraulic head. Subplot (d) shows a selection of pathlines towards the extraction 
well. Subplot (e) shows the proportional logposterior density (right) and its cutoff (left) of the MCMC. 
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flow paths towards the extraction well, which may serve as the basis for Lagrangian transport 364 

modelling. Similarly, we could investigate the sign and magnitude of the river segments’ strength 365 

values to obtain probabilistic estimates about which parts of the river are losing or gaining. 366 

Using the algorithm as a support tool for model conceptualization, we can explore its use for the 367 

assignment of numerical model boundaries. This transition to numerical models might be 368 

motivated by Eulerian transport simulations or the investigation of transient dynamics.  369 

Naturally, it would be possible to calculate regional fluxes based on the AEM predictions and 370 

assign these as inflow or outflow boundaries. For transient dynamics, however, the user might 371 

wish to return to no-flow boundaries and time-variable prescribed head boundaries, which are 372 

more easily informed through marginal observation wells. If the observations and priors for the 373 

steady state AEM simulation were sufficiently representative of the average dynamics, either 374 

boundary type is best assigned in regions where the posterior AEM flow direction is relatively 375 

certain (deep blue regions in Figure 7). 376 

The map in Figure 7 can be obtained by capitalizing on AEM’s analytical nature to directly 377 

evaluate the hydraulic potential gradient 
𝜕𝚽

𝜕𝒛
 for each entry in the MCMC chain. The resulting set 378 

of gradients at each individual location 𝑧 ∈ 𝒛 can be converted to a set of flow directions 𝜶 =379 

atan2 (𝑥 = ℜ (
𝜕𝚽

𝜕𝑧
) , 𝑦 = ℑ (

𝜕𝚽

𝜕𝑧
)), where ℜ(∙) and ℑ(∙) are the real and imaginary components 380 

of their respective arguments. Since the direction of flow it is irrelevant for the assignment of 381 

boundaries (i.e., 𝛼 = −0.25𝜋 ≜ 0.75𝜋), we can furthermore offset all angles 𝜶 < 0 by 𝜋 to 382 

obtain a more concise estimate, assuming −𝜋 ≥ 𝜶 > 𝜋. If we then calculate the circular standard 383 

deviation for each 𝜶, we obtain the contours in Figure 7. Prescribed head boundaries with 384 
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constant head are best assigned perpendicular to the flow lines (light blue). No-flow boundaries 385 

are best assigned parallel to the flow lines. 386 

4 Discussion and Conclusions 387 

In this study, we explored the use of the AEM for the inference of uncertain groundwater tables, 388 

particularly under the lens of uncertain regional flow. Towards this end, we expanded the 389 

standard toolbox of analytical elements with an element based on conformal mapping. This new 390 

element flexibly induces curving, converging, or diverging regional flow in a circular model 391 

 

Figure 7. Posterior circular mean (streamlines) and circular standard deviation (filled contours) of the hydraulic potential 
gradient direction. For the purpose of assigning no-flow boundaries, each direction and its opposite are identical (i.e., 0.5𝜋 ≜
−0.5𝜋). Consequently, we estimated the circular standard deviation of the flow direction angles, with all negative angles offset 
by 180 degrees. 
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domain of arbitrary size. We subsequently benchmarked our toolbox against a numerical model 392 

(MODFLOW 6) for varying grid resolutions.  393 

To examine the performance of the toolbox in practice, we explored its application in a simple 394 

synthetic scenario. Coupling the model to an MCMC routine, we sampled from its parameter 395 

posterior and simulated the corresponding uncertain groundwater flow fields. Finally, we 396 

illustrated a few possible analyses of the inferred water tables: water table uncertainty, simple 397 

pathline tracing, or decision support for the placement of numerical model boundaries.  398 

We find that AEM can be a computationally efficient tool for the exploration of uncertain flow 399 

fields in data-scarce environments. Its comparatively simple structure and consequently 400 

straightforward uncertainty estimation can make it attractive for the estimation of probabilistic 401 

flow maps, particularly in studies without a primary focus on subsurface characterization. 402 

Alternatively, it can prove valuable as a support tool in preparation for more complex numerical 403 

models, particularly the assignment of boundaries.  404 

In summary, we believe that AEM constitutes a highly attractive compromise between simplistic, 405 

often one-dimensional analytical groundwater flow solutions (e.g., method of fragments: Harr 406 

2006), and the sometimes debilitating complexity of full numerical models. Its usually low 407 

parameter count and high computational efficiency renders AEM naturally well-suited for most 408 

Bayesian uncertainty estimation methods. In light of the push towards more comprehensive 409 

uncertainty analyses over the past decades, we remain confident that this property in particular 410 

warrants greater attention to AEM in the future. We have provided the AEM and MCMC 411 

toolboxes used in this study in the supporting information and on GitHub under 412 

https://maxramgraber.github.io/Simple-AEM-Toolbox/. 413 

https://maxramgraber.github.io/Simple-AEM-Toolbox/
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