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Abstract

Parameters in climate models are usually calibrated manually, exploiting only small subsets of the available data. This precludes

an optimal calibration and quantification of uncertainties. Traditional Bayesian calibration methods that allow uncertainty

quantification are too expensive for climate models; they are also not robust in the presence of internal climate variability.

For example, Markov chain Monte Carlo (MCMC) methods typically require $O(10ˆ5)$ model runs, rendering them infeasible

for climate models. Here we demonstrate an approach to model calibration and uncertainty quantification that requires only

$O(10ˆ2)$ model runs and can accommodate internal climate variability. The approach consists of three stages: (i) a calibration

stage uses variants of ensemble Kalman inversion to calibrate a model by minimizing mismatches between model and data

statistics; (ii) an emulation stage emulates the parameter-to-data map with Gaussian processes (GP), using the model runs in the

calibration stage for training; (iii) a sampling stage approximates the Bayesian posterior distributions by using the GP emulator

and then samples using MCMC. We demonstrate the feasibility and computational efficiency of this calibrate-emulate-sample

(CES) approach in a perfect-model setting. Using an idealized general circulation model, we estimate parameters in a simple

convection scheme from data surrogates generated with the model. The CES approach generates probability distributions of the

parameters that are good approximations of the Bayesian posteriors, at a fraction of the computational cost usually required to

obtain them. Sampling from this approximate posterior allows the generation of climate predictions with quantified parametric

uncertainties.
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• We use time averaged climate statistics to calibrate convective parameters and quan-8
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Abstract14

Parameters in climate models are usually calibrated manually, exploiting only small sub-15

sets of the available data. This precludes an optimal calibration and quantification of16

uncertainties. Traditional Bayesian calibration methods that allow uncertainty quantifi-17

cation are too expensive for climate models; they are also not robust in the presence of18

internal climate variability. For example, Markov chain Monte Carlo (MCMC) methods19

typically require O(105) model runs, rendering them infeasible for climate models. Here20

we demonstrate an approach to model calibration and uncertainty quantification that21

requires only O(102) model runs and can accommodate internal climate variability. The22

approach consists of three stages: (i) a calibration stage uses variants of ensemble Kalman23

inversion to calibrate a model by minimizing mismatches between model and data statis-24

tics; (ii) an emulation stage emulates the parameter-to-data map with Gaussian processes25

(GP), using the model runs in the calibration stage for training; (iii) a sampling stage26

approximates the Bayesian posterior distributions by using the GP emulator and then27

samples using MCMC. We demonstrate the feasibility and computational efficiency of28

this calibrate-emulate-sample (CES) approach in a perfect-model setting. Using an ide-29

alized general circulation model, we estimate parameters in a simple convection scheme30

from data surrogates generated with the model. The CES approach generates probabil-31

ity distributions of the parameters that are good approximations of the Bayesian pos-32

teriors, at a fraction of the computational cost usually required to obtain them. Sam-33

pling from this approximate posterior allows the generation of climate predictions with34

quantified parametric uncertainties.35

Plain Language Summary36

Calibrating climate models with available data and quantifying their uncertainties37

is essential to make climate predictions accurate and actionable. A primary source of un-38

certainties in climate models comes from representation of small-scale processes such as39

moist convection. Parameters in these convection schemes and other parameterizations40

are usually calibrated by hand, using only a small fraction of data that are available. As41

a result, the calibration process may miss information about the small-scale processes42

in question. This paper presents a proof-of-concept, in an idealized setting, of how pa-43

rameters in climate models can be calibrated using a substantial fraction of the avail-44

able data, and uncertainties in the parameters can be quantified. We employ a new al-45

gorithm, called calibrate-emulate-sample (CES), which makes such calibration and un-46

certainty quantification feasible for computationally expensive climate models. CES re-47

duces the hundreds of thousands of model runs usually required to quantify uncertain-48

ties in computer models to hundred, thereby achieving about a factor 1000 speedup. It49

leads to more robust calibration and uncertainty quantification in the presence of noise50

arising from chaotic variability of the climate system. We show how uncertainties in cli-51

mate model parameters can be translated into quantified uncertainties of climate pre-52

dictions through ensemble integrations.53

1 Introduction54

The principal uncertainties in climate predictions arise from the representation of55

unresolvable yet important small-scale processes, such as those controlling cloud cover56

(Cess et al., 1989, 1990; Bony & Dufresne, 2005; Stephens, 2005; Bony et al., 2006; Vial57

et al., 2013; Webb et al., 2013; Brient & Schneider, 2016; Schneider, Teixeira, et al., 2017).58

These processes are represented by parameterization schemes, which relate unresolved59

quantities such as cloud statistics to variables resolved on the climate models’ compu-60

tational grid, such as temperature and humidity. The parameterization schemes depend61

on parameters that are a priori unknown, and so fixing the parameters is associated with62

uncertainty. The process of fixing these parameters to values that are most consistent63

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

with observational data is known as calibration, and requires solving an optimization prob-64

lem. Traditionally, parameters are calibrated (“tuned”) by hand, in a process that ex-65

ploits only a small subset of the available observational data and relies on the knowledge66

and intuition of climate modelers about plausible ranges of parameters and their effect67

on the simulated climate of a model (Randall & Wielicki, 1997; Mauritsen et al., 2012;68

Golaz et al., 2013; Hourdin et al., 2013; Flato et al., 2013; Hourdin et al., 2017; Schmidt69

et al., 2017; Zhao et al., 2018). More recently, some broader-scale automated approaches70

that more systematically quantify the plausible range of parameters have begun to be71

explored (Couvreux et al., 2020; Hourdin et al., 2020). However, to fully account for para-72

metric uncertainty, we require a Bayesian view of the model-data relationship, where model73

parameters are treated as realizations sampled from an underlying probability distribu-74

tion. The process of finding the probability distribution of parameters that is most con-75

sistent with the the observed data is known as uncertainty quantification, and requires76

solving a Bayesian inverse problem.77

Opportunities to improve climate models lie in exploiting a larger fraction of the78

available observational data together with high-resolution simulations, and learning from79

both systematically and not manually (Schneider, Lan, et al., 2017). Here we provide80

a relatively simple proof-of-concept of how parameterizations in a climate model can be81

calibrated and their parametric uncertainties be quantified by minimizing the mismatch82

between climate statistics simulated with the model and those obtained from observa-83

tions or high-resolution simulations. We focus on learning from time-averaged climate84

statistics for three reasons: (1) time-averaged statistics are what is relevant for climate85

predictions; (2) time-averaged statistics vary more smoothly in space than atmospheric86

states, leading to a smoother optimization problem than that of atmospheric state es-87

timation in numerical weather prediction (NWP); (3) time-averaging over long time-intervals88

reduces the effect of the unknown initial state of the system, removing the need to de-89

termine it. Focusing on time-averaged climate statistics, rather than on instantaneous90

states or trajectories as in NWP, makes it possible to exploit climate observations and91

high-resolution simulations even when their native resolutions are very different from those92

of climate models.93

While learning from climate statistics accumulated in time presents opportunities,94

it also comes with challenges. Accumulating statistics in time is computationally much95

more expensive than the forecasts over hours or days used in NWP. Therefore, we need96

algorithms for learning from data that are fast, requiring a minimum of climate model97

runs. Traditional methods for Bayesian calibration and uncertainty quantification such98

as Markov chain Monte Carlo (MCMC) typically require many iterations—often more99

than 105—to reach statistical convergence (see (Geyer, 2011) for an overview). Conduct-100

ing so many computationally expensive climate model runs is not feasible, rendering MCMC101

impractical for climate model calibration (Annan & Hargreaves, 2007). Additionally, while102

MCMC can be used to obtain the distribution of model parameters given data, it is not103

robust with respect to noise in the evaluation of the map from model parameters to data.104

Such noise, arising from natural variability in the chaotic climate system, can lead to trap-105

ping of the Markov chains in spurious, noise-induced local maxima of the likelihood func-106

tion (Cleary et al., 2021). This presents additional challenges to using MCMC methods107

for climate model calibration.108

Here we showcase a new approach to climate model uncertainty quantification that109

overcomes the limitations of traditional Bayesian calibration methods. The approach—110

called calibrate-emulate-sample (CES) (Cleary et al., 2021)—consists of three successive111

stages, which each exploit proven concepts and methods:112

1. In a calibration stage, we use variants of ensemble Kalman inversion, which has113

proven to be a fast, derivative-free method for state estimation in NWP (Houtekamer114

& Zhang, 2016), as well as for the solution of inverse problems where the objec-115
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tive is parameter rather than state estimation (Chen & Oliver, 2012a; Emerick &116

Reynolds, 2013b; Evensen, 2018; Iglesias et al., 2013). Ensemble methods scale117

well to high-dimensional state and parameter spaces, typically with O(102) for-118

ward model runs (Kalnay, 2003; Oliver et al., 2008). However, ensemble Kalman119

methods do not provide a basis for systematic uncertainty quantification, except120

in linear problems (Annan & Hargreaves, 2007; Gland et al., 2009; Ernst et al.,121

2015).122

2. In an emulation stage, we train an emulator on the climate model statistics gen-123

erated during the calibration stage. To emulate how the climate model statistics124

depend on parameters to be calibrated, we use Gaussian processes (GPs), a ma-125

chine learning method that learns smooth functions and uncertainty about the func-126

tions from a set of training points (Kennedy & O’Hagan, 2001; Santner et al., 2018).127

The training points here are provided by the climate model runs performed in the128

calibration stage.129

3. In a sampling stage, we approximate the posterior distribution on parameters given130

data, using the GP emulator to replace the parameter-to-climate statistics map,131

and then use MCMC to sample the approximate posterior. Because the GP em-132

ulator is computationally cheap to evaluate and is smooth by virtue of the smooth-133

ing properties of GPs, this avoids the issues that limit the usability of MCMC for134

sampling from climate models directly.135

The CES approach is described in detail in Cleary et al. (2021), which provides a jus-136

tification and contextualization of the approach in the literature on data assimilation and137

Bayesian calibration. The purpose of this paper is to demonstrate the feasibility of the138

approach for estimating parameters in an idealized general circulation model (GCM).139

This represents a proof-of-concept in a small parameter space and limited data space;140

how the methods scale up to larger problems will be discussed at the end.141

This paper is arranged as follows: Section 2 describes the experimental setup, in-142

cluding the idealized GCM and the generation of synthetic data from it. Section 3 de-143

scribes the CES approach and the methods used in each stage. Section 4 describes the144

results of numerical experiments that use CES to calibrate parameters in the idealized145

GCM and quantify their uncertainties. It also demonstrates how sampling from the pos-146

terior distribution of parameters can be used to generate climate predictions with quan-147

tified uncertainties. Section 5 discusses and summarizes the results and their applica-148

bility to larger problems.149

2 Experimental Setup150

2.1 General Circulation Model151

We use the idealized GCM described by Frierson et al. (2006) and O’Gorman and152

Schneider (2008b), which is based on the spectral dynamical core of the Flexible Mod-153

eling System developed at the Geophysical Fluid Dynamics Laboratory. To approximate154

the solution of the hydrostatic primitive equations, it uses the spectral transform method155

in the horizontal, with spectral resolution T21 and 32 latitude points on the transform156

grid. It uses finite differences with 10 unevenly spaced sigma levels in the vertical. We157

chose this relatively coarse resolution to keep our numerical experiments computation-158

ally efficient, so that comparison of CES with much more expensive methods is feasible.159

The lower boundary of the GCM is a homogeneous slab ocean (1 m mixed-layer thick-160

ness). Radiative transfer is represented by a semi-gray, two-stream radiative transfer scheme,161

in which the optical depth of longwave and shortwave absorbers is a prescribed function162

of latitude and pressure (O’Gorman & Schneider, 2008b), irrespective of the concentra-163

tion of water vapor in the atmosphere (i.e., without an explicit representation of water164

vapor feedback). Insolation is constant and approximates Earth’s annual mean insola-165

tion at the top of the atmosphere.166
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We focus our calibration and uncertainty quantification experiments on parame-
ters in the GCM’s convection scheme, which is a quasi-equilibrium moist convection scheme
that can be viewed as a simplified version of the Betts-Miller convection scheme (Betts,
1986; Betts & Miller, 1986, 1993). It relaxes temperature T and specific humidity q to-
ward reference profiles on a timescale τ (Frierson, 2007):

∂T

∂t
+ · · · = −fT

T − Tref

τ
(1)

and
∂q

∂t
+ · · · = −fT fq

q − qref

τ
. (2)

Here, fT (z;T, q, p) is a function of altitude z and of the thermodynamic state of an at-167

mospheric column (dependent on temperature T , pressure p, and specific humidity q in168

the column), which determines where and when the convection scheme is active; fq(T, q, p)169

is a function that modulates the relaxation of the specific humidity in non-precipitating170

(shallow) convection (Frierson, 2007; O’Gorman & Schneider, 2008b). The reference tem-171

perature profile is a moist adiabat, Tma(z), shifted by a state-dependent and constant-172

with-height offset ∆T , which is chosen to ensure conservation of enthalpy integrated over173

a column: Tref(z) = Tma(z) + ∆T . The reference specific humidity qref(z) is the spe-174

cific humidity corresponding to a fixed relative humidity RH relative to the moist adi-175

abat Tma(z). The two key parameters in this simple convection scheme thus are the timescale176

τ and the relative humidity RH; we demonstrate how we can learn about them from syn-177

thetic data generated with the GCM.178

2.2 Variable Selection and Generation of Synthetic Data179

The idealized GCM with the simple quasi-equilibrium convection scheme has been180

used in numerous studies of large-scale atmosphere dynamics and mechanisms of climate181

changes, especially those involving the hydrologic cycle (e.g., O’Gorman & Schneider,182

2008b, 2008a; Bordoni & Schneider, 2008; O’Gorman & Schneider, 2009b; Schneider et183

al., 2010; Merlis & Schneider, 2011; O’Gorman, 2011; Kaspi & Schneider, 2011, 2013; Levine184

& Schneider, 2015; Bischoff & Schneider, 2014; Wills et al., 2017; Wei & Bordoni, 2018).185

We know from this body of work that the convection scheme primarily affects the at-186

mospheric thermal stratification in the tropics, with weaker effects in the extratropics187

(Schneider & O’Gorman, 2008). We also know that the relative humidity parameter (RH)188

in the moist convection scheme controls the humidity of the tropical free troposphere but189

likewise has a weaker effect on the humidity of the extratropical free troposphere (O’Gorman190

et al., 2011). Thus, we expect tropical circulation statistics to be especially informative191

about the parameters in the convection scheme. However, convection plays a central role192

in extreme precipitation events at all latitudes (O’Gorman & Schneider, 2009b, 2009a),193

so we expect statistics of precipitation extremes to be informative about convective pa-194

rameters, and in particular to contain information about the relaxation timescale τ .195

As the climate statistics from which we want to learn about the convective param-196

eters, we choose 30-day averages of the free-tropospheric relative humidity, of the pre-197

cipitation rate, and of a measure of the frequency of extreme precipitation. Because the198

GCM is statistically zonally symmetric, we take zonal averages in addition to the time199

averages. The relative humidity is evaluated at σ = 0.5 (where σ = p/ps is pressure200

p normalized by the local surface pressure ps), as shown in Figure 1. As a measure of201

the frequency of precipitation extremes, we use the probability that daily precipitation202

rates exceed a high, latitude-dependent threshold. The threshold is chosen as the latitude-203

dependent 90th percentile of daily precipitation in a long (18000 days) control simula-204

tion of the GCM in a statistically steady state. So for the parameters in the control sim-205

ulation, the precipitation threshold is expected to be exceeded 10% of the time at each206

latitude. The convective parameters in the control simulation are fixed at their reference207

values RH = 0.7 and τ = 2 h (O’Gorman & Schneider, 2008b), and we collect the pa-208

rameters in the vector θ† = (θ†RH, θ
†
τ ) = (0.7, 2 h). Figure 2 shows the mean relative209
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humidity, the mean precipitation rate (broken down into its contributions coming from210

the convection scheme and from condensation at resolved scales), and the 90th percentile211

precipitation rate, from the control simulation averaged over 600 batches of 30-day win-212

dows. We use the single long control simulations of duration 18000 days only for the cre-213

ation of Figure 2 and for the estimation of noise covariances, described next.214

2.3 Definition of noise covariance215

Estimation of model parameters requires specification of a noise covariance matrix,216

reflecting errors and uncertainties in the data. The principal source of noise in our perfect-217

model setting with synthetic data is sampling variability due to finite-time averaging with218

unknown initial conditions. The initial condition is forgotten at sufficiently long times219

because of the chaotic nature of atmospheric variability, so a central limit theorem quan-220

tifies the finite-time fluctuations around infinite-time averages that are caused by uncer-221

tain initial conditions. Therefore, the asymptotic distribution of the fluctuations is a mul-222

tivariate normal distribution N(0,Σ(θ)) with zero mean and covariance matrix Σ(θ). We223

estimate the covariance matrix at Σ(θ†), that is, with the parameters θ† in the control224

simulation. To estimate Σ(θ†), we run the GCM for 600 windows of length 30 days (be-225

cause we use 30-day averages to estimate parameters) and calculate the sample covari-226

ance matrix. With the 3 latitude-dependent fields evaluated at 32 latitude points, Σ(θ†)227

is a 96×96 symmetric matrix representing noise from internal variability in finite-time228

averages. Hereafter, we make the assumption that Σ(θ) ≈ Σ(θ†) for any θ, and thus229

we treat Σ as a constant matrix.230

To generate our surrogate data, we also include the effect of measurement error (Kennedy
& O’Hagan, 2001). We add Gaussian noise to the time-averaged model statistics, with
a diagonal covariance structure in data space. We construct the measurement error co-
variance matrix ∆ to be diagonal with entries δi > 0, where i indexes over data type
(the 3 observed quantities) and latitude (32 locations). Combining this measurement co-
variance matrix ∆ with the covariance matrix Σ arising from internal variability leads
to an inflated noise covariance matrix

Γ = Σ + diag(δi) = Σ + ∆, (3)

There are many options to pick δi. We choose it by reducing a distance of the 95% con-
fidence interval to its nearest physical boundary for each i by a constant factor C, which
retains physical properties e.g., precipitation must be nonnegative. Denote the mean µi,
variance Σii, and a physical boundary set ∂Ωi for each data i, we choose

δi = C min
(

dist(µi + 2
√

Σii, ∂Ωi),dist(µi − 2
√

Σii, ∂Ωi)
)
.

We take C = 0.2. This value implies a significant noise inflation, with the average ra-231

tio of standard deviations
√

Γii/
√

Σii being 2.3. In Figure 3, we display the resulting data232

mean (grey circles), the 95% confidence interval of the inflated covariance (grey ribbon),233

and four realizations of the truth y(1), . . . ,y(4) (yellow to red lines), each defined by tak-234

ing a different 30-day average of the GCM, and adding a different realization of N(0,∆).235

These four realizations will be used throughout when presenting our results.236

3 Methods237

3.1 Objective functions for time averaged data238

Both calibration and uncertainty quantification in CES rely on an objective func-239

tion (standardized error) that quantifies mismatch between model output and data. Cal-240

ibration minimizes the objective function over the parameter space, and the same ob-241

jective function is the negative log-likelihood of the posterior distribution which is sam-242

pled to perform uncertainty quantification. To define the desired objective function, we243
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introduce GT (θ; z(0)) and G∞(θ), which denote the mapping from the parameter vec-244

tor θ to the 96 data points, either averaged over a finite time horizon (T ) or over an in-245

finite time horizon (∞). The former average depends on the unknown initial condition246

z(0), whereas the latter does not, because the initial condition is forgotten after a suf-247

ficiently long time. We refer to GT (θ; z(0)) as the forward model and G∞(θ) as the in-248

finite time-horizon forward model.249

To define the objective function, we begin from the relationship between param-
eters θ and data y. Expressed in terms of finite-time averages, this relationship has the
form

y = GT (θ; z(0)) +N(0,∆). (4)

This form has the undesirable feature that it involves z(0), a quantity which is not of in-
trinsic interest. We note that, invoking the central limit theorem, which quantifies the
forgetting of the initial condition after long times, we may also write

y = G∞(θ) +N(0,Γ). (5)

This removes the dependence on initial condition but is expressed in terms of infinite-250

time averages. Computing these averages directly is not feasible, but we introduce a pro-251

cedure that enables us to learn a surrogate model for their computation, using carefully252

chosen finite-time averages.253

In the Bayesian approach to parameter learning, the aim is to determine the con-
ditional distribution of parameters θ given data y, assuming the relationship (5) between
θ and y, together with prior information on θ. This leads to introduction of the objec-
tive function (negative log-likelihood)

Φ(θ) =
1

2
‖y − G∞(θ)‖2Γ , (6)

where ‖ · ‖Γ = ‖Γ−1/2 · ‖2 is the Mahalanobis distance. Before a surrogate model for
G∞ is available, this function is infeasible to evaluate, but we may consider the related
objective function

ΦT (θ; z(0)) =
1

2
‖y − GT (θ; z(0))‖2Γ+Σ . (7)

Here we view evaluation of GT from any initial condition as a random approximation of254

G∞, hence the additional internal-variability covariance matrix Σ appearing in (7).255

Our broad intent is as follows: to use optimization based on (7) to calibrate pa-256

rameters; on the basis of evaluations of GT made during this calibration, to learn a GP257

surrogate for G∞; then utilize this surrogate to sample from the posterior distribution258

of (θ | y) defined using (6). To this end, we will henceforth neglect z(0) in our nota-259

tion, and just write GT (θ) and ΦT (θ). Dropping the dependence of the initial condition260

from these objects makes evaluations of them non-deterministic.261

We have the following undesirable properties of the finite-time model average GT (θ):262

(i) it is computationally expensive to evaluate for large T ; (ii) it can be nondifferentiable263

or difficult to differentiate (e.g., because of non-differentiability of parameterization schemes264

in climate models); and (iii) evaluations of it are not deterministic (when one drops the265

explicit dependence on initial conditions). Our methodology, detailed in the upcoming266

sections, is constructed to overcomes these difficulties.267

3.2 Calibrate: Ensemble Kalman Inversion268

Ensemble Kalman inversion (EKI) (Iglesias et al., 2013) is an offline variant of en-269

semble Kalman filtering designed to learn parameters in a general model, rather than270

states of a dynamical system. EKI can be viewed as a derivative-free optimization al-271

gorithm. Given a set of data y, it iteratively evolves an ensemble of parameter estimates272

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

both so that they achieve consensus and evolve toward the optimal parameter value θ∗273

(likely close to θ†) that minimizes the objective (7), possibly with inclusion of a regu-274

larization term. It has great potential for use with chaotic or stochastic models due to275

its ensemble-based, derivative-free approach for optimizing parameters. Furthermore, the276

derivative-free approach scales well to high-dimensional parameter spaces, as evidenced277

by the use of Kalman filtering in numerical weather prediction, where billions of param-278

eters characterizing atmospheric states are routinely estimated (Kalnay, 2002). This makes279

the algorithm appealing for complex climate models. The algorithm is mathematically280

proven to find the optimizer, within an initial, ensemble-dependent subspace, for linear281

models (Schillings & Stuart, 2017), and it is known to be effective for high-dimensional282

nonlinear models (Iglesias et al., 2013; Schneider et al., 2020b, 2020a), such as the non-283

linear map from parameters to data represented by the idealized GCM we use in our proof-284

of-concept here.285

The EKI algorithm we use is detailed in (Iglesias et al., 2013). The algorithm it-

eratively updates an ensemble of parameters, θ
(n)
m , where m = 1, . . .M denotes an en-

semble member, and the superscript n denotes the iteration count. The algorithm uses
the ensemble to update parameters according to the following equation

θ(n+1)
m = θ(n)

m + C
(n)
θG

(
(Γ + Σ) + C

(n)
GG

)−1 (
y − GT (θ(n)

m )
)
,

where CGG is the empirical covariance of the ensemble of quantities of interest from model286

runs, and CθG is the empirical cross-covariance of the ensemble of parameters and the287

ensemble of quantities of interest. The noise distribution of the difference in realizations288

of y and GT (·) is Γ+Σ. Often, EKI is implemented with additional independent noise289

added to y at each iteration and for each ensemble member. However, because the in-290

dividual evaluations of GT (·) are affected by internal variability, here we omit use of this291

additional noise.292

We initialize the algorithm by drawing an ensemble of size M = 100 by sampling293

the parameter space from assumed prior distributions on the parameters. The priors are294

taken to be the logit-normal and lognormal distributions, θRH ∼ Logit[N(0, 1)] and θτ ∼295

Log[N(12 h, (12 h)2)], for the relative humidity and timescale parameter, respectively.296

This choice allows us to apply our methods in a transformed space (by applying the logit297

and log transformations, respectively), where the priors are normally distributed and un-298

bounded; meanwhile the climate model works with untransformed variables, which are299

bounded within [0, 1] and [0,∞), respectively. Thus, the prior distributions enforce phys-300

ical constraints on the parameters.301

3.3 Emulate: Gaussian Process Emulators (EKI-GP)302

During the calibration stage with N iterations and ensemble of size M , we obtain
a collection of input–output pairs

{θ(n)
m ,GT (θ(n)

m )}, n = 0, . . . , N, m = 1, . . .M.

The cloud of points {θ(n)
m } from an EKI run will span the initial draws of the prior dis-303

tribution, but with a high density around the point θ∗ to which EKI eventually converges.304

We use regression to train a GP emulator mapping θ to GT (θ), using the input–output305

pairs {θ(n)
m ,GT (θ

(n)
m )}, which are referred to as training points in the context of GP re-306

gression. The emulation will be most accurate in regions with more training points, that307

is, around θ∗. This is typically near the true solution θ†, and it is the region where the308

posterior parameter distribution will have high probability; this is precisely where un-309

certainty quantification requires accuracy. In effect, EKI serves as an effective algorithm310

for selecting good training points for GP regression.311
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Gaussian processes emulate the statistics of the input–output pairs, using a Gaus-
sian assumption. Specifically, we learn an approximation of the form

GT (θ) ≈ N (GGP(θ),ΣGP(θ)).

The approximation is learned from the input-output pairs assuming that the outputs are312

produced from a mean function GGP(θ), and subject to normally distributed noise de-313

fined by a covariance function ΣGP(θ), both dependent on the parameters. The choice314

of notation here is to imply the fact that GGP(θ) serves to approximate the (unattain-315

able) infinite-time average of the model G∞(θ), and ΣGP(θ) serves to approximate the316

covariance matrix Σ. Importantly, ΣGP(θ) is θ-dependent as it also includes the uncer-317

tainty in approximation of the emulator at θ (for example, the emulator uncertainty ΣGP(θ)318

will be large when θ is far from the inputs {θm} used in training).319

The atmospheric quantities from which we learn about model parameters are cor-
related (e.g., relative humidity or daily precipitation at neighboring latitudes are cor-
related), resulting in a nondiagonal covariance matrix Σ. Any GP emulator therefore also
requires a nondiagonal covariance ΣGP(θ). We can enforce this, by (i) mapping the cor-
related statistics from the GCM into a decorrelated space by using a principal compo-
nent analysis on Σ, and then (ii) train the GP with the decorrelated statistics to pro-
duce an emulator with diagonal covariance Σ̃GP(θ). We use the notation (̃·) to denote
variables in the uncorrelated space. To this end, we first decompose Σ as

Σ = V D2V T .

Here, V is an orthonormal matrix of eigenvectors of the covariance matrix Σ, and D is
the diagonal matrix of the square root of the eigenvalues, or the ordered standard de-
viations in the basis spanned by the eigenvectors of Σ. We store the outputs from the
pairs as columns of a matrix Ykl = (GT (θl))k, then we change the basis of this matrix
into the uncorrelated coordinates

Ỹ = D−1V TY .

When trained on Ỹ , the GP returns G̃GP(θ) and (diagonal) Σ̃GP(θ). We use tools from320

scikit-learn (Pedregosa et al., 2011) to train the emulator. After the diagonalization, we321

can train a scalar-valued GP for each of the 96 output dimensions, rather than having322

to train processes with vector-valued output. We construct a kernel by summing an Au-323

tomatic Relevance Determination (ARD) radial basis function kernel and a white-noise324

kernel. This corresponds to regression, rather than interpolation, and the variance of the325

white noise kernel reflects the noise level assumed in the regression. We then require the326

training of 4 hyperparameters: the radial basis function variance, a lengthscale for each327

of the two parameters θ (due to ARD), and the white-noise variance. We train using the328

input–output pairs of the initial ensemble plus N = 5 subsequent iterations of the EKI329

algorithm. We use M = 100 ensemble members; thus, the training requires (N + 1)×330

M = 600 30-day runs of our GCM.331

We continue using the uncorrelated basis in the sampling stage, but if required, one332

can always transform the output of the emulator back into a correlated basis,333

GGP(θ) = V DG̃GP(θ),

ΣGP(θ) = V DΣ̃GP(θ)DV T .

3.4 Sample: MCMC Sampling with a Gaussian Process Emulator334

To quantify uncertainties, we use MCMC to sample the posterior distribution of335

parameters with the GP emulator. The primary reason for using the GP emulator goes336

back to the seminal paper by Sacks et al. (1989) and concerns the fact that it can be eval-337

uated far more quickly than the GCM at a point in parameter space; this is important338
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as we require more than 105 samples within the likelihood P(y | θ) in a typical MCMC339

run to sample the posterior distribution of parameters given data. However the emula-340

tor is also important for two additional reasons: (i) it naturally includes the approxima-341

tion uncertainty (within Σ̃GP) of using an emulator; (ii) it smooths the likelihood func-342

tion because we work with an approximation of (6) based on the smooth G∞, rather than343

(7) based on the noisy GT ; as a result, MCMC is less likely to get stuck in local extrema.344

Recall that we trained the GP in uncorrelated coordinates. Within MCMC, one
can either map back into the original coordinates or continue working in the uncorre-
lated space. We choose to continue working in the uncorrelated space, and so we map
each data realization y into this space: ỹ = D−1V Ty. In the Gaussian likelihood, we
can use the GP emulated mean G̃GP(θ) and covariance matrix Σ̃GP(θ) as surrogates for
the map G∞ and the internal variability covariance matrix Σ (after passing to the un-
correlated coordinates). That is, we approximate the Bayesian posterior distribution as

P(θ | ỹ) ∝ P(ỹ | θ)P(θ)

∝ 1√
det(Γ̃GP (θ))

exp

(
−1

2
‖ỹ − G̃GP(θ)‖2

Γ̃GP(θ)

)
P(θ)

∝ exp

(
−1

2
‖ỹ − G̃GP(θ)‖2

Γ̃GP(θ)
− 1

2
log det Γ̃GP(θ)

)
P(θ) .

Here, Γ̃GP(θ) = Σ̃GP(θ) +D−1V T∆V D−1 is the GP approximation of Γ = Σ + ∆ in345

the uncorrelated coordinates. We include the (often overlooked) log-determinant term,346

arising from the normalization constant due to dependence of ΓGP on θ. In the trans-347

formed parameter space, our prior P(θ) is also Gaussian and therefore can be factored348

inside this exponential, adding a quadratic penalty to the objective function (negative349

log posterior). The resulting objective function is smooth and suitable for use within an350

MCMC algorithm to generate samples from the approximate posterior distribution of351

the parameters. Cleary et al. (2021) contains further discussion of MCMC using GPs352

to emulate the forward model, including situations where data comes from finite time-353

averages but the emulator is designed to approximate the infinite time-horizon forward354

model.355

We use the random walk metropolis algorithm for MCMC sampling. The priors356

chosen were the same, physics-informed priors used to initialize EKI. We choose the pro-357

posal distribution also as a Gaussian with covariance proportional to the prior covari-358

ance. The MCMC run consists of a burn-in of 10,000 samples followed by 190,000 sam-359

ples.360

3.5 Benchmark Gaussian process (B-GP)361

The performance of any emulator is dependent on the training points. Since we use362

an adaptive procedure (EKI) to concentrate the training points, which is the novel ap-363

proach introduced in Cleary et al. (2021), we also train a benchmark emulator to com-364

pare our results with those resulting from more traditional, brute-force approaches to365

the emulation. As a benchmark, we use a GP emulator trained on a uniform set of points.366

It is prohibitive to span the entire unbounded prior distributions for this purpose. In-367

stead, we use a uniform grid of 40×40 = 1600 training points to span [−1.25,−0.5]×368

[8.0, 10.0] in the transformed parameter space. This corresponds to [0.62, 0.77]×[0.83 h, 6.12 h]369

in the untransformed parameter space and captures the region of high probability of the370

posterior. The benchmark emulator uses the same kernel and training setup as in sec-371

tion 3.3, and we use the trained emulator in MCMC experiments in the same way as de-372

scribed in Section 3.4. To distinguish the two methods, we refer to the EKI-trained GP373

as EKI-GP and the benchmark (traditionally trained) GP as B-GP.374
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4 Results375

To demonstrate the dependence of the parameter uncertainty on the realization of376

the (inflated) synthetic data, we reproduce the experiments 4 times with each of the four377

realizations shown in Figure 3. We denote these four sets of data y(1), . . . ,y(4).378

4.1 Calibrate: Ensemble Kalman Inversion379

We use the first 6 iterations of EKI in the training process for our methodology.380

These are shown in Figure 4. The left column displays the full ensemble in parameter381

space; the right column zooms in near the true parameter values. The initial ensemble382

is spread over the whole parameter space but collapses within a few iterations near the383

true parameter values—to within 10% error in θRH and 30 minutes error in θτ . That is,384

the algorithm evolves toward consensus and toward the true solution. Biases arise from385

the realization of internal variability, and the realization of the observational noise, in386

each y(·).387

To check for EKI convergence we evaluate a further 4 iterations of the EKI (labeled
0 to 9). At each iteration n, we compute residuals of the ensemble mean for each real-
ization of the synthetic data y(1), . . . ,y(4) created at the true parameters θ†,

Residual(n;y(i)) =

∥∥∥∥∥ 1

M

M∑
m=1

GT (θ(n)
m )− y(i)

∥∥∥∥∥
2

Γ

,

weighting the residuals by the covariance matrix Γ of the synthetic data. Figure 5(a) shows388

the residual over EKI iterations. The residual decreases quickly over the first few iter-389

ations, before plateauing for subsequent iterations. Figure 5(b) shows standard devia-390

tions of the ensemble of parameters. The standard deviations decrease monotonically391

from iteration to iteration, reflecting the evolution toward consensus. The behavior is392

qualitatively similar for all realizations; quantitative differences reflect different realiza-393

tions of internal variability in the different data realizations.394

4.2 Emulate: Validation395

Figure 6 shows the parameter values used for training points for the EKI-GP and396

B-GP. We use the first 6 EKI iterations (i.e., 600 training points) for training. These are397

plotted over the associated objective function used in the MCMC. The panels in the left398

column correspond to the EKI-GP using truths y(1), . . . ,y(4). We see the EKI-GP train-399

ing points are well concentrated near the minimum of the objective function; there are400

also training points that fall outside of the plotting domain (see Figure 4 for their ex-401

tent). The right column of Figure 6 shows the benchmark grid for B-GP, which is not402

concentrated and hence samples the posterior distribution inefficiently; the objective func-403

tion contours were calculated using the same realization as their counterpart EKI-GPs.404

We see that EKI-GP produces qualitatively similar results to those resulting from B-GP;405

the quantitative differences are accounted for by differing geometry and number of train-406

ing points (and hence a difference in approximation uncertainty). In both settings, the407

objective function is smooth because the GP smoothly approximates G∞.408

EKI-GP shows similar results for the objective function as B-GP, at a fraction of409

the computational effort. B-GP is far less practical as a methodology than is EKI-GP410

because it does not scale well to high-dimensional parameter spaces; it requires many411

more training points than EKI-GP. The B-GP comparison is included simply to demon-412

strate that EKI-GP achieves comparable results to those achieved by means of traditional413

emulation.414

We validate the emulator approximation to the data by making a prediction at the415

true parameters θ†. We display GGP(θ†) and the 95% confidence intervals computed us-416
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ing the variance from ΣGP(θ†) in Figure 7 for EKI-GP, and in Figure 8 for B-GP. The417

rows of Figure 7 correspond to the EKI-GP results for y(1), . . . ,y(4). In both figures we418

also show the statistics of 600 30-day samples from the control simulation at θ†. Both419

the mean and 95% confidence intervals of all EKI-GP emulators (orange line and rib-420

bon) closely match the statistics from the GCM runs (blue dots and error bars), as does421

the prediction from the B-GP (dark red line and ribbon). The training data are suffi-422

cient to ensure that the predicted 95% confidence interval from the emulators do not pro-423

duce unphysical values (such as giving negative precipitation rates, or relative humidi-424

ties outside [0, 1]).425

4.3 Sample: MCMC Sampling426

MCMC algorithms are used to generate a set of samples from the posterior distri-427

bution defined using GP emulation. We choose the random walk step size (which mul-428

tiples the covariance in the proposal) at the start of a run to achieve proposal acceptance429

rates near to 25%. (This is near optimal in a precise sense for certain high-dimensional430

posteriors (Roberts et al., 2004); in practice, it works well beyond this setting.) All sam-431

pling is performed in the transformed space where the prior distribution is normal. Fig-432

ure 9 shows kernel density estimates of the MCMC results; the panels in the left column433

are for EKI-GP (for y(1), . . . ,y(4)), and the panels in the right columns are for B-GP at434

the same realizations for the same data. We display contours of the posterior that con-435

tain 50%, 75%, and 99% of the mass of the posterior density.436

All sets of results converge to similar regions of the parameter space about the true437

parameters, and the spread of uncertainty is quantified similarly in both EKI-GP and438

B-GP. Table 1 shows the standard deviations of the individual parameters alongside the439

empirical standard deviation calculated from the ensemble spread in EKI iteration 9. The440

standard deviations from the MCMC posterior based on EKI-GP and B-GP are simi-441

lar; in contrast, the EKI ensemble spread underestimates the uncertainty in the param-442

eters by orders of magnitude. Methods are available to enhance the spread of EKI but443

are only justifiable in the Gaussian posterior setting (Chen & Oliver, 2012b; Emerick &444

Reynolds, 2013a). Our approach is justifiable whenever the GP accurately approximates445

the forward model (Cleary et al., 2021). The use of EKI for the design of training points446

for the GP does not require accurate uncertainty quantification within EKI; it only re-447

lies on EKI approximately locating minimizers of the model-data misfit objective func-448

tion.449

There is sampling variability due to the different realizations of the truth. This sam-450

pling variability can be assessed by asking which probability contours contain the true451

parameters. For both EKI-GP and B-GP, in three of four realizations we capture the452

true values within 50% of the posterior probability mass; the realization y(3) is captured453

only within the 99% contour of the posterior probability.454

4.4 Uncertainty Quantification in Prediction Experiments455

To illustrate how the posterior distribution of parameters obtained in the sample456

step of the CES algorithm can be used to produce climate predictions with quantified457

uncertainties, we consider an idealized global-warming experiment. As in O’Gorman and458

Schneider (2008a, 2008b), we rescale the longwave opacity of the atmosphere everywhere459

by a uniform factor α. In the control climate we have considered so far, α = 1. We gen-460

erate a warm climate by setting α = 1.5, which results in a global-mean surface air tem-461

perature increase from 287 K in the control climate to 294 K in the warm climate. To462

see parametric uncertainty rather than internal variability noise in the resulting “climate463

change predictions,” we use long (7,200-day or approximately 20-year) averages in the464

prediction experiments.465

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

We evaluate predictions of the latitude-dependent relative humidity and mean pre-466

cipitation rate that we used in the CES algorithm. We also consider the frequency of pre-467

cipitation extremes, now taken as the frequency with which the 99.9th percentile of daily468

precipitation in the control simulation is exceeded (rather than the 90th percentile we469

considered earlier). This last statistic indicates how the frequency of what are 1-in-1000470

day precipitation events in the control climate change in the warmer climate.471

We investigate the effect of parametric uncertainty on predictions by taking 100472

samples of parameters from the posterior, create a prediction for each sample, and com-473

pare statistics of these runs with runs in which parameters are fixed to the true values474

θ†. The climate statistics in the control climate are shown in the left column of Figure475

10. The runs from posterior samples (orange) and with fixed true parameters (blue) match476

well. The noise due to internal variability is quantitatively represented by the blue shaded477

region. Unlike in the earlier figures with short (30-day) averages (e.g., Figure 8), the in-478

ternal variability noise here is small relative to the parametric uncertainty because of the479

(long) 7200-day averaging window. The orange shaded region contains both internal vari-480

ability and parametric uncertainty and is dominated by parametric uncertainty. This re-481

mains the case in the warmer climate (right column of Figure 10).482

The effects of global warming on atmospheric quantities is seen by comparing the483

two columns of Figure 10. Relative humidity is fairly robust to the warming climate, and484

precipitation rates increase globally (O’Gorman & Schneider, 2008b). The most dramatic485

changes occur for the frequency of extreme precipitation events (O’Gorman & Schnei-486

der, 2009b). What is a 1-in-1000 day event in the control climate (e.g., occuring with487

frequency 0.001) occurs in the extratropics of the warmer climate an order of magnitude488

more frequently, with the 95% confidence interval spanning 0.01 to 0.03. That is, a 1-489

in-1000 day event in the control climate occurs every 30 to 100 days in the warmer cli-490

mate. The parametric uncertainty is particularly large for extreme precipitation events491

within the tropics—behavior one would not be able to see in global warming experiments492

with fixed parameters. This is consistent with the known high uncertainty in predictions493

of tropical rainfall extremes with comprehensive climate models (O’Gorman & Schnei-494

der, 2009a).495

5 Conclusion and Discussion496

The primary goal of this article was to demonstrate that ensemble Kalman inver-497

sion (EKI), machine learning, and MCMC algorithms can be judiciously combined within498

the calibrate-emulate-sample framework to efficiently estimate uncertainty of model pa-499

rameters in computationally expensive climate models. We provided a proof-of-concept500

in a relatively simple idealized GCM.501

Our approach is novel because we train a machine learning (GP) emulator using502

input-output pairs generated from an EKI algorithm. This methodology has several ad-503

vantageous features:504

1. It requires a minimal number of runs of the expensive forward model (typically,505

O(100) runs).506

2. It generally finds optimal or nearly optimal parameters even in the presence of in-507

ternal variability noise because EKI is robust with respect to such noise.508

3. The resulting GP emulation is naturally most accurate around the (a priori un-509

known) optimal parameters because this is where EKI training points concentrate.510

4. MCMC shows robust convergence to the posterior distribution, and allows iden-511

tification of the optimal parameters with the maximum of the posterior probabil-512

ity, because it utilizes an objective function that is smoothed by GP emulation.513
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The effectiveness of GP depends on the training points, and a user must choose how many514

iterations of EKI to use for training (before ensemble collapse). In practice, we find the515

GP performance is robust as long as we include the initial iteration of training points516

(drawn from the prior) in our training set. The necessity of using the initial ensemble517

could be side-stepped by using an ensemble method that does not collapse, such as the518

recently introduced ensemble Kalman sampler (EKS) (Garbuno-Inigo et al., 2020).519

The CES algorithm is efficient, as it addresses two dominant sources of computa-520

tional expense. First, poor prior knowledge of model parameters requires blind explo-521

ration of a possibly high-dimensional parameter space to find optimal parameters and522

thus the region of high posterior probability. The CES framework handles this with an523

EKI algorithm, which we show to be successful when using time averaged data from a524

chaotic nonlinear model. Second, computing parametric uncertainty with a sampling tech-525

nique (such as MCMC) generally requires many (105–106) evaluations of an expensive526

forward model. We instead solve a cheap approximate problem by exploiting GP em-527

ulators. We train the emulators on relatively few (O(100)) intelligently chosen evalua-528

tions provided by EKI, which ensures that training points are placed where they are most529

needed—near the minimum of the model-data misfit. The training itself introduces neg-530

ligible computational cost relative to the running of the forward model, and the com-531

putational expense of evaluating the emulator in the sampling step is also negligible. Hence,532

the CES framework achieves about a factor 1000 speedup over brute-force MCMC al-533

gorithms. Significant efforts to accelerate brute-force MCMC without approximation have534

been undertaken (Järvinen et al., 2010; Solonen et al., 2012), and improvements of up535

to a factor 5 speedup have been made with adaptive and parallelized Markov chains. How-536

ever, these approaches still are considerably more expensive than the CES algorithm.537

The CES algorithm also has a smoothing property, which is beneficial even in sit-538

uations where a forward model is cheap enough to apply a brute-force MCMC. If the for-539

ward model exhibits internal variability, the objective function for the sampling algorithm540

will contain a data misfit of the form (7), which is non-deterministic because it contains541

a finite-time average. Without more sophisticated sampling methods, MCMC algorithms542

get stuck in local minima. In the CES algorithm, only EKI uses the functional (7), and543

EKI is well suited for this purpose. The GP emulator learns the smooth, noiseless model544

G∞ (in which internal variability disappears), using evaluations of GT (which are affected545

by internal variability). Thus, MCMC within the CES algorithm uses the smooth GP546

approximation of (6).547

One might ask why a sampling technique such as MCMC is used, as both EKI and548

MCMC algorithms produce uncertainty estimates, through the sample covariance of the549

ensemble or the variability from sequential samples, respectively. However, we show that550

only the uncertainty of MCMC is suitable for robust statistical inference. In our exper-551

iments, the sample covariance of an EKI ensemble underpredicts the standard deviation552

of parameters by an order of magnitude. As used here, EKI should be viewed as an op-553

timization algorithm and not a sampling algorithm. Adding additional spread to match554

the posterior within EKI may be achieved for Gaussian posteriors (Chen & Oliver, 2012b;555

Emerick & Reynolds, 2013a) or by means of EKS (Garbuno-Inigo et al., 2020); however,556

these methods are not justifiable beyond this Gaussian setting. The MCMC algorithm557

with CES, on the other hand, samples from an approximate posterior distribution and558

is justifiable beyond the Gaussian posterior setting (Cleary et al., 2021).559

The MCMC results in this study successfully capture the true parameters and their560

uncertainties. The results contain natural biases arising from the use of prior distribu-561

tions, internal variability of the climate, and use of a single noisy sample as synthetic562

data. Despite the sampling variability and emulator constraints, our MCMC samples were563

able to capture the true parameters in a 99% confidence interval in our examples, demon-564

strating the potential for use of EKI-trained GP emulators for MCMC sampling. Val-565

idation of the emulator in Figure 7 supports the MCMC results even further, as do our566
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comparisons with MCMC using the benchmark emulator (Table 1). The GP emulator567

both smooths the objective function and allows us to quantify uncertainty by sampling568

from the posterior distribution. However, GPs are limited to moderate-dimensional pa-569

rameter spaces, so more scalable emulators may be required in future.570

An alternative form of constraining parameter uncertainty is history matching, or571

precalibration (Vernon et al., 2010; Edwards et al., 2011; Williamson et al., 2013). The572

idea complements that of Bayesian uncertainty quantification, where instead of search-573

ing for a high probability region of parameter space with respect to data, one rules out574

regions of parameter space that are deemed inconsistent with the data. Couvreux et al.575

(2020) and Hourdin et al. (2020) recently constrained the parameter space of a param-576

eterization scheme by approximating a plausibility function over the parameter space us-577

ing a Gaussian process, and then removing “implausible” regions of parameter space where578

the plausibility function passes a threshold. This removal process is iterated until the579

uncertainty of the emulator is small enough, or the space becomes empty. History match-580

ing accomplishes a similar adaptivity task as that performed in the CES algorithm by581

EKI. During early stages of history matching, however, one must sample the full param-582

eter space with reasonable resolution, and emulator training is required at every itera-583

tion to evaluate the plausibility function. In contrast, in the CES algorithm, EKI draws584

a modest numbers of samples at every iteration and can work directly with noisy model585

evaluations, lowering the computational expense. The output of history matching is a586

(possibly empty) “acceptable” set of forward model runs; sampling this set leads to an587

upper bound on the prediction uncertainty. The benefit of the CES algorithm is that it588

provides samples of the posterior distribution, which lead to full estimates of prediction589

uncertainty (see Figure 10). For this reason, history matching has been proposed as a590

preprocessing step for Bayesian uncertainty quantification, known as precalibration to591

improve priors and assess model validity (Vernon et al., 2010; Edwards et al., 2011). The592

CES algorithm targets the Bayesian posterior distributions directly.593

In the more comprehensive climate modeling settings we target, data will be given594

from earth observations and from local high-resolution simulations (Schneider, Lan, et595

al., 2017). In these settings, model error leads to deficiencies when comparing model eval-596

uations to data, leading to structural biases and additional uncertainty that must be quan-597

tified in addition to parameter uncertainty. Structural model errors can be quantified598

with a flexible hierarchical Gaussian process regression that learns a non-parametric form599

of the model deficiency, as demonstrated in prototype problems in Schneider et al. (2020a).600

This approach represents model error in an interpretable fashion, as part of the model601

itself, rather than in the data space as pioneered in Kennedy and O’Hagan (2001).602

The CES framework has potential for both the calibration (as optimal parameters603

are given by the calibration stage) and uncertainty quantification (as a posterior distri-604

bution is given in the sampling stage) of comprehensive climate models, and other com-605

putationally expensive models. It is computationally efficient enough to use data aver-606

aged in time (e.g., over seasons), which need to be accumulated over longer model runs.607

Time-averaged climate statistics, including mean values and higher-order statistics such608

as extreme value statistics, are what typically matters in climate predictions. CES al-609

lows us to focus model calibration and uncertainty quantification on such immediately610

relevant statistics. Using time averaged statistics also has the advantage that it leads to611

smoother, albeit still noisy, objective functions when compared with calibration of cli-612

mate models by minimizing mismatches in instantaneous, short-term forecasts (Schneider,613

Lan, et al., 2017). The latter approach can improve short-term forecasts but may not614

translate into improved climate simulations (Schirber et al., 2013). It also suffers from615

the difficulty that model resolution and data resolution may be mismatched. Focusing616

on climate statistics, as we did in our proof-of-concept here, circumvents this problem:617

time-aggregated climate statistics are varying relatively smoothly in space and, hence,618

minimizing mismatches in statistics between models and data does not suffer from the619
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Figure 1. Zonal average of relative humidity averaged over one month. The black line shows

the level at which data was extracted for computing objective functions.
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Figure 2. Long-term mean values of the synthetic data. (a) Free-tropospheric relative humid-

ity. (b) Total daily precipitation rate (solid) and its contributions from convection (dashed) and

grid-scale condensation (dotted). (c) Probability of daily precipitation exceeding a 90th percentile

(which is trivially 10% in this case).

resolution-mismatch problem. CES can be used to learn about arbitrary parameters in620

climate models from time-averaged data. It leads to quantification of parametric uncer-621

tainties that then can be converted into parametric uncertainties in predictions by sam-622

pling from the posterior distribution of parameters.623
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Figure 3. Four noisy realizations of the synthetic data we treat as ‘truth’, plotted in color

over the underlying mean (grey circles) and 95% confidence intervals from Γ(θ†) (grey bars). (a)

Relative humidity. (b) Daily precipitation rate. (c) Probability of daily precipitation exceeding

the 90th percentile of the long-term mean data.

σRH στ (hrs)

EKI (Iteration 9) 0.017 0.053

MCMC (EKI-GP) 0.099 0.265

MCMC (B-GP) 0.096 0.359

Table 1. Average standard deviations of parameters from EKI and MCMC experiments over

y(1), . . . ,y(4).

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0.60 0.65 0.70 0.75 0.80

1

2

3

4

0.00 0.25 0.50 0.75 1.00

0

10

20

30

40

50

60

0.00 0.25 0.50 0.75 1.00

0

10

20

30

40

50

60

0.60 0.65 0.70 0.75 0.80

1

2

3

4

0.00 0.25 0.50 0.75 1.00

0

10

20

30

40

50

60

0.60 0.65 0.70 0.75 0.80

1

2

3

4

0.00 0.25 0.50 0.75 1.00

0

10

20

30

40

50

60

0.60 0.65 0.70 0.75 0.80

1

2

3

4

Relative humidity

T
im

e
sc

a
le

 (
h

o
u

rs
)

Figure 4. EKI ensemble at iterations 0 to 5 displayed as particles in parameter space. Left

column: all members; right column: zoom-in near true parameter values. Each row represents

optimization with a different data vector y(i) from Figure 3. The (initial) prior ensemble 0 is

highlighted in dark grey, and the final ensemble 5 is highlighted in pink. The intersection of the

dashed blue lines represents the true parameter values used to generate observational data from

the GCM.
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Figure 5. Convergence behaviour tests over 9 iterations of EKI for each realization of the

data. The vertical dashed line marks the final iteration of Figure 4; we also show behaviour of 4

further iterations. (a) Ensemble-mean residuals relative to synthetic data for each EKI iteration.

(b) Standard deviation of ensemble for the relative humidity parameter (circle) and timescale

parameter (triangle) for each realization.
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Figure 6. Training points for the GP emulators (EKI-GP and B-GP), plotted over the objec-

tive function used in the MCMC algorithm calculated for different realizations y(1), . . . ,y(4) of

the truth (rows). Left column: particles representing members of the first 6 EKI iterations. Right

column: grid (uniform in the transformed parameters) used to train the benchmark Gaussian

process. In both cases, some additional training points fall outside of the plotting domain.
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Figure 7. Comparison between the GCM statistics at the true parameters θ† and the trained

EKI-GP emulator at θ†. The four rows correspond to using EKI against the truths y(1), . . . ,y(4).

Blue lines: GCM mean (dots) averaged over 600 30-day runs, with the error bars marking a 95%

confidence interval from variances on the diagonal of Γ. Orange: predicted mean (line) and 95%

confidence interval (shaded region) produced by the GP emulator.
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Figure 8. Comparison between the GCM statistics at the true parameters θ† and the trained

B-GP emulator predictions at θ†. Blue: GCM mean (dots) averaged over 600 30-day runs, with

the error bars marking a 95% confidence interval from variances on the diagonal of Γ. Dark

red: predicted mean (line) and 95% confidence interval (shaded region) produced by the B-GP

emulator.
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Figure 9. Density plot of MCMC samples of the posterior distribution. The contours are

drawn to contain 50%, 75%, and 99% of the distribution generated from the samples. The left

column show distributions learned using EKI-GP at y(1), . . . ,y(4), and the right column using

B-GP at the same realizations. The blue dot represents the true parameters, while the red + is

an empirical average of particles in the 6th EKI iteration.
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Figure 10. Comparison of statistics of a 7200-day average in a climate-change simulation.

Left column: control climate; right column: warmer climate. Synthetic observational data eval-

uated at the true fixed parameters are shown in blue, while data evaluated at 100 samples from

the posterior distribution (EKI-GP) are shown in orange. (We choose the posterior from the

first realization of the truth, top-left panel of Figure 9.) The solid lines are the medians, and

the shaded regions represent the 95% confidence intervals between the [2.5%, 97.5%] percentiles.

Top: Relative humidity in mid-troposphere. Middle: Precipitation rate. Bottom: Frequency

with which 99.9th percentile of latitude-dependent daily precipitation in the control climate is

exceeded.

–24–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

working group i to the fifth assessment report of the intergovernmental panel697

on climate change (pp. 741–853). Cambridge, UK, and New York, NY, USA:698

Cambridge University Press.699

Frierson, D. M. W. (2007). The dynamics of idealized convection schemes and their700

effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64 , 1959–701

1976.702

Frierson, D. M. W., Held, I. M., & Zurita-Gotor, P. (2006). A gray-radiation aqua-703

planet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63 ,704

2548–2566.705

Garbuno-Inigo, A., Hoffmann, F., Li, W., & Stuart, A. M. (2020). Interact-706

ing langevin diffusions: Gradient structure and ensemble Kalman sampler.707

SIAM Journal on Applied Dynamical Systems, 19 (1), 412-441. Retrieved from708

https://doi.org/10.1137/19M1251655 doi: 10.1137/19M1251655709

Geyer, C. J. (2011). Introduction to Markov Chain Monte Carlo. In S. Brooks,710

A. Gelman, G. L. Jones, & X.-L. Meng (Eds.), Handbook of Markov Chain711

Monte Carlo. Chapman and Hall/CRC Press. doi: 10.1201/b10905-3712

Gland, F. L., Monbet, V., & Tran, V.-D. (2009). Large sample asymptotics for the713

ensemble kalman filter (Tech. Rep. No. RR-7014). INRIA.714

Golaz, J.-C., Horowitz, L. W., & II, H. L. (2013). Cloud tuning in a coupled climate715

model: Impact on 20th century warming. Geophys. Res. Lett., 40 , 2246–2251.716

doi: 10.1002/grl.50232717

Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F., . . . Roehrig,718

R. (2013). LMDZ5B: the atmospheric component of the IPSL climate model719

with revisited parameterizations for clouds and convection. Clim. Dyn., 40 ,720

2193–2222. doi: 10.1007/s00382-012-1343-y721

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., . . .722

Williamson, D. (2017). The art and science of climate model tuning. Bull.723

Amer. Meteor. Soc., 98 , 589–602. doi: 10.1175/BAMS-D-15-00135.1724

Hourdin, F., Williamson, D., Rio, C., Couvreux, F., Roehrig, R., Villefranque,725

N., . . . Volodina, V. (2020). Process-based climate model develop-726

ment harnessing machine learning: II. Model calibration from single col-727

umn to global. Journal of Advances in Modeling Earth Systems. doi:728

https://doi.org/10.1029/2020MS002225729

Houtekamer, P. L., & Zhang, F. (2016). Review of the ensemble Kalman filter for730

atmospheric data assimilation. Mon. Wea. Rev., 144 , 4489–4532. doi: 10.1175/731

MWR-D-15-0440.1732

Iglesias, M. A., Law, K. J. H., & Stuart, A. M. (2013, mar). Ensemble Kalman733

methods for inverse problems. Inverse Problems, 29 (4), 045001. doi: 10.1088/734

0266-5611/29/4/045001735
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