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Abstract

“Model-driven” and “data-driven” approaches together have helped humans understand the principles of geophysical phenomena

for a long time. With increasingly available geophysical data, a new data-driven technique, i.e., deep learning, has played an

important role in the accurate prediction of complex system states and relieving the curse of dimensionality in large temporal

and spatial geophysical applications. In this article, we review the basic concepts of and recent advances in data-driven deep

learning approaches in a variety of geophysical scenarios. Explorational geophysics including data processing and imaging,

are the main focus. Deep learning applications in the geosciences including the Earth interior, earthquakes, water resources,

atmospheric science, satellite remote sensing, and space sciences are also reviewed. A coding tutorial and a summary of tips for

rapidly exploring deep learning are presented for beginners and interested readers of geophysics. Several promising directions are

provided for future research involving deep learning in geophysics, such as unsupervised learning, transfer learning, multimodal

deep learning, federated learning, uncertainty estimation, and active learning.
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Abstract 12 

 “Model-driven” and “data-driven” approaches together have helped humans understand the 13 

principles of geophysical phenomena for a long time. With increasingly available geophysical 14 

data, a new data-driven technique, i.e., deep learning, has played an important role in the 15 

accurate prediction of complex system states and relieving the curse of dimensionality in large 16 

temporal and spatial geophysical applications. In this article, we review the basic concepts of and 17 

recent advances in data-driven deep learning approaches in a variety of geophysical scenarios. 18 

Explorational geophysics including data processing and imaging, are the main focus. Deep 19 

learning applications in the geosciences including the Earth interior, earthquakes, water 20 

resources, atmospheric science, satellite remote sensing, and space sciences are also reviewed. A 21 

coding tutorial and a summary of tips for rapidly exploring deep learning are presented for 22 

beginners and interested readers of geophysics. Several promising directions are provided for 23 

future research involving deep learning in geophysics, such as unsupervised learning, transfer 24 

learning, multimodal deep learning, federated learning, uncertainty estimation, and active 25 

learning. 26 

Plain Language Summary 27 

With the rapid development of artificial intelligence (AI), students and researchers in the 28 

geophysical community would like to know what AI can bring to geophysical discoveries. We 29 

present a review of deep learning, a popular AI technique, for geophysical readers to understand 30 

recent advances, open problems, and future directions. This review aims to pave the way for 31 

more geophysical researchers, students, and teachers to use data-driven AI techniques.  32 

1 Introduction 33 

Geophysics narrowly describes the investigation and characterization of the Earth’s 34 

subsurface using noninvasive techniques such as imaging with seismic waves, gravity fields, 35 

magnetic fields, and electric fields. This review covers a broader definition of geophysics, which 36 

involves the physical mechanics of the atmosphere and the internal structures of the Earth and 37 

other planetary bodies at various temporal and spatial scales. Observation is an important means 38 

by which humans come to understand unknown geophysical phenomena. With state-of-the-art 39 
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observation equipment, the amount of observed data is increasing at an impressive speed. How to 40 

process such a large amount of observed data and obtain useful information is a significant 41 

problem. Model- and data-driven methods are two important ways to process and analyze 42 

geophysical data (Figure 1). 43 

Model-driven geophysics is based on induction and deduction from the perspective of 44 

philosophy of science. First, the principles of geophysical phenomena are induced from a large 45 

amount of observed data. Mathematical or modeling methods are established based on physical 46 

causality and laws. Then, the models are used to deduce future or past geophysical phenomena. 47 

In data-driven geophysics, given a large amount of observed data, the computer first builds a 48 

classification or regression model without considering physical causality. This process is also 49 

called training. Then, this model performs inference on incoming datasets. Despite the success of 50 

model-driven and traditional data-driven methods, they have limitations in the accurate 51 

prediction of complex system states at large spatial and temporal scales, such as in global climate 52 

estimation and earthquake prediction. Table 1 lists several such difficult tasks in geophysics. 53 

To show the bottlenecks of model-driven and traditional data-driven methods in detail, 54 

we use exploration geophysics as an example. Exploration geophysics aims to observe the 55 

subsurface of Earth or other planets with data collected at the surface, such as seismic fields and 56 

gravity fields. The main process of exploration geophysics includes pre-processing and imaging. 57 

In the geophysical signal pre-processing stage, typical methods are data-driven. The simplest 58 

assumption regarding the shape of underground layers is that the seismic events in data are linear 59 

in small windows (Spitz 1991). Further assumptions include that the data are sparse under certain 60 

transform (Donoho and Johnstone 1995, Herrmann and Hennenfent 2008) and that the data are 61 

low-rank after the Hankel transform (Oropeza and Sacchi 2011), among others. For example, 62 

Mousavi and Langston (2016), Mousavi et al. (2016), Mousavi and Langston (2017) denoised 63 

seismic data based on a sparsity assumption in the time-frequency domain. However, the 64 

predesigned linear event assumption or sparse transform assumption is not adaptive to different 65 

types of seismic data and may lead to low denoising or interpolation quality for data with 66 

complex structures. In the geophysical imaging stage, typical methods are model-driven. Wave 67 

equations govern the kinematics and dynamics of seismic wave propagation. Acoustic, elastic, or 68 
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viscoelastic wave equations introduce an increasing number of factors into the wave equations, 69 

and the generated wave field records can precisely estimate real scenarios. However, as the wave 70 

equation becomes increasingly complex, the numerical implementation of the equation becomes 71 

nontrivial, and the computational cost increases considerably for large-scale scenarios.  72 

 A new data-driven method, deep learning (DL) (LeCun et al. 2015), has shown potential 73 

in overcoming the limitations of model-driven and traditional data-driven approaches. DL and 74 

artificial intelligence (AI) have become very hot topics in recent years. DL is a representative 75 

category of AI methods. DL methods train a deep neural network (DNN) through a complex 76 

nonlinear mapping process with adjustable parameters based on a large dataset. DL mainly 77 

encompasses supervised and unsupervised data-driven approaches depending on whether labels 78 

are available or not, respectively. Supervised approaches are used for classification and 79 

regression tasks and unsupervised approaches are used for clustering or pattern recognition. In 80 

addition, DL also contains semi-supervised learning and reinforcement learning.  Recently, deep 81 

learning methods have been widely adopted in various geophysical applications, such as 82 

aftershock pattern analysis (DeVries et al. 2018), and Earth system analysis (Reichstein et al. 83 

2019). 84 

A review article about machine learning in solid Earth geoscience was recently published 85 

in Science (Bergen et al. 2019). The topic includes a variety of machine learning techniques, 86 

from traditional methods, such as logistic regression, support vector machines, random forests 87 

and neural networks, to modern methods, such as deep neural networks and deep generative 88 

models. The article stresses that machine learning will play a key role in accelerating the 89 

understanding of the complex, interacting and multiscale processes of Earth’s behavior. Since 90 

2019, AI geophysics has made rapid progress. Our review will introduce cutting-edge AI 91 

geophysics, mainly focusing on DL, will cover a variety of geophysical applications, from deep 92 

to the Earth’s core and far into outer space and will mainly focus on exploration geophysics. This 93 

review intends not only to provide a glance at the most recent DL research related to geophysics 94 

for geophysical readers but also to provide a cookbook for beginners who are interested in DL, 95 

from geophysical students to researchers. 96 
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This paper also introduces another data-driven technique, i.e., dictionary learning 97 

(Aharon et al. 2006), since the theoretical frameworks of dictionary learning and DL are similar. 98 

In dictionary learning, an adaptive dictionary is learned as a representation of the target data. The 99 

key features of dictionary learning are single-level decomposition, unsupervised learning, and 100 

linearity. Single-level decomposition means that one dictionary is used to represent a signal. 101 

Unsupervised learning means no labels are provided during dictionary learning. In addition, only 102 

the target data are used without an extensive training set. Linearity implies that the data 103 

decomposition on the dictionary is linear. The above features make the theory of dictionary 104 

learning simple. This review will help readers transfer existing knowledge on dictionary learning 105 

to DL. 106 

The review part consists of three layers. The first layer contains concepts, and we 107 

introduce the basic idea of dictionary learning and DL (S2). The second layer contains detailed 108 

techniques (S3, S4). Applications in exploration geophysics are introduced following each 109 

method to better explain the concepts of dictionary learning and DL. The third layer presents AI 110 

applications in other geophysical areas (S5). A tutorial section for beginners (S6) and a 111 

discussion of future directions (S7) are given as extensions of this review. S8 summarizes this 112 

review. 113 

2 General theory 114 

Readers who are already familiar with general theory in dictionary learning, compressive 115 

sensing and DL may wish to skip to Section 3. We denote scalars by italic letters, vectors by bold 116 

lowercase letters and matrices by bold uppercase letters. In geophysics, the goal is to invert 117 

unknown parameters x from an available observation y=Lx. L is a forward or degraded operator 118 

in geophysical applications, such as denoising, reconstruction, or full-waveform inversion. 119 

However, L is usually ill-conditioned or not invertible. Compressive sensing approximates x by 120 

forming an optimization objective loss function E(x;y) with an additional constraint R: 121 

    ( ; ) ,E D R x y Lx y x  (1) 
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where D is a similarity measurement function. Typically, the L2-norm 
2

Lx y  is used for 122 

smooth measurement. R is a regularization term. Sparsity is a popular regularization term 123 

adopted in compressive sensing, where  
1

R x Wx . W is a sparse transform with several 124 

vectorized basis. W is also termed as dictionary. The goal of dictionary learning is to train an 125 

optimized sparse transform W, which is used for the sparse representation of x. Dictionary 126 

learning involves learning W via matrix decomposition with constraints Rw and Rc on the 127 

dictionary W and coefficient v. 128 

    T( , ) , ( )w cE D R R  W v W v x W v  (2) 

where W and v are optimized alternatively. Unlike dictionary learning, deep learning treats 129 

geophysical problems as classification or regression problems. A DNN F is used to approximate 130 

x, 131 

  ;Fx y Θ  (3) 

where Θ is the parameter set of the DNN. In classification tasks, x is a one-hot encoded vector 132 

representing the categories. In unsupervised learning, the label x is the same as the input y. Θ is 133 

obtained by building a high-dimension approximation between two sets  , 1i i N X x  and 134 

 , 1i i N Y y , i.e., the labels and inputs. The approximation is achieved by minimizing the 135 

following loss function to obtain an optimized Θ: 136 

 
 

2

2
1

( ; , ) ;
N

i i

i

E F


 Θ X Y x y Θ  (4) 

If F is differentiable, a gradient-based method can be used to optimize Θ. However, a 137 

large Jacobi matrix is involved when calculating E
Θ

, making it infeasible for large-scale 138 

datasets. A back-propagation method (Rumelhart et al. 1986) is proposed to compute E
Θ

 and 139 

avoid calculating the Jacobi matrix. In the following sections, we first introduce dictionary 140 

learning from the traditional K-means method and the widely used K-SVD approach; a recent 141 

fast algorithm with a tight data-driven framework and other deep learning methods are also 142 
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presented. Each subject is introduced along with applications in exploration geophysics. A 143 

mapping diagram of the primary references used in this paper is given in Figure 2.  144 

3 Dictionary learning 145 

3.1 K-means 146 

Clustering refers to grouping similar attributes in an unsupervised manner. For example, 147 

we can use clustering to decide whether a region contains fluvial facies or faults based on 148 

stacked sections. K-means (Hartigan and Wong 1979) is a classical clustering algorithm, which 149 

aims to cluster N given samples with M features into K groups. K-means applies two steps per 150 

iteration with K randomly initialized cluster centers. i) Assign the training samples to the nearest 151 

cluster center. ii) Update each cluster center based on the weighted center of the attached 152 

samples. K-means can be treated as a dictionary learning method with an extremely sparse 153 

representation, where only one dictionary component is allowed, and the representation 154 

coefficient must be one. Figure 3 shows an example of how K-means splits a dataset into two 155 

classes based on two selected features. 156 

 K-means, and the corresponding improved methods, is used for signal classification in 157 

geophysics. Because K-means is sensitive to feature selection, Galvis et al. (2017) suggested that 158 

seismic attributes be selected based on the notion of similarity and that these attributes can be 159 

used in the classification of surface waves with the K-means approach. Mousavi et al. (2019) 160 

combined K-means clustering with an autoencoder and optimized the feature extraction and the 161 

clustering task simultaneously. This method forces the extracted features from the data to be the 162 

most suitable ones for the clustering task. K-means is also sensitive to outliers. Song et al. (2018) 163 

propose an adaptive-phase K-means method. The advantage of using the phase distance as a 164 

similarity measure is that it provides robustness in the presence of horizon error. The 165 

classification result of K-means depends on the user-specified number of clusters. Waheed et al. 166 

(2019) showed that the density-based spatial clustering method does not require a specification 167 

for the number of clusters and reduces the cost of automatic velocity selection compared to that 168 

in the traditional K-means approach. De Lima and Marfurt (2018) proposed a combination of 169 
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principal component analysis and K-means for the classification of airborne gamma ray 170 

spectrometry.  171 

3.2 K-SVD 172 

Similar to K-means, most dictionary learning algorithms consist of two steps: i) sparse 173 

coding and ii) dictionary updating. Unlike K-means, the sparse representation is not limited to 174 

one component, and the number of representation coefficients is also not limited. The method of 175 

optimal directions (MOD) (Engan et al. 2002) uses orthogonal matching pursuit for sparse 176 

coding and a second-order Newtonian method for dictionary updating. Beckouche and Ma (2014) 177 

use the MOD method for dictionary learning and sparse approximation in seismic denoising. The 178 

dictionary updating approach in MOD has favorable flexibility and simplicity; however, it is 179 

relatively impractical for large dictionaries since matrix inversion is involved. 180 

 K-SVD (where SVD is singular value decomposition) (Aharon, Elad et al. 2006) shares 181 

the same sparse coding structure as MOD, but several improvements in dictionary updating are 182 

given. First, one component of the dictionary is updated at a given time, and the remaining terms 183 

are fixed. Second, a rank-1 approximation SVD algorithm is used to obtain the updated 184 

dictionary and coefficients simultaneously, thereby accelerating convergence and reducing 185 

computational memory use compared to those in the MOD. K-SVD is applied in geophysics with 186 

preferred extensions. Nazari Siahsar et al. (2017) split the training data into different slices and 187 

trained different dictionaries with a shared sparse coefficient matrix. Such a strategy allows 3-D 188 

datasets to processed with a reasonable time cost for all training patches. 189 

3.3 Data-driven tight frame 190 

Despite the success of K-SVD in signal enhancement and compression, dictionary 191 

updating is still time consuming in regard to high-dimensional and large-scale datasets, such as 192 

3-D prestacked data in seismic exploration. K-SVD includes one SVD step to update one 193 

dictionary term. Can the entire dictionary be updated by one SVD for efficient improvement? 194 

Cai et al. (2014) proposed a data-driven tight frame (DDTF) by enforcing a tight frame constraint 195 

on the dictionary. The tight frame condition is a slightly weaker condition than orthogonality, for 196 
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which the perfect reconstruction property holds. With the tight frame property, dictionary 197 

updating in DDTF is achieved with one SVD, which is hundreds of times faster than K-SVD. 198 

 Liang et al. (2014) first utilized 2-D DDTF in seismic data interpolation. The extension of 199 

dictionary learning to high dimensions is straightforward since the data are vectorized at the 200 

patch scale. Patches are blocks generated from original data division into training samples. Yu et 201 

al. (2015) extend DDTF to 3-D and 5-D with applications in seismic data interpolation. The 202 

training patches for dictionary learning are a random subset of all patches. An example of a 203 

learned dictionary with 3-D DDTF for a seismic volume is shown in Figure 4. Yu et al. (2016) 204 

designed a Monte Carlo selection method based on a training set. The patches with high variance 205 

were selected with high probability to further improve efficiency. Liu et al. (2017) proposed 206 

tensor DDTF, in which high-dimensional data are obtained by tensor products, to save 207 

computational resources and constrain data structures. Liu et al. (2018) and Liu and Ma (2019) 208 

proposed graph DDTF, in which a binary tree is used to cluster training patches. DDTF is 209 

implemented for each cluster to obtain a sparse dictionary with similar patches as the original 210 

dictionary. Wang and Ma (2020) and Wang et al. (2019) proposed adaptive DDTF and group-211 

sparsity DDTF for the preservation of weak signals by considering the similarity among different 212 

patches. 213 

4 From dictionary learning to deep learning 214 

Though both are data-driven methods, deep learning differs from dictionary learning in 215 

three aspects: the depth of decomposition, the amount of training data, and the nonlinear 216 

operators. Dictionary learning is usually a single-level matrix decomposition problem. 217 

Rubinstein et al. (2010) proposed a double sparsity (DS) dictionary learning to explore deep 218 

decomposition. The motivation of DS is that the learned dictionary atoms still share several 219 

underlying sparse pattern for a generic dictionary. In other words, the dictionary is represented 220 

with a sparse coefficient matrix multiplied by a fixed dictionary, as in discrete cosine transform. 221 

Inspired by DS dictionary learning, can we propose triple, quadruple or even centuple dictionary 222 

learning? We know cascading linear operators are equivalent to a single linear operator. 223 

Therefore, using more than one fixed dictionary does not improve the signal representation 224 
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ability compared to that ability of one fixed dictionary if no additional constraints are provided. 225 

In deep learning, nonlinear operators are combined in such a deep structure. An artificial neural 226 

network (ANN) with one hidden layer and nonlinear operators can represent any complex 227 

function with a sufficient number of hidden neurons. To fit ANN with many hidden neurons, we 228 

need an extensive training set, while dictionary learning involves only one target data. A 229 

comparison of the learned features in dictionary learning and deep learning is shown in Figure 5. 230 

 Poulton (2002) published a review article on ANN methods in exploration geophysics in 231 

2000. Since 2000, many pioneers have applied ANN and other machine learning methods in 232 

geophysics. Limited by the length of this review, we only recall several such studies. Lim (2005) 233 

characterized reservoir properties using fuzzy logic and an ANN for well data. Huang et al. 234 

(2006) explored seismic data parameter determination and pattern detection with an ANN. 235 

Helmy et al. (2010) applied hybrid computational models to characterize oil and gas reservoirs. 236 

Zhang et al. (2014) proposed using a kernel-regularized least-squares (Evgeniou et al. 2000) 237 

method for fault detection from seismic records. Mousavi et al. (2016) used an ANN and  logistic 238 

regressiontion to discriminate an event’s source depth with an accuracy of 90.7%. Jia and Ma 239 

(2017) suggested using supported vector regression for seismic interpolation. The authors 240 

claimed that no assumptions were imposed on the data and that no parameter tuning was required 241 

for interpolation. Giglio et al. (2018) estimated the oxygen level in the Southern Ocean. The 242 

authors used temperature and salinity as the input for the random forest model. Wright and 243 

Polashenski (2020) measured the percentage of pond coverage from Arctic sea ice based on a 244 

random forest model. They use low-resolution satellite imagery as input to cover a larger spatial 245 

range. 246 

 Our review will focus on DNNs. The number of layers in an ANN has a significant effect 247 

on the fitting and generalization abilities of the model. Early ANNs were restricted to a few 248 

layers due to the computational capacity of the available hardware, the vanishing and explosion 249 

gradient problem during optimization, etc. With the development of hardware and optimization 250 

algorithms, ANNs tend to become deeper. In addition, an ANN composed of fully connected 251 

layers, i.e., a fully connected neural network (FCNN), requires preselected features as inputs into 252 

the neural network and ignores the structure of the input entirely, with full reliance on experience. 253 
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Qi et al. (2020) proposed feature selection for machine learning facies analysis. An exhaustive 254 

search method, which took 638 hours for the candidate attributes, was used to determine both the 255 

optimal number and combination of parameters. To reduce the number of parameters in an 256 

FCNN, convolutional neural networks (CNN) were proposed to share network parameters with 257 

convolutional filters. 258 

4.1 Convolutional neural networks 259 

CNNs were proposed to consider local coherency and reduce the number of weight 260 

parameters. CNN uses convolutional filters to restrict the inputs of a neural network to within a 261 

local range. The convolutional filters are shared by different neurons in the same layer. A CNN 262 

uses original data rather than selected features as an input set. Pooling layers are used in CNNs to 263 

extract key features by subsampling the input set. CNNs have developed rapidly since 2010 for 264 

image classification and segmentation, and several popular CNNs include VGGNet (Simonyan 265 

and Zisserman 2015) and AlexNet (Krizhevsky et al. 2017). CNNs are also used in image 266 

denoising (Zhang et al. 2017) and super-resolution tasks (Dong et al. 2014). The above CNNs are 267 

named vanilla CNNs, which are CNNs with simple sequential structures. Vanilla CNNs are used 268 

for classification and regression tasks. In classification tasks, the outputs are discrete variables; 269 

in regression tasks, the outputs are continuous variables.  270 

 Additional deep learning network architectures have been proposed for specific tasks 271 

based on vanilla FCNNs or CNNs (Figure 6a,b). An autoencoder (AE) is an unsupervised 272 

network for dimension reduction, which first encodes and compresses data and then reconstructs 273 

the encoded data to those close to the input. A deep convolutional autoencoder (CAE, Figure 6c) 274 

is an AE with convolutional layers that acts as a feature extractor. In CAE, the middle of the 275 

network can also have larger dimension than the two ends. U-Net (Ronneberger et al. 2015) 276 

(Figure 6d) uses skip connections to bring low-level features to a high level. The generative 277 

adversarial network (Goodfellow et al. 2014, Creswell et al. 2018) (GAN, Figure 6e) aims to 278 

reproduce data examples with the same distribution as the training set. A GAN contains a 279 

generative network and a discriminative network. The generative network tries to produce a 280 

nearly real image or any other type of data. The discriminative network tries to distinguish 281 
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whether the input image is real or generated. Therefore, such a game will finally allow the 282 

generative network to produce fake images that the discriminative network cannot distinguish 283 

from real images. CycleGAN (Zhu et al. 2017) is a GAN with two generative networks and two 284 

discriminative networks, such that a cycle mapping between two datasets is trained. Recurrent 285 

neural networks (RNNs, Figure 6f) are commonly used for tasks related to sequential data, and 286 

the current state depends on the history of inputs fed into the neural network. Long short-term 287 

memory (LSTM) (Hochreiter and Schmidhuber 1997) is a widely used RNN that considers how 288 

much historical information is forgotten or remembered. We introduce the concepts and 289 

applications of the above DNNs in detail in the following sections. 290 

4.2 Vanilla convolutional neural networks 291 

Vanilla CNNs are the most popular CNNs if many training samples and labels are 292 

available. Cascading convolutional layers, nonlinear layers, and data regularization layers 293 

provide a remarkable fit for the training samples in regression tasks. Pooling layers are used for 294 

feature extraction in classification tasks. Vanilla CNNs are reliable for most applications in 295 

geophysics, such as denoising, interpolation, velocity modeling, and data interpretation. 296 

In the seismic denoising area, Yu et al. (2019) proposed a denoising CNN (DnCNN) 297 

(Zhang, Zuo et al. 2017) based method for three kinds of seismic noise. The DnCNN developed 298 

was composed of convolutional, batch normalization, and rectified linear unit layers. In this 299 

approach, the final output is equal to the network output plus the input, which is called residual 300 

learning, i.e., the output of the network represents noise. The concept of residual learning is 301 

similar to that used in a residual network (He et al. 2016) to avoid vanishing gradients. Random 302 

and linear noise are manually added to synthetic datasets, and multiple data sets are generated 303 

with the acoustic wave equation. In this case, transfer learning (Donahue et al. 2014) is used for 304 

field data denoising. Different kinds of noise are processed with the same network architecture 305 

but different training sets. An example of scattered ground-roll attenuation is shown in Figure 7. 306 

Scattered ground roll is mainly observed in desert area, caused by the scattering of ground roll 307 

when the near surface is laterally heterogeneous. Scattered ground roll is difficult to remove 308 

because it occupies the same F-K domain as reflected signals. DnCNN was used to remove 309 
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scattered ground roll successfully. Wu et al. (2019) claimed that in a traditional CNN, the labels 310 

of clean data are difficult to obtain. They used multiple trials involving user-generated white 311 

noise to simulate real white noise. Additionally, the inputs were decomposed with the variational 312 

mode decomposition method (Dragomiretskiy and Zosso 2014) to obtain a few modes with 313 

different frequency supports, which were then fed into a CNN. 314 

 In the seismic interpolation field, Wang et al. (2019) proposed the use of ResNet for the 315 

reconstruction of regularly missing data. The training set consisted of synthetic and field samples. 316 

The input of the network was preprocessed with a bicubic interpolation algorithm. Zhang et al. 317 

(2020) trained a denoised neural network with a natural image dataset and used the trained 318 

network in the project onto a convex set (Abma and Kabir 2006) framework for seismic data 319 

interpolation. Therefore, no new networks were required for the interpolation of other datasets or 320 

other tasks. Figure 8 gives the training set and a simple interpolation result (Zhang, Yang et al. 321 

2020). 322 

 In seismic deblending, Zu et al. (2020) constructed an end-to-end deblending CNN. The 323 

trained network was iteratively applied to blended data. The authors claimed that networks 324 

trained with both synthetic and field datasets perform well with real input datasets. Sun et al. 325 

(2020) also used an end-to-end CNN for deblending. Different hyper-parameters, such as the 326 

number of layers, number of filters, and size of the filters, were used to construct a network that 327 

was optimal for seismic data. They used field datasets to construct the training set, which 328 

inevitably contained some noise contamination associated with the labels. Nakayama et al. (2019) 329 

presented a method for designing acquisition parameters, including blending, source, and 330 

receiver positions, based on a genetic algorithm and CNN. The genetic algorithm was used to 331 

produce combinations of acquisition parameters, and the CNN was used to classify the 332 

combinations. Finally, a deblending algorithm was used to obtain a clean signal. If this signal 333 

was close to the original signal, the iteration stopped; if not, the algorithm proceeded with new 334 

parameters. 335 

 In velocity analysis and inversion, Araya-Polo et al. (2018) used a CNN for seismic 336 

tomography and obtained a promising result for synthetic 2D data. Wang and Ma (2020) 337 
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proposed a network combined with fully connected layers and fully convolutional layers (FCN). 338 

The FCN used a contracting encoder and an expansive decoder corresponding to feature 339 

extraction and function fitting, respectively. The FCN yielded outputs with the same size as the 340 

inputs. The input was a seismology data set with a cross-well geometry, and the output was a 341 

velocity model. Notably, the authors used smoothed natural images as seismic models, thus 342 

producing a large number of models to construct the training set. Figure 9 shows how Wang and 343 

Ma (2020) converted a three-channel color image to a velocity model. Park and Sacchi (2019) 344 

developed a CNN to directly estimate stacking velocities. The portions with different time slices 345 

as channels were used as inputs. The root square velocity was the output. For a much different 346 

dataset, the authors used transfer learning instead of network training from random initialization. 347 

Ovcharenko et al. (2019) proposed a DL framework for extrapolating the frequency range of 348 

seismic data from high to low frequencies. The inputs and outputs of the network were multiple 349 

high-frequency and single low-frequency representations of a shot gather. Moreover, 0.25 Hz 350 

data were obtained from 2 to 4.5 Hz frequencies. Low-frequency information was used for the 351 

initialization of full-waveform inversion (FWI). 352 

 In the attribute inversion area, Das et al. (2019) proposed a 1-D CNN for seismic 353 

impedance inversion. The training set consisted of synthetic datasets and contained six output 354 

features, such as the spherical variogram ranges of facies, phases, and the central frequency. The 355 

uncertainty was computed with an approximate Bayesian computational method. You et al. 356 

(2020) predicted anisotropy information from conventional well logs based on a DNN, and the 357 

method was generalized for use with field data. 358 

4.3 Convolutional autoencoder 359 

A CAE is a type of CNN consisting of an encoder and a decoder. The encoder uses 360 

convolutional layers and pooling layers to extract critical features in a latent space from the 361 

inputs, resulting in a contracting path. The decoder uses deconvolutional layers and unpooling 362 

layers to decode the features into the original data space, resulting in an expanding path.  If the 363 

outputs are the same as the inputs, a CAE works in an unsupervised way, and the latent features 364 

are used for other tasks, such as clustering. The learned latent features can also be used for 365 
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dimension reduction in large-scale tasks. If labels are provided as outputs, the network 366 

architecture of CAE can also work in a supervised way. 367 

 In seismic data processing, Wang et al. (2020) proposed a CAE-based interpolation 368 

method for irregular sampling. The subsampled dataset is the input, and the complete dataset is 369 

the output. Transfer learning is used when the method is applied to field data. Wu et al. (2019) 370 

treated first-arrival selection as an image segmentation problem with a CAE. Anything prior to 371 

the first arrival is set to zero, and all instances after the first arrival are set to one. This method 372 

works well for noisy situations and field datasets. For the training set, a subset of traces 373 

generated with a simple model is used. Gao et al. (2019) used CAE for dimension reduction in 374 

FWI to estimate longwave information, where the latent parameters were optimized instead of 375 

the whole dataset. 376 

 In attribute analysis, Duan et al. (2019) used a CAE to extract the features of 1D data and 377 

K-means for clustering. They used Kullback-Leibler divergence to measure the similarities 378 

between the two distributions. He et al. (2018) and Qian et al. (2018) used an AE to extract 379 

seismic features in an unsupervised way, and then a K-means clustering method was used to 380 

classify the seismic facies. Mousavi, Zhu et al. (2019) optimized CAE and K-means clustering 381 

simultaneously to achieve better feature extraction. Qian, Yin et al. (2018) built a physical model 382 

and used field data from the Liziba survey to test the proposed method. 383 

4.4 U-Net 384 

 U-Nets have U-shaped structures and skip connections. The skip connections bring low-385 

level features to high levels. U-Net was first proposed for image segmentation and has been 386 

applied in seismic data processing, inversion, and interpretation. The U-structure with a 387 

contracting path and expanding path makes every data point in the output contain all information 388 

from the input, such that the approach is suitable for mapping data in different domains, such as 389 

inverting velocity from seismic records in FWI. The input size of the test set must be the same as 390 

that in the training set for a trained U-Net. 391 

 In seismic data processing and inversion, Mandelli et al. (2018) used a U-Net for the 392 

interpolation of seismic data, and prestack images with and without missing traces were used as 393 
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inputs and outputs. Zhu et al. 2019 developed a U-Net based DeepDenoiser for seismic data 394 

denoising. The algorithm is robust when the signal and noise share a common frequency band. 395 

Hu et al. (2019) proposed a U-Net-based first-arrival selection method by formulating a binary 396 

segmentation problem. Yang and Ma (2019) proposed a new general velocity model construction 397 

method based on U-Net. The inputs were seismology data sets generated by the acoustic wave 398 

equation from surface survey, and labels were the velocity models. This method is useful for 399 

generating low-frequency models for the initialization of traditional FWI. Low-frequency 400 

information helps FWI converge. Figure 10 shows the velocity inversion results from Yang and 401 

Ma (2019). Unlike the conventional inversion method based on physical models, supervised deep 402 

learning methods are based on big-data training rather than prior-knowledge assumptions. Unlike 403 

in FWI, after network training is completed, the reconstruction costs are negligible. Moreover, 404 

little human intervention is needed, no initial velocities are involved, and no cycle-skipping 405 

problem exists. Instead of regression from seismic records to velocity models, Zhang and 406 

Alkhalifah (2019) used deep learning to estimate the distribution of facies from the results of 407 

conventional FWI, and the facies were used to constrain a new iteration of the FWI approach 408 

several times. In this method, deep learning was integrated into FWI as part of a model constraint. 409 

 In seismic interpretation, Wu et al. (2020) built an approximately realistic 3-D training 410 

dataset by randomly choosing folding and faulting parameters in a reasonable range. Then, the 411 

dataset was used to train a 3D U-Net for seismic structural interpretation for features such as 412 

faults, layers, and dips in field datasets. Building realistic synthetic datasets rather than 413 

handcrafted field datasets is more efficient and can produce similar results. Wu et al. (2019) used 414 

an end-to-end U-Net for 3D seismic fault segmentation. The inputs were seismic images, and the 415 

outputs were ones, indicating faults, and zeros, indicating nonfaults. A class-balanced binary 416 

cross-entropy loss function was used to adjust the data imbalance so that the network was not 417 

trained to predict only zeros. A network trained only on synthetic data worked well when field 418 

datasets were considered. Wu et al. (2019) treated the horizon interpretation problem as an image 419 

classification task; they used U-Net and post-stack traces located on a user-defined coarse grid as 420 

the inputs and manually picked horizons as labels. This approach is semi-automated because the 421 

horizons must be labeled for the coarse grid. The traces were processed individually. An example 422 
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of synthetic post-stack image and field data fault analysis is shown in Figure 11, as published by 423 

Wu, Geng et al. (2020). 424 

 It is convenient to apply U-Net in various geophysical applications. Here, we give two 425 

examples: velocity picking and first-arrival picking. Figure 12 shows the results of using U-Net 426 

for velocity picking. The inputs are seismological data, and the outputs are ones where the picks 427 

are located and zeros elsewhere. Figure 13 shows the results of the phase picking based on U-Net. 428 

We used 8000 synthetic samples. A gradient constraint was added in the loss function to enhance 429 

the continuity of the picked positions. Seismological data sets were used as inputs. For the output, 430 

three classifications were set: zeros above the first arrival, ones below the first arrival, and twos 431 

for the first arrival. The training dataset was contaminated with strong noise and had missing 432 

traces. The predicted picking were close to the labels. First-arrival picking based on deep 433 

learning has been applied for realistic seismic data processing by using different neural networks 434 

(Hu, Zheng et al. 2019, Wu, Zhang et al. 2019). 435 

4.5 Generative adversarial networks 436 

GANs can be applied in adversarial training with one generator to produce a fake image 437 

and one discriminator to distinguish the produced image from real images. When training the 438 

discriminator, the real dataset and generated dataset correspond to labels one and zero, 439 

respectively. Additionally, when the generator is trained, all datasets correspond to the label one. 440 

A GAN is used to generate samples with similar distributions as the training set. The generated 441 

samples are used for simulating realistic scenarios or expanding the training set. Zhu, Park et al. 442 

(2017) proposed an extended GAN, named CycleGAN, with two generators and two 443 

discriminators for signal processing. In CycleGAN, a two-way mapping is trained for mapping 444 

two datasets from one to the other. The training set CycleGAN is not necessarily paired, as in a 445 

vanilla CNN, which makes it relatively easy to construct training sets in geophysical applications 446 

with few labels. 447 

 To artificially expand labeled data sets, Wang et al. (2019) proposed the GAN-based 448 

model EarthquakeGen. The detection accuracy was greatly improved by performing artificial 449 

sampling for the training set. Si et al. (2020) proposed the use of CycleGAN for ground-roll 450 
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attenuation. The training set consisted of synthetic and field-derived seismic data. Zhang et al. 451 

(2019) proposed a seismic enhancement algorithm based on a GAN with time resolution 452 

improvements. Lipari et al. (2018) used a GAN to map low-quality migrated images to high-453 

quality images and the corresponding reflectivity images. Siahkoohi et al. (2019) proposed a 454 

GAN to produce a high-quality wavefield from a low-quality wavefield in the context of surface-455 

related multiples, ghosts, and dispersion. The training procedure consisted of initial training and 456 

transfer learning. The initial training was performed with datasets from nearby surveys. Transfer 457 

learning was performed with a small training set with high-fidelity data from the current dataset. 458 

The GAN used did not require training set pairing. Only two sets with and without high fidelity 459 

are needed. Wang et al. (2019) proposed a 1D CycleGAN-based impedance inversion algorithm 460 

to mitigate the dependence of vanilla CNNs on the amount of labeled seismic data available. 461 

4.6 Recurrent neural networks 462 

In time-sequenced data processing applications, RNNs use the output or hidden state of a 463 

network as the input of the subsequent process to consider the historical influence. RNNs are 464 

used for the inference of new outputs from a sequential input, such as predicting new words from 465 

an input sentence. LSTM can reduce the vanishing gradient problem, such that training on longer 466 

sequences is possible. Therefore, the inference accuracy of LSTM increases with the amount of 467 

historical information considered. In geophysical applications, RNNs are mainly used for 468 

predicting the next sample of a temporally or spatially sequenced dataset. RNNs are also used for 469 

seismic wavefield or earthquake signal modeling based on a time-dependent network form. 470 

 In seismic data processing, Payani et al. (2019) used an RNN to estimate the relationships 471 

among samples in a seismic trace; they found that 16 bits are needed for lossless representation 472 

instead of 32 bits per sample. Chen et al. (2020) applied LSTM for the denoising of 473 

magnetotelluric data. Li et al. (2019) utilized an RNN to consider the spatial continuity and 474 

similarity of adjacent traces in facies analysis. 475 

 In seismic modeling and inversion, Sun et al. (2020) constructed an RNN for wave 476 

modeling and inversion, and the network parameters corresponded to the selected velocity model. 477 

The structure of an RNN is similar to finite different time evolution. Therefore, optimizing an 478 
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RNN is equivalent to seismic waveform inversion. Experiments with various optimization 479 

algorithms, including gradient descent, conjugate gradient, adaptive moment, and limited-480 

memory Broyden-Fletcher-Goldfarb-Shanno algorithms, have been performed. The results have 481 

indicated that first-order methods perform better than second-order methods. Liu (2020) extends 482 

RNN for simultaneous inversion of velocity and density. Figure 14 shows the structure of a 483 

modified RNN based on the acoustic wave equation used in Liu (2020). The diagram represents 484 

the discretized wave equation with a flow chart implemented in an RNN. The inversion process 485 

in full waveform inversion is the training process of RNN. Fabien-Ouellet and Sarkar (2019) 486 

combined three networks: a CNN with a CMP gather input and a semblance output, an RNN for 487 

data reduction, and LSTM for velocity decoding. This design was inspired by the information 488 

flow in semblance analysis. The proposed method works well for 1D layered velocity models. 489 

We give an example of using an RNN for simultaneous velocity and density inversion.  490 

5 AI geophysical applications 491 

We investigate more AI geophysical applications apart from exploration geophysics in 492 

this section. The topics are roughly arranged by the order from the earth’s core to outer space. 493 

5.1 The earth’s core, mantle and crust 494 

Understanding the interior of the earth is a challenging task since observations are mainly 495 

limited on the earth’s surface. The earth is roughly divided into core, mantle and crustal layers 496 

from inside to the surface; however, the detailed structures and properties of the deep side of the 497 

earth are not clear. Kim et al. (2020) discovered a previously unrecognized ultra-low-velocity 498 

zone at the core-mantle boundary beneath the Marquesas Islands with a manifold learning 499 

method called the Sequencer. Thousands of diffracted waveforms are arranged in a sequential 500 

order on the manifold, where half reveal loud signals indicating the ultra-low-velocity zone 501 

(Figure 16). Shahnas and Pysklywec (2020) used deep learning to predict the mantle thermal 502 

state of simplified model planets. They achieved an accuracy of 99% for both the mean mantle 503 

temperature and the mean surface heat flux compared to the calculated values. They claimed that 504 

deep learning can be employed in more complex mantle states. Cheng et al. (2019) used DNN to 505 

map Rayleigh surface wave velocities to crustal thickness in eastern Tibet and the western 506 
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Yangtze craton. The training dataset is generated based on seismic wave forward modeling 507 

theories. 508 

 The earth is covered by soil and rocks. Fang et al. (2017) used LSTM to predict historical 509 

soil moisture with high fidelity from two recent years of satellite data, showing LSTM’s 510 

potential for hindcasting, data assimilation, and weather forecasting. Anantrasirichai et al. (2018) 511 

used a CNN to classify interferometric fringes in wrapped interferograms with no atmospheric 512 

corrections for detecting volcanic deformation. 513 

5.2 Earthquake 514 

The goal of earthquake data processing is quite different from that of exploration 515 

geophysics; therefore, this section focuses on deep learning-based earthquake signal processing. 516 

The preliminary processing of earthquake signals includes classification to distinguish real 517 

earthquakes from noise and arrival picking to identify the arrival times of primary and secondary 518 

waves. Further applications involve earthquake location, Earth tomography, etc. Deep learning 519 

has shown promising results in these applications. 520 

5.2.1 Classification 521 

 Meier et al. (2019) trained five DNNs for seismic signal and noise discrimination. The 522 

training set contained 374,000 earthquake and 946,000  noise records from three channels. Li et 523 

al. (2018) trained a GAN on an extensive dataset to discriminate earthquake P waves from local 524 

impulsive noise. Mousavi et al. (2019) developped a residual network with convolutional and 525 

recurrent units to detect small and weak earthquake signals robust to strong noise and non-526 

earthquake signals. Linville et al. (2019) used an RNN and a CNN to identify events as either 527 

quarry blasts or earthquakes. The purpose of volcano seismic detection is to determine whether 528 

an event is dangerous. Malfante et al. (2018) extracted 102 features from acoustic and seismic 529 

fields. Six classes were considered: long-period events, volcanic tremors, volcano-tectonic 530 

events, explosions, hybrid events, and tornados. 531 

 We provide an example of using the wavelet scattering transform (WST) (Mallat 2012) 532 

and a support vector machine for earthquake classification with a limited number of training 533 
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samples. The WST involves a cascade of wavelet transforms, a module operator, and an 534 

averaging operator, corresponding to convolutional filters, a nonlinear operator, and a pooling 535 

operator, respectively, in a CNN. The critical difference between the WST and a CNN is that the 536 

filters are predesigned with the wavelet transform in the WST. In our case, only 100 records 537 

were used for training, and 2000 records were used for testing. We obtained a classification 538 

accuracy as high as 93% with the WST method. Figure 17 shows the architecture of the WST 539 

algorithm. 540 

5.2.2 Arrival picking 541 

 Wang et al. (2019) proposed PickNet to choose natural seismic arrivals based on a deep 542 

residual network. The selected arrivals were used for seismic tomography, and the underground 543 

structure of Japan was reconstructed. Ross et al. (2018) trained a CNN for arrival picking and 544 

polarity classification. The training set contained 19.4 million seismograms. They achieved 545 

remarkably high picking and classification accuracies close to or better than those obtained by 546 

human experts. Zhao et al. (2019) proposed using U-Net for P- and S-phase arrival picking and 547 

achieved superior results compared to those of the short-time average over the long-time average 548 

(STA/LTA) method. Zhou et al. (2019) developed a hybrid event detection and phase-picking 549 

algorithm with both CNNs and RNNs. Mousavi et al. (2020) used an attention mechanism for 550 

simultaneous earthquake detection and phase picking.  551 

5.2.3 Earthquake location, Earth tomography and others 552 

 Zhang et al. (2020) used a CNN to locate seismic sources from received waveforms at 553 

several stations. This method worked well for earthquakes (ML<3.0) with low SNRs, for which 554 

traditional methods fail. The prediction results and errors of earthquake source locations are 555 

indicated in Figure 18. Ross et al. (2019) generated millions of synthetic sequences to train the 556 

PhaseLink network for associating seismic phases, which involves grouping the phase picks on 557 

multiple stations associated to an individual event. Mousavi and Beroza (2020) first introduced 558 

DL to estimate earthquake magnitudes based on signals from a single station. Zhang and Curtis 559 

(2020)  used variational inference for seismic tomography. This method obtains the mean and 560 

variance as outputs. Yamaga and Mitsui (2019) analyzed the relationship between a strong 561 
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earthquake and postseismic deformation. The dataset was obtained with the Global Navigation 562 

Satellite System and was relatively small, with 153 training points and 38 testing points. An 563 

RNN was used to learn the corresponding relationships, and the results were far more accurate 564 

than those of traditional regression methods.  565 

5.3 Water resources 566 

Water on Earth has a great impact on ecosystems and natural disasters. Estimating the 567 

dynamic parameters of oceans is a challenging and important task. Wang et al. (2019) used 568 

LSTM to predict the Loop Current in the Gulf of Mexico. They predicted the Loop Current 569 

evolution within 40 kilometers nine weeks in advance. The sea level is increasing due to global 570 

warming. In summer, the meltwater on Arctic ice will abord more solar radiation and accelerate  571 

ice melt. Similarly, Barbat et al. (2019) estimated the size of icebergs in the pan-Antarctic near-572 

coastal zone. To cover the whole Antarctic continent, they used a machine learning method that 573 

operates on low-resolution synthetic aperture radar (SAR) imagery. Liu et al. (2019) used U-Net 574 

to predict coastal inundation mapping from synthetic aperture radar imagery information, 575 

providing a better understanding of the geospatial and temporal characteristics of coastal 576 

flooding. 577 

In addition to oceans, water is stored in different forms, such as rivers, lakes, rain and 578 

snow. Sun et al. (2019) used a CNN to estimate groundwater storage in India. The CNN was 579 

trained to compensate for missing components between the satellite data and NOAH-simulated 580 

data. Once trained, the CNN was used to correct the NOAH-simulated data without using the 581 

satellite data. Limited by the resolution of the remote sensing imagery, Ling et al. (2019) 582 

measured river widths on a subpixel scale. With a superresolution CNN, they obtained highly 583 

accurate results. Read et al. (2019) used an LSTM-based machine learning method to predict the 584 

temperature of lake water. They achieved an RMSE reduction of 0.5°C relative to traditional 585 

methods. 586 

 Asanjan et al. (2018) also proposed an LSTM-based learning method to predict rainfall 587 

runoff. They predicted hourly runoff for a twenty-four-hour period using observations such as 588 

those of rainfall and runoff. Tang et al. (2018) used a DNN to estimate rain and snow at high 589 
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latitudes. They used passive microwave data, infrared data and environmental data from 590 

spaceborne satellite radar data to improve precipitation predictions. A review paper of water 591 

science based on deep learning is provided in Shen (2018). 592 

5.4 Climatology and atmospheric science 593 

Atmospheric science observes and predicts climate, weather and atmospheric 594 

phenomena. A complete observation of global atmospheric parameters is difficult since the earth 595 

is extremely large and sensor locations are limited. Kadow et al. (2020) chose a CNN-based 596 

inpainting algorithm to reconstruct missing values in global climate datasets such as HadCRUT4 597 

(Figure 20). Minnis et al. (2016) used a neural network to estimate the optical depth of ice clouds 598 

for the prediction of future water paths. Multispectral infrared radiances were used to reduce the 599 

dependence on solar illumination conditions. 600 

Precipitation observed from satellites is on a coarse scale, limiting its resolution in small 601 

regions. Sharifi et al. (2019) proposed a downscaling algorithm based on machine learning to 602 

map satellite observations to a fine spatial resolution. Whitburn et al. (2016) estimated the global 603 

NH3 level from measurements of an infrared atmospheric sounding interferometer. A neural 604 

network was used to convert the spectral hyperspectral range index to the NH3 level. Xu et al. 605 

(2018) proposed using machine learning to reconstruct evapotranspiration in land-atmosphere 606 

interactions. The method could overcome the spatial and temporal coverage limitations of in situ 607 

techniques and the inaccuracy of modeling approaches at regional scales. Zhu et al. (2019) 608 

predicted global radiative flux and feedbacks from atmospheric and surface variables based on a 609 

neural network. 610 

Air pollution is damaging both the earth’s environment and human health. Li et al. (2017) 611 

used a DNN to fuse satellite observations and station measurements for estimating ground-level 612 

PM2.5 levels. Shen et al. (2018) directly estimated the PM2.5 level in Wuhan from the top-of-613 

atmosphere reflectance measured from satellites based on a DNN. Similarly, Tang, Long et al. 614 

(2018) used machine learning to estimate the PM10 level from satellite data. They obtained over 615 

all accuracy R2=0.77. Weather forecasting is a long-standing challenge in atmospheric science. 616 

Han et al. (2017) used machine learning for precipitation nowcasting with radar reflectivity data. 617 
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This system is superior to traditional expert systems, such as small and easy-to-maintain systems. 618 

Rüttgers et al. 2019 predicted the tracks of typhoons with a GAN based on satellite images. They 619 

produced a 6-hour-advance track with an average error of 95.6 km. Jiang et al. 2018 predicted 620 

both typhoon track and intensity based on a DNN (Figure 21). Flow-dependent typhoon-induced 621 

sea surface temperature cooling was estimated by a DNN and used for improving typhoon 622 

predictions. 623 

5.5 Remote sensing 624 

Remote sensing uses sensors in satellites or aerial crafts to image geophysical parameters. 625 

Remote sensing imagery mainly includes hyperspectral images, SAR images, and optical images. 626 

Images obtained by hyperspectral sensors have rich spectral information, such that different land 627 

cover categories can potentially be precisely differentiated. In recent years, numerous works 628 

have explored deep learning methods for hyperspectral image classification  (Li et al. 2019). 629 

Chen et al. (2016) used a 3-D CNN to extract the effective features of hyperspectral imagery by 630 

considering the spectral-spatial structure simultaneously. The extracted features are useful for 631 

image classification and target detection. Mou et al. (2017) first proposed using an RNN for 632 

hyperspectral image classification. The authors regarded hyperspectral pixels as sequential data 633 

to explore the relationships among different spectrum channels. 634 

SAR systems can operate in all-weather and day-and-night conditions to produce high-635 

resolution images. Chen et al. (2016) used a CNN for target classification in SAR images. The 636 

proposed method avoided handcrafted features and achieved an accuracy of 99% in a ten-class 637 

classification scheme for ground targets. Zhang et al. (2017) proposed a complex-valued CNN 638 

for polarimetric SAR image classification. The authors took both the amplitude and phase 639 

information of complex SAR imagery into consideration. The layers in the CNN were extended 640 

to process complex-valued inputs. Saha et al. (2020) detect changes in buildings in SAR images 641 

via unsupervised learning. A CycleGAN was trained to map SAR images to optical images with 642 

no requirement of a paired training set. Then, traditional methods were used to detect building 643 

changes. 644 
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Large-scale and high-resolution satellite optical color imagery can be used for precision 645 

agriculture and urban planning. Maggiori et al. (2017) proposed a CNN-based pixelwise 646 

classification of large-scale satellite imagery. Inaccurate data were considered by a two-step 647 

training approach. First, the CNN was initialized by numerous inaccurate reference data and then 648 

refined on a small amount of correctly labeled data. Cheng et al. (2016) proposed a rotation-649 

invariant CNN for object detection in very high-resolution optical remote sensing images. A 650 

rotation-invariant layer was introduced by enforcing the training samples before and after 651 

rotation to share the same features. Jiang et al. (2019) constructed an edge-enhancement GAN 652 

for remote sensing image superresolution. The image contours were extracted to remove the 653 

artifacts and noise in superresolution. 654 

5.6 Space science 655 

The planets in outer space have attracted researchers’ attention for a long time. Camporeale 656 

et al. (2017) used machine learning to classify solar wind. The classification results were used to 657 

obtain the transition probabilities between different solar wind categories for the first time. 658 

Ruhunusiri et al. (2018) developed a DNN to infer solar wind proxies at Mars using sheath 659 

measurements. Seven solar wind parameters were inferred simultaneously using spacecraft 660 

measurements. Agarwal et al. (2020) used neural networks to predict the entire evolution (0-4.5 661 

billion years) of the temperature profile of a Mars-like planet. They used a simple FCNN with 662 

six parameters as inputs: the reference viscosity, activation energy, activation volume of 663 

diffusion creep, enrichment factor of heat-producing elements in the crust, initial temperature of 664 

the mantle, and the reference time. 665 

Global space parameter estimation and prediction are long-standing tasks in space science. 666 

Chu et al. (2017) used a neural network to predict short-term and long-term 3-D dynamic 667 

electron densities in the inner magnetosphere. This network can obtain the magnetospheric 668 

plasma density at any time and for any location. Chen et al. (2019) reconstructed dynamic total 669 

electron content maps with a regularized GAN. Several existing maps were used as references to 670 

interpolate missing values in some regions, such as the oceans. The topside electron temperature 671 

is an important parameter of the ionosphere; however, its measurement is limited by the number 672 
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of incoherent scatter radar stations. Hu et al. (2020) used a DNN to estimate the relationship 673 

between electron temperature and electron density in small regions. Therefore, the global 674 

electron density is easily measured and used to predict the global electron temperature. Gowtam 675 

et al. (2019) modeled a global 3-D ionosphere based on a neural network. Nearly two decades of 676 

measurements from the ground and satellites were used to train the neural network. They 677 

successfully predicted large-scale ionospheric phenomena, such as annual anomalies. 678 

An aurora is an astronomical phenomenon commonly observed in polar areas. Auroras are 679 

caused by disturbances in the magnetosphere caused by solar wind. Auroral classification is 680 

important for polar and solar wind research. Clausen and Nickisch (2018) proposed classifying 681 

auroral images with a DNN (Figure 22). The authors used images manually labeled with six 682 

classes. Zhong et al. (2020) automatically classified all-sky auroral images with three CNNs. The 683 

classification results were used to produce an auroral occurrence distribution. Nichols et al. 684 

(2019) analyzed Jupiter’s auroral morphology and its response to magnetospheric drivers with 685 

machine learning. Yang et al. (2019) used a CycleGAN model to extract key local structures 686 

from all-sky auroral images. The unpaired training set consisted of 2508 auroral images, of 687 

which only 200 images were annotated. 688 

6 A deep learning tutorial for beginners 689 

6.1 A coding example of a DnCNN 690 

The implementation of deep learning algorithms in geophysical data processing is quite 691 

simple based on existing frameworks, such as Caffe, Pytorch, Keras, and TensorFlow. Here, we 692 

provide an example of how to use Python and Keras to construct a DnCNN for seismic denoising. 693 

The code requires 12 lines for dataset loading, model construction, training, and testing. The 694 

dataset is preconstructed and includes a clean subset and a noisy subset; the overall dataset 695 

includes 12800 samples with size 64 × 64 (available at https://bit.ly/33SyXPO). 696 

1. import h5py   697 

2. from tensorflow.keras.layers import  Input,Conv2D,BatchNormalization,ReLU,Subtract   698 

3. from tensorflow.keras.models import Model   699 

4. ftrain = h5py.File('noise_dataset.h5','r')   700 
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5. X, Y = ftrain['/X'][()] , ftrain['/Y'][()]   701 

6. input = Input(shape=(None,None,1))   702 

7. x = Conv2D(64, 3, padding='same',activation='relu')(input)   703 

8. for i in range(15):   704 

9.     x = Conv2D(64, 3, padding='same',use_bias = False)(x)   705 

10.     x = ReLU()(BatchNormalization(axis=3, momentum=0.0,epsilon=0.0001)(x))   706 

11. x = Conv2D(1, 3, padding='same',use_bias = False)(x)   707 

12. model = Model(inputs=input, outputs=Subtract()([input, x]))   708 

13. model.compile(optimizer="rmsprop", loss="mean_squared_error")   709 

14. model.fit(X[:-1000], Y[:-1000], batch_size=32, epochs=50, shuffle=True)   710 

15. Y_ = model.predict(X[-1000:]) 711 

Any appropriate plotting tool can be used for data visualization. The training takes less 712 

than one hour on an NVidia 2080ti graphics processing unit. For further implementations, we 713 

suggest several public repositories of dictionary learning and deep learning information for 714 

interested readers, as listed in . 715 

6.2 Tips for beginners 716 

We introduce several practical tips for beginners who want to explore deep learning in 717 

geophysics from the perspective of the three most critical steps in deep learning: data generation, 718 

network construction, and training. 719 

6.2.1 Data generation 720 

As noted by Poulton 2002, “training a feed-forward neural network is approximately 10% 721 

of the effort involved in an application; deciding on the input and output data coding and creating 722 

good training and testing sets is 90% of the work”. In deep learning, we advise that the 723 

percentages of the effort for network construction and dataset preparation should be 724 

approximately 40% and 60%. First, most deep learning approaches use an original data set as the 725 

input, thus reducing coding decision efforts. Second, a wider variety of network architectures and 726 

parameters can be used in deep learning compared to those in traditional neural networks. 727 

Overall, constructing a proper training set plays a more prominent role in deep learning. 728 
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Synthetic datasets can be used effectively in deep learning, which is advantageous since 729 

labeled real datasets are sometimes difficult to obtain. First, to assess the applicability of deep 730 

learning in a specific geophysical application, using synthetic datasets is the most convenient 731 

method. Second, if a satisfactory result is obtained with synthetic datasets, a few annotated real 732 

datasets can be used for transfer learning via parameter tuning. Third, if the synthetic datasets are 733 

sufficiently complicated, i.e., if the most important factors are considered when generating the 734 

datasets, the trained network may be able to process realistic datasets directly (Wu, Geng et al. 735 

2020 and Wu, Liang et al. 2019). 736 

A synthetic training set should be diverse. First, we suggest using an existing synthetic 737 

dataset with an open license, such as SEG open data, instead of generating a dataset. For specific 738 

tasks, such as FWI, a dataset may need to be generated based on a wave equation. Second, data 739 

augmentation methods, such as rotation, reflection, scaling, translation, and adding noise, 740 

missing traces, or faults to clean datasets, can be used to expand the training set. The goal is to 741 

generate extremely large synthetic datasets that are as close to realistic datasets as possible. 742 

To generate realistic datasets, we suggest using existing methods to generate labels that 743 

should then be checked by a human. For example, in first-arrival picking, an automatic picking 744 

algorithm is used to preprocess the datasets, and the results are then provided to an expert who 745 

identifies the outliers. We also suggest using active learning (Yoo and Kweon 2019) to provide a 746 

semiautomated labeling procedure. First, all datasets with machine annotation are used to train a 747 

DNN, and the samples with high predicted uncertainty are required to be manually annotated.   748 

6.2.2 Network construction for different tasks 749 

Beginners are suggested to use a DnCNN or U-Net for testing. DnCNNs are available for 750 

most tasks in which the input and output share the same domain, such as denoising, interpolation, 751 

and attribute analysis. The input size of a DnCNN can vary since there are no pooling layers 752 

involved. However, each output data point is determined by a local field from the input rather 753 

than from the entire input set. Additionally, U-Net contains pooling layers, and all input points 754 

are used to determine an output point. U-Nets are available for tasks even when the inputs and 755 
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outputs are in different domains, such as in FWI. However, the input size of U-Net is fixed once 756 

trained. 757 

Combining a CAE and K-means is suggested for unsupervised clustering tasks, such as 758 

attribute classification. We do not suggest CycleGAN for geophysical tasks since the training 759 

process is extremely time consuming and the results are not stable. An RNN provides a high-760 

performance framework for time-dependent tasks, such as forward wave modeling and FWI. 761 

RNNs are also used for regression and classification tasks involving temporal or spatial 762 

sequential datasets, such as in the denoising of a single trace. 763 

To adjust the hyperparameters of a DNN and optimization algorithms, we suggest using 764 

an autoML toolbox, such as Autokeras, instead of manually adjusting the values. The basic 765 

objective is to search for the best parameter combination within a given sampling range. Such a 766 

search is exceptionally time consuming, and a random search strategy may accelerate the tuning 767 

process. Moreover, for most applications, the default architecture gives reasonable results. 768 

6.2.3 Training, validation, and testing 769 

The available dataset should be split into three subsets: one training set, one validation set, 770 

and one test set to optimize the network parameters. The proportions of the subsets depend on 771 

the overall size of a dataset. For datasets with 10K-50K samples, the proportions are suggested to 772 

be 60%, 20%, and 20%, respectively. For larger datasets (for instance, those larger than 1M), 773 

much smaller portions are often used for validation and test (approximately 1% to 5%) since the 774 

alternative can result in using unnecessarily large test/validation sets and wasting the data that 775 

can be used for training and building a better model. In a classification task, we suggest using 776 

one-hot coding in training. The validation set is used to test the network during training. Then, 777 

the model with the best validation accuracy is selected rather than the final trained model. If the 778 

validation accuracy does not improve or decrease after some saturation during training, an early 779 

stopping strategy is suggested to avoid overfitting. Network hyperparameters should be tuned 780 

according to the validation accuracy. The validation set is used to guide training, and the test set 781 

is used to test the model based on unseen datasets; however, this set should not be used for 782 

hyperparameter tuning. 783 
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Two commonly seen issues during training are as follows: the validation loss is less than 784 

the training loss, and the loss is not a number. Intuitively, the training loss should be less than the 785 

validation loss since the model is trained with a training dataset. Several potential reasons for this 786 

issue are as follows: 1. regularization occurs during training but is ignored during validation, 787 

such as in the dropout layer; 2. the training loss is obtained by averaging the loss of each batch 788 

during an iteration, and the validation loss is obtained based on the loss after one iteration; and 3. 789 

the validation set may be less complicated than the training set, especially when only the training 790 

set has been augmented. The potential reasons for NaN loss are as follows: 1. the learning rate is 791 

too high; 2. in an RNN, one should clip the gradient to avoid gradient explosion and 3. zero is 792 

used as a divisor, negative values are used in logarithm, or an exponent is assigned too large of a 793 

value. 794 

7 Future directions for deep learning in geophysics 795 

DL, as an efficient artificial intelligence technique, is expected to discover geophysical 796 

concepts and inherit expert knowledge through machine-assisted mathematical algorithms. 797 

Despite the success of DL in some geophysical applications such as earthquake detector or 798 

picker, their use as a tool for most practical geophysics is still in its infancy. The main problems 799 

include a shortage of training samples, low signal-to-noise ratios, and strong nonlinearity. 800 

Among these issues, the critical challenge is the lack of training samples in geophysical 801 

applications compared to those in other industries. Several advanced deep learning methods have 802 

been proposed related to this challenge, such as semisupervised and unsupervised learning, 803 

transfer learning, multimodal deep learning, federated learning, and active learning. We suggest 804 

that a focused be placed on the subjects below for future research in the coming decade. 805 

7.1 Semisupervised and unsupervised learning 806 

In practical geophysical applications, obtaining labels for a large dataset is time 807 

consuming and can even be infeasible. Therefore, semisupervised or unsupervised learning is 808 

required to limit the dependence on labels. Dunham et al. (2019) focused on the application of 809 

semisupervised learning in a situation in which the available labels were scarce. A self-training-810 
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based label propagation method was proposed, and it outperformed supervised learning methods 811 

in which unlabeled samples were neglected. Semisupervised learning takes advantage of both 812 

labeled and unlabeled datasets. The combination of AE and K-means is an efficient unsupervised 813 

learning method (He, Cao et al. 2018 and Qian, Yin et al. 2018). An autoencoder is used to learn 814 

low-dimensional latent features in an unsupervised way, and then K-means is used to cluster the 815 

latent features. 816 

7.2 Transfer learning 817 

Usually, we must train one DNN for a specific dataset and a specific task. For example, a 818 

DNN may effectively process land data but not marine data, or a DNN may be effective in fault 819 

detection but not in facies classification. To increase the reusability of a trained network for 820 

different datasets or different tasks, transfer learning (Donahue, Jia et al. 2014) is suggested. 821 

In transfer learning with different datasets, the optimized parameters for one dataset can 822 

be used as initialization values for learning a new network with another dataset; this process is 823 

called fine tuning. Fine tuning is typically much faster and easier than training a network with 824 

randomly initialized weights from scratch. In transfer learning involving different tasks, we 825 

assume that the extracted features should be the same in different tasks. Therefore, the first 826 

layers in a model trained for one task are copied to the new model for another task to reduce the 827 

training time. Another benefit of transfer learning is that with a small number of training samples, 828 

we can promptly transfer the learned features to a new task or a new dataset. Diagrams of these 829 

two transfer learning methods are shown in Figure 21. Further topics in transfer learning include 830 

the relationship between the transferability of features (Yosinski et al. 2014) and the distance 831 

between different tasks and different data sets (Oquab et al. 2014). 832 

7.3 Combination of data-driven and model-driven methods 833 

To combine geophysical mechanics and deep learning, can we combine model-driven and 834 

data-driven approaches? Intuitively, such a combination will produce a more precise result than 835 

model-driven methods and a more reliable result than data-driven methods. In addition, with an 836 

additional physical constraint on deep learning methods, fewer training samples are required to 837 
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obtain a more generalized inference than those of traditional methods. Zhang et al. (2017) 838 

proposed learning a denoising prior with a DNN and replacing the denoiser in the iteration 839 

optimization algorithm, such that different tasks use the same denoiser but different models. 840 

Raissi et al. (2019) proposed a physical informed neural network (PINN) that combines training 841 

data and physical equation constraints for training. Taking wave modeling as an example, the 842 

wavefield was represented with a DNN,  ( , ) , ;u x t F x t Θ , such that the acoustic wave equation 843 

was: 844 

      ( , ) , ;2 2, ; , ;
u x t F x t

tt ttu c u F x t c F x t


    
Θ

Θ Θ  (5) 

The above equation can serve as a constraint while training the DNN. Tartakovsky et al. 845 

(2020) used PINN to learn parameters and constitutive relationships in subsurface flow problems. 846 

Another discussed deep learning technique, DIP, can be applied in different tasks with physical 847 

models. Similar to the idea of DIP, Wu and McMechan (2019) showed that a DNN generator can 848 

be added to an FWI framework. First, a U-Net-based generator ( ; )F v Θ  with random input v was 849 

used to approximate a velocity model m with high accuracy. Then, ( ; )Fm v Θ  was inserted into 850 

the FWI objective function: 851 

 2

FWI 2

1
E ( ) ( ( ; ))

2
rP F Θ v Θ d  (6) 

where dr is the seismic record and P is the forward wavefield propagator. The gradient of EFWI 852 

with respect to network parameters Θ is calculated with the chain rule. U-Net is only used for 853 

regularizing the velocity model. After training, one forward propagation of the network will 854 

produce a regularized result. Data-driven and model-driven methods are not independent; data-855 

driven methods are also used for discovering physical concepts (Iten et al. 2020). 856 

7.4 Multimodal deep learning 857 

To improve the resolution of inversion, the joint inversion of data from different sources 858 

has been a popular topic in recent years (Garofalo et al. 2015). One of the advantages of DNNs is 859 

that they can fuse information from multiple inputs. In multimodal deep learning (Ngiam et al. 860 

2011, Ramachandram and Taylor 2017), inputs are from different sources, such as seismic data 861 
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and gravity data. Collecting data from different sources can help relieve the bottleneck of a 862 

limited number of training samples. In addition, using multimodal datasets can increase the 863 

accuracy and reliability of deep learning methods. Feng et al. (2020) used data integration to 864 

forcast streamflow. 23 variables were used intergrated, such as precipitation, solar radiation, and 865 

temperature. Figure 22 shows an illustration of multimodal deep learning. 866 

7.5 Federated learning 867 

To provide a practical training set in deep learning for geophysical applications, 868 

collecting available datasets from different institutes or corporations might be a possible solution. 869 

However, data transfer via the internet is time consuming and expensive for large-scale 870 

geophysical datasets. In addition, most datasets are protected and cannot be shared. Federated 871 

learning was first proposed by Google (Mcmahan et al. 2017, Li et al. 2020) to train a DNN with 872 

user data from millions of cellphones without privacy or security issues. The encrypted gradients 873 

from different clients are assembled in a central server, thus avoiding data transfer. The server 874 

updates the model and distributes information to all clients (Figure 23). In a simple federated 875 

learning setting, the clients and the server share the same network architecture. We give a 876 

possible example of federated learning in geophysics based on the concept that some 877 

corporations do not share the annotations of first arrivals; however, they can benefit from 878 

federated learning by training a DNN together for first arrival picking. 879 

7.6 Uncertainty estimation 880 

One of the remaining questions associated with applying deep learning in geophysics is 881 

related to whether the results of deep learning-based model-driven methods with a solid 882 

theoretical foundation can be trusted. One trial in drilling may cost millions of dollars. What if a 883 

neural network can report high confidence in a inference? Deep learning with uncertainty 884 

analysis was proposed to assess reliability, such as through Markov chain Monte Carlo (MCMC) 885 

(de Figueiredo et al. 2019), variational inference (Subedar et al. 2019), and Monte Carlo dropout 886 

(Gal and Ghahramani 2016) methods. For example, in Monte Carlo dropout, dropout layers are 887 

added to each original layer to simulate a Bernoulli distribution. With multiple realizations of 888 

dropout, the results are collected, and the variance is computed as the uncertainty. 889 
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Grana et al. (2020) assessed the classification accuracy and uncertainty of RNN and 890 

MCMC methods. The RNN method yielded higher accuracy but relatively high uncertainty. The 891 

MCMC method provided similar accuracy and was robust to uncertainty through the use of prior 892 

spatial correlation models. In the RNN, the uncertainty was obtained through multiple runs of the 893 

same procedure with different training subsets, but the results were similar in each case. Maiti 894 

and Tiwari (2010) used a Bayesian neural network (BNN) to predict the boundaries of lithofacies. 895 

BNNs provide low uncertainty compared to traditional deep learning methods. Cao et al. (2020) 896 

proposed a sequence of fast seismic acquisitions for dispersion curve extraction and inversion for 897 

3-D seismic models with uncertainty estimates using pretrained mixture density networks. 898 

Mousavi and Beroza (2020) used a deep BNN to estimate earthquake locations as well as  the 899 

confidence intervals in the final estimated location. 900 

7.7 Active learning 901 

To train a high-precision model using a small amount of labeled data, active learning is 902 

proposed to imitate the self-learning ability of human beings (Yoo and Kweon 2019). An active 903 

learning model selects the most useful data based on a sampling strategy for manual annotation 904 

and adds this data to the training set; then, the updated dataset is used for the next round of 905 

training (Figure 24). One of the sampling strategies is based on the uncertainty principle, i.e., the 906 

samples with high uncertainty are selected. Taking fault detection as an example, if a trained 907 

network is not sure whether a fault exists at a given location, we can annotate the fault manually 908 

and add the sample to the training set. 909 

8 Summary 910 

Data-driven methods, especially deep learning methods, have created both opportunities 911 

and challenges in geophysical fields. Pioneer researchers have provided a basis for deep learning 912 

in geophysics with promising results; more advanced deep learning technologies and more 913 

practical problems must now be explored. To close this paper, we summarize a roadmap for 914 

applying deep learning in different geophysical tasks based on a three-level approach. 915 
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 Traditional methods are time consuming and require intensive human labor and 916 

expert knowledge, such as in first-arrival selection and velocity selection in 917 

explorational geophysics. 918 

 Traditional methods have difficulties and bottlenecks. For example, geophysical 919 

inversion requires good initial values and high accuracy modeling and suffers from 920 

local minimization. 921 

 Traditional methods cannot handle some cases, such as multimodal data fusion and 922 

inversion. 923 

With the development of new artificial intelligence models beyond deep learning and 924 

advances in research into the infinite possibilities of applying deep learning in geophysics, we 925 

can expect intelligent and automatic discovering of unknown geophysical principles soon. 926 

Glossary 927 

AE: Autoencoder; an ANN with the same inputs and outputs. 928 

AI: Artificial Intelligence; Machines are taught to think as humans. 929 

ANN: Artificial neural network; a computing system inspired by biological neural networks 930 

that constitute animal brains. 931 

Aurora: A natural light display in the earth's sky; disturbances in the magnetosphere caused 932 

by solar wind. 933 

BNN: Bayesian neural network; the network parameters are random variables instead of 934 

regular variables. 935 

CAE: Convolutional autoencoder; an AE with shared weights. 936 

CNN: Convolutional neural network; a DNN with shared weights. 937 

Compressive sensing: A sampling technique for reconstructing a signal with a sample rate 938 

lower than the requirement of Shannon sampling theory. The mathematical principle of 939 

compressive sensing is that an underdetermined linear system can be solved with a sparse 940 

prior on the signal. 941 

DDTF: Data-driven tight frame; A dictionary learning method using a tight frame constraint 942 

for the dictionary. 943 
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Deblending: In seismic exploration, several explosion sources are shot very close in time to 944 

improve efficiency. Then, the seismic waves from different sources are blended. The 945 

recorded dataset first needs to be deblended before further processing. 946 

Deduction: The principles used for the inference of unknown facts. 947 

Dictionary: A set of vectors used to represent signals as a linear combination. 948 

DIP: Deep image prior; the architecture of a DNN is used as a prior constraint for an image. 949 

DL: Deep learning; a machine learning technology based on a deep neural network. 950 

DnCNN: Denoised convolutional neural network. 951 

DNN: Deep neural network; an ANN with many layers between the input and output layers. 952 

DS: Double sparsity; the data are represented with a sparse coefficient matrix multiplied by 953 

an adaptive dictionary. The adaptive dictionary is represented by a sparse coefficient matrix 954 

multiplied by a fixed dictionary. 955 

Event: In exploration geophysics, a seismic event means reflected waves with the same 956 

phase. In seismology, an event means a happened earthquake. 957 

Facies: A seismic facies unit is a mapped, three-dimensional seismic unit composed of 958 

groups of reflections whose parameters differ from adjacent facies units. 959 

Fault: a discontinuity in a volume of rock across which there has been significant 960 

displacement as a result of rock-mass movement. 961 

FCN: Fully convolutional network; an FCN is a network that contains no fully connected 962 

layers. Fully connected layers do not share weights. 963 

FCNN: Fully connected neural network; an FCNN is a network that composed by fully 964 

connected layers.  965 

FWI: Full waveform inversion; full waveform information is used to obtain subsurface 966 

parameters. FWI is achieved based on the wave equation and inversion theory. 967 

GAN: Generative adversarial network; GANs are used to generate fake images. A GAN 968 

contains a generative network and a discriminative network. The generative network tries to 969 

produce a nearly real image. The discriminative network tries to distinguish whether the 970 

input image is real or generated. Therefore, such a game will eventually allow the generative 971 

network to produce fake images that the discriminative network cannot distinguish from real 972 

images. 973 

Graphics processing unit (GPU): A parallel computing device. GPUs are widely used for 974 

training neural works in deep learning. 975 
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HadCRUT4: Temperature records from Hadley Centre (sea surface temperature) and the 976 

Climatic Research Unit (land surface air temperature). 977 

Induction: Principles are inferred from observations. 978 

Ionosphere: The ionized part of the earth's upper atmosphere. 979 

K-means: A classical clustering algorithm, where K is the number of clusters. 980 

K-SVD: A dictionary learning method using SVD for dictionary updating. 981 

Kullback-Leibler divergence: A measurement of the distance between two probability 982 

distributions 983 

LiDAR: A measurement device using laser light to produce high-resolution images. 984 

LSTM: long short-term memory; LSTM considers how much historical information is 985 

forgotten or remembered with adaptive switches. 986 

Magnetosphere: Range of the magnetic field surrounding an astronomical object where 987 

charged particles are affected. 988 

ML: Earthquake local magnitude; a method for measuring earthquake scale. 989 

MOD: Method of optimal directions; a dictionary learning method using orthogonal 990 

matching pursuit for sparse coding. 991 

Patch: In dictionary learning, an image is divided into many patches (blocks) that are the 992 

same size as the atoms in a dictionary. 993 

PINN: Physical informed neural network; A physical equation is used to constrain the neural 994 

network. 995 

PM: Particulate matter. PM10 are coarse particles with a diameter of 10 micrometers or less; 996 

PM2.5 are fine particles with a diameter of 2.5 micrometers or less. 997 

R2: Coefficient of determination; A statistical parameter range from zero to one indicates 998 

how strong the linear relationship is between two variables. 999 

ResNet: Residual neural network; ResNets contain skip connections to jump over several 1000 

layers. The output of a residual block is the residual between the input and the direct output. 1001 

RNN: Recurrent neural network; in time-sequenced data processing applications, RNNs use 1002 

the output of a network as the input of the subsequent process to consider the historical 1003 

context. 1004 

SAR: Synthetic aperture radar; the motion of a radar antenna over a target is treated as an 1005 

antenna with a large aperture. The larger the aperture is, the higher the image resolution will 1006 

be. 1007 
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Sequencer: A machine learning-based ordering algorithm in which similar waveforms are 1008 

close to each other. 1009 

Solar wind: A stream of charged particles released from the upper atmosphere of the Sun. 1010 

Sparse coding: Input data are represented in the form of a linear combination of a dictionary 1011 

where the coefficients are sparse. 1012 

Sparsity: The number of nonzero values in a vector. 1013 

SVD: Singular value decomposition; a matrix factorization method. A=USV, where U and V 1014 

are two orthogonal matrices, S is a diagonal matrix whose elements are the singular values of 1015 

A. SVD is used for dimension reduction by removing the smaller singular values. SVD is 1016 

also used for recommendation systems and natural language processing. 1017 

Tight frame: A frame provides a redundant, stable way of representing a signal, similar to 1018 

dictionary. A tight frame is a frame with the perfect reconstruction property; i.e., WTW=I. 1019 

Tomography: Inversion of the subsurface velocity based on travel time information. 1020 

U-Net: U-shaped network; U-Nets have U-shaped structures and skip connections. The skip 1021 

connections bring low-level features to high levels. 1022 

Velocity analysis: Analysis of a  velocity distribution along the depth based on signal 1023 

semblance. 1024 

Wave equation: A partial differential equation that controls wave propagation. 1025 

WST: Wavelet scattering transform; a transform involves a cascade of wavelet transforms, a 1026 

module operator, and an averaging operator. 1027 
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Tables 

Table 1 Examples of data-driven tasks in Geophysics 
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Figures 

  

Figure 1 An illustration of model-driven and data-driven methods. On the left are the research topics in geophysics 

ranging from the Earth’s core to the outer space. One the right are the observation means used in modern 

technology. In the middle are examples of model-driven and data-driven methods. In model-driven methods, the 

principles of geophysical phenomena are induced from a large amount of observed data based on physical causality, 

then the models are used to deduct the geophyscial phanomena in the future or in the past. In data-driven methods, 

the computer first induct a regression or classification model without considering physical causality. Then, this 

model will perform tasks such as classification on incoming datasets. 
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Figure 2. Conceptual map of the data-driven methods in exploration geophysics included in this paper
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Figure 3. Illustration of the K-means method. Left: A randomly generated dataset with 300 samples (N=300) 

and two features (M=2). Right: The classification result (K=2).  
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Figure 4. An illustration of DDTF. The dictionary is initialized with a spline framelet. After training based on a 

post-stack seismic dataset, the trained dictionary exhibits apparent structures. 
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Figure 5. Comparison of the learned features in dictionary learning and deep learning. Dictionary learning obtains 

single-level decomposed features. Deep learning captures multilevel decomposed features. 
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(a) Vanilla regression CNN (b) Vanilla classification CNN (c) CAE 

 

 

  

(d) U-Net (e) GAN (f) RNN 

Figure 6. Sketches of DNNs. We omit the details of the layers and maintain the shape of each 

network architecture. The blue lines indicate inputs, and the orange lines indicate outputs. The length 

of the blue and orange lines represents the data dimension. The green lines indicate intermedia 

connections. The outputs of the convolutional layers are either the same or smaller than the input 

depending on the strides used for convolution. Pooling layers will reduce the size of the extracted 

features.  In regression or classification tasks, the output usually has the same dimension or a smaller 

dimension than the input, where (a) and (b) show the latter situation. The difference between 

regression and classification is that the outputs are continuous variables in regression tasks and 

discrete variables representing categories in classification tasks. The dimension of the latent feature 

space in the CAE may be either larger or smaller than that of the data space, where (c) shows the 

latter. (d) Skip connections in U-Net are used to bring the low-level features to a high level. (e) In a 

GAN, low-dimensional random vectors are used to generate a sample from the generator, and then 

the sample is classified as true or false by the discriminator. (f) In an RNN, the output or hidden state 

of the network is used as input in a cycle.  
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Figure 7. Deep learning for scattered ground-roll attenuation. On the left is the original noisy 

dataset. On the right is the denoised dataset. The scattered ground roll marked by the green arrows 

are removed. 
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(a) (b) (c) 

Figure 8. The training set and seismic interpolation result (Zhang, Yang et al. 2020). (a) A subset of the natural 

image dataset. The natural image dataset was used to train a network for seismic data interpolation. (b) An under-

sampled seismic record. (c) The interpolated record corresponding to (b). The regions 1.6-1.88 s and 1.0-1.375 km 

are enlarged at the top-right corner.  
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Figure 9. Converting a three-channel color image into a velocity model (Wang and Ma 2020). (a)-(c) 

are original color image, gray scale image, and corresponding velocity model. (d) is the seismic 

record generated from a cross-well geometry on (c). 
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Figure 10. Predicting the velocity model with U-Net from raw seismological data (Yang and Ma 

2019). The columns indicate different velocity models. From top to bottom are the ground truth 

velocity models, generated seismic records from one shot, and the predicted velocity models.  
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Figure 11. (a) A post-stack dataset. (b) Fault prediction result of (a). (c) A synthetic dataset (Wu, 

Geng et al. 2020). 
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Figure 12. Velocity picking based on U-Net. The inputs are seismological data on the left. The 

outputs are the picking positions on the right. GT means ground truth. PD_REG and PD_CLS 

represent the velocity predictions of the regression network and classification network, respectively. 
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Figure 13. Phase picking based on U-Net. The inputs are seismological data. The outputs are zeros 

above the first arrival in the green area, ones below the first arrival in the yellow area, and twos for 

the first arrival on the blue line. The green line indicates the predicted first arrival. This experiment 

was performed based on the modified code from https://github.com/DaloroAT/first_break_picking. 
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Figure 14. Modified RNN based on the acoustic wave equation for wave modeling (Liu 2020). The 

diagram represents the discretized wave equation implemented in an RNN. The auto-differential 

mechanics of a DNN help to efficiently optimize the velocity and density. 
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Figure 15 (a) Sequencer ordering enables the identification of a substantial (~40% of all waveforms) 

subpopulation of Sdiff postcursors (red box). (b) Stacks of postcursor amplitude relative to main Sdiff 

arrival averaged in 1° bins (Kim, Lekic et al. 2020).  
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Figure 16. (a) The architecture of WST. Unlike in a CNN, the outputs of WST are combined with the 

outputs of each layer. Then, the outputs of WST serve as features for a classifier.  
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Figure 17. Locating earthquake sources with deep learning. The black triangles are stations. Left: the 

blue dots are the actual locations. Right: the red circles are the predicted locations. The radius of a 

circle represents the predicted epicenter error (Zhang, Zhang et al. 2020). 
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Figure 18 AI models reconstruct temperature anomalies with many missing values (Kadow, Hall et al. 2020). 
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Figure 19 Typhoon track prediction with (a) shallow learning algorithm and (b) deep learning algorithm (Jiang, Xu 

et al. 2018). 
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Figure 20 The bottom panel shows a keogram from auroral data collected on 21 January 2006 at Rankin Inlet. The 

keogram consists of single column from the auroral images at different time. The middle panel shows the 

probabilities for the six categories as predicted by the ridge classiffier trained with the entire training dataset. At the 

top are auroral images at different times. (Clausen and Nickisch 2018) 
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(a) Datasets transfer learning (b) Tasks transfer learning 

Figure 21. Diagrams of transfer learning. (a) Transfer learning between different datasets. The 

parameters of one trained model can be moved to another model as initialization conditions. (b) 

Transfer learning between different tasks. The first layers of one trained model can be copied to 

another model. 
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Figure 22. An illustration of multimodal deep learning 
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Figure 23. Federated learning. The clients train the DNN with local datasets and uploads the model gradient to the 

server. The server aggregates the gradients and updates the global model. Then, the updated model is distributed to 

all the local clients. Many rounds of training are performed until the model meets a certain accuracy requirement. 
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Figure 24. An illustration of active learning. We choose samples with high uncertainty and manually annotate them 

to serve as training samples.  
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