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Abstract

Snow distribution is a function of interactions among static variables, such as terrain, vegetation, and soil properties, and

dynamic meteorological variables, such as wind speed and direction, solar radiation, and soil moisture that occur over a range

of spatial scales. However, identifying the dominant physical drivers responsible for spatial patterns of the snowpack, particularly

for ephemeral, shallow snowpacks, has been challenged due to the lack of the high-resolution snowpack and physical variables

with high vertical accuracy as well as inherent limitations in traditional approaches. This study uses an Unpiloted Aerial

System (UAS) lidar-based snow depth and static variables (1-m spatial resolution) to analyze field-scale spatial structures of

snow depth and apply the Maximum Entropy (MaxEnt) framework to identify primary controls over open terrain and forests

at the Thompson Farm Research Observatory, New Hampshire, United States. We found that, among nine topographic and

soil variables, plant functional type and terrain roughness contribute up to 80% and 76% of relative importance in MaxEnt to

predicting locations of deeper or shallower snowpacks, respectively, across the landscape. Soil variables, such as organic matter

and saturated hydraulic conductivity, were also important controls (up to 70% and 81%) on snow depth spatial variations

for both open and forested landscapes suggesting spatial variations in soil variables under snow can control thermal transfer

among soil, snowpack, and surface-atmosphere. This work contributes to improving land surface and snow models by informing

parameterization of the sub-grid scale snow depths, downscaling remotely sensed snow products, and understanding field scale

snow states.
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Highlights 24 

 Dominant physical drivers of the snowpack spatial patterns from UAS-based lidar were 25 

identified using the Maximum Entropy (MaxEnt) framework 26 

 Plant functional type and terrain roughness contribute up to 80% and 76% of the relative 27 

importance in MaxEnt across the landscape 28 

 Soil variables were also important controls suggesting soils can control thermal transfer 29 

among soil, snowpack, and surface-atmosphere 30 

 31 
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Abstract 37 

Snow distribution is a function of interactions among static variables, such as terrain, 38 

vegetation, and soil properties, and dynamic meteorological variables, such as wind speed and 39 

direction, solar radiation, and soil moisture that occur over a range of spatial scales. However, 40 

identifying the dominant physical drivers responsible for spatial patterns of the snowpack, 41 

particularly for ephemeral, shallow snowpacks, has been challenged due to the lack of the high-42 

resolution snowpack and physical variables with high vertical accuracy as well as inherent 43 

limitations in traditional approaches. This study uses an Unpiloted Aerial System (UAS) lidar-44 

based snow depth and static variables (1-m spatial resolution) to analyze field-scale spatial 45 

structures of snow depth and apply the Maximum Entropy (MaxEnt) framework to identify 46 

primary controls over open terrain and forests at the Thompson Farm Research Observatory, 47 

New Hampshire, United States. We found that, among nine topographic and soil variables, plant 48 

functional type and terrain roughness contribute up to 80% and 76% of relative importance in 49 

MaxEnt to predicting locations of deeper or shallower snowpacks, respectively, across the 50 

landscape. Soil variables, such as organic matter and saturated hydraulic conductivity, were also 51 

important controls (up to 70% and 81%) on snow depth spatial variations for both open and 52 

forested landscapes suggesting spatial variations in soil variables under snow can control thermal 53 

transfer among soil, snowpack, and surface-atmosphere. This work contributes to improving land 54 

surface and snow models by informing parameterization of the sub-grid scale snow depths, 55 

down-scaling remotely sensed snow products, and understanding field scale snow states.  56 

 57 

1. Introduction 58 

Snow plays a significant role in hydrologic and ecological processes globally (Barnett et 59 

al., 2005). It also benefits much of the world’s population from climate services through the 60 

retention of water for release during seasonally dry periods and land surface energy budgets 61 

(Sturm et al., 2017). Snowpack structure and evolution determine snowmelt runoff, infiltration, 62 

and groundwater recharge (Carroll et al., 2019; Earman et al., 2006; Harpold et al., 2015; 63 

Lundquist et al., 2004; Maurer and Bowling, 2014). Snow plays an important role in partitioning 64 

incoming solar radiation and longwave radiation into outgoing longwave radiation, and latent 65 

heat, ground heat, and sensible heat fluxes (Ge and Gong, 2010; Lawrence and Slater, 2010; 66 
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Liston, 1999; Stieglitz et al., 2001). Snow’s insulating properties control the underlying soils’ 67 

freeze-thaw state (Groffman et al., 2001; Starkloff et al. 2017; Yi et al. 2019) affecting soil 68 

respiration, carbon sequestration, nutrient retention, and microbial communities (Aase and 69 

Siddoway, 1979; Isard and Schaetzel, 1998; Monson et al., 2006; Henry, 2008; Aanderud et al., 70 

2013; Tucker et al., 2016; Sorensen et al., 2018; Reinmann and Templer, 2018). In addition to 71 

the total amount of snow, the spatial nonuniformity of snow exerts a strong control on processes 72 

for patchy snow in shallow ephemeral snowpacks (Anderton et al., 2002; Lundquist and 73 

Dettinger, 2004; Schlogl et al. 2018). When interactions among terrain, vegetation, and soils and 74 

snowpack are captured, they can also be useful in parameterizing the sub-grid scale in snow 75 

models to improve model accuracy (Luce et al., 1999; Sturm and Wagner, 2010) or to downscale 76 

remotely sensed snow products (e.g., radar backscatter, passive microwave, and gamma 77 

radiation; Cho et al., 2020; Derksen et al., 2010; Lemmetyinen et al., 2016; Saberi et al., 2020) 78 

that are too coarse to provide an understanding of conditions at field scales. 79 

The spatial variability in snow depth is a function of static and dynamic conditions over a 80 

range of spatial scales (Clark et al., 2011). Fixed physical controls including terrain (Blöschl and 81 

Kirnbauer, 1992; Lapen and Martz, 1996; Mott et al., 2011), vegetation (Gelfan et al., 2004; 82 

DeBeer and Pomeroy, 2010; Currier and Lundquist, 2018), and even soil (Mott et al., 2013; 83 

Shook et al., 1993; Pomeroy et al., 1998) are primary controls for variations in snow depth and 84 

snow water equivalent at multiple scales across the landscape. In the absence of major vegetation 85 

interactions, terrain elevation, slope, aspect, and roughness can control accumulation and 86 

ablation patterns, with greater accumulation at higher elevations (Grünewald and Lehning, 87 

2011), reduced snow depth on steep slopes (Blöschl and Kirnbauer, 1992), lee slope loading with 88 

preferential wind deposition of precipitation (Mott et al. 2011), retention of snowpack on north 89 

facing slopes during the ablation season (Gray and Male, 1981; Schirmer and Pomeroy, 2020), 90 

and rougher terrain holding less snow than smoother terrain (Lehning et al., 2011). With tall 91 

vegetation, canopy interception by coniferous forests (30-79%) can reduce accumulation on the 92 

ground (McNay et al. 1988; Schmidt and Gluns, 1991; Pomeroy and Gray, 1995; Storck et al. 93 

2002; Roth and Nolin, 2017, and others), though the magnitude of canopy interception depends 94 

on storm type and canopy crown completeness. Less is known about deciduous forest canopy 95 

interception, which ranges from 1% based on a hardwood forest study in Japan (Nakai et al. 96 

1993) and up to 25% in a southern beech forest in Peru (Huerta et al. 2019). Vegetation can also 97 
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affect snow spatial variability during the ablation season through canopy shading (Essery et al. 98 

2008; Musselman et al. 2008) and reduced sublimation (Roth and Nolin, 2017). Many western 99 

U.S. studies have identified elevation and temperature as primary factors explaining differences 100 

in forested versus open snowpack accumulation and duration (Lundquist et al., 2013; Roth and 101 

Nolin, 2017). For soil-snow interactions, previous work indicates that the spatial distribution of 102 

snowpack and melt timing controlled spatial patterns in soil moisture and temperature (Shook et 103 

al., 1993; Mott et al., 2013). However, there is limited research regarding if and how soil 104 

property spatial variations contribute to snow distribution during the accumulation and ablation 105 

periods.  106 

Traditional manual ground sampling methods have been used to characterize snow depth 107 

spatial variability using statistical indicators, probability distributions, and fractal methods. 108 

Using traditional point measurements with limited sample size requires a balance between the 109 

sampling spatial extent and sample density. This impacts the ability to capture spatial variability 110 

that naturally increases with spatial scale as compared to capturing small-scale spatial structures 111 

(Clark et al. 2011). Remote sensing methods provide the ability to collect data over a continuous 112 

spatial extent, thus expanding on the understanding of snow distribution (Broxton et al., 2019; 113 

Deems et al., 2006; Painter et al., 2016; Jacobs et al., 2020; Tinkham et al., 2014).  114 

Over the past two decades, airborne remote sensing methods, providing spatially 115 

continuous, high-resolution snow depth maps at local and regional scales, have greatly advanced 116 

the ability to characterize the spatiotemporal variability of snow depth over earlier work using 117 

snow probes (see reviews in Deems et al., 2013; López-Moreno et al., 2017). Airborne laser 118 

scanning (ALS) (Deems et al., 2013; Harpold et al., 2014; Kirchner et al., 2014), terrestrial laser 119 

scanning (TLS) (Grünewald et al. 2010; Currier et al. 2019), and structure-from-motion 120 

photogrammetry (SfM) (Nolan et al., 2015; Bühler et al., 2016; Goetz and Brenning, 2019) have 121 

emerged as viable methods to map surface elevations with snow-off and snow-on conditions in 122 

order to differentially map snow depths.  123 

Many snowpack patterns are controlled by fixed physical controls including vegetation 124 

and topography that are relatively consistent from year to year (i.e., time stable; Grayson et al. 125 

2002; Pflug & Lundquist, 2020; Revuelto et al., 2014). Because these snowpack patterns repeat 126 

on an annual basis, high-resolution snow depth datasets in combination of increasingly 127 

sophisticated and ubiquitous terrain, vegetation, and soil property datasets are well suited to 128 
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improve characterization of the role of fixed physical controls via data intensive methods (e.g., 129 

generalized linear or additive models; ensembles of regression trees: random forests or boosted 130 

regression trees) that have been used for many purposes in hydrology and ecology (Booker and 131 

Woods, 2014; Cutler et al., 2007; He et al., 2016; Tinkham et al., 2014; Peters et al., 2007). One 132 

such spatial modeling technique that has not been used to study snow depth patterns is Maximum 133 

Entropy (MaxEnt) framework. The MaxEnt in combination with high-resolution remote sensing 134 

techniques has the potential to characterize the role of multiple physical variables simultaneously 135 

on snow depth spatial variability as well as their relative importance. 136 

MaxEnt is a machine learning approach that uses the spatial location of focal features and 137 

predictor variables to extrapolate these features across a landscape where those predictor 138 

variables are present (Baldwin, 2009; Phillips et al., 2004; 2006; Phillips & Dudík, 2008). In the 139 

ecological science community, the MaxEnt framework has been widely used for a species 140 

distribution modelling, with over 1000 published applications between 2006 to 2013 (Elith et al., 141 

2006; Phillips & Dudík, 2008; Merow et al., 2013, Algeo et al., 2017). Using the MaxEnt model, 142 

ecologists predicted habitat suitability of animal and plant species using related spatial-143 

environmental factors as predictor variables (Dudik et al., 2007). The principle of the MaxEnt 144 

model originates in information theory (Jaynes, 1957), but its application has been expanded to 145 

various disciplines, such as archaeology (Howey et al., 2016, 2020), plant distribution 146 

(McMichael et al., 2014), and soil and drought (Palace et al., 2017). MaxEnt has been applied in 147 

hydrology to a range of problems (Singh 1997; Fischer et al., 2020; Westhoff et al., 2014) 148 

including to constrain hydrologic model parameters (Westhoff and Zehe, 2012), map 149 

groundwater (Rahmati et al. 2016), evaluate effect soil structure on hydrologic fluxes via 150 

preferential flow paths (Zehe et al., 2010) and characterize land-surface hydrology (Wang and 151 

Bras, 2011; Djebou and Singh, 2015). Importantly, the MaxEnt framework provides valuable 152 

information about variable importance with a model reliability that dominates the overall 153 

contribution for developing the MaxEnt model. While entropy-based methods have advantages 154 

over traditional statistical methods (Mishra and Coulibaly, 2009), research regarding the use of 155 

entropy theory for understanding snow variability across a landscape is limited to snow 156 

monitoring network design (Keum et al., 2018) Among the diverse network design methods, the 157 

entropy-based methods have emerged as promising alternatives to traditional statistical methods 158 

(Mishra and Coulibaly, 2009). 159 
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The main objective of this study is to identify physical drivers controlling spatial 160 

variability of snow depth focusing on shallow, ephemeral snowpacks using information from a 161 

UAS-based lidar platform. MaxEnt modeling efforts are used to evaluate the relative importance 162 

of terrain, plant functional type, and soil variables in identifying the location of the shallowest 163 

and deepest snowpack as well as the consistency of snow depth patterns. This paper is organized 164 

as follows. Section 2 provides the study site information with general land characteristics and 165 

weather conditions with several field photos. Section 3 describes the datasets including the UAS 166 

lidar snow depth and physical static variables. The description of the MaxEnt model is included 167 

Section 3.3. Section 4 details the results of spatial patterns of the lidar snow depth from two 168 

flights measured in different winters and the dominant drivers contributing the spatial variability 169 

of snow depth. Section 5 offers a discussion about the similarities, differences, and new findings 170 

in the results with respect to previous studies. Conclusions and future perspectives are drawn in 171 

section 6. 172 

2. Study site  173 

This study was conducted at the University of New Hampshire Thompson Farm Research 174 

Station in southeast New Hampshire, United States (N 43.10892°, W 70.94853°, 35 m above sea 175 

level), which was chosen for its mixed hardwood forest and open field land covers (Perron et al. 176 

2004; Burakowski et al., 2015; Burakowski et al., 2018; Sanders-DeMott et al. 2020) that are 177 

characteristic of the region (Figure 1). Thompson Farm has an area of 0.83 km
2
 and little 178 

topographic relief (18 to 36 m ASL) (Perron et al., 2004). The agricultural fields are actively 179 

managed for pasture grass. The mixed deciduous and coniferous forest is composed primarily of 180 

white pine (Pinus strobus), northern red oak (Quercus rubra), red maple (Acer rubrum), 181 

shagbark hickory (Carya ovata), and white oak (Quercus alba) (Perron et al., 2004). There are 182 

two “wood roads” that run north-south through the pasture and into the western forest section. 183 

The winter climate at Thompson Farm is characterized by cold, maritime winter climate with a 184 

mean winter air temperature of -3.0°C, snowfall of 114 cm (NH State Climate Office, 2014), and 185 

three weeks to over three months of days with snow cover (Burakowski and Hamilton, 2020). 186 

Snow depth can range from a trace up to 94 cm and typical snow density ranges from 100 to 400 187 

kg/m
3
 (Burakowski et al. 2013).  188 
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 189 

Figure 1. Study location with a leaf-off image of Thompson Farm, Durham, New Hampshire, 190 

United States (left) with examples of photos showing the field and forest conditions (right) in 191 

December 2019 (Snow-on image with flight lines is provided in Figure S1). 192 

3. Datasets and Methods 193 

3.1 UAS lidar snow depth 194 

UAS lidar surveys were conducted at the Thompson Farm Research Station during two 195 

consecutive winter seasons. This study compares two lidar derived snow depth products that 196 

represent the distribution of snow depth at a spatial resolution of one meter. Snow surface 197 

elevations were collected on January 23
rd

, 2019 and December 4
th

, 2019. The respective bare 198 

earth baseline elevations were collected following snowmelt on April 11
th

, 2019 and March 18
th

, 199 

2020. The total area surveyed was approximately 0.11 km
2
, of which 0.7 km

2
 was open field and 200 

0.4 km
2
 was mixed deciduous (dormant) and coniferous forest.  201 

A heavy lift quadcopter manufactured by UAV-America was used to carry lightweight 202 

and inexpensive Lidar and GNSS-inertial sensors. The Lidar sensor used was the Velodyne VLP-203 

16. The VLP-16 has 16 independent infrared lasers that rotate 360 degrees along the horizontal 204 

axis and are evenly spaced from -15 to +15 degrees along the vertical axis. The sensor was 205 

configured to only collect the strongest return per laser pulse, resulting in approximately 300,000 206 
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laser shots per second. Lidar distance observations were georeferenced using the UAS trajectory 207 

and attitude observed with the Applanix APX-15 IMU/GPS. The APX-15 uses a high 208 

performance GNSS receiver that achieves a positional accuracy of 2-5 cm following post-209 

processing. Post-processing was accomplished using the POSPac UAS software package and a 210 

nearby continuously operating reference station (CORS) GNSS base station. Micro 211 

electromechanical systems (MEMS) sensors are also used by the APX-15 to capture UAS 212 

attitude with uncertainties of 0.025-degree roll and pitch, and 0.08-degree true heading. The 213 

APX-15 collects positional and attitude observations at a rate of 200 Hz, enabling the high 214 

frequency Lidar observations to be accurately georeferenced. UAS flights were conducted at an 215 

altitude of 81 meters. This altitude was selected to achieve maximum swath width (~150m) 216 

while remaining in the operational range limits of the VLP-16 Lidar sensor. A lawn mower flight 217 

plan with a targeted swath overlap of 40% was used on the January 23rd, 2019 survey and the 218 

respective baseline. In an effort to achieve a denser point cloud, a crossed flight plan with a 219 

target swath overlap of 40% between parallel flight lines was used for the December 4th, 2020 220 

survey and the respective baseline (Figure 1). Similar point densities were achieved between the 221 

two flights. A flight speed of 7 m/s was used for both flights. 222 

Point Clouds were filtered to remove all non-ground laser returns using a progressive 223 

morphological filter as part of the R package LidR. Classified lidar returns were then averaged 224 

over a one-meter grid to create digital elevation models (DEMs) for the bare earth and snow 225 

surfaces. Snow depth maps were constructed by simply subtracting the snow-on DEM from the 226 

bare-earth DEM.  227 

3.2 Physical variables 228 

Topographic and soil variables were investigated as potential physical drivers of field 229 

scale snow depth spatial variability. Variables included in this study were plant functional type, 230 

roughness, slope, shading, aspect, inter-pixel variability of lidar returns (STD), topographic 231 

compound index (TCI), saturated hydraulic conductivity (Ksat), and soil organic matter (Figure 232 

2). Mapped at a one-meter scale, all physical variables are derived from our UAS observations 233 

except the two soil variables. The soil variables, saturated hydraulic conductivity and organic 234 

matter of the soil at depth of 0–5 cm, were obtained from Probabilistic Remapping of SSURGO 235 

(POLARIS) soil property maps (30‐m spatial resolution; Chaney et al., 2016; 2019). 236 
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The topographic variables, percent slope and aspect, were calculated using Horn's method 237 

(Horn, 1981). Surface roughness was calculated as the largest intra-cell difference of a central 238 

pixel and its eight surrounding cells. Inter-pixel variability of lidar returns (STD) is the standard 239 

deviation of the lidar returns within each pixel and is a measure of the small-scale surface 240 

roughness. Topographic compound index (TCI), also known as or topographic wetness index, is 241 

used to estimate the surface water that might accumulate across a landscape (Sørensen et al., 242 

2006; Howey et al., 2016). This metric is computed as 𝐴/tan 𝐵, the cumulative upslope region 243 

(A) that drains through a specific point along a contour path (B). Total shading represents the 244 

number of hours from 7 am to 5 pm that a pixel was in the shade on the survey date and was 245 

calculated using the unfiltered UAS-lidar DTM and the incidence angle of the sun on the survey 246 

date. Binary shadow maps (shadow or no-shadow) were made for each hour from 7 am to 5 pm 247 

then merged to count the number of hours that a pixel was in the shade. To characterise the local 248 

variability of snow depth (~10 m), the local gradient of the snow surfaces and their respective 249 

baselines (snow-off) were calculated using image convolution through a 9 x 9 pixel moving 250 

window. The horizontal gradient within the moving window was calculated as the difference 251 

between the mean pixel values to the left of the center column and the mean pixel values to the 252 

right of the center column. The vertical gradient within the moving window was calculated as the 253 

difference between the mean pixel values above the center row and the mean pixel values below 254 

the center row. The total local gradient (LG) was then calculated by summing the gradient 255 

components as follows: 256 

 257 

Total local gradient =  √𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡2 + 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡2                   (1) 258 

 259 

At least 50% of the pixels within each window had to have snow depth data (e.g., 260 

percentage of pixels with data to the left of the center column). If this condition was not met for 261 

any portion of the window used to calculate the gradient components, a value of not available 262 

(NA) was recorded for the total gradient at this location. 263 

3.3 Maximum Entropy (MaxEnt) model 264 

To identify physical variables that control the spatial variations of the snow depth 265 

estimated from a UAS lidar system, we used the MaxEnt framework in the context of a shallow, 266 
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ephemeral snowpack. The nine topographical and soil static variables (from section 3.2) were 267 

used to develop probability maps of snow distribution (shallow or deep) along with examining 268 

the importance of the specific variables mentioned above (Figure 2). The important variables 269 

identified from the MaxEnt models that predict the suitability of the area for relatively deep or 270 

shallow snow depths can be considered as a proxy for physical drivers to generate spatial 271 

variability of snowpack. There are two types of variable importance values from the MaxEnt 272 

framework, percent contribution and permutation importance. The percent contribution values 273 

are heuristically defined. They depend on the particular algorithm path that the MaxEnt model 274 

uses to obtain the optimal solution. The permutation importance depends on the final MaxEnt 275 

model, not the path. This importance for each input variable is determined by randomly 276 

permuting the values of the variable among the training points (See details in Phillips, 2006). 277 

Percent contribution is presented in the body of the paper, and permutation importance results 278 

are included in the Supporting Information.  279 

To check the reliability of the MaxEnt models, area under the receiver-operator curve 280 

(AUC) is used in this study, which indicates the predictive capacity of the model (Merow et al., 281 

2013). AUC, which varies from 0 to 1, is interpreted as the probability that a randomly chosen 282 

presence location is ranked higher than a randomly chosen absence point. An AUC value of 0.5 283 

is the same as a random guess of presence/absence. The closer an AUC value is to 1, the more 284 

reliable the predictions from the MaxEnt model.  A model with an AUC over 0.75 is often 285 

considered to accurately estimate sample data (Phillip and Dudík, 2008). 286 
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287 
Figure 2. Spatial maps of the nine topographic and soil variables plus the local gradient of 288 

baseline used as input variables for the Maximum Entropy model 289 

4. Results  290 

4.1 Relationship among physical variables 291 

Before conducting the MaxEnt model analysis to identify physical drivers controlling 292 

spatial variability of snow depth, cross-correlation matrices among the physical input variables 293 

were calculated for (1) landscape scale (fields and forest combined), (2) fields, and (3) forest. 294 

Figure 3 shows the cross-correlation matrices with the Pearson correlation coefficients (R-295 

values) with different colors. For all three areas, roughness is strongly correlated with slope (R = 296 
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0.69, 0.95, and 0.69 for landscape scale, fields, and forest, respectively). While slope and 297 

roughness are moderately correlated with standard deviation of lidar returns (STD; R: 0.63 for 298 

both) in fields, they are less strongly correlated (R = 0.39 and 0.34) in forest areas. For the fields, 299 

there is also a strong correlation (R = 0.65) between saturated hydraulic conductivity (Ksat) and 300 

organic matter of soils.  301 

 302 

Figure 3. Cross-correlation matrices for landscape scale, fields, and forest based on the boundaries from 303 
Figure 1 304 

4.2 Spatial patterns of snow depth 305 

The UAS lidar-based snow depths, mapped by subtracting snow-off DTMs from snow-on 306 

DTMs, reveal a thin snow pack ranging from less than 2 cm to over 21 cm in January 2019 307 

(mean: 9.4 cm; standard deviation: 9.7 cm) and depths exceeding 41 cm in December 2019 308 

(mean: 26.9 cm; standard deviation: 15.2 cm) (Figure 4 and Table 1). As compared to in situ 309 

magnaprobe (Sturm and Holmgren, 2018) snow depth measurements, the lidar snow depth 310 

measurements had mean absolute differences (MAD) and root mean squared difference (RMSD) 311 

values of 0.96 cm and 1.22 cm, respectively, in the open field, and the MAD and RMSD values 312 

were 9.6 cm and 10.5 cm, respectively, in the forest in January 2019 (see details in Jacobs et al., 313 

2020). The lidar snow depth map in December 2019 had MAD and RMSD of 1.6 cm and 2.0 cm, 314 

respectively, in the open field and MAD and RMSD of 3.0 cm and 3.9 cm, respectively, in the 315 

forest.  316 

The shallower snow depths (lower 30%) were 6.4 cm and 24 cm and deeper snow depths 317 

(higher than 70%) for each map) were 12 cm and 29 cm in January and December 2019, 318 
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respectively. Despite having different magnitudes of snow depth between the two dates, there 319 

were similar spatial patterns. Deeper snow depth values (blue) existed in the fields and shallower 320 

snow depths (red) in forest. Compared to the forest snowpack, the field snow depth had 321 

relatively high spatial variability and less coherent patterns. In the field, the deeper snow is in the 322 

northeast areas in January. However, in December, the deeper snow occurred in the middle and 323 

east areas. A shallow and spatially consistent snowpack occurred in forest areas. In the deciduous 324 

forest type, the snow depth was consistently higher than that in coniferous forest, especially in 325 

the east forest (see the plant functional type map in Figure 2). The shallowest snowpack was 326 

found in coniferous forest type. 327 

 328 

329 

 330 
Figure 4. 1-m gridded unpiloted aerial system (UAS) Lidar-based snow depth maps (top panel) and their 331 
local gradient maps (bottom panel) in January (left) and December 2019 (right side). To emphasize the 332 
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spatial distribution of shallower (lower) or deeper (higher) values of snow depth (local gradient), the color 333 
bars are divided by quantile values (0, 5, 10, 20, 30, 70, 80, 90, 95, and 99%) for each map.  334 

Likewise, spatially coherent patterns of the local gradients of snow depth are readily 335 

discernible between the two UAS surveys (Figure 4). Lower local gradient values (red), 336 

indicating a relatively consistent snow depth, existed in the east fields. Higher gradients (blue) 337 

were found in the field to forest transitions and roads. In the forest areas, the lower local 338 

gradients generally appeared in coniferous forest. High local gradients are consistently found at 339 

the forest edge.   340 

Table 1. Summary of snow depth and local gradient of snow depth in January and December 341 

2019 342 

 Snow depth (cm)  Local gradient of snow depth (cm) 

Areas 
January 2019   December 2019   January 2019   December 2019 

Mean Std 99%   Mean Std 99%   Mean Std 99%   Mean Std 99% 

Landscape 9.4 9.7 21.7   26.9 15.2 40.9   2.7 10.8 19.8   2.7 6.7 19.3 

Fields 11 3.8 19.9   27.8 6.8 38.2   1.6 4.1 8.1   2 5.4 14.1 

Forest 7.2 13.8 27.4   25.8 21.1 46.8   3.9 15.3 35   3.6 7.8 21.5 

 343 

4.3 Physical drivers contributing spatial variability of snow depth  344 

 To determine the most relevant physical drivers that contribute to the spatial variability of 345 

snow depth, the relative importance of the input variables from the MaxEnt model with different 346 

thresholds was quantified. Figure 5 shows relative contribution of the nine input variables from 347 

each MaxEnt run using the shallow and deep snow depth values within thresholds. Larger 348 

percentages indicate those variables that play a greater role in predicting the suitability of 349 

shallow or deeper snow depth.  350 
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 351 

Figure 5. Variable importance from the MaxEnt models for shallower and deeper snow depth observed in 352 
January (left) and December 2019 (right side of each subfigure). Shallower or deeper snow depth is 353 
determined by thresholds. Shallower snow depth is defined as less than 3% (extremely shallow) to 30% 354 
quantiles (moderately shallow) of the entire snow depth values for the three areas, landscape, fields, and 355 
forest, respectively. Deeper snow depth values are from larger than 97% (extremely deep) to 70% 356 
quantiles (moderately deep). Permutation importance values for the snow depth are also provided in 357 
Supporting information (Figure S2). 358 

For shallow snow depths (top panels), plant functional type is the most important variable 359 

in the landscape scale, especially in the January snow depths, which were shallower than the 360 

snow depths from December 2019. For the snow depths in December 2019, soil organic matter 361 

and roughness contribute somewhat (e.g., both are 27% for the lowest 3% quantile of snow 362 

depth). In the fields, soil variables, organic matter and Ksat, and slope are generally important. 363 

The contribution of soil organic matter to the shallow snow depths in December 2019 is very 364 

strong, ranging up to 70%. In the forest, it seems that different variables influence the shallow 365 

snowpack for the two study snowpacks. While Ksat and aspect are clearly important to identify 366 

shallow snow depth in January 2019 as compared to other variables, there are no dominant 367 

variables in December 2019. Organic matter (21 to 37%) and roughness (17 to 23%) are 368 

somewhat important for extremely shallow snow depths (less than 3 to 5% quantiles).  369 

For deep snow depths (bottom panels), different variables contribute to snow depth for 370 

the two study snowpacks. While organic matter is the dominant control in January, landscape 371 

scale, roughness and STD are more important in December. In the fields, Ksat and organic matter 372 

indicate locations of deep snow in January, but roughness is the most important variable in 373 
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December. In the forest, the variable contributions differ by snowpack. For the deepest snow 374 

depth (95 to 97% quantiles), roughness (and STD) is important but the contributions of Ksat and 375 

organic matter gradually increase when the threshold for deep snow is decreased.  376 

In summary, plant functional type is an important explanatory variable for mixed 377 

vegetation areas, especially in predicting the shallow snow depth. Soil variables, organic matter 378 

and Ksat, contribute to both shallow and deep snowpacks. Roughness and STD are also important 379 

particularly for the snow depth in December 2019 rather than in January 2019. Contrary to 380 

expectations, shadow hours, aspect, and TCI had limited ability to identify the relatively shallow 381 

or deep snow depth in the MaxEnt framework. 382 

Predicted suitability maps of shallower or deeper snow depth can be estimated from the 383 

MaxEnt models developed for target ranges. Based on the training points with input variables, 384 

the MaxEnt model provides potential locations with suitability where the range of snow depth 385 

likely exists. For example, Figure 6 includes predicted suitability maps for the locations where 386 

the snow depth is less than the 5% quantile and greater than the 95% snow depth quantile for the 387 

two snowpacks. These maps are the combination of the two maps developed by the MaxEnt 388 

models for fields and forest, respectively. In January, locations with high predicted suitability 389 

(dark red) for shallow snowpack correspond to locations with shallow snow depth (e.g., west 390 

forest, south fields, and central fields near ponds; see Figure 4). In December, distributions with 391 

high suitability also agreed fairly well with the shallow values from the snow depth map (e.g., 392 

southwest fields and east forest). For the 95% snow depth quantile, predicted maps with high 393 

suitability values captured areas where deep snow depth exists (e.g., northeast fields in January 394 

2019, central fields near the small buildings in December 2019, and east forest in both months). 395 
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 396 

Figure 6. Predicted suitability maps of shallower (< 5 % quantile; top panel) and deeper (> 95 % quantile; 397 
bottom panel) snow depth from the Maximum Entropy (MaxEnt) models in January (left) and December 398 
2019 (right side), separately.  399 

 400 

In an effort to better discern the effect of the soil variables on the reliability of the 401 

MaxEnt model, AUC values are compared for models that include and exclude soil variables 402 

(Figure 5). The AUC values from the MaxEnt models for the shallowest (3 to 5%) and deepest 403 

snow depths (95 to 97% quantiles) are higher than the moderate snow depths (10 to 30% and 70 404 

to 95%). For both shallow and deep snow depths, the MaxEnt models with soil variables have 405 

higher AUC values than the MaxEnt models without soil variables. This tendency is more 406 

apparent in the field than the forest. For fields with shallow snow depth, AUC values with soil 407 
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variables range from 0.86 to 0.92 for the 3 to 5% snow depth quantiles, while the values without 408 

soil variables range from 0.76 to 0.83. For fields with a deep snow pack, there is a more modest 409 

influence. The AUC values with soil variables for the 95 to 97% quantiles range from 0.86 to 410 

0.93, while the values without soil variables are range from 0.79 to 0.87.  411 

 412 

Figure 5. Comparison of the Area Under the receiver-operator Curve (AUC) values of the MaxEnt 413 
models with and without soil variables (organic matter and saturated hydraulic conductivity) for shallow 414 
and deep snow depths observed in January and December 2019.  415 

4.4 Localized variability of snow depth 416 

The relative contributions of the static variables on the snow depth local gradients were 417 

computed in the MaxEnt framework for locations having lower (less than 3 to 30%) and higher 418 

local gradients (greater than 7% to 97%) (Figure 6). For this analysis, the static variable 419 
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included the nine input variables previously used as well as the local gradient mapped during the 420 

baseline (snow-off) flight. Variables with larger percentages indicate that the input variables play 421 

a greater role in predicting the local gradients and typically improving the MaxEnt’s reliability. 422 

For low local gradients of snow depth, implying locally homogeneous snowpack conditions 423 

within 10 m (top panels), plant functional type was the most important variable (32 – 49%) for 424 

landscape scale, especially in the shallower snow depth map from January. Roughness and the 425 

baseline local gradient were of secondary importance in January and December, respectively. 426 

Roughness contributed 24% and baseline local gradient contributed 23% for the less than 3% 427 

quantile of local gradients. In the fields, there were clear differences in important variables 428 

between the two snowpacks. While soil variables, organic matter and Ksat, and roughness were 429 

important for January, the baseline’s local gradient was the strongest contributor for December. 430 

In the forest, there were no dominant variables, except for the baseline’s local gradient for 431 

January. Aspect, shadow hours, STD, and TCI did not play a role in the location of low local 432 

gradients for the overall site, nor for the field and forest areas.  433 

 434 

Figure 6. Variable importance from the MaxEnt models for low (top) and high (bottom panel) local 435 
gradients of snow depth observed in January (left) and December 2019 (right side of each subfigure). 436 
Low or high local gradients of snow depth are determined by thresholds. Low local gradient is defined as 437 
less than 3% (extremely low) to 30% quantiles (moderately low) of the entire local gradient values for the 438 
three areas, landscape, fields, and forest, respectively. High local gradient values are from larger than 439 
97% (extremely high) to 70% quantiles (moderately high). Permutation importance for the local gradients 440 
are also provided in Supporting information (Figure S3). 441 
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For high local gradients of snow depth (bottom panels), roughness and the baseline local 442 

gradient are important for identifying landscape scale transitions. For the January snowpack, the 443 

contributing percentage of the baseline’s local gradient was around 70% for the extremely high 444 

local gradients (95 to 97% quantiles). The contribution of the baseline local gradient decreased 445 

with decreasing thresholds, and roughness’s contribution increased indicating a transition 446 

between the two highly correlated variables. In fields, the baseline local gradient was the 447 

dominant control and contributed up to 80%. Organic matter was also somewhat important (up to 448 

20 to 34%) for the highest local gradient of snow depth (higher than 95% quantiles). In the 449 

forest, while there were no dominant variables as compared to fields or landscape scale, for 450 

January, Ksat and baseline’s local gradient were important (49% and 36%, respectively). 451 

Contribution of roughness gradually increases with decreasing the quantiles (particularly from 70 452 

to 85% quantiles).  453 

In summary, plant functional type is valuable for predicting the low local gradients of 454 

snowpack at the landscape scale. Within a single plant functional type, the baseline’s local 455 

gradient and roughness control the locations of both the low and high local gradients of snow 456 

depth. Soil variables also contribute modestly to identifying spatial variability in localized 457 

snowpack. Contrary to our expectations, shadow hours, aspect, and TCI had marginal 458 

contributions for localized snowpack variations at the 10 m scale using the MaxEnt framework. 459 

 460 

 461 

Figure 7. Predicted suitability maps of high local gradient of snow depth maps (> 95 % quantile) from the 462 
Maximum Entropy (MaxEnt) modelling framework on January (left) and December 2019 (right side).  463 
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In contrast with predicted suitability maps of snow depth, two predicted suitability maps 464 

of high local gradients have relatively similar spatial patterns for the two snowpacks, except for 465 

west forest (Figure 7). Because the baseline’s local gradient and roughness were the dominant 466 

controls needed to predict the local gradients of snowpack, the spatial distributions of baseline’s 467 

local gradient and roughness are reflected in the predicted maps (compare to the input variable 468 

maps in Figure 2).  469 

5. Discussion 470 

5.1 Physical drivers: Comparison with previous findings 471 

Static features such as topography and vegetation rather than local meteorology and 472 

precipitation patterns typically control snow distribution at the local scale. There are numerous 473 

studies, which attempt to characterize spatial snow structures and to identify physical 474 

characteristics affecting the spatial characteristics of snowpack. Bloschl and Kirnbauer (1992) 475 

investigated the relationship between spatial snow patterns and terrain attributes (e.g., elevation 476 

and slope) in a mountainous area in the Austrian Alps. They found no dominant relationship to 477 

terrain parameters with spatial snow depth. Lapen and Martz (1996) found that spatial patterns of 478 

snow depth are related to the terrain attributes that define sheltering by topographic obstacles, 479 

indicating that drifting is a critical process in the prairie environment. Mott et al. (2011) 480 

mentioned that the driving force for the drifting processes is the air flow near the surface layer, 481 

which is partially shaped by the local terrain. Our results have similar findings in that there were 482 

clear differences in snow depth within the fields (e.g., east versus west fields) and transitional 483 

areas between fields and forest. Currier and Lundquist (2018) also found large differences in 484 

snow depth for the forest‐edge classifications in the western United States. 485 

Soil properties are considered to be a potential feature that can affect spatial variability of 486 

snowpack, yet few studies have investigated how important soil properties are to inform spatial 487 

structure of snow depth as compared to other terrain characteristics. Shook et al. (1993) analyzed 488 

area-frequency relationships of snow and soil patches at different stages during the melting 489 

season in prairie and alpine environments. They found that snow and soil patches are fractals, 490 

and their size distribution is predictable, implying that soil properties may potentially influence 491 

such behaviour. Redding and Devito (2011) showed differences in the timing of snow 492 
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disappearance between two sites with different soil types. They found that mean snowmelt rates 493 

at sites with sand soils were quicker than those at sites with loam soils. However, they could not 494 

conduct significance tests due to the limited measurements from the loam soils. Our findings 495 

indicate that soil properties, organic matter and hydraulic conductivity, are more important than 496 

shadow hours, aspect, STD, and for modelling spatial distribution of snow depth, which is 497 

probably because soil properties, especially soil organic matter, impact soil thermal conductivity 498 

(Abu-Hamdeh and Reeder, 2000). The thermal conductivity of soil is highly dependent on soil 499 

density, mineral type, grain size, and moisture content (Farouki, 1981; Penner, 1970; Parikh et 500 

al., 1979). In frozen soils, the thermal conductivity is more sensitive to soil type than non-frozen 501 

soils, because the thermal conductivity of ice is more than four times larger than that of liquid 502 

water (Penner, 1970).  Recently, Zhu et al. (2019) found that soil organic matter was a dominant 503 

factor controlling the variability of thermal diffusivity at 200 field sites in the high latitude 504 

regions. Our results suggest that spatial differences in soil properties may lead to spatial 505 

discrepancy in heat transfer between snowpack and soil surface resulting in enhanced spatial 506 

variability of snow depth even at local scales. With large spatial variability of soil temperature 507 

(e.g., less than 10 m spatial correlation in fields; Mohanty et al., 1995) and frequent patchy snow 508 

in shallow ephemeral snowpacks, the differences in energy transfer between snow and soil 509 

surface across areas with different snow depths leads to a heterogeneous distribution of surface 510 

temperatures (Mott et al., 2013). Harder et al. (2017) confirmed that local-scale sensible heat 511 

advection driven by surface temperature heterogeneity is a main source of energy available for 512 

snowmelt. Based on our results that soil properties are an important control on the spatial 513 

patterns of shallower and deeper snow depths, future research is needed to address the role that 514 

spatially distributed soil properties play in the spatial heterogeneity of energy transfer with 515 

snowpack.  516 

5.2 MaxEnt framework compared to traditional analysis 517 

To our knowledge this study is the first to use the MaxEnt model to understand snow 518 

distribution measured using a UAS-based lidar. In the natural science community, the MaxEnt 519 

model is one of the most popular methods for species distribution and environmental modelling 520 

(Elith et al., 2006; Merow et al., 2013). The MaxEnt framework provides accurate information 521 

about the degree of importance among the input variables that dominate overall contribution to 522 
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develop the MaxEnt model with model reliability. For the snow science and hydrology 523 

community, this approach can create novel opportunities to identify dominant physical variables 524 

and to advance snow and land surface models by leveraging remotely sensed snow observations 525 

at multiple scales.  526 

As a traditional method, variogram approaches including fractal analysis have been 527 

widely used to understand the spatial scaling patterns of snow depth (or SWE) based on the self‐528 

similarity of properties over multiple scales. Deems et al. (2006) conducted a variogram analysis 529 

of snow depth, topography, and vegetation topography data sets from three 1-km
2
 study areas 530 

using an airborne-based lidar system. They found the existence of two distinct scale areas from 531 

the snow depth and vegetation topography data sets, separated by a scale break that varies 532 

between 15 m and 40 m for snow depth, and between 31 m and 56 m for vegetation topography 533 

(similar to the results from Arnold and Rees, 2003). Trujillo et al. (2007) also attempted to 534 

determine whether the spatial distribution of snow depth has scale invariance, and the role of 535 

physical drivers including vegetation, topography, and winds in such behaviour. Using fractal 536 

analysis, Schirmer and Lehning (2011) investigated seasonal and spatial changes in scaling 537 

behaviour of snow depth. They found that the scale break gradually increases throughout the 538 

snow accumulation season indicating that roughness of the terrain surface buried by snow may 539 

control the scaling behaviour.  540 

Even though the variogram-type analyses have provided explicit information to 541 

characterize the spatial structure of snowpack, limited information is available to determine the 542 

relative importance among various physical characteristics related to the formation of spatial 543 

structure of snow depth. Deems et al. (2006) speculated that the length of the scale break might 544 

be due to the overall terrain relief, and that the process change revealed by the breaks in the 545 

variograms of the vegetation topography potentially influences the scaling patterns of snow 546 

depth. In Trujillo et al. (2007)’s results, none of the breaks in the slope of the log-log plots 547 

between snow depth and the corresponding fields of topography and vegetation topography were 548 

present, while the break in the scaling behavior was controlled by the vegetation characteristics 549 

(e.g. canopy height, canopy-covered area, and distances between trees). Thus, it is expected that 550 

the MaxEnt framework with spatially distributed snowpack data supplements the existing 551 

approaches by providing various information about dominant predictor variables along with 552 

spatially predicted suitability maps. 553 



Manuscript submitted to Water Resources Research 

 
 

5.3 UAS lidar snow depth sampling 554 

Reliable spatially distributed high-resolution snowpack measurements are essential to 555 

discern physical processes that depend on the snow state. In this study, the UAS-based lidar 556 

system provided a unique opportunity to characterize the spatiotemporal variability of snow 557 

depth. Lidar observations can provide not only high resolution snow depths, but also map many 558 

of the potential physical drivers of field scale snow depth spatial variability. Over the past two 559 

decades, lidar techniques have been widely used to measure snow depth over various 560 

spatiotemporal scales and resolutions primarily on aircraft or a fixed ground station (see reviews 561 

in Deems et al., 2013; López-Moreno et al., 2017). Airborne laser scanning (ALS) is a well-562 

known lidar technique that is currently leveraged by the Airborne Snow Observatory (ASO) 563 

(Painter et al., 2016). The key advantage of ALS is the capability to cover large areas (Deems et 564 

al., 2013; Harpold et al., 2014; Kirchner et al., 2014). However, the operation of the system is 565 

extremely expensive with limited flexibility of deployment. Lidar sensors are not capable of 566 

seeing through clouds, therefore Lidar observations from manned aircraft altitudes are only 567 

achievable on clear sky days or when cloud altitudes exceed the aircraft altitude. The spatial 568 

resolution of ALS systems is also considerably lower as compared to other Lidar platforms. ALS 569 

systems report ground return densities between 3 and 6 points/m
2
 (Broxton et al., 2019; Kirchner 570 

et al., 2014), resulting in observational gaps in dense forested regions (Currier and Lundquist, 571 

2018; Mazzotti et al., 2019). The limited spatial resolution of ALS would pose challenges to 572 

discern the physical processes driving the spatial distribution of snow depth at all relevant scales. 573 

Terrestrial laser scanning (TLS) employs high frequency Lidar sensors mounted on a tripod at a 574 

fixed ground position (Fey et al., 2019; Hojatimalekshah et al., 2020; Prokop, 2008). TLS has the 575 

advantage of being relatively low-cost and portable, making repeat observations possible per 576 

day. However, this technique has additional uncertainties caused by large view angles and 577 

occlusions from trees and hills (Prokop, 2008; Fey and Wichmann, 2017). Also, in order to 578 

accurately georeference observations made with a TLS system it is critical that the tripod 579 

remains stationary throughout each scan. In deep snowpacks it is often difficult to ensure the 580 

TLS system does not settle within the snowpack and shift position while scanning. Extremely 581 

high point densities are achievable with TLS systems; however, the spatial extent of a typical 582 

TLS survey is considerably smaller as compared to airborne platforms. 583 
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UAS-based lidar has been recently utilized for snow depth mapping (Harder et al., 2020; 584 

Jacobs et al., 2020). A UAS platform can eliminate many of the drawbacks that arise from ALS 585 

and TLS systems. Obscuration from clouds will rarely be an issue because UAS lidar surveys are 586 

generally conducted at an altitude below 120 meters. Although spatial coverage is typically 587 

greatly reduced in UAS missions relative to other ALS platforms, the aerial perspective and the 588 

large sensor swath overlap facilitated by appropriate mission planning and post-processing 589 

provides reduced uncertainties in elevation from those that can result from high off-nadir 590 

viewing angles and occlusion in other ALS platforms. In the same vein, flight parameters can be 591 

readily adjusted to achieve equally dense point clouds over open and forested areas, improving 592 

ground finding and resulting in better characterization of vegetation and terrain mapping. For this 593 

study, flight speeds were held constant over both fields and forests, which produced lower return 594 

density over the forested part of our study site. There is some evidence that vegetation reduces 595 

return density due to scattering and absorption (Liu et al., 2020; Jacobs et al., 2020), so reduced 596 

flight speeds over vegetation to account for the reduction in returns could improve terrain 597 

characterization in these settings.   598 

6. Conclusion 599 

Understanding the spatial variability of snow is valuable for hydrologists and ecologists 600 

seeking to predict hydrological processes, species distributions, land-atmosphere interactions. 601 

However, identifying dominant physical drivers controlling the spatial structure of snow depth 602 

has been challenged due to the lack of the high-resolution snowpack and physical variables with 603 

high vertical accuracy as well as limitations in traditional approaches. To overcome this, we first 604 

employ the MaxEnt framework with 1-m spatial snow and terrain maps from a UAS-based lidar 605 

system to identify physical variables controlling field scale spatial structures of shallow, 606 

ephemeral snow depth over open terrain and forests. We found that, among the nine terrain, plant 607 

functional type, and soil variables, plant functional type and roughness had important 608 

contribution in the MaxEnt framework as needed to predict spatial locations in either deeper or 609 

shallower snow depth across the landscape. Soil organic matter and saturated hydraulic 610 

conductivity were revealed as important controls on snow depth spatial variations for both fields 611 

and forest, suggesting spatial variations in the soil variables under the snowpack can control 612 

thermal transfer between soil and snowpack along with near surface atmosphere. Despite the 613 
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difference in controls and locations of the relatively shallow and deep snowpacks, the transition 614 

zones between areas with similar snow depths, as identified using local gradients, were 615 

consistent for both dates and well characterized by the underlying local gradients of baseline 616 

flights without snow. It is expected that the results will contribute to advancing snow and land 617 

surface models by aiding in the parameterization at the sub-grid scale and helping to support the 618 

down-scaling of retrieved remotely sensed snow products to characterize field scale conditions. 619 

Data Availability Statement 620 

The UAS snow depth maps with topographic input variables from this study are available 621 
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