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Abstract

15 The increasing pressure on wetland resources continues to threaten the role wetlands play in 16 maintaining the ecological

balance of watersheds. The Cuvette Centrale of the Congo is the 17 greatest intertropical peatland in the world. To fully

understand its role in water resources and 18 ecological services linked to the quality of water and life in the basin, we first

need to quantify 19 its role in the hydrological dynamics. To achieve this aim, we used the Soil and Water 20 Assessment Tool

model (SWAT)-modified for tropical environments-in combination with 21 monthly discharge data. We analyzed water fluxes

entering and flowing out of the Cuvette 22 Centrale of the Congo River Basin on a monthly time scale for the 2000-2012 period.

The 23 model was calibrated, validated, and compared with discharge from gauging stations and 24 surface water elevation

from radar altimetry. Results showed that upland runoff from the 25 Congo River was the highest contributor to the Cuvette

Centrale (33 percent) followed closely 26 by efficient precipitation inside the Cuvette Centrale (31 percent) with right bank

and left bank 27 tributaries contributing 25 percent and 11 percent respectively. We simulated monthly mean 28 interannual

inflows of approximately 34,150 m 3 s-1 (88 billion m 3) with the main flood peaking 29 in November (45,310 m 3 s-1) and total

outflows averaging around 39,860 m 3 s-1 (100 billion 30 m 3) peaking at 52,430 m 3 s-1 in December for the simulation period.

We subsequently estimated 31 a negative monthly mean interannual variation of storage in the Cuvette Centrale wetlands in 32

the order of 5,700 m 3 s-1 suggesting that the Cuvette Centrale supplies the river during low 33 water periods. This highlights

the important regulatory function of the Cuvette Centrale and 34 the need for protection of groundwater resources in order to

maintain wetland water quantities 35 and quality. 36
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Abstract 15 

The increasing pressure on wetland resources continues to threaten the role wetlands play in 16 
maintaining the ecological balance of watersheds. The Cuvette Centrale of the Congo is the 17 
greatest intertropical peatland in the world. To fully understand its role in water resources and 18 
ecological services linked to the quality of water and life in the basin, we first need to quantify 19 

its role in the hydrological dynamics. To achieve this aim, we used the Soil and Water 20 
Assessment Tool model (SWAT) – modified for tropical environments- in combination with 21 

monthly discharge data. We analyzed water fluxes entering and flowing out of the Cuvette 22 
Centrale of the Congo River Basin on a monthly time scale for the 2000-2012 period. The 23 
model was calibrated, validated, and compared with discharge from gauging stations and 24 

surface water elevation from radar altimetry. Results showed that upland runoff from the 25 

Congo River was the highest contributor to the Cuvette Centrale (33 percent) followed closely 26 
by efficient precipitation inside the Cuvette Centrale (31 percent) with right bank and left bank 27 
tributaries contributing 25 percent and 11 percent respectively. We simulated monthly mean 28 

interannual inflows of approximately 34,150 m3 s-1 (88 billion m3) with the main flood peaking 29 
in November (45,310 m3 s-1) and total outflows averaging around 39,860 m3 s-1 (100 billion 30 

m3) peaking at 52,430 m3 s-1 in December for the simulation period. We subsequently estimated 31 
a negative monthly mean interannual variation of storage in the Cuvette Centrale wetlands in 32 

the order of 5,700 m3 s-1 suggesting that the Cuvette Centrale supplies the river during low 33 
water periods. This highlights the important regulatory function of the Cuvette Centrale and 34 
the need for protection of groundwater resources in order to maintain wetland water quantities 35 
and quality. 36 

1. INTRODUCTION 37 

Wetlands are an important component of the global ecosystem. It has been pointed out that the 38 
wetlands of the world are on a steady decline (Papa et al., 2010; Ramsar Convention on 39 
Wetlands, 2018) and this is more worrying considering the ecosystem services they provide 40 

(Bwangoy et al., 2013; Davidson, 2014; Keddy et al., 2009; Sauvage et al., 2018). Alluvial 41 
wetlands control several physical, chemical, and biological processes (Borges et al., 2015; 42 
Bouillon et al., 2014). They can be connected to the river and influence water, sediment and 43 
nutrient balances by playing a role in the hydrological dynamics (Weng et al., 2003), in carbon 44 
sources or sinks (Peyrard et al., 2008) or in nitrate removal by denitrification (Bernard-Jannin 45 
et al., 2017; Fabre et al., 2020; Guilhen et al., 2020; Jung et al., 2010; Kim et al., 2017; Papa et 46 
al., 2010; Sun et al., 2016). Fluctuations in wetland water volumes are very important in 47 
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estimating hydrological and biogeochemical functioning of wetlands as the timing and duration 48 
of flood pulses affect fauna and flora, which depend on them directly (Forsberg et al., 1993). 49 

After the Amazon basin, the Congo River Basin (CRB) contains the second-largest continuous 50 

rainforest on the planet with a covering of 1.8 million km² (Haensler et al., 2013). At the heart 51 
of the basin is the “Cuvette Centrale”, a vast forested wetland depression occupying close to 52 
half of the watershed with a strong influence over the hydrology and the biogeochemical 53 
characteristics of the rivers that cross it (Laraque et al., 1998a, 2009). Alsdorf et al. (2016) 54 
summarized the hydrologic studies carried out over the wetland areas of the basin, noting the 55 

challenges associated with hydrologic measurements in this part of the CRB. These challenges 56 
are a result of the peculiar characteristics which include ill-defined shorelines and the dense 57 
forest canopy, which obscure most of the inundated areas. Nevertheless, different approaches 58 
have continued to be used to study the wetlands of the (CRB). Traditional or direct methods of 59 
hydrological measurements in the Congo basin wetlands are difficult. This is due mostly to the 60 

largely ungauged nature of the catchment, the briefness, inconsistency, and unreliability of 61 
observable data where they exist, and the accessibility limitations of the physical environment 62 

(Munzimi et al., 2017; Runge, 2007; Alsdorf et al., 2016). For these reasons, and to better 63 
understand the wetland hydrology, it has become imperative to seek alternative indirect means 64 
of measurement. One of these alternative solutions is to combine modeling approaches with 65 
the use of satellite remote sensing techniques, which have largely become the only options for 66 

in situ data in remote areas (Papa et al., 2010). 67 

Altimeters have been recognized as a special tool for measurement of hydrological dynamics 68 
in data-scarce regions, with the major drawbacks being its spatial resolution. This is because 69 

altimeters are mostly limited by their repeat cycles causing virtual stations to be located far 70 
apart (Kugler et al., 2019; Rosenqvist & Birkett, 2002). Kim et al. (2017) generated multi-71 
temporal water level maps over parts of the Congo main-stem based on the relationship 72 

between the Environmental Satellite (ENVISAT) altimetry-derived river level changes, the 73 

Phased Array type L-band Synthetic Aperture Radar (PALSAR) and Scanning Interferometric 74 
Synthetic Aperture Radar (ScanSAR) backscattering coefficient changes. They were able to 75 
classify the CRB into permanent open water, forest, macrophytes, and herbaceous plants. 76 

Tourian et al. (2016) employed a method using a multi-satellite approach over the Po river (the 77 
largest river in Italy), by which all virtual stations of several satellite altimetry missions were 78 

connected hydraulically and statistically. This enabled them to densify water level time series 79 
at any given location along the river, thus dealing with problems related to the spatial resolution 80 
of altimeters. They validated the transferability of their methodology in the CRB. Their 81 
densified time series correlated well with Insitu data in the Congo, Mississippi, and the Danube 82 

rivers. Yuan et al. (2017) applied the Interferometric Synthetic Aperture Radar (InSAR) and 83 
ENVISAT altimetry to generate long term water storage time series over the floodplains of the 84 
CRB for the period 2002-2011. They calculated a difference in water volume storage of 85 

approximately 4 km3 between wet and dry years of 2002 and 2005, respectively. They 86 

concluded that their floodplain water storages were in overall agreement with the seasonal 87 
variations of Total Water Storage (TWS) and precipitation. 88 

Kim et al. (2019) experimented with a machine learning technique to estimate discharge using 89 
stage heights from the Envisat altimetry data obtained from 2002 to 2010. By using a 90 
combination of several rating curves established at different points over the CRB, they were 91 
able to produce better discharge estimates. Although this process still depends on in situ data, 92 
it holds promise for filling in missing data. Combining the Global Inundation Extent from 93 
Multi-Satellites (GIEMS) dataset, (Prigent et al., 2007) with ENVISAT altimetry water level 94 
measurements, Becker et al. (2018) were able to estimate surface water extent of floodplains, 95 
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lakes, rivers, and wetlands of the CRB. They found the annual variation in surface water storage 96 
in the CRB to be around 80 km3 or approximately 6 percent of annual water volume that the 97 

Congo River exports to the Atlantic Ocean. 98 

Hydrological models have been deployed with varying degrees of success in the CRB. 99 
Modeling in this basin poses several challenges due to the sheer size and heterogeneity of the 100 
watershed, as well as the attenuation effects of the Cuvette Centrale (Alsdorf et al., 2016). 101 
Chishugi and Alemaw (2009) parameterized the Hybrid Atmospheric and Terrestrial Water 102 
Balance model for purposes of computing water resource availability. They simulated soil 103 

moisture and runoff of the basin and were able to distinguish two main climatic regions based 104 
on the Evapotranspiration ratio. They did this even though their model was not calibrated but 105 
only parameterized using global datasets. Tshimanga et al. (2011) calibrated the Pitman-GW 106 
model, a conceptual semi-distributed hydrological model, reproducing observed hydrological 107 
responses adequately. Significant variations in model parameters were put down to the complex 108 

nature of the basin or inadequate model structure. The complexity in hydrological processes in 109 
parts of the basin questions the representativeness of these model parameters to the 110 

hydrological response. Similarly, Tshimanga & Hughes (2014) used the semi-distributed 111 
Pitman model to determine key hydrological processes within the basin and found that it 112 
captured the magnitude of high and low flows in the majority of the subbasins within the 113 
catchment. The model was not able to satisfactorily capture the runoff response of the central 114 

basin and flows downstream of lakes and wetland areas, thereby highlighting the importance 115 
of groundwater and channel routing parameters. Recently, Paris et al. (this volume) used a 116 
combination of remote sensing datasets and hydrologic-hydrodynamic modeling at the basin 117 

scale and on a daily basis to infer hydrologic state all over the basin in near-real-time. 118 

Beighley et al. (2011) calibrated the hillslope river routing model in a bid to test the impact of 119 
satellite-derived precipitation datasets on streamflow. Three precipitation datasets were tested: 120 

The Tropical Rainfall Monitoring Mission (TRMM), the Climate Prediction Centre Morphing 121 

Technique Product (CMORPH), and the Precipitation Estimation from Remotely Sensed 122 
Information using Artificial Neural Networks (PERSIAN). They found that four parameters: 123 
maximum soil moisture deficit, horizontal subsurface conductivity, hillslope surface 124 

roughness, and channel roughness were the most sensitive. The tests showed that the TRMM 125 
estimates agree more with historical data compared to CMORPH and PERSIAN as it matched 126 

observed data more closely. They also showed that satellite rainfall showed discrepancies in 127 
equatorial regions of the basin. Others analyzed climate change scenarios in the CRB with 128 
different predictions for hydrologic variables (Alloysius et al., 2016; Tshimanga and Hughes, 129 
2012). 130 

The Commission Internationale du Bassin Congo – Oubangui - Sangha (CICOS) published in 131 
2016 a report (BRLi, 2016), which included water balance studies of the CRB. Using the 132 

hydrological model Mike Hydro Basin (MHB), they estimated -an average variation in storage 133 
in the Cuvette Centrale of approximately 1.3 billion m3 of water for the period 1951-2012. 134 
More recently, Munzimi et al. (2019), using the Geospatial Streamflow Model (GeoSFM) 135 
semi-distributed hydrological model, achieved acceptable modeling by applying a basin and 136 

subbasin “ensemble calibration” approach with a selection of appropriate model routines and 137 
parameters to slow the flow of water across the basin. They were also able to capture the flow, 138 
seasonality and timing at all locations calibrated with their model.  139 

It is evident that within the last two decades, there have been remarkable advances in the 140 
approaches used to study the hydrology of the CRB. However, it is also clear that there remains 141 
a lot to be done to fully comprehend the hydrological functioning of the ungauged central 142 
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portion of the Congo basin. By reason of its location in both hemispheres, the Congo basin 143 
experiences two periods of high water and two periods of low water. The two floods are the 144 

greater September-October-November (SON) floods influenced by the southern tributaries and 145 
a lesser one in March-April-May (MAM) controlled by the equatorial regions. Two low water 146 
levels then punctuate these two floods, one in February-March, corresponding to the dry season 147 

of the northern part and the other in July-August at the time of the southern dry season. The 148 
Cuvette Centrale is uniquely positioned to receive flow from the different tributaries that cross 149 
this great basin at different times of the hydrological year. Most of the modeling studies did 150 
not consider the spatio-temporal variations in the tributaries that contribute to the Cuvette 151 
Centrale and provide little to no distinction on the Cuvette Centrale hydrology based on 152 

timescale and seasons. We build on an approach initiated by the BRLi and complementary 153 
work done by Moukandi N’kaya et al. (this volume), to estimate the change in storage of the 154 
Central Basin, by the first upstream-downstream hydrological balance obtained from 155 
calibration and validation of in situ data. Using a mass balance approach, we estimated the 156 

fluxes of water feeding into the Cuvette Centrale from eleven tributaries located both on the 157 
right and left banks of the Congo River and on the outer fringes of the wetland before they 158 
become fully influenced by the wetlands. Afterward, we compared these fluxes with the 159 

measured output at the basin outlet in Brazzaville/Kinshasa in order to observe the impact of 160 
the Cuvette Centrale on these flows. Knowing the importance of evapotranspiration using this 161 
approach, we use a modified Soil and Water Assessment Tool (SWAT) model fitted with a 162 
module to better estimate the amounts of water that are removed from the Cuvette Centrale. 163 

This will also aid in identifying the source of Cuvette Centrale waters in line with the theories 164 
proposed by Alsdorf et al. (2016) concerning the source and emptying of Cuvette Centrale 165 

waters. Therefore, the main objective is to enhance our knowledge of the hydrological 166 
functioning of the Cuvette Centrale and the limitations of using a distributed hydrological 167 
model.  168 

Specifically, we intend to: 169 

(i) Simulate and assess water flows entering the Cuvette Centrale using modeling tools. 170 
(ii) Analyze the impacts of the Cuvette Centrale on streamflow and the water balance 171 

components in the catchment at the basin outlet. 172 

These objectives will be met by combining modeling, gauging station data, and satellite data 173 
observations in order to represent the hydrological system within the Cuvette Centrale 174 
adequately. 175 

2. MATERIALS AND METHODS 176 

2.1. Study site 177 

In Africa, the Congo River is the second longest river after the Nile at 4,700 km, and first in 178 

terms of discharge and basin size - 40,500 m3 s-1 and 3.7 x 106 km2 respectively - second only 179 
to the Amazon globally. The Congo River forms a broad curve that crosses the equator twice. 180 
Its basin extends between the parallels 9°N and 14°S and the meridians 11°E and 34°E, with 181 
its form, relief, geology, climate, as well as its vegetal cover, structured concentrically around 182 
the Cuvette Centrale; - a central depression already described by Laraque et al. (2009, 2013b) 183 

(Figure 1). The twin stations of Brazzaville/Kinshasa controls 98 percent of its total area. The 184 
Brazzaville/Kinshasa gauge station (Figure 2a) is located approximately 400 km upstream to 185 
its oceanic outlet, and the hydrologic input along this last reach is close to 1,000 m3 s-1. The 186 

Cuvette Centrale lies at the heart of this basin (see Figure 2b) within longitudes 16° to 20° E 187 
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and latitudes 2°30' N to 2° S (Davies & Gasse, 1987). It is a vast Cenozoic depression consisting 188 
of clayey and sandy fluvial quaternary alluvial deposits measuring 700 km from North to South 189 

(Laraque et al., 1998a). In periods of high water, the Cuvette Centrale extends from Ouesso on 190 
the Sangha River to Impfondo on the Ubangi River on its right bank (Figure 2a). The Likouala 191 
aux Herbes is the emblematic flooded basin of the Cuvette Centrale during high flow (Laraque 192 

et al., 1998a, 1998b). It also comprises the central portions of the basin, including the Tumba-193 
Ngiri and Mai Ndombe wetlands and lakes on its left bank, the areas of which are 65,695 km2 194 
(O’Loughlin, 2013). 195 

 196 

Figure 1. Shuttle radar topography mission (SRTM) digital elevation model (Farr et al.,2007) 197 
of the topography of the Congo River basin showing the area of the Cuvette Centrale within 198 

the yellow polygon as generalized by Bwangoy et al. (2010) (adapted from Alsdorf et al., 199 

2016). 200 

 201 

The physiography, climate, and vegetation of the CRB are generally centered and extend 202 
around the Cuvette Centrale . The Cuvette Centrale has an equatorial climate with mean rainfall 203 
between 1,800 mm yr-1 and 2,200 mm yr-1 falling throughout the year (Bultot, 1971). The mean 204 
annual temperatures are 25° C (Bernard, 1945) with evapotranspiration at 1,050 mm yr-1 205 
(Bultot, 1971). Bwangoy et al. (2010) using remote sensing delineated an area of 360,000 km2 206 
as the maximum inundated area of wetlands within 5°N to 6° S and 13°E to 26°E. The CICOS 207 
project, based on the work of various authors (Becker et al., 2014; Bwangoy et al., 2010; Lee 208 
et al., 2011), used an approach proposed by Betbeder et al. (2014) to identify four inundation 209 
zones (Figure 2b) in the central basin; (a) forests inundated for short periods and low 210 

amplitudes at the northern fringes of the Cuvette Centrale and west of the Ubangi river (b) a 211 
permanently inundated swamp forest that encloses the lower Sangha and south of the Likouala 212 

aux Herbes rivers (c) a mosaic of flooded and dry areas north of lake Mai Ndombe (d) another 213 
mosaic of flooded and the dry regions south-east of lake Mai Ndombe. This is in addition to 214 
other seasonally inundated forests at the edges of watercourses.  215 
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 216 

Figure 2. (a) Outline map of the Congo River basin showing the four main drainage units and 217 
major rivers. Also shown are in situ gauging stations where flow records were obtained, they 218 
are Sangha at Ouesso, Ubangi at Bangui, Lualaba at Kisangani, Kasai at Kutu-Moke and Congo 219 

at Brazzaville/Kinshasa (BZV/KIN). Rivers are Al, Alima; Ar, Aruwimi; Co, Congo; Gr, Giri; 220 

It, Itimbiri; Ks, Kasai; LiM, Likouala Mossaka; LiH, Likouala aux Herbes; Lm, Lomami; Lu, 221 
Lulonga; Ll, Lualaba; Mg, Mongala; Ob, Ubangi; R, Ruki; Sg, Sangha. The black dashed line 222 
encircles the central basin sensu lato while the area shaded with thick diagonal lines is that of 223 

the Batékés Platéaux (adapted from Moukandi N’kaya et al. this volume) and (b) Cuvette 224 
Centrale showing the Ubangi, Giri, Congo, and Ruki Rivers adjacent to seasonally and 225 

permanently inundated areas. Also shown are the locations of Lake Mai Ndombe, within non-226 
flooded forests, and Lake Tele north of the Likouala aux Herbes River (adapted and generalized 227 

from Betbeder et al. (2014) and BRLi, (2016). 228 

The Cuvette Centrale has a complex hydrological system due to the number of tributaries and 229 
swamps that are linked to it. The slopes of the middle reach of the Congo River are as low as 230 
2cm.km-1 and run through the Cuvette Centrale (Laraque, 1998a) but steepens to 8 cm.km-1 at 231 

the outlet of the Cuvette Centrale (Carr et al., 2019). Several rivers join the main stem at the 232 
middle reach, notably the Mongala, Giri, Ubangi, and Sangha rivers on the northern bank and 233 

the Lulunga, Ikelemba, Kasai, and Ruki rivers on the southern bank. The Ubangi is the second 234 
largest tributary of the Congo River and the main one on the right bank. In contrast, the Kasai 235 

River, which is the main tributary of the Congo River on the left bank, does not feed into the 236 
Cuvette Centrale directly. The lowest point of the Cuvette Centrale occurs at the confluence 237 
where the Congo meets with the Ubangi, Likouala aux Herbes, Sangha, and Likouala Mossaka 238 
(Laraque et al., 1998a). The Cuvette Centrale is bounded to the South by the sandstone aquifers 239 

of the Batekes group of rivers, which serve an important buffering role on the hydrological 240 
cycle well described by Laraque et al. (1998b). Importantly too, the Cuvette Centrale hosts the 241 
single largest peatland complex known in the tropics (Dargie et al., 2017). 242 

2.2. Model selection 243 

The SWAT model is a physically-based, semi-distributed hydrologic model that has been used 244 

extensively to predict the impact of land management practices on water, sediment, and 245 

agricultural chemical transport (Arnold et al., 1998, 2012). Moreover, SWAT can provide 246 

continuous simulations for dissolved and particulate elements in large and complex catchments 247 

with varying weather, soils, and management conditions over long periods (Arnold et al., 248 
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1998). Due to the size and spatial heterogeneities associated with the Congo basin, it was 249 

important to choose a model that will consider a majority of the relevant hydrological processes 250 

like infiltration, interception, soil moisture, groundwater components as well as attenuation 251 

effects of wetlands, ponds, and artificial reservoirs. SWAT has demonstrated its applicability 252 

in several regions of the world (Malagó et al., 2017; Zhang et al., 2013) in Africa (Van 253 

Griensven et al., 2012) and in the Congo basin (Aloysius et al., 2017). Also, the easy 254 

accessibility of basic GIS data that are required as SWAT inputs and the availability of a 255 

reliable developer support increases its appeal even in data-scarce areas (Van Griensven et al., 256 

2012; Gasman et al., 2010). This is in stark contrast to models like the Systéme Hydrologique 257 

Européen (MIKE SHE), which requires extensive model data and physical parameters that may 258 

not be available all the time. It also makes the model difficult to set up, coupled with the fact 259 

that users are unable to modify the code (Devi et al., 2015). Easton et al. (2010) used the SWAT 260 

model to determine runoff and erosion in the Blue Nile basin to find out the respective sources. 261 

They found out that only minimal direct calibration is required to obtain good hydrologic 262 

predictions. Borah and Bera (2004) have made a comparison between SWAT, Hydrological 263 

Simulation Program-Fortran (HSPF) and the Dynamic Watershed Simulation Model (DWSM) 264 

models and found 17 applications of SWAT in North America. They concluded that it could 265 

be applied for continuous simulations of water flow, sediments, and nutrient transport. 266 

Furthermore, SWAT has been successfully used for water quantities (Schuol & Abbaspour, 267 

2007), climate change studies (Aloysius and Saiers, 2016), and water quality (Gassman et al., 268 

2007) assessments for a wide range of scales and environmental conditions.  269 

2.2.1. Modified parameters for the tropics 270 

The SWAT hydrological model was originally developed for temperate regions. The main 271 

limitation in its use in tropical areas is related to the simulation of tropical vegetation. SWAT 272 

applies dormancy to terminate growing seasons while in the tropics, the wet and dry seasons 273 

can only be represented by defining heat unit-specific “plant” and “kill”  operations, which are 274 
fixed for every year of simulation (Strauch & Volk, 2013). The plant growth component of 275 
SWAT is based on the radiation use efficiency approach with empirical parameters. Plant 276 

growth can be inhibited by temperature, water, nitrogen, and phosphorus stress. Plant 277 
development is based on daily accumulated heat unit values. The heat unit states the stage of 278 

plant development. It varies from 0 to 1, 0 indicating the sowing time and 1 the optimal moment 279 
for the plant to be harvested. By modifying the plant growth module, an alternative approach 280 
was presented in which annual growing cycles were initiated based on changes in soil moisture. 281 
A soil moisture threshold was set that automatically triggers new growing seasons for perennial 282 

crops during the transition from the wet to the dry seasons. Furthermore, a logistic leaf area 283 
decline function was defined that enabled a user to set a minimum leaf area index (LAI). 284 
Further details on the procedure can be found in Strauch and Volk (2013). 285 

2.2.2. Water Balance 286 

The SWAT system is coupled with a geographical information system (GIS) engine that 287 

integrates various spatial environmental data, including soil, land cover, climate and 288 
topographical features (Arnold et al.,1998). Evapotranspiration can be estimated using either 289 
the Penman-Monteith, Priestly-Taylor, or Hargreaves methods. SWAT simulates the 290 

hydrology of a catchment in two ways; the land phase and the routing phase. The land phase 291 
describes the loading of water, nutrients, and pollutants into the main channel in each subbasin. 292 
In contrast, the routing phase is the movement of these substances through the channel 293 
watershed network to the outlet of the basin. The simulation of the hydrologic cycle by SWAT 294 
is based on the water balance equation:  295 
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where SWt is the final soil water content (mm water), SWo is the initial soil water content in 297 

day i (mm water), t is the time (days), Rday is the amount of precipitation in day i (mm water), 298 
Qsurf is the amount of surface runoff in day i (mm water), Ea is the amount of evapotranspiration 299 
in day i (mm water), Wseep is the amount of water entering the vadose zone from the soil profile 300 
in day i (mm water), and Qgw is the amount of return flow in day i (mm water). 301 

In SWAT, each HRU is a closed system with no transfer of water between HRUs. Instead the 302 
processes in the land phase are simulated within individual HRUs and cumulatively summed 303 
to calculate the overall water balance (Neitsch et al., 2012). The water balance in the aquifer 304 
was simulated in SWAT using the linear reservoir method to simulate the groundwater flow. 305 
This method assumes that the groundwater storage and base flow have a linear relationship. 306 

Water in the unsaturated zone is either stored as soil moisture or percolates using a storage 307 

routing technique based on the saturated hydraulic conductivity and field capacity of the soil 308 

profile. A kinematic storage model (Sloan et al., 1984) simulates lateral flow accounting for 309 
variation in conductivity, slope, and water content. As water percolates below this unsaturated 310 
zone, it reaches the shallow aquifer. These processes can be controlled by setting threshold 311 
values in the respective groundwater parameters to regulate the movement of water within 312 

these storages. Further equations relating to other hydrological components can be found in 313 
the SWAT theoretical documentation (Neitch et al., 2011). 314 

 315 

2.2.3. Input Data 316 

The primary input data used for the model were freely available data, which included the 90 m 317 
resolution Shuttle Radar Topography Mission (SRTM) topography data from the Consortium 318 

for Spatial Information (CGIAR-CSI). This resolution was chosen considering the size of the 319 
watershed. The land use map was extracted from the Global Land Cover Characterization 320 

(GLCC) database and used to estimate vegetation, anthropogenic influences, and water bodies 321 
in the watershed area. Values of minimum and maximum temperature for the period 1979-2014 322 
were obtained from the Climate Forecast Reanalysis System (CFRS). The Tropical Rainfall 323 

Monitoring Mission (TRMM) precipitation products for the period 1998-2015 were used while 324 
the model simulated all other climate variables. Digital soil data for the study was extracted 325 

from the harmonized digital soil map of the world (HWSD v1.1) produced by the Food and 326 
Agriculture Organization of the United Nations (FAO). This soil database provides data for 327 

16,000 different soil mapping units of two layers containing 30 cm and 30 - 100 cm depth). 328 
The Global Wetland Database (GLWD) provided information on swamps and lakes, while the 329 
source of in situ gauge observations for the five hydrological stations used for model calibration 330 
was from the SO-HYBAM and BRLi report. Table 1 below gives further details of these inputs. 331 

The period for the current study (2000 to 2012), is chosen due to the common period of 332 
availability of contemporary meteorological records for all the five stations under 333 

consideration. In addition, (Moukandi N’kaya et al., this volume; Tshitenge Mbuebue et al., 334 
2015), showed that the trends/breaks or shifts  in rainfall could be found in runoff, with a ten-335 
year time lag in some of the major subbasins. Furthermore, the observed flow records at the 336 

Brazzaville/Kinshasa gauging station is almost equal to the hundred-year interannual modulus 337 
of discharge (Laraque et al., 2001, 2013a; BRLi, 2016). 338 

 339 

 340 
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Table 1. SWAT data inputs and observations datasets 341 

Data Type Period Resolution Source 

Digital Elevation 

Model (DEM) 

 90 m Consortium for spatial information (https://cgiarcsi.community/data/srtm-

90m-digital-elevation-database) 

Soil  1 km Harmonized World Soil Database v 1.1 

(http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-

database/HTML/index.html?sb=1) 

Land use  1 km Global Land Cover 2000 database 

(http://forobs.jrc.ec.europa.eu/products/glc2000/products.php) 

TRMM (TMPA) 

3B42 V.7 Daily 

product 

1998-

2015 

0.25° Multi-satellite precipitation analysis 

(Https://pmm.nasa.gov/data-access/downloads/trmm#) 

Huffman et al. (2007) 

Meteorological 

data 

1979 – 

2014 

~38 km Climate Forecast System Reanalysis (CFSR) Model 

(http://rda.ucar.edu/pub/cfsr.html&http://globalweather.tamu.edu/) 

Dile and Srinivasan (2014); Fuka et al., (2013) 

River discharge 2000 – 

2012 

Daily SO-HYBAM  

(http://www.so-hybam.org/); BRLi (2016) 

Supporting data 

Water 

productivity 

 

2009 –

2018 

 

250m 

 

FAO 

 (https://wapor.apps.fao.org/catalog/WAPOR_2/1) 

Global Wetlands 

database 

1992-

2000 

30x30 

second 

Lehner and Döll (2004)  

(https://www.worldwildlife.org/publications)  

Geology 2012 0.5° Global lithological database 

 (Hartmann and Moosdorf, 2012). 

 342 

2.2.4. Model setup 343 

The preprocessing of the SWAT model was performed within ESRI ArcGIS 10.4 using the 344 
ArcSWAT interface (www.esri.com). The basin was delineated based on the dominant land 345 

use, soil and slope classes taking into cognizance the size and spatial heterogeneities of the 346 
basin allocating one Hydrologic Response Unit (HRU) per subbasin resulting in 272 subbasins 347 

and HRUs with 20 land use classes and 14 soil classes (Figure 3). The period of simulation was 348 
from 1998 to 2012, comprising calibration (2000-2006), validation (2006-2012), and a two-349 
year warm-up period (1998-2000) to allow the model to simulate the hydrological cycle 350 

properly. Lakes and wetlands in the upper parts of the Lualaba watershed, which affect the 351 
river discharge substantially, were also integrated into the model. Specifically, they were 352 
placed in subbasins 201, 230, and 238. These subbasins receive flow from Lakes Tanganyika, 353 
Upemba, and Mweru, respectively (see Figure 3d). We also parameterized the reservoirs based 354 

on available information and assuming that no management system was in place (Table 2) 355 

Table 2. Areas and volumes defined for reservoirs in the SWAT model 356 

Lake name Subbasin Surface area (km2) Storage Volume (km3) 

Tanganyika 201 32,900 19,000 

Upemba 230      550       1.3 

Mweru 238    5,000       38 

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html?sb=1
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html?sb=1
http://forobs.jrc.ec.europa.eu/products/glc2000/products.php
http://rda.ucar.edu/pub/cfsr.html
http://globalweather.tamu.edu/
http://www.so-hybam.org/
https://wapor.apps.fao.org/catalog/WAPOR_2/1
https://www.worldwildlife.org/publications
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The water balance was simulated, and the evapotranspiration calculated using the Penman-357 
Monteith method. The Penman-Monteith method also gave better estimates of 358 

evapotranspiration when used with the Strauch modified module (section 2.2.1). Minimum and 359 
maximum temperature, wind speed, relative humidity, and solar radiation were other 360 
meteorological data used in combination with the Penman-Monteith. Surface runoff was 361 

simulated using a modification of the soil conservation service Curve Number (CN) method. 362 
The runoff from each subbasin was routed through the river network to the main basin outlet 363 
using the variable storage method. Further theory and details of hydrological processes 364 
integrated into the  SWAT model are given by (Arnold et al., 1998; Neitsch et al., 2011) and 365 
are also available online in the SWAT documentation (http://swatmodel.tamu.edu/; Neittsch et 366 

al ., 2012). 367 

 368 

Figure 3. Main SWAT inputs showing; (a) Land Uses (b) Soil classes (c) Digital Elevation 369 
map and (d) Delineated subbasins of the watershed with locations of Reservoirs as 370 
implemented in ArcSWAT. 371 

2.2.5. Model Calibration 372 

The model was calibrated using monthly discharge data from five stations located on major 373 
tributaries of the Congo River. Two of the stations are located on the northern side of the basin 374 
(Ubangi at Bangui and Sangha at Ouesso). In contrast, two are located on the southern side 375 
(Lualaba at Kisangani and Kasai at Kutu-Moke ), and the fifth station is located at the 376 
Brazzaville/Kinshasa gauging station that controls 98 percent of the entire catchment. The 377 
stations are evenly distributed and represent (within practical limits) the heterogeneity of the 378 

basin. The common period of calibration for the stations was taken as the years 2000 to 2012 379 
coinciding with the availability of Satellite meteorological data and gauge station observations. 380 

The model was calibrated using an iterative (trial and error) method of testing different 381 
parameter values and selecting the best parameter sets. These parameter sets are selected based 382 
on performance criteria that evaluate simulation results against observation data (Werth et al., 383 
2009). The model was manually calibrated, while parameterization of the model was carefully 384 

http://swatmodel.tamu.edu/;%20Neittsch
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done by adjusting influential parameters, especially those that are driving forces. Maximum 385 
canopy storage (CANMX) was adjusted based on information from the food and agricultural 386 

organization (FAO) water productivity (WAPOR) database, while others were adjusted based 387 
on local knowledge, e.g. aquifer percolation coefficient (RCHG_DP) and exempted from 388 
further calibration (Whittaker et al., 2010; Pagliero et al., 2014). Also, the calibration was 389 

regionalized according to the characteristics of the subbasins where in situ data is collected. 390 
For instance, revaporation coefficient (GWREVAP) was calibrated based on land use in one 391 
region and based on soils in another. The main parameters that were calibrated were the 392 
groundwater parameters that have a strong effect on the water retention and transfer between 393 
the soil and aquifer as well as the parameters with influence on runoff, infiltration and 394 

evapotranspiration. 395 

2.2.6. Model Assessment  396 

Previous studies in the basin and other global data sets and literature were used to obtain a 397 

proper understanding of dominant processes occurring in the basin. Quantitative and qualitative 398 

means of assessment were used to evaluate the model performance. For the former, the Nash 399 
Sutcliffe efficiency (NSE), the coefficient of determination (R2), percentage bias (PBIAS) and 400 
the Kling-Gupta Efficiency (KGE) were used (Moriasi et al., 2015; Gupta et al., 2009) while 401 
the graphical visual assessment was used for a qualitative assessment.  402 

2.2.7. Change in Storage  403 

A mass balance approach was used to estimate the water balance in the Cuvette Centrale. The 404 
change in storage is the difference between the inputs and outputs into and out of the Cuvette 405 
Centrale and can be represented as:  406 

∆S= P +Qi- ET- Qout 407 

Where S is the change in annual storage, P is the Efficient precipitation over the Cuvette 408 

Centrale, Qi represents the River inflows, ET is Evapotranspiration over the Cuvette Centrale, 409 

and Qout represents River outflows in the basin outlet downstream of the Cuvette Centrale after 410 
the confluence with the Kasai tributary.  411 

Therefore, with respect to Figure 4: 412 

∆S = P+Q1+Q2+…Q11 –ET-(Q0-Q12) 413 

Where Q0 is the discharge at Brazzaville/Kinshasa gauging station in the main stream and Q12 414 
discharge from the Kutu-Moke gauging station (Kasai tributary). 415 

 416 

Subbasin outlets were defined during the watershed delineation phase of the project. Outlets 417 
were chosen on tributaries that feed into the Cuvette Centrale (see Figure 4).  418 
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 419 

Figure 4. Close up map of the Cuvette Centrale in the CRB wetlands showing points of inflow 420 

(Q1, Q2…Q11) and outflow (Q0-Q12) used in calculating the wetland water balance. Also 421 
shown are locations of Envisat virtual stations (VS1-VS6) used in validating the model. 422 

 423 

2.3. Envisat Altimetry 424 

The Environmental Satellite (ENVISAT) was a mission by the European Space Agency 425 
launched in March 2002 and ended in April 2012. It had a repeat cycle of 35 days and 426 

established virtual stations everywhere its ground tracks intersected a river tributary. From this 427 
database, we were able to validate our model with over 20 virtual stations both within and 428 
outside the Cuvette Centrale, and we present six of such stations in this paper. We used water 429 
surface elevation (WSE) time series from the Theia Hydroweb database (available at 430 

http://hydroweb.theia-land.fr/) as a means of validating our model results (Data processing 431 
procedures can be found in Santos da Silva et al. (2010)). The ICE 1 algorithm was used for 432 
processing. Various corrections were applied, including geophysical and environmental 433 

corrections. Height values are corrected for biases specific of each mission/processing 434 
algorithm and then converted into orthometric height by removal of the Earth Gravitational 435 
Model (EGM) 2008 geoidal undulation. The accuracy of altimetry derived water levels over 436 
inland water bodies is estimated to range between 10 and 40–50 cm on rivers (Becker et al., 437 
2018). The raw ENVISAT data are freely available at the Centre for Topographic studies of 438 

the Oceans and Hydrosphere (CTOH, http://ctoh.legos.obs-mip.fr/) in along-track Geophysical 439 
Data Records (GDRs) format. It is worth noting that this dataset was extensively validated in 440 

http://hydroweb.theia-land.fr/
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the CRB by Paris et al. (this volume). Surface water elevation from satellite altimetry was 441 
found to provide accurate information on large rivers and even on smaller streams.  442 

3. Results and Discussion 443 

3.1. Performance of the model 444 

Calibration was done at a monthly time step at the outlet of the four main drainage units that 445 

comprise the basin and at the basin outlet. Regional calibration of our model was important to 446 
conserve the peculiar physical characteristics of each drainage basin so as to reflect the 447 
heterogeneity of the entire basin. The model was able to accurately capture the seasonality of 448 
the different subbasins, adequately reflecting the dry and wet seasons as well as years of high 449 
and low discharge. Generally, the model was able to reproduce the timing of floods and 450 

recessions as well as the general shape of the hydrograph, giving a good representation of the 451 
discharge components in each subbasin. The calibration of the Congo basin highlighted the 452 
ability of the SWAT model to separate evaporation and runoff from precipitation at the annual 453 

time scale (see the following section). For this study, we used the performance evaluation 454 
criteria recommended by Moriasi et al. (2007, 2015) in Table 3, which was based on a meta-455 
analysis of peer-reviewed literature of widely used watershed models, including the SWAT 456 
model to assess our model performance in discharge evaluation. In addition, the KGE statistic 457 

was used (see section 2.2.6). For the calibration period, our ranges of NSE were from 0.16 to 458 
0.81, R2 from 0.59 to 0.83, PBIAS from -2.11 to 14.52, RSR from 0.43 to 0.99 and KGE from 459 
0.23 to 0.9 while for the validation period NSE was from 0.08 to 0.66, R2 from 0.39 to 0.78, 460 
PBIAS from -4.10 to 8.19, RSR from 0.58 to 0.75 and KGE from 0.31 to 0.78 (Table 4). Less 461 

acceptable results occurred at the Congo basin outlet and Lualaba subbasins for reasons 462 
discussed in the following sections.  463 

 464 

Table 3. Performance evaluation criteria, as suggested by Moriasi et al. (2007, 2015). 465 

 466 

Table 4. Results of the Performance evaluation statistics used in calibration 467 

*Brazzaville/Kinshasa 468 

Measure Monthly Performance Evaluation Ranges 

Very good Good Satisfactory Not satisfactory 

R2  R2 > 0.85 0.75 < R2 ≤ 0.85 0.60 < R2 ≤ 0.75 R2 ≤ 0.60 

NSE NSE > 0.80 0.70 < NSE ≤ 0.80 0.50 < NSE ≤ 0.70 NSE ≤ 0.50 

PBIAS PBIAS < ±5 ±5 ≤ PBIAS < ±10 ±10 ≤ PBIAS < ±15 PBIAS ≥ ±15 

RSR 0.00 < RSR < 0.50 0.50 <  RSR < 0.60 0.60 < RSR < 0.70 RSR > 0.70 

 Criteria Ubangi/Bangui Sangha/Ouesso Kasai/Kutu-

Moke 

Lualaba/Kisangani *BRZ/KIN 

outlet 

 

Calibration 

NSE 0.81 0.67 0.63 0.02 0.16 

R2 0.83 0.71 0.76 0.49 0.59 

PBIAS 4.01 8.37 -2.11 7.84 14.52 

RSR 0.43 0.57 0.61 0.99 0.92 

KGE 0.90 0.80 0.48 0.23 0.71 

 

Validation 

NSE 0.66 0.59 0.59 0.08 0.44 

R2 0.67 0.65 0.78 0.39 0.54 

PBIAS -0.86 -1.30 -4.66 -8.19 4.10 

RSR 0.58 0.64 0.64 0.96 0.75 

KGE 0.74 0.78 0.31 0.58 0.73 
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Nonetheless, our results compared favorably with other applications in similarly sized 469 
catchments; for instance, Lu et al. (2019) ran the SWAT model in the Yangtze river basin using 470 

CFSR meteorological data and obtained values for streamflow of R2 and NSE greater than 0.7 471 
in both calibration and validation periods. Gassman et al. (2014) also in an evaluation of 22 472 
large catchments in different continents modeled with SWAT, noted only four studies with R2 473 

and NSE greater than or equal to 0.9 for both calibration and validation periods on a monthly 474 
time scale. Also, Malago et al. (2017) obtained monthly PBIAS values with a magnitude of not 475 
more than 25 for 70 percent and 60 percent of gauging stations for both calibration and 476 
validation periods, respectively, for their SWAT model in the Danube basin. 477 

Aloysius et al. (2017) also ran the SWAT model in the CRB using historical data for the 1950-478 
2008 period. Their watershed was delineated into 1575 subbasins, which were further divided 479 
into at least 5 HRUs per subbasin. They included sixteen lakes in their model to regulate the 480 
hydrological fluxes applying a power-law relationship. Despite these differences with our 481 

model, they had similar Nash-Sutcliff efficiency values for the Bangui, Brazzaville /Kinshasa, 482 

Kisangani, Kutumoke, and Ouesso, stations of 0.86, 0.34, 0.04, 0.77 and 0.64 respectively for 483 

a similar range of parameters used to calibrate the model (see supplement to Aloysius & Seirs, 484 
2017). 485 

 486 

Table 5. Parameters used to calibrate the model for the simulation period 487 

 488 

Table 5 reveals the parameters used to establish the model. They were as much as possible 489 

allowed to retain their physical meaning with the deviation from default values minimized in 490 
order to achieve realistic simulation. Six out of the nine parameter values presented in Table 5, 491 

were groundwater parameters controlling the occurrence, movement, and losses of water from 492 
the system, underlining their importance. This was also noted by Van Griensven et al. (2012) 493 
while reviewing SWAT applications in upper Nile basin countries where they identified 19 out 494 
of 29 parameters that affect hydrological processes and suggested that high values of deep 495 
aquifer recharge parameter (RCHRG_DP) were unrealistic in large basins.  496 

 497 

 498 

Parameters Default 

value 

Description Calibrated 

range 

Groundwater 

parameters: 

       

ALPHA_BF 0.048 Base flow alpha factor (days). 0.002-0.016 

GWQMN 1,000 Threshold depth of water in the shallow aquifer for return flow 

to occur (mm). 

500-1,000 

GW_REVAP 0.12 Groundwater “revap” coefficient 0.02-0.12 

REVAPMN 750 Threshold depth of water in the shallow aquifer for “revap” to 

occur (mm). 

0.002 

GW_DELAY 31 Groundwater delay time (days). 31 

RCHRG_DP 0.05 Deep aquifer recharge 0 

HRU parameters:        

CANMX 0 Maximum canopy storage (mm) 50-250 

Reach parameters:        

CH_N2 0.014 Manning’s “n” value for the main channel 0.014-0.06 

Subbasin parameters:        

CH_N1 0.014 Manning’s “n” value for tributary channels 0.014-0.06 
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3.1.1. ENVISAT Altimetry 499 

To further validate the applicability of our model in the basin, we made a qualitative 500 
comparison between WSE variations from altimetry from 2002 to 2010 and our simulated 501 

streamflow. Paris et al. (this volume), extensively validated the WSE dataset used over the 502 
Congo basin. Graphs of the satellite altimetry WSE time series compared with modeled 503 
discharges for six locations along rivers of different widths (see Table 6) are shown in Figure 504 
5. Two of the virtual stations (VS1, VS2) share the same SWAT subbasins where in situ gauge 505 
stations are located (Kutu-Moke and Bangui, respectively); hence comparisons with observed 506 

data were possible. In VS1, two signals from the SWAT model failed to follow the Envisat and 507 
observed discharge. This is in contrast to VS2, where the dynamics of the flow components are 508 
produced well. This is a reflection of the good calibration at the Bangui station and the less 509 
well-reproduced simulation at the Kutu-Moke station and further points to the applicability of 510 
altimetry in assessing hydrological model output. Concerning the seasonal observations at the 511 

northern and southern drainage units, there is good agreement in peak discharge months, as 512 

seen in VS1, VS4 (March/April) and VS2, VS3, and VS6 (October/November) which are 513 

representative of both the northern and southern hemispheres respectively. VS5 located on the 514 
mainstem Congo River exhibits a second lesser peak characteristic of the flow regimes 515 
recorded at the Brazzaville/Kinshasa station. A further look at VS3 is necessary. Indeed, at this 516 
VS, the Pearson correlation coefficient was only 0.3, compared to more than 0.6 on the other 517 

VSs (Table 6). This decrease in fit between SWE and discharge is noteworthy, and it is due to 518 
an error in the precipitation inputs resulting in two peaks of discharge during the low-flow 519 
period in 2007 and 2008. These peaks are higher than the peak monthly discharges found in 520 

the rest of the study period. Altimetry readings confirm that these two peaks never occurred on 521 
this ungauged river during the study period. This particular station highlights the applicability 522 

of water stage elevation in validating precipitation products. Satellite-derived precipitation 523 
products have been shown to overestimate precipitation due to cloud microphysical processes 524 
and moisture distribution in the environment (McCollum et al., 2000). TRMM precipitation 525 

products have been known to overestimate high rainfall events and show marked variability in 526 

equatorial regions (Beighly et al., 2011; Bharti and Singh, 2015; McCollum et al., 2000; 527 
Nicholson et al., 2003). Anomalies could also be caused by errors in sampling arising from 528 
sparse gauge network and rainfall amount data or natural variations like El Nino 529 

(Huffman,1997; Iada et al., 2010; Morrissey et al., 1995). A slight temporal shift between stage 530 
and discharge is observed in VS4 particularly in 2006; this is a typical behavior of 531 

heteroscedasticity in the H-Q relationship due to backwater from the Congo River (see 532 
evidence of backwater effect in stage-discharge rating curve from altimetry in Paris et al. 533 
(2016)). VS5 is located on the Congo River main stem, upstream the confluences with the 534 

Ubangi and the Kasaï Rivers. VS5 is located in equatorial regions of the CRB, and it has been 535 
shown by Beighly et al. (2011), that Envisat showed inconsistency in variation with streamflow 536 

at this region. The comparison with altimetry corroborates what was already discussed, that the 537 
upper reach calibration is uncertain due to the lack of data; nevertheless, the good calibration 538 

of the Ubangi and Kasaï basins leads to a good fit at Brazzaville/Kinshasa. The WSE, as used 539 
in this study, confirms that radar altimetry can capture both small and large rivers and can be 540 
used where in situ data is scarce. Overall, the Envisat stage measurements give some 541 
confidence that the simulated discharge is able to represent the hydrology of the Congo River 542 
Basin adequately. 543 

 544 



16 
 

 545 

Figure 5. Envisat stage measurements compared with simulated and observed discharge (VS1 546 

and VS2) and with simulated discharge (VS3-VS6) at six locations in the Congo basin. Refer 547 

to Figure 4 for locations of the VSs.  548 

 549 

Table 6. Characteristics of ENVISAT altimetry stations used in this study. Temporal 550 

coverage period: 2002 to 2010 551 

 552 

3.2. Basin Wide Water Balance 553 

Using the TRMM precipitation data set as input over the entire basin area upstream of the 554 
Brazzaville/Kinshasa gauging station, the model returned an annual average precipitation 555 

amount of 1,510 mm yr-1 with higher rainfall in the central part of the basin (Figure 6a). 556 
Evapotranspiration is returned as 1,058.3 mm yr-1, which translates to about 70 percent of total 557 
annual precipitation. In the same way, the central part of the basin presents higher 558 
evapotranspiration. The lakes zone in the upper parts of the Lualaba River returned high 559 

Virtual 

station 

Name 

Virtual 

station 

number 

River Latitude Longitude Distance from 

river mouth 

(km) 

River 

width 

(m) 

Pearsons 

correlation 

coefficient 

ENV_930_01 VS1 Kasai −3.22 17.386 61 1,987 0.61 

ENV_343_01 VS2 Ubangi 4.351 18.576 599 1,205 0.76 

ENV_887_01 VS3 Giri 1.635 18.454 255 70 0.30 

ENV_543_01 VS4 Lomami −1.083 24.8 398 269 0.66 

ENV_429_01 VS5 Congo −0.072 18.112 1,154 4,461 0.61 

ENV_973_01 VS6 Likoula aux 

Herbes 

-0.123 17.404 178 126 0.68 
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evapotranspiration rates in accordance with the work of Chishugi and Alemaw (2009). Finally, 560 
soil moisture returned various rates along the watershed with an average interannual content of 561 

196 mm yr-1. Potential evapotranspiration was returned as 1,665.5 mm yr-1 for our simulation 562 
period. With regards to infiltration and streamflow, 452.7 mm yr-1of annual precipitation 563 
percolated to the shallow aquifer, of which 219.49 mm yr-1 returned to make the greatest 564 

contribution to streamflow. Lateral runoff and surface runoff contributed 14.84 mm yr-1and 565 
131.35 mm yr-1 to streamflow, respectively (Table 7). 566 

 567 

Figure 6. Maps of mean annual Rainfall, Interception, Evapotranspiration and Soil moisture 568 
for the simulation period 2000-2012.Validated against Chishugi and Alemew (2009). 569 

 570 

Table 7. Annual water balance components for the simulation period 2000-2012 at the outlet 571 

of the basin (Brazzaville/Kinshasa gauging station). 572 

  573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

Water balance components Values (mm yr-1) 

Precipitation 1,510.7 

Actual evapotranspiration 1,058.3 

Potential evapotranspiration 1,665.5 

Surface runoff 131.35 

Lateral flow 14.84 

Baseflow 219.49 

Deep aquifer recharge 0 
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3.3. Hydrological responses in the main tributaries 582 

The Ubangi from its confluence at Mbomou –Uélé to the city of Bangui is 546 km long 583 
(Nguimalet and Orange, 2019) and drains the streams originating from the North of the basin 584 

with the outlet of the drainage unit located about 600 km downstream of the Bangui gauging 585 
station. The monthly averaged interannual discharge simulated at this station was 3,085 m3 s-1 586 
compared to the average observed values of 3,125 m3 s-1 for the 2000 to 2012 period (Table 8). 587 
The overall performance of the model at this outlet was satisfactory to very good for both the 588 
calibration and validation period for most of the performance criteria. The values for  the NSE, 589 

R2, PBIAS, RSR and KGE are 0.81, 0.83, 4.01, 0.43, 0.90 and 0.66, 0.67, -0.86, 0.58, 0.74 for 590 
both the calibration and validation periods respectively. The reduced efficiency of 0.66 and 591 
negative bias for the validation period results from the overprediction of low and high flows in 592 
the drier years of 2009 and 2010 (Figure 7a). The relatively low contribution of lateral flow to 593 
streamflow corroborates the ferruginous nature of soil characteristics described in the Ubangi 594 

basin (Runge & Nguimalet, 2005). The simulation gave a very good representation of the 595 

magnitude of high and low flows, mimicking the unimodal rainfall pattern observed from 596 

gauge records and reflecting the responsiveness of the Ubangi’s flow to the rainfall dynamics 597 
of its catchment area (Nguimalet et al., 2019). It also indicates that most of the processes 598 
occurring in the watershed were being simulated. The simulation at the Ubangi was aided by 599 
the fact that hydrological observations for the northern subbasins of the CRB are relatively 600 

long and of good quality, thus guaranteeing the reliability of results (BRLi, 2016). Generally, 601 
the shape of the hydrograph and the statistical model performance indicate a satisfactory to 602 
very good performance of the SWAT model for the simulation period.  603 

 604 

Figure 7. Hydrograph showing the observed and simulated discharge for the calibration (2000-605 

2012) and validation (2007-2012) period indicated by the broken line. Also shown are the 606 

different contributions of surface, lateral and groundwater flow for the same period. a-e 607 

correspond to the Bangui, Ouesso, Kisangani, Kutu-Moke and Brazzaville/Kinshasa gauging 608 

sites respectively. 609 
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Table 8. Comparison of historical flow with current simulation 610 

Drainage 

basin 

Station Drainage 

area km2 

Interannual 

flow m3.s-1 

Specific 

discharge 

L s-1 km-2 

Interannual 

flow (sim)* 

m3 s-1 

Interannual 

flow (obs)* 

m3 s-1 

Specific 

discharge* 

L s-1 km-2 

Lualaba Kisangani 974,138 7,6401 7.8 7,323 7,264 7.5 

Kasaï 
Kutu-

Moke 
750,032 8,0702 10.7 

7,621 7,365 10.1 

Sangha Ouesso 159,480 1,5503 9.7 1,282 1,386 8.03 

Ubangi Bangui 494,088 3,6604 7.4 3,085 2,931 6.2 

Congo *Bzv/Kin 3,659,897 

 

40,5005 

 

11.1 

 

36,361 
 

39,963 

 

9.9 

 Periods: 1: 1951 to 2012; 2: 1940 to 2012; 3: 1948 to 2017 ; 4: 1936 to 2017; 5: 1903 to 2017. (Data adapted from Moukandi 611 
N’kaya et al. (this volume) 612 
*current simulation period (2000-2012); obs=observed flow; sim=simulated flow, Bzv/Kin=Brazzaville /Kinshasa 613 
 614 

Like the Ubangi, the modeled discharge at the Sangha station was able to follow the observed 615 

hydrograph. It also gave good to satisfactory results for both the calibration and validation 616 
periods. Some peaks were overestimated by the model, notably in October 2007 and June 2007. 617 
Nonetheless, the model was able to show the steadiness of groundwater flow and the relatively 618 
abundant contribution of lateral flow compared to other subbasins (Figure 7b). However, it was 619 

not able to adequately represent a series of minor floods that characterizes the flow series in 620 
July and August. Of the five sites calibrated, the Sangha basin has the lowest discharge 621 

simulated of 1,282 m3 s-1 against an observed discharge of 1,415 m3 s-1 for the period under 622 
consideration. It is evident that there are losses here that the model cannot account for. This is 623 

illustrated by the huge deficit in simulated flow. Similarly, Munzimi et al. (2019) reported a 624 
residual (under-estimate) bias at this station for their subbasin model. They obtained a 625 
simulated mean flow of 859 m3.s-1 compared to an observed mean flow of 1,258 m3.s-1 for a 626 

similar period to our study. The proximity to floodplains, the inability to capture the minor 627 

floods, and the non-integration of wetland processes in both models may account for the 628 
reduced response dynamics in this station. This result further illustrates the need for more 629 
reliable and improved wetland models in order to reduce biases associated with discharge 630 

estimates. 631 

The Lualaba drainage subbasin was very complicated to model owing to the presence of many 632 
lakes and swamps, including the Tanganyika lake. The Kisangani gauging station is located 633 
downstream of these water bodies, and thus it was necessary to integrate reservoirs in our model 634 

that will account for attenuation of excess flows. Sub-standard performances were recorded in 635 
the Lualaba subbasin for the NSE statistic, which is sensitive to high peaks (Legates et al., 636 
1999). In the Lualaba subbasin, peaks were overestimated in all the years of the validation 637 
period (2007-2012) while there was an over and underestimation of peaks in the calibration 638 
period (2000-2006) (Figure 7c). We hypothesize that this may be due to the TRMM 639 

precipitation products used. For instance, Beighly et al. (2011) showed that TRMM 640 

overestimates rainfall in specific periods while Nicholson et al. (2003) highlighted 641 

discrepancies in the product compared to gauge observations. The sharp precipitation gradients 642 
in the southeastern and adjoining eastern parts of the basin (Tshimanga, 2012) may also be a 643 

contributory factor. Nicholson et al. (2019) validated precipitation datasets over the Congo 644 
basin western and eastern peripheries. They noted that station density in recent years (1998 to 645 
2010) compared to earlier years (1983 to 1994) was much lower and hence contribute to lower 646 

performance of precipitation products. However, the modeled discharge of 7,323 m3 s-1 647 
compared favorably with the observed discharge of 7,264 m3 s-1 for the simulation period with 648 
a difference of less than 1 percent. The discrepancies between the objective functions and the 649 
good agreement between the modeled and observed discharge can be explained by the PBIAS. 650 
It measures the average tendency of the simulated data to be larger or smaller than the measured 651 
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ones (Gupta et al., 1999). This will explain the close simulation of the magnitude of the 652 
discharge. Nonetheless, the modeling here should be taken with caution and weighed based on 653 

the objectives to be achieved. 654 

The Kasai subbasin drains the southeastern portions of the Congo basin. Figure 7d shows the 655 
simulation results obtained at the Kutu-Moke gauging station that drains the Kasai, the 656 
Kwango, and the Kwilo rivers. The model simulated the streamflow components of the Kasai 657 
overestimating some peak years (2004, 2006, 2007, 2008, 2011, 2012) and underestimating 658 
recessive periods (2000, 2010, 2012), thereby suggesting that more calibration with appropriate 659 

model parameters may be possible. The performance evaluation criteria ranged from 660 
satisfactory to very good with the regular flows of the Kasai hydrology well simulated. Like 661 
the Lualaba basin, we were able to simulate an interannual monthly discharge within 3 percent 662 
of the observed value of 7,365 m3 s-1.  663 

The Brazzaville/Kinshasa gauging station of the CRB receives flow from most of the tributaries 664 

that flow into the Cuvette Centrale as well as the Kasai, Plateaux Batekés Rivers and other 665 

tributaries downstream of the Cuvette Centrale. The underprediction of low and peak flows 666 
influenced the NSE, which is sensitive to extreme flows. Nevertheless, we captured well the 667 
timing of flood events, the bimodal pattern of rainfall over the basin, wet and dry years, and 668 
the regularity of groundwater flow over the simulation period (Figure 7e). The relatively high 669 

difference between our modeled discharge of 36,360 m3 s-1  to 39,960 m3 s-1  of observed 670 
discharge, showing a difference of 9 percent, could be attributed to the attenuation effects of 671 

the Cuvette Centrale wetlands. We would need more information about the physical basin 672 
characteristics that slow the flow of water in the Cuvette Centrale as well as more information 673 

on the hydrological dynamics here in order to improve the simulation. Since we have reliable 674 
observed discharge flow records at this site, our results will not be affected. 675 

3.4. Cuvette Centrale Water Balance 676 

To account for all waters that contribute to the central basin, we estimated the total inputs by 677 

integrating the precipitation that falls directly on the Cuvette Centrale. This was done by 678 
integrating the SWAT subbasins which fall under our wetland area as defined by the Global 679 

Wetland Database shape with the streamflow inputs from drainage catchments upstream and 680 
around the Cuvette Centrale (Table 9). Points that coincide with historical gauge stations, as 681 
documented by Laraque et al. (1995), were used where possible. For the 2000 to 2012 period 682 

of our study, we estimated a monthly mean of 34,160 m3 s-1 of water entering the Cuvette 683 
Centrale. Considering only flow, we simulated a monthly mean inflow of 24,250 m3 s-1 coming 684 

in from the eight tributaries of the right bank (Mongala, Giri, Ubangi, Likouala aux Herbes, 685 
Sangha, Likouala Mossaka, Kouyou, Alima), the Congo river at Lisala and two tributaries of 686 
the left bank (Lulonga and Ruki). These tributaries have a combined contributing area of 687 

2,191,066 km2. We were able to capture the seasonality of the flows with a first flood peaking 688 
in November and a second lesser one in April. The Congo at Lisala contributes 33 percent of 689 

the total inputs, with precipitation almost equaling it at 31 percent. The largest tributary on the 690 
right bank – the Ubangi, contributes 16 percent of the total while the left bank tributaries 691 

provide 11 percent (Figure 8). 692 
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Table 9. Average monthly interannual simulated inflows and outflows in the Cuvette Centrale from contributing tributaries expressed as flow (m3 693 

s-1) for the 2000-2012 period. 694 

 695 

Inputs  Outputs 

 

Alima at 

Tchikapika 

(Q1) 

Kouyou at 

Linnegue 

(Q2) 

Likouala 

Mossaka 

at 

Makoua 

(Q3) 

Sangha 

at 

Ouesso 

(Q4) 

Likouala 

aux 

Herbes at 

Epena 

(Q5) 

Ubangi 

at 

Bangui 

(Q6) 

Giri 

(Q7) 

Mongala 

(Q8) 

Congo 

(Lisala) 

(Q9) 

Lulonga 

(Q10) 

Ruki 

(Q11) PPT 

Total 

Inputs  

Congo-

Kasai 

(Q0-12) ETP 

Total 

outputs 

Aug 411 147 173 1,047 58 4,206 35 347 8,602 927 1,983 8,224 26,160  25,035 7,289 32,323 

Sep 395 140 171 1,850 177 8,641 132 533 8,549 1,028 2,127 12,871 36,614  30,503 6,974 37,477 

Oct 446 160 261 2,970 222 9,464 134 880 11,053 1,270 2,732 14,757 44,351  36,563 5,704 42,267 

Nov 491 205 442 2,419 172 7,717 95 867 14,350 1,599 3,680 13,278 45,314  44,068 4,147 48,215 

Dec 520 216 445 1,447 121 4,619 70 639 15,522 1,470 4,069 8,599 37,738  48,603 3,822 52,426 

Jan 526 210 403 1,119 116 3,401 56 470 15,055 1,430 3,760 6,541 33,087  42,473 3,505 45,978 

Feb 570 201 352 1,015 106 3,047 51 415 15,115 1,320 3,505 8,250 33,948  31,805 5,622 37,427 

Mar 551 187 276 869 75 2,512 44 363 13,029 1,129 2,918 10,642 32,595  26,556 11,429 37,985 

Apr 532 201 347 1,076 136 2,860 82 446 14,001 1,324 3,261 11,549 35,815  26,518 8,751 35,270 

May 504 180 273 932 74 2,552 43 398 12,692 1,206 2,849 10,364 32,066  27,809 10,203 38,012 

Jun 474 173 223 838 65 2,222 53 352 13,256 1,101 2,502 7,435 28,692  26,673 10,254 36,926 

Jul 439 157 191 796 62 2,164 37 339 9,798 968 2,191 6,337 23,477  24,580 9,430 34,010 

Mean 

flow 

 

 

488 

 

 

181 

 

 

296 

 

 

1,365 

 

 

115 

 

 

4,450 

 

 

69 

 

 

504 

 

 

12,585 

 

 

1,231 

 

 

2,965 9,904 34,155  32,599 7,261 39,860 
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 696 

 697 

Figure 8. Pie chart showing the annual mean contribution of Cuvette Centrale tributaries and 698 
efficient precipitation for the period 2000-2012. 699 

 700 

By subtracting the flow recorded at the Kutu-Moke gauging station from the flow recorded at 701 
the Brazzaville/Kinshasa gauging station, we could estimate with a high degree of certainty, 702 

considering the reliability of the gauge records at this site, the flows at the exit of the cuvette 703 
wetlands. In the same manner, in which we estimated the total inputs, we were able to estimate 704 

the total outputs by also integrating the uptake from evapotranspiration from the subbasins that 705 
comprise the Cuvette Centrale (Table 9). By assuming losses as negligible, we estimated a 706 
monthly mean output from the Cuvette Centrale of 39,860 m3 s-1 or 32,600 m3 s-1 when we take 707 

evapotranspiration into account. A graphical representation of the flows (Figure 9) also shows 708 
we simulated one main flood in December with two relatively lower floods peaking in March 709 

and May.  710 

We compared our results with the work of Moukandi et al. (this volume), which is the first 711 
attempt to reconstitute the balance of the Cuvette Centrale. Their work was based on deductions 712 
from a study of the in situ hydrological chronicles of the major drainage features of the Congo 713 

basin. Figure 9 shows similarities with their reconstruction, notably the peak in flows in 714 
December and January and the second flood in May with a dome-shaped peak attributable to 715 

the April-May floods from the Kasai. The small floods of July-August associated with the 716 
Sangha are not decipherable due to the relatively small size of discharge. In any case, their 717 
analysis suggested that from 1971 to 2017, these floods were replaced by a Plateau. Similarly, 718 
the flows in the Ubangi contribute to the floods that begin to rise in September and recede 719 
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around February, as illustrated in  Figure 9. The Ubangi, with the lowest calculated specific 720 
discharge of the tributaries studied, and the most Northern of the studied basins is the most 721 

sensitive to hydroclimatic deterioration and the most fragile in the basin (Laraque et al., 2013b; 722 
Nguimalet, 2017; Nguimalet and Orange, 2013, 2019). These deficiencies from the Ubangi are 723 
augmented by the Flows from the Lualaba and Kasai Rivers and are regulated by the Cuvette 724 

Centrale. 725 

 726 

Figure 9. Average monthly interannual hydrograph of flows in and out, Precipitation falling 727 

and evapotranspiration removed directly from the Cuvettte Centrale in the 2000-2012 728 

simulation period.  729 

   730 

0

10000

20000

30000

40000

50000

60000

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

F
lo

w
 (

m
 3

.s
-1

)

Flows in + Efficient Precipitation Flows out + Efficient Evapotranspiration

Flow out Flow in



 
 
 
 

24 
 

An analysis of the variation in the water balance (Table 10) shows that within the simulation 731 
period, the balance is in surplus only at the peak of the rainy seasons (October and April). 732 
During all other periods (November to March and May to September), the balance is in deficit, 733 

implying that at these times, the storage held in groundwater and flooded areas supply the 734 
Congo River. Figure 10 shows the trend in water balance over the 2000-2012 period showing 735 
a high deficit in the year 2000 and a gradual restoration of balance to equilibrium in 2012. This 736 
coincides with the well-documented deficits in precipitation recorded in the Congo basin from 737 
the years 1983-2003 (Nguimalet et al., 2019). In addition, an analysis of the Ubangi River at 738 

Bangui showed below-average discharge since the year 2000 (Nguimalet et al., 2013). It also 739 
suggests that the regulatory role of the Cuvette Centrale during this hydrological cycle has been 740 
seriously challenged. Figure 11 shows monthly averages of water balance components in the 741 
Cuvette Centrale. Lateral flow is almost nonexistent, while groundwater flow maintains 742 

constant levels all year round with no discernible peaks or lows. Surface runoff reflects the 743 
bimodal pattern of rainfall in the basin while the total yield increases in October through to 744 
December with a peak in November. The total water yield also reflects the bimodal rainfall 745 

pattern with increased surges in April. Evapotranspiration and potential evapotranspiration 746 
peak in March and July respectively, differing by up to 100 mm in July, signifying longer 747 
periods of dryness. The precipitation reflects the seasonal dynamics associated with the basin 748 
by a larger flood in October and a lesser one in April. The importance of groundwater in the 749 

CRB is particularly highlighted in the Sangha basin and at the Brazzaville/Kinshasa station, 750 
where groundwater levels remain consistent throughout the simulation period varying only 751 

minimally even during wet and dry years in the Sangha subbasin. Lateral flow is also more 752 
pronounced in the Sangha basin compared to any other subbasin. These characteristics of the 753 
Sangha basin fit the description of a “fluvial table or shallow aquifer” of low hydraulic 754 

gradients (2 cm.km-1) ascribed to the Likouala aux Herbes basin by Laraque et al. (1998b). 755 

This is not surprising as the Ouesso station borders the Cuvette Centrale and is proximate to 756 
the Likouala aux Herbes basin, where the depth to the groundwater table is likely closer to the 757 
surface. In contrast, there is a minimal contribution of lateral flow at the Brazzaville/Kinshasa 758 

outlet with groundwater levels varying relatively more, especially in the year 2008. This 759 
coincides with high discharge recorded in the Lualaba river at Kisangani and Kasai river at 760 
Kutu-Moke in the same year, suggesting an increased contribution from these two southern 761 
tributaries. Overall, the groundwater flow of the Congo basin simulated at the basin outlet 762 

demonstrated the regulatory effect of the central basin as it receives contributions of various 763 
amounts at different seasons of the year, highlighting the obvious linkages between the upland 764 
catchments and the wetland system of the Cuvette Centrale. This is very important considering 765 
the deficit being experienced by the Northern tributaries of the CRB (Laraque et al., 2013; 766 
Nguimalet 2013, 2017, 2019) as well as future landuse and water diversion plans that will have 767 

an impact on this system. 768 

 769 

 770 

 771 

 772 

 773 

 774 
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Table 10. Average monthly interannual change in storage expressed as flow (m3 s-1) for the 775 
2000-2012 period. 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

Figure 10. Relative interannual change in storage within the Cuvette Centrale for the 2000-788 

2012 period. 789 

 790 

 791 

Figure 11. Monthly averages of water balance components (in millimeters) within the Cuvette 792 
Centrale for the 2000-2012 simulation period. 793 
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 Total  
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Total 

outputs 

Change in 

storage  

Aug 26,160 32,323 -6,163 

Sept 36,614 37,477    -863 

Oct 44,351 42,267 2,084 

Nov 45,314 48,215 -2,901 

Dec 37,738 52,426 -14,688 

Jan 33,087 45,978 -12,891 

Feb 33,948 37,427 -3,479 

Mar 32,595 37,985 -5,390 

Apr 35,815 35,270     545 

May 32 066 38,012 -5,946 

Jun 28,692 36,926 -8,234 

Jul 23,477 34,010 -10,533 

    

Mean 34,155 39,860 -5,705 
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To conclude this section, it is noteworthy to acknowledge that there is an unavoidable 795 
uncertainty in input data. Rainfall data tests in Africa and elsewhere have revealed this (Strauch 796 
et al., 2012; Tshimanga et al., 2012). Rainfall input uncertainty will, therefore, result in 797 

uncertainty in runoff and evapotranspiration as well. The FAO soil data used in this study was 798 
primarily prepared for agricultural use, with soil depths not exceeding 100 m. Areas with 799 
deeper soils will, therefore, have lower storage capacity resulting in over simulation of peak 800 
flows (Tshimanga et al., 2014). The simulations in the subbasins impacted by large lakes and 801 
wetlands expose the uncertainties in model structural responses as a result of the over-802 

simplification of assumptions. There are also the unknown parameters of the central basin and 803 
the unknown effects of other variables that the model cannot account for.The work of Sun et 804 
al.(2016) on surface and ground-water mixing with the SWAT model on the floodplains of the 805 
Garonne River is encouraging and can be modified for larger catchments. Therefore,we have 806 

no doubt, that by integrating flood plains in our model, we will have much more improved 807 
simulations as reflected in those tributaries not impacted by the Cuvette Centrale. 808 

 809 

4. Conclusion 810 

Using a combination of in situ derived discharge data, satellite precipitation data, and freely 811 
available geodatasets, the Congo River basin has been modeled to reflect the spatial and 812 
temporal variations in streamflow and its associated components. We have shown that not only 813 

does the Cuvette Centrale perform a regulatory role on a seasonal scale between high and low 814 
water periods, but also between yearly hydrological cycles. The regional approach to 815 

calibration took into account the influence of the Cuvette Centrale and its attenuation effects 816 
on downstream flows. This is the first study using the SWAT model that attempts to account 817 

for the inflows and outflows of water in the Cuvette Centrale. The importance of groundwater 818 
in the basin is further highlighted with a majority of the important parameters used to calibrate 819 
the model being groundwater parameters. Groundwater levels in the Cuvette Centrale remain 820 
constant and steady all year round and supply the river in times of water deficit. The regulatory 821 
effect of the Cuvette Centrale is emphasized by the fact that contributions of different amounts 822 

and times from different tributaries feed the Cuvette Centrale. Yet, it is able to balance these 823 
inputs and even achieve states of equilibrium at certain peak periods. 824 

Furthermore, the hydrological simulation conducted with the SWAT model in our study, 825 

emphasized the need to explicitly account for wetland processes in the model. The complex 826 
interactions between hydrological processes in the basin with respect to the vegetation, soils, 827 
climate, and basin physiography add to the challenges of modeling the CRB. An ideal model 828 
should be capable of routing flows through wetland depressions in addition to routing overland, 829 
channel, and subsurface flow (McKillop et al., 1999). Additionally, a model should be able to 830 

realistically simulate the river-wetland exchange dynamics (Hughes et al., 2014). Future 831 
improvements of the model will need to consider a very high-resolution digital elevation model 832 

that can capture wetland depressions accurately, and thus estimate with high confidence the 833 
flow hydrograph at the outlet of the basin. The spatial variability of the parameters within the 834 
various subbasins in our model indicates the extent to which the model represents the 835 
hydrological processes. Further testing of the spatial and temporal variability of the basin with 836 
appropriate basin parameters and inputs of different resolutions, will be an interesting study 837 

(Reggiani et al., 1998). This will also aid in identifying the main factors that limit model 838 
performance-whether inappropriate model structure or inaccurate parameter values (Melsen et 839 
al., 2016). In addition, future efforts will be made to develop wetland modules that are 840 
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compatible with the main model, (e.g. Hughes et al., 2014) and can be used in the assessment 841 
of a wide variety of ecological functions (Fabre et al., 2020; Guilhen et al., 2020).  842 

Throughout the discussion, we have referred to the inherent uncertainties associated with our 843 
model. There remains insufficient information to estimate the parameters in the Cuvette 844 
Centrale. Validation of model results on the field will go a long way in constraining the wetland 845 
parameters and supplying information on basin physiographic conditions, which can improve 846 

the model. There is also a need to establish more gauge networks for improved observations. 847 
Concerted efforts should also be made to harmonize regional datasets in order to reduce input 848 
uncertainties. Furthermore, local researchers should be encouraged through increased funding 849 
to make their research more visible and accessible to the global community. 850 

The central Congo basin hosts internationally important sites, including the lake Tumba and 851 

Mai-Ndombe lakes, parks, and game reserves. While the Cuvette is strongly dependent on 852 

upstream year-round surface and groundwater contributions, changes to the wetland hydrology 853 
can have negative impacts on the ecology of the wetland as a habitat for fauna and flora. With 854 
the ever-increasing demands on natural resources and the collision of various interests within 855 
the catchment, there is the need for a harmonization of these interests through sustainable 856 

management of Congo basin wetland resources. The objective functions and flow dynamics 857 
recreated in tributaries not impacted by the Cuvette Centrale confirm that the SWAT model 858 

applied in this study is capable of being used; after taking into account the uncertainties, for 859 
the assessment of water resources as well as in experimental studies associated with the hydro-860 

ecological functioning of the basin. The results from this study with the SWAT model 861 
demonstrated an appropriate level of performance in estimating the seasonal pattern of water 862 
volume fluctuations in the Cuvette Centrale. Given the relative stability of Congo River 863 

hydrology as well as the relatively pristine state of the Congo wetlands, models like this one 864 

can be used as a baseline for assessing future changes in wetland hydrology. Estimates from 865 
streamflow components can also be used to examine eco hydrological relationships in wetlands 866 
and the effect of land use on natural wetland features as well as to gauge the sensitivity of 867 

wetland communities to hydrological changes. 868 
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