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Abstract

Understanding the impacts of climate on surface water hydrology is required to predict consequences and implications on

freshwater habitats, ecological assets, and wetland functions. Although the Congo basin is considerably a freshwater-rich

region, largely characterised by numerous water resources after the similitude of the Amazon basin, recent accounts of droughts

in the basin are indications that even the most humid regions of the world can be affected by droughts and its impacts. Given

the scarcity and limited availability of hydrological data in the region, GRACE (Gravity Recovery and Climate Experiment)

observations are combined with model and SPEI (standardized precipitation evapotranspiration index) data to investigate the

likelihood of such impacts on the Congo basin’s surface water hydrology. By integrating multivariate analysis with support

vector machine regression (SVMR), this study provides some highlights on the characteristics (intensity and variability) of

drought events and GRACE-derived terrestrial water storage (TWS) and the influence of global climate on the Congo river

discharge. The southern section of the basin shows considerable variability in the spatial and temporal patterns of SPEI and

extreme droughts over the Congo basin appear to have persisted with more than 40% coverage in 1994. However, there has been

a considerable fall in drought intensities since 2007 and coincides with periods of strong positive anomalies in discharge (i.e.,

2007-010). GRACE-derived TWS over the Congo basin is driven by annual fluctuations in rainfall (r = 0.81 at three months

phase lag) and strong inter-annual variations of river discharge (r = 0.88, α= 0.05). Generally, results show that changes in the

surface water variations (from gauge and model output) of the Congo basin is a key component of the GRACE water column.

The outputs of the SVMR scheme indicate that global climate through sea surface temperature anomalies of the Atlantic (r =

0.79, α= 0.05), Pacific (r = 0.79, α= 0.05), and Indian (r = 0.74, α= 0.05) oceans are associated with fluctuations in the Congo

river discharge, and confirm the importance of climatic influence on surface water hydrology in the Congo basin.
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Abstract
Understanding  the  impacts  of  climate  on  surface  water  hydrology  is  required  to  predict
consequences and implications on freshwater  habitats,  ecological  assets,  and wetland functions.
Although  the  Congo  basin  is  considerably  a  freshwater-rich  region,  largely  characterised  by
numerous water resources after the similitude of the Amazon basin, recent accounts of droughts in
the basin are indications that even the most humid regions of the world can be affected by droughts
and its impacts. Given the scarcity and limited availability of hydrological data in the region, GRACE
(Gravity  Recovery  and  Climate  Experiment)  observations  are  combined  with  model  and  SPEI
(standardized  precipitation  evapotranspiration  index)  data  to  investigate  the  likelihood  of  such
impacts  on the Congo basin’s  surface water  hydrology.  By  integrating multivariate  analysis  with
support  vector  machine  regression  (SVMR),  this  study  provides  some  highlights  on  the
characteristics  (intensity  and  variability)  of  drought  events  and  GRACE-derived  terrestrial  water
storage (TWS) and the influence of global climate on the Congo river discharge. The southern section
of the basin shows considerable variability in the spatial and temporal patterns of SPEI and extreme
droughts over the Congo basin appear to have persisted with more than 40% coverage in 1994.
However, there has been a considerable fall in drought intensities since 2007 and coincides with
periods  of  strong positive anomalies  in  discharge (i.e.,  2007-010).  GRACE-derived TWS over  the
Congo basin is driven by annual fluctuations in rainfall  (r  = 0.81 at three months phase lag) and
strong inter-annual variations of river discharge (r  =  0.88, α= 0.05).  Generally,  results  show that
changes in the surface water variations (from gauge and model output) of the Congo basin is a key
component of  the GRACE water  column. The outputs of  the SVMR scheme indicate that  global
climate through sea surface temperature anomalies of the Atlantic (r  = 0.79, α= 0.05), Pacific (r  =
0.79, α= 0.05), and Indian (r  = 0.74, α= 0.05) oceans are associated with fluctuations in the Congo
river discharge, and confirm the importance of climatic influence on surface water hydrology in the
Congo basin.

Keywords: Surface water storage, River discharge, Rainfall, drought, Climate variability, Floodplains
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1. Introduction
The knowledge of global climate influence on drought evolutions and freshwater availability is vital
to  drought  risk  mitigation,  and evaluation of  the cascading impacts  of  droughts on hydrological
stores  and  agriculture  (e.g.,  Agutu  et  al.,  2019,  Ndehedehe  et  al.,  2019,  Thomas  et  al.,  2017).
Drought events are increasingly  becoming complex due to the combined effects of  unmitigated
climate change/climate variability, perceived human factors and other non-climatic factors such as
the interference of water abstraction from underground reservoirs with the propagation process of
drought  characteristics  and  intensity  (e.g.,  Ndehedehe,  2019,  Ndehedehe  et  al.,  2020a,  Kubiak-
Wójcicka and Bąk, 2018, Thomas et al., 2017, Van Loon et al., 2016). Understanding the impacts of
climate on surface water hydrology is therefore required to predict consequences and implications
on  several  freshwater  habitats,  ecological  assets,  and  wetlands  functions  such  as  flood  water
storage, drought relief for wildlife, provision of shelter for fish and support for aquatic biodiversity,
among others (e.g., Chen et al., 2014, Tockner et al., 2010, Gidley, 2009, Ozesmi and Bauer, 2002).

Furthermore, increased competition for freshwater as is now the case in some semi-arid African
regions are some challenges that have been associated with its  highly limited and shared water
resources, which are considerably variable in time and space (e.g., Ndehedehe, 2019, Okewu et al.,
2019, Freitas, 2013). The high variability of freshwater in these regions laced with considerable and
disproportionate trans-boundary water sharing due to increase demand for freshwater create the
propensity for inter-state tensions and rivalry. These conditions nonetheless, can be amplified by
extreme and prolonged drought events, thus increasing the vulnerability of rural agro-communities
to poverty and famine. While a broad range of socioecological impacts are imminent during such
times, even distant populations that indirectly depend on the water resources of Africa could be
subjected to far-reaching impacts of limited freshwater caused by extreme drought (Ndehedehe,
2019, FAO, 2016). 

Moreover, the impacts of climate variability and/or climate change on agriculture and freshwater
availability create several risks and key challenges for hydro-power production, water security, and a
broad range of ecosystem services (see, e.g., Ndehedehe et al., 2018a, Ferreira et al., 2018, Van Loon
et al., 2017, Agutu et al., 2017, Shiferaw et al., 2014, Spinoni et al., 2014, Schroth et al., 2016, Hall et
al., 2014, Cenacchi, 2014). Indeed, the myriads of recent scientific reports on droughts and impacts
of climate variability in the African subregion (e.g., Agutu et al., 2019, Ndehedehe et al., 2019, Agutu
et al., 2017, Nkiaka et al., 2017, Hua et al., 2016, Epule et al., 2014) would only reinforce the notion
of  the  continued  influence  of  global  climate  on  the  continent.  Although  the  Congo  basin  is
considerably a freshwater-rich region, largely characterised by numerous water resources after the
similitude of the Amazon basin, recent accounts of droughts in the basin (e.g.,  Ndehedehe et al.,
2019,  Hua et al.,  2016,  Zhou et al.,  2014) are indications that even the most humid regions of the
world can be affected
by extreme droughts and its impacts. For example, the impacts of prolonged and frequent droughts
on the tropical  Congolese rainforest  systems will  have compositional  and structural  changes on
Congolese forest (Zhou et al., 2014).

In line with the need to assess global freshwater change, pioneering hydrological studies over the
Congo basin found declines in Gravity Recovery and Climate Experiment (GRACE, Tapley et al., 2004)
derived terrestrial water storage (TWS) while other reports have highlighted the key hydrological
characteristics and uniqueness of the Congo basin’s surface water hydrology and hydrodynamics
(e.g., Becker et al., 2018, Ndehedehe et al., 2018b, Alsdorf et al., 2016, Lee et al., 2014, O’Loughlin et
al.,  2013,  Conway et  al.,  2009,  Crowley et al.,  2006).  Although extreme hydro-climatic events in
Africa are generally dominated by natural variability and other important processes of inter-annual
variability (Bahaga et al.,  2019, Ndehedehe et al.,  2019, Anyah et al.,  2018, Nicholson et al.,  2018),
from a multi-satellite approach, surface water hydrology of the Congo basin is influenced by indices
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of  oceanic  variability  such  as  the  El-Niño  Southern  Oscillation  (ENSO)  (Becker  et  al.,  2018,
Ndehedehe et al.,  2018b).  However,  recent changes in land water storage in some parts of the
Congo basin have been linked to deforestation (Ahmed and Wiese,  2019). As some reports on the
negative trends in TWS over
the Congo basin converge, a broader perspective of surface water interactions with droughts could
provide more understanding of the implications of extreme events (droughts flood) on biodiversity,
and the hydro-ecological assets of the Congo basin.

Tropical rivers provide essential services and ecological functions for society and ecosystems such as
regulating  nutrient  cycle,  maintaining  fishery  production,  water  supply,  recreation  and  tourism,
generation of  hydropower,  and support  for  a  range of  terrestrial  and  aquatic biodiversity  (e.g.,
Ndehedehe et al., 2020c,b, Tockner et al., 2010, Gidley, 2009, Zhao et al., 2012, Kennard et al., 2010,
Keddy et al., 2009, Bunn et al., 2006). Process-based knowledge of the cascading impacts of extreme
events such as drought on hydrology is crucial and can directly feed into management and policy
frameworks.  Because  large  scale  hydro-climatic  fluctuations  and  decadal-scale  droughts  impact
hydrological regimes, a key focus of this chapter is to improve understanding on the response of
freshwater  ecosystem to  extreme  drought  and  the  role  of  climate  variability  on  the  terrestrial
hydrology of the Congo basin. This knowledge is important to help highlight the contributions of
human activities such as deforestation and land cover change on surface water hydrology.

In other large watersheds and river basins, multiple lines of evidence confirm significant large-scale
alteration of  hydrological  processes  caused by  several  human activities,  including  surface water
developments for agriculture and hydropower and water diversion (e.g.,  Ndehedehe et al.,  2019,
Wada et al.,  2017). For instance, Lake Volta, the largest man-made lake contributed 41.6% to the
observed increase in GRACE-derived TWS over the Volta basin during the 2002–2014 period when
there was an apparent fall in precipitation (see, Ndehedehe et al., 2016, 2017a). Lake Victoria is the
largest lake in Africa and as recently demonstrated, its water storage variability is dam controlled,
contributing about 64% of TWS variability to its basin (Getirana et al.,  2020). Arguably, the water
resources in several river basins in Africa are generally being disturbed by natural variability, large
scale  ocean-atmosphere  phenomenon,  and  a  combined  human-induced  factors,  e.g.,  land  use
changes  and  surface  water  schemes  (e.g.,  Ngom  et  al.,  2016,  Moore  and  Williams,  2014,
Redelsperger and Lebel, 2009, Descroix et al., 2009). The impacts of these interventions have always
been  altered  surface  water  hydrology  culminating  in  complex  hydrological  processes  and  or
increased variability in
these regions (e.g., Gal et al., 2017, Mahé and Paturel, 2009, Li et al., 2007, Mahé and Olivry, 1999).

Apparently, the Congo basin contains some of the largest areas of the world’s tropical forests and
wetlands, which are considerably important to global carbon and methane cycle (O’Loughlin et al.,
2013,  Achard et  al.,  2002).  And within the context of  global  environmental  change triggered by
various human actions and climate variability, the Congo basin, which is home to the largest river in
Africa and contains about 18% of the world’s tropical forests (e.g., Becker et al., 2018, Ndehedehe et
al., 2018b, Verhegghen et al., 2012, Achard et al., 2002) are also vulnerable to multiple influence of
human actions and climate change.  The main contribution of this study therefore is  to improve
contemporary understanding on the influence of climate variability on surface water hydrology in
the Congo basin. Specifically, this study (i)  investigates the characteristics of extreme events and
land  water  storage  using  GRACE  observations  and  multi-scaled  indicators  and  (ii)  predicts  the
influence of  global  climate on surface water  hydrology  by  integrating multivariate  analysis  with
support  vector  machine  regression.  Although  in  this  era  of  the  Anthropocene  where  combined
climate and human actions are
leading drivers of environmental change, global hydrological hotspots such as the Congo basin will
experience  more  climatic  disturbance  due  to  the  influence  of  the  tropical  oceans,  physical
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mechanisms, and climate teleconnections. These factors regulate precipitation and the transport of
moisture and will be the vehicle by which climatic extremes will be delivered across the basin and its
environs.  This  chapter  will  therefore focus on exploring the interactions and links  between land
water storage (surface water hydrology) and global climate using sea surface temperature, GRACE-
derived TWS, and standardized precipitation evapotranspiration index (SPEI) data. Further details on
data,  statistical  analysis  and  modelling  employed  in  this  chapter  are  highlighted  in  subsequent
sections.

2. Materials and method
2.1. Terrestrial water storage
This study used three GRACE mascon solutions from JPL, CSR and GSFC and was accessed from the
Center  for  Space  Research  (CSR)  at  The  University  of  Texas  through  its  data  portal
(http://www2.csr.utexas.edu/grace/RL05_mascons.html).  Generally,  Mascons  solves  for  monthly
gravity field variations in terms of 120 km wide mascon block (Save et al., 2016, Wiese et al., 2016,
Watkins et al.,  2015). GRACE solutions based on the so-called mass concentration (mascon) from
different processing centers at Center for Space Research (CSR), the Goddard Space Flight Center
(GSFC),  and Jet  Propulsion Laboratory (JPL)  were considered for  estimating TWS fields.  The CSR
solution describes the global mass changes expressed in TWS solved for 40,962 cells in which each
has an approximately 12,400 km2 with the average distance of about 120 km between the cells and
finally resampled into 0.5◦-by-0.5◦ (Save et al., 2016). The GRACE GFSC mascon solution is solved for
1◦-by-1◦  equal-area grid blocks in which there are 41,168 mascon blocks covering the entire globe
with mean area of 12,389 km (Luthcke et al.,  2013). The JPL mascon solution solves for monthly
gravity field variations in terms of 4,551 equal-area 3-degree spherical cap mascons covering the
time  of  April  2002  to  June  2017  and  are  also  resampled  into  a  fine  resolution  of  0.5 ◦-by-0.5◦
(Watkins et al., 2015).

2.2. Surface water storage hydrology
2.2.1. Surface water storage
Using hydrological models, Getirana et al.  (2017a) decomposed the global terrestrial water storage
(TWS) variability into its four major components: surface water storage (SWS), groundwater storage
(GWS), soil moisture (SM) and snow water equivalent (SWE). Two state of-the-art models, the Noah
land surface model (LSM) with multi-parameterization options (Noah-MP Niu et al.,  2011) and the
Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme (Getirana et al.,  2012,
2017b), are combined in order to represent the physical processes controlling TWS dynamics. Noah-
MP is a multi-physics version of the community Noah LSM (Ek et al., 2003). As in most LSMs, Noah-
MP maintains  surface energy  and water  balances  while  simulating direct  evaporation from soil,
transpiration from vegetation, evaporation of interception and snow sublimation, and estimating key
surface energy and moisture prognostics such as land surface temperature, snowpack, soil moisture
and soil temperature. In addition, Noah-MP incorporates a three-layer snow physics component and
a groundwater module with a prognostic water table (Niu et al., 2011). HyMAP is a state-of-the-art
global scale river routing scheme capable of simulating surface water dynamics in both rivers and
floodplains using the local inertia formulation (Getirana et al.,  2017b,  Bates et al.,  2010), derived
from the full hydrodynamic equations. The local inertia formulation accounts for a more stable and
computationally efficient representation of river flow diffusiveness, essential for a physically based
representation of wetlands, floodplains and backwater effects. Noah-MP and HyMAP are one-way
coupled. This means that, at each time step, gridded surface runoff and baseflow output from Noah-
MP are transferred to HyMAP and used to simulate spatially continuous surface water dynamics. No
information is returned from HyMAP to Noah-MP. Several meteorological and precipitation datasets
were used as model inputs, resulting in a 12-member ensemble model output. Here, the ensemble
mean is used as the reference. The output from this model is used in this study as a surrogate for the
surface water storage (SWS) over the Congo basin.

4

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205



2.2.2. In-situ river discharge
Observed  river  discharge  data  for  the  Congo  Kinshasa  station  was  accessed  from  the  GRDC
(www.bafg.de/GRDC)  archives  and  used  to  assess  hydrological  response  of  the  Congo  river  to
climatic fluctuations. The Congo river is one of the key rivers in the region as multiple sources of
discharge from other tributaries within the Congo basin connect with this channel before reaching
the Atlantic ocean. While the Congo river discharge encapsulates most of the flows within the basin
(Ndehedehe et al.,  2019),  this river largely modulates the surface water hydrology of the Congo
basin (e.g., Alsdorf et al.,  2016, Ndehedehe et al.,  2018b). The monthly river discharge data of the
Congo river in Kinshasa station covering the period between 1980 and 2010 was used in combination
with  sea  surface  temperature  to  model  the  impacts  of  the  surrounding  oceans  on  temporal
dynamics of Congo river discharge. But in assessing climate influence on surface water hydrology
(i.e., TWS) over the Congo basin, the data covering the period during 2002-2010 was used.

2.3. Tropical Rainfall Measuring Mission (TRMM)
The TRMM 3B43 (Huffman et al., 2007, Kummerow et al., 2000) provides monthly precipitation 
estimates on a 0:25◦ x 0:25◦ spatial grids across the globe. The data was used in this study to assess
the leading driver of GRACE-derive TWS and the spatial and temporal distributions of rainfall over
the Congo basin.

2.4. Sea surface temperature products
This study used the global sea surface temperature (SST) data (Reynolds et al.,  2002) covering the
period  between  1982  and  2015  and  was  accessed  from  NOAA’s  official  earth  system  research
laboratory portal (http://www.esrl.noaa.gov/psd/data/gridded/data. noaa.oisst.v2.html). Given that
the  influence  of  global  SST  anomalies  on  precipitation  over  tropical  central  Africa  have  been
reported (see, e.g.,  Ndehedehe et al.,  2019, Farnsworth et al.,  2011), SST over the Atlantic, Pacific,
and Indian oceans were used in this  study to  model  climate influence on discharge.  The global
oceans modulate the zonal and local circulation patterns over Equatorial Africa (Pokam et al., 2014,
Nicholson and Dezfuli, 2013), thus our motivation to examine the impact of SST on discharge.

2.5. Standardized precipitation evapotranspiration index
The  standardized  precipitation  evapotranspiration  index  (SPEI)  combines  precipitation  and
temperature data in a water balance framework (see, Vicente-Serrano et al., 2010a,b). The SPEI used
here was estimated based on a water balance approach as the difference between precipitation (P)
and PET (potential evapotranspiration), i.e., δ = P-PET. As detailed by Vicente-Serrano et al. (2010b),
the computed values of δ are cumulated on different time scales,

δ n
k
=∑

i=0

k −1

( Pn−1−PET n−i ) n≥ k (10)

where k is the cumulated time scale and n is the calculation number. This cumulated time series are
thereafter  fitted  with  a  log-logistic  probability  distribution  function.  The  SPEI  drought
characterization here follows the thresholds defined by  McKee et al.  (1993),  in which a drought
condition is assumed to occur when the SPEI is consistently negative and reaches a value of -1. On a
12-month cumulation, this threshold supports hydrological drought characterization in the Congo
basin.

2.6. Statistically analysis and modelling
The statistical analysis and decomposition of SPEI and TWS into temporal and spatial patterns were
based on the principal component analysis (PCA, e.g.,  Jolliffe,  2002).  The need to localize hydro-
climatic  signals  is  increasing  due  to  growing  multiple  climate  signals  around  the  globe  (e.g.,
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Ndehedehe et al., 2017b). This has triggered numerous robust applications of multivariate methods
in the spatio-temporal analysis of drought patterns and multi-resolution data (see, e.g., Agutu et al.,
2017, Ndehedehe et al., 2016, Ivits et al., 2014, Bazrafshan et al., 2014). To understand the influence
of  global  climate  on  Congo’s  hydrology,  the  support  vector  machine  regression  model  (SVMR,
Vapnik, 1995) was used to assess the influence of climate on the Congo basin hydrology. The support
vector machine (Cortes and Vapnik, 1995) algorithm was extended by Vapnik (1995) for regression
using an ε-insensitive loss  function.  The SVMR concept is  based on the computation of  a  linear
regression function in a high-dimensional feature space in which the input data (xi) are mapped
through a non-linear function (e.g.,  Okwuashi and Ndehedehe,  2017). This mapping is warranted
because most  of  the time,  the relationship  between a  multidimensional  input  vector  x  and the
output y is unknown and could be non-linear (e.g.,  Wauters and Vanhoucke, 2014). After finding a
linear hyperplane that fits the multidimensional input vectors to output values, the SVMR predict
future output values that are contained in a validation set (e.g.,  Okwuashi and Ndehedehe,  2017,
Wauters and Vanhoucke, 2014, Smola and Schölkopf, 2004, Vapnik, 1995). Assuming the set of data
points  X = (xi, pi); i  = 1.., n  with xi,  being the predictand data point  i,  pi the actual value and n the
number of data points. The linear SVMR function f(x) takes the form (e.g., Vapnik, 1995)

f ( x )=wx+b2
The assumed linear parameterization in Eqn  2  above bears similarity to a linear regression model.
That is because the predicted value,  f(x), depends on a slope  w and an intercept  b. However, the
goal of the SVMR is to identify a function f(x) that has a maximum deviation ε from the target values
pi and has a maximum margin for all training patterns xi. In order words, a balance between learning
the  relation between inputs  and  outputs  whilst  maintaining  a  good generalization behaviour  is
targeted. As highlighted further in  Wauters and Vanhoucke  (2014) too much focus on minimizing
training errors may lead to overfitting. Hence, a pre-specified penalty value (C) is introduced as a
trade-off to create the balanced between generalization and good training. That is, C regulates the
trade-off between the

regularization term (½‖w‖
2) and the training accuracy in the formulation below as (e.g.,  Wauters

and Vanhoucke, 2014, Vapnik, 1995),

ς=
C
n
∑
i=0

n

Lε( pi−f ( x ))
1
2

½‖w‖
2
3

where the compound risk caused by training errors and model complexity is  given as   ς .  Eqn  2
provides the estimated values for  w  and  b  and comprises the empirical risk measured by the ε-

insensitive  loss  function,  Lε
 and  the  regularization  term  ½‖w‖

2,  which  describes  the  model

complexity  (Wauters  and  Vanhoucke,  2014,  Cortes  and  Vapnik,  1995).  Prior  to  modelling  the
response  of  discharge  to  climate  using  the  SVMR,  a  regularization  approach  where  the  SST  is
compressed through a PCA-based orthogonalization was employed (e.g.,  Ndehedehe et al.,  2018b,
Bretherton et al.,  1992, Barnett and Preisendorfer,  1987). This resulted in significant modes of SST
variability from the respective oceans, which were then used as predictands in the SVMR model.
Specifically,  a  linear  SVM  regression  model  was  trained  to  fit  the  data.  The  SVMR  technique
evaluates  each  run  of  the  experiment  using  regression,  by  partitioning  the  data  internally  into
training, validation, and testing components (i.e., 65% of the total data). The remaining 35% of the
observed data were thereafter used for forward prediction based on the hold-out method of cross-
validation (e.g., Haley, 2017). The stratified partitioning of the data using this approach ensures that
each partition includes similar amount of observations from each group. The predicted and observed
discharge were then compared using Pearson correlation.
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3. Results

3.1. Characteristics of extreme events in the Congo basin
Three  leading  modes  of  variabilities,  accounting  for  a  total  of  34.5%  were  identified  in  the
statistically decomposed SPEI patterns (1980-2015) over the Congo basin (Figs. 1a-f). From the joint
interpretation of the spatio-temporal patterns of SPEI localised over the tropical south of the basin,
the longest drought duration occurred during the 1992-1996 and 2003-2006 periods (Figs.  1a-b).
During the 1985-1991 and 2007-2008 periods, the SPEI time series associated with this southern
section of the basin were significantly wet. In terms of the total variability accounted for in the three
SPEI modes over the basin, the southern section of the basin with considerable changes in rainfall
show the highest (17%) SPEI variability (Figs. 1ab). We agree that the central regions and areas of the
Congo basin below the equator are apparently and significantly wet in terms of rainfall amount and
the presence of surface water and fluxes (Section  3.2.2). It is also true that the southern section
experiences drought and dryer conditions more frequently compared to other regions (Figs.  1a-b).
However, as with wet regions of the basin, the amplitudes of rainfall in the tropical wet-dry southern
section are strong and show monthly averages of about 250 mm between December and February,
consistent with rainfall amounts during the September-November period in the central region. There
is considerable evidence in the literature regarding the distribution of rainfall in the south between
December and March (e.g.,  Amy Creese et al.,  2019,  Ndehedehe et al.,  2019,  Alsdorf et al.,  2016,
Munzimi et al., 2015) and our spatio-temporal analysis of land water storage highlights this pattern
in the wet-dry and temperate regions of the southern region (Section 3.2.1), given that rainfall is the
main input to hydrological systems.

[Figure 1]
[Figure 2]

Moreover, there are few drought episodes in the south-western region of the basin (Figs. 1cd). The
evolution of wet episodes in the south-western region suggests it appears to be wet most of the
times (Figs.  1c-d). However, since 2010, the temporal patterns of SPEI in the southwestern region
have been largely somewhat less than moderate (Figs.  1c-d). The decomposition of SPEI over the
basin also shows that drought conditions of the early 1980s affected the northern section in Central
Africa Republic (CAR) (Figs.  1e-f). The frequent episodes of droughts in CAR obviously are in sharp
contrast to the wet episodes observed in the southeast region of the basin (SPEI-3, Fig.  1). Some
moderately wet periods between 1995 and 2002 (Figs. 1e-f) are also noted in CAR region. The latter
is a humid tropical wet and dry savannah ecosystem largely characterised by considerable changes in
annual  and seasonal  rainfall  that  is  in  opposite  phase  with  the  southern  section.  Arguably,  the
nourishment  of  the Congo basin  hydrology  and freshwater  ecosystems also emanates  from the
southern end of the basin where
extreme droughts tend to be more frequent (Figs. 1a-b). As this region is also characterised by high
rainfall amounts, which occur all through the year except during the June-August period, a shift in
hydrological regime of the Congo basin is more likely. Drought intensities over the Congo basin are
conspicuously moderate or probably less. Droughts persisted between 1992 and 2001 with more
than 40% coverage between 1994/1995 and early 2006 (Figs. 2a-b). The observed extreme drought
between  2004  and  2006,  one  of  the  post  2000  period  with  widely  acknowledged  hydrological
drought period in the basin reported in the literature also persisted, fluctuating between 25% in
2004 and more than 40% in 2006 (Fig. 2b). During the last few decades (between 1984 and 2011),
reoccurring severe and extreme drought episodes have affected on the average at least 30% of the
Congo basin
(Fig.  2). While the 1994 extreme droughts reached 50%, in other periods (e.g., 1992, 1999, 2004,
2005/2006), only about 30% of the basin on the average has been affected by extreme drought
during the 1991-2011 period (Figs.  2a-b). This increasing intensity in extreme drought episodes is
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consistent with the results indicated in Fig. 1. However, between 2012 and 2016, drought episodes
and their intensities have diminished over the Congo basin (Fig. 2), consistent with the temporal SPEI
patterns shown in Fig.  1. But the intensity of the well-known large-scale extreme droughts of the
1980s, which affected Africa are less and not wide spread in the Congo basin compared to other
African  sub-regions  where  drought-affected  areas  ranged  from  70%  to  more  than  90%  (e.g.,
Ndehedehe et al., 2020a, 2019, Agutu et al., 2017, Masih et al., 2014).

3.2. Surface water hydrology of the Congo basin
3.2.1. Spatial and temporal patterns of land water storage
Linear  trends  from  three  GRACE-mascon  solutions  are  summarized  in  Figs.  3a-c  for  the  period
between Jan 2003 and Dec 2015. Despite having a spatial resolution of 0.5◦ x 0.5◦ (CSR and JPL), the
mass changes show the overall structures of the 3.0◦  x 3.0◦  native resolution and its suitability to
capture hydrological patterns. The surface water hydrology of the Congo basin was assessed using
time series of GRACE-derived TWS and model-derived SWS during the 2002-2017 period. Spatial
distribution of trends in TWS obtained from three GRACE solutions (including TWS solutions that
have  been  smoothen  with  a  150  km  Gaussian  filter)  are  generally  consistent  (Figs.  3a-f).  The
distribution of positive trends in TWS in the basin is weak unlike the surrounding regions (East and
South Africa) where considerably rise in TWS is observed (Figs. 3a-c). The negative trends around the
Cuvette central and northern section of the basin could result in a possible unfavourable hydro-
climatology of the Congo basin if the trends persist (Figs. 3a-f). The root mean square error (RMSE)
values summarizing the monthly errors (68% confidence level) in the aerial averaged time series are
23.70 mm, 22.84 mm, and 26.00 mm for CSR, GSFC, and JPL, respectively (Fig.  4). The linear rates
over  during  the  period  (April  2002  to  June  2017)  were  estimated  using  weighted  least-squares
method  (including  their  uncertainties).  These  linear  rates  show mass  changes  of  approximately
0.33±0.94  mm/yr  (CSR),  0.73±0.95  mm/yr  (GSFC),  and  1.95±0.93  mm/yr  (JPL)  but  they  are
statistically insignificant (Figs. 4a-c). Overall, the temporal variations of TWS and their corresponding
RMSEs observed over the Congo suggest low uncertainties amongst products. From the averaged
TWS time series for the Congo basin (Fig.  4), the three mascon solutions depict the same overall
seasonality while the error bars represent the monthly uncertainties
of TWS and was estimated following Scanlon et al. (2016). First, the residual series were considered
as the difference between the observed TWS series and the best fit considering constant, trend,
annual, and semi-annual terms. Secondly, the residual series from the previous step were smoothed
using a 13-month moving average, which was considered as the monthly errors for the GRACE series.
The RMSE of the smoothed residual series is approximately 23.70 mm, 22.84 mm, and 26.00 mm for
CSR, GSFC, and JPL, respectively. This suggests the GSFC GRACE product is relatively better over the
Congo basin. The time temporal patterns summarizing the overall mass changes within the Congo
basin  are  indicated  in  Figs.  4a-c  and  show  a  slight  rise  between  2012  and  2016,  though  not
significant.
[Figure 3]
[Figure 4]
[Figure 5]

Apart from estimating trends in TWS, the leading orthogonal modes of TWS changes over the Congo
basin were also identified to understand the spatial and temporal variability and key hydrological
drivers of TWS. Apparently, the first mode of TWS over the Congo basin is considerably dominated
by annual signal and accounts for about 78% of the total variability (Figs. 5a-b). This leading mode of
TWS over the Congo basin is driven by annual fluctuations in rainfall because of the observed strong
correlation (r = 0.81, α= 0.05) between TRMM-based precipitation and dominant temporal patterns
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of TWS (Figs.  5a-b) at three months phase lag. This relationship is further supported by the spatial
patterns of  TWS (Figs.  5a-b),  which show strong inter-hemispheric  dipole  configuration patterns
similar to those of spatial distribution of TRMM-based rainfall.  It should be noted that the direct
correlation of TWS-1 with rainfall showed no significant relationship (r = 0.002, p = 0.98) unlike the
direct correlation of rainfall with the second mode of GRACE hydrological signal (TWS-2) ( r = 0.52, p
= 0.000). The second GRACE-hydrological signal represents multi-annual variation in TWS changes
(approximately  12% of  the  total  variability)  over  the  northern  sections  where  rainfall  is  largely
bimodal (Figs. 5c-d). This GRACE-hydrological signal is moderately associated with rainfall (r = 0.52, p
= 0.000), it is largely driven by the strong inter-annual variations of river discharge and surface water
in the Congo basin (r  = 0.88,  α= 0.05).  The GRACE-hydrological  signal  in the third mode, which
accounts  for  2.7% total  TWS variability  represents  mostly  multi-annual  variations resulting from
considerable rise in TWS over the region (Figs. 5e-f).  This signal clearly corresponds to the hydrology
of the surrounding East African lakes (Lakes Tanganyika, Edward, and Kivu) though the decline in
between 2003 and 2005 in the Congo basin is also captured (Figs. 5e-f).

[Figure 6]

3.2.2. Climate influence on surface water hydrology
The response of  surface water  hydrology  to climate variability  was evaluated by comparing the
leading SPEI temporal  series (Figs.  1a and c)  with normalised discharge time series (Congo river
discharge). The temporal patterns of Standardised Runoff Index (SRI) and SPEI tend to be consistent
except during the drought periods between 1995 and 1999 (Fig.  6a). SRI indicated positive values
(except 1998) contrary to SPEI, which showed drought condition. SPEI temporal pattern is poorly
correlated with SRI during the 1980-2010 period (r = 0.22 at α = 0.05). But as shown in Fig. 6a, the
temporal relationship between SRI and SPEI are relatively better in some periods. For example, SPEI
is better correlated with SRI between 1980 and 1987 (r = 0.46; α= 0.05) and the post 2000 period (r =
0.46;  α= 0.05).  A recent assessment of global  multi-scale climate influence on historical  drought
events  over  the  Congo  basin  (Ndehedehe  et  al.,  2019)  showed  that  SRI  and  SPI  were  largely
correlated during the 1931-1990 and 1961-1990 (r = 0.69 and 0.64, respectively at α= 0.05) periods
unlike  the  1991-2010  period  (r  =  0.38).  While  this  suggests  rainfall  was  the  main  driver  of
hydrological  conditions of  the basin  between 1903 and 1990,  that  appears  to  have changed as
droughts and human activities can impact on the rainfall-discharge relationship in ways that further
complicates our understanding of natural climate processes in the region. 
[Figure 7]
[Figure 8]

Temporal variability in discharge is expected to be driven by changes in precipitation patterns and
other land surface conditions, including land cover change. Considerable variability in the Congo
river’s discharge between 1960 and 1995 was reported by  Alsdorf et al.  (2016), consistent with a
21% increase in the Congo river discharge during the same period. Ultimately, this would imply that
increased rainfall led to a rise in the Cong river discharge. But the time series of SPEI and SRI were
largely inconsistent during most parts of the 1990s when extreme drought was observed (Fig.  6a).
For instance, SRI indicated wet episodes for most of the period after 1995 until 2000 (except 1998)
and even during the post 2000 period while SPEI was largely characterised by drought episodes in
between these periods (Fig. 6b). Further, it is shown here that the surface water of the Congo basin
is key component of the GRACE water column indicating significant association with river discharge
and SWS (Fig.  6b).  The multi-annual  variations of  TWS (Figs.  5a-b)  observed  around the Congo
Cuvette central  is  dominated  by  the  Congo river  discharge  (r  =  0.88  at  α=  0.05)  (Fig.  6b).  The
response of the Congo river discharge to climate variations was predicted using the leading modes of
SST anomalies  of  the surrounding oceans (Atlantic,  Indian and Pacific) as  predictands in an SVR
scheme. The output of the linear SVMR show that global climate through SST anomalies of the three
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oceans  are  associated  with  fluctuations  in  the  Congo  river  discharge  (Figs.  7a-c).  Given  the
moderately strong correlation (r = 0.79, p = 0.0000) between the observed and predicted (Figs. 7a-
b), SST of the Atlantic and Pacific are relatively stronger predictors of river discharge compared to
SST of the Indian ocean, which indicated a moderately strong correlation (r = 0.74, p = 0.0000) (Fig.
7c). From the SVMR model, the first SST mode (annual) from the Pacific and Indian oceans had the
strongest  coefficients  (second mode of  Atlantic  SST  had the highest  coefficients  out  of  the five
predictors).  However,  while  the first  and second SST modes of  the Indian ocean showed strong
coefficients, the fifth mode of the Pacific SST showed the second highest coefficients. Overall, the
weight of coefficients of the predictands in the SVMR model confirm the importance of slow oceanic
and climate signals (e.g., ENSO) from global SST anomaly on hydrological changes and surface water
hydrology in the Congo basin. Furthermore, there is significant difference in the spatial distribution
of SWS during extreme drought (2004) and wet (2007) periods in the basin (Figs.  8a-h, cf. Fig.1).
Generally,  strong spatial patterns of  SWS and total  inundation are restricted to the Congo river
channel with values reaching 200 mm in the September-October period (Figs. 8a-h). With a gradual
rise in rainfall during the November-December period, surface water storage extends to the Curvette
central and is perhaps stored as floodplain waters. During the 2004 drought period (Figs. 8e and g),
this floodplain waters around the Curvette central area of the Congo basin in November-December
period  are  not  as  noticeable  as  the  wet  period  in  2007  (Figs.  8f  and  h).  There  is  a  significant
difference in the SWS spatial and temporal patterns shown for the wet and dry periods (Figs. 8a-h)
and a wider distribution of surface water during the former is observed. This is expected for the
Congo basin as diminished flow under limited rainfall condition would be normal. Additional analysis
based on observed spatial trends in SWS were also undertaken. These short terms trends of SWS
were estimated for specific drought (e.g., 2005-2005) and wet (e.g., 2006-2007) periods and they are
consistent with the aforementioned results.

4. Discussion and conclusions
4.1. Understanding drought variabilities, intensities, characteristics and drivers
Although the Congo basin is one of the most humid regions of the world similar to the Amazon
basin, droughts and its impacts are unavoidable. Drought variability and frequency tend to be higher
in  the  southern  part  of  the  Congo  basin  where  seasonal  rainfall  amount  is  highest  during  the
December–March period in the basin areas. Although extreme droughts affected more than 40% of
the basin between 1992 and 2001, drought episodes and their intensities diminished over the Congo
basin after late 2006 when the basin became extremely wet because of strong changes in rainfall.
Generally, there is consistency between the results here and the global scale analysis by Spinoni et
al. (2014), who showed prolonged and severe droughts during the same period (1991-2010) over the
Congo basin. While the degree of intensity or impacts of extreme droughts might be different due to
catchment characteristics, land cover change, topography and land surface conditions, water deficits
caused by prolonged climate-induced, below average rainfall could have implications on freshwater
variability and availability.  For example, evolutionary patterns of standardised precipitation index
and discharge
show that these variables have considerable linear relationships in the Congo basin (e.g., Ndehedehe
et al., 2018c, 2019). Consistent with this study, we have noticed a rise in SWS of the basin in areas
below the equator during wet periods. Similarly, a fall in SWS was observed during the 2004 drought
period, confirming the critical role of climate variability on changes in surface water hydrology. 

Land surface conditions and human induced climate change are other possible drivers of surface
water hydrology in the Congo basin. Evapotranspiration losses caused by significant declines in soil
moisture  and droughts  (e.g.,  Ndehedehe  et  al.,  2018c,  Jung et  al.,  2010)  can alter  hydrological
regimes in the Congo basin. Strong land-atmosphere interactions and feedbacks and the importance
of the Congo forest to its local hydrology and precipitation (Bell et al.,  2015,  Koster et al.,  2004),
could indeed induce considerable changes in hydrological regimes of the Congo basin. Even though
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the physiographic characteristics of rivers connecting to the Congo river do have complex drainage
systems that could create a non-stationary relationship between surface water flow and rainfall
(e.g.,  Ndehedehe et al.,  2019), the terrestrial hydrology of the Congo basin is directly regulated by
the prolonged seasonal rainfall within the Congo basin. For example, rainfall patterns over the Congo
basin are linearly correlated with the Congo river discharge (e.g.,  Conway et al.,  2009). But from a
sub-regional  analysis  that  included  West  Africa,  the  river  discharge  explained  a  considerable
proportion of GRACE-terrestrial hydrological signal in the Congo basin (Ndehedehe et al.,  2018b).
Arguably, this relationship gives the notion that sink terms (runoff and evapotranspiration) in the
basin  are  also  key  drivers  of  surface  water  hydrology  other  than  rainfall.  Locally  recycled
precipitation caused by  the combined influence of  the nearby ocean and evaporation from the
Congo basin (Sorí et al.,  2017,  Dyer et al.,  2017) are further evidence supporting the argument of
other hydrological drivers in the basin. Moreover, the observed change in hydrological response of
the  Congo  river  to  strong  deviations  in  rainfall  suggests  non-linear  interactions  and  complex
hydrological processes in the basin. For instance, changes in the temporal series of discharge do not
completely reflect those of observed land water storage. Although it is less debated that the waters
of  the  Congo basin  are  directly  supplied  by  rainfall,  changes  in  the  surface  water  of  the  basin
contributes significantly to variations in GRACE-hydrological signals. Multi-satellite assessments of
the Congo terrestrial hydrology from recent studies (Becker et al.,  2018,  Ndehedehe et al.,  2018b)
agree that this is the case.
Extreme negative  anomalies  in  rainfall  impacts  surface  water  hydrology  through  a  trickle-down
effect  that  culminates  in  soil  moisture  and  hydrological  droughts.  While  processes  such  as
seasonality effects, catchment and climate characteristics tend to influence drought propagation,
strong precipitation deficits in tropical climates would normally result in reduced alimentation and
temporary decrease in stream flows, storage reservoirs,  and freshwater stocks (e.g.,  Ndehedehe,
2019, Kiem et al.,  2016, Van Loon et al.,  2014). However, it has recently been shown that this was
not  the  case in  the  Congo basin  (1995-2010)  as  most  drought  episodes  were inconsistent  with
discharge anomalies during the period (Ndehedehe et al.,  2019). One wonders if there are known
physical and ecological processes that play key roles in drought propagation in the Congo basin. But
the basin’s catchment stores (e.g., swamps, lakes, reservoirs, soil column, groundwater, etc.), which
could create a prolonged reservoir memory in the hydrological system could be a determinant in the
delayed propagation of drought signals or even its absence in the discharge anomalies. It has been
reported that the Congo basin is the only river basin that seconds the Amazon river in terms of
average yearly discharge (i.e.,
about 40,200 m3 s-1), and surface water storage (111 km3) (see, Lee et al., 2011, Alsdorf et al., 2010).
This  storage  capacity  could  increase  catchment  response  time to  drought  events,  and  arguably
create a non-linear relationship that results in an asymmetric response of surface water dynamics to
a drought signal (e.g.,  Ndehedehe et al.,  2019,  Loon,  2013). Although antecedent conditions could
exist, this relationship can be disturbed or altered in the event of strong human footprints (e.g.,
deforestation),  land  surface conditions,  and increased  frequency  in  drought  events  triggered by
changes in atmospheric circulation patterns. In other words, rainfall may not be the only driver of
hydrological conditions and fluxes in the Congo basin. Earlier studies have recognised rainfall as a
key  indicator  regulating  the  hydrology  of  the  region.  However,  river  basin  physiography  and
properties (e.g., topography, streamflow characteristics, etc.) and several ongoing human actions
such as the effects of land use change and deforestation in the Congo basin drive variability in river
flows and surface water availability.

4.2. Surface water hydrology of the Congo basin and the role of climate
Aerial  averaged  time series  of  TWS over  the  Congo basin  between 2002  and  2017  showed no
significant trend. But within the basin, leading spatio-temporal mode of TWS accounting for about
78% of the total variability is considerably dominated by annual signal, which coincides with annual
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fluctuations in rainfall. While the Congo river signal is also identified in the GRACE-hydrological signal
over the Congo basin, there was a fall in TWS between 2003 -2005 and a subsequent rise during the
2006-2017 period. These trends, though spatially explicit, are very consistent with both temporal
drought patterns and the percentage of drought affected areas observed during the same periods. In
fact, there was a relatively higher distribution of surface water inundation within the Cuvette central
and floodplain corridor  of  the Congo basin during wet years  unlike dry years when rainfall  was
restricted.  TWS  variability  are  mostly  characterised  by  strong  annual  changes  and  multi-annual
signals.  There  is  also  a  significant  surface  mass  variation  emanating  from the  hydrology  of  the
surrounding  East  African  rivers  and  lakes  (Lakes  Tanganyika,  Edward,  and  Kivu),  which  share
boundary with the Congo basin. Considering the spatial patterns of observed GRACE-hydrological
signal over this area,
there is a possible indication of significant exchange of fluxes within the various watersheds of the
Congo basin. These of fluxes among freshwater bodies may contribute to flow dynamics and lead to
considerable amplitudes in surface storage of the Congo floodplain and the Cuvette central. This
argument  is  consistent  with  an  earlier  insinuation  by  Tshimanga  and  Hughes  (2014)  that  the
hydrology of this region and other surrounding large floodplain wetlands are expected to contribute
to downstream flow regimes of the Congo river. Furthermore, the surface water hydrology of the
Congo basin has considerable connections with the surrounding oceans. Predictive scheme based on
a linear SVMR show that global climate through SST anomalies of the three oceans (Atlantic, Indian,
and Pacific) have linear relationships with fluctuations in the Congo river discharge. The SST of the
Atlantic  and Pacific  are  relatively  stronger predictors  of  river  discharge compared to SST of  the
Indian ocean. Overall, the weight of coefficients of the predictands in the SVMR model confirm the
importance of slow oceanic and climate signals from global SST anomaly on hydrological changes
and surface water hydrology in the Congo basin. Previous studies have reported the links between
Congo discharge and SST of  the surrounding oceans.  The study by  Materia et  al.  (2012),  which
confirmed  the  effect  of  freshwater  on  SST,  suggests  an  interplay  involving  river  discharge,  sea
surface  salinity  and  temperature.  While  these  factors  could  be  significant  to  the  interannual
variability  observed  in  the  region,  recent  diagnostics  study  shows that  ENSO-related  equatorial
Pacific SST fluctuations have been identified as a key climate variability index associated with land
water  storage  (Ndehedehe  et  al.,  2018b).  Additional  evidence  from  a  recent  satellite-based
assessment of  surface water dynamics in the Congo basin confirm the influence of  ENSO on its
surface water hydrology (Becker et al., 2018).

Moreover, the implications of persistent droughts events on tropical rainforest systems was stressed
by Zhou et al. (2014). They argued that the continued drying of the basin could lead to compositional
and structural  changes in the Congolese forest.  Other than the well-known influence of  climate
variability on fluxes and terrestrial hydrology of the Congo basin (Becker et al., 2018, Ndehedehe et
al.,  2018b,  Conway et al.,  2009), recent findings on drivers of TWS in the basin suggest the critical
role of human actions (Ahmed and Wiese, 2019). The conversation around human-induced changes
in TWS of the Congo basin is important and requires further details. This is because as home to the
world’s second largest rainforest block (e.g., Oslisly et al., 2013), it is critical to advance knowledge
on long term effects of intense human-actions such as deforestation on TWS dynamics. This will
build on existing compendium of knowledge highlighting the sensitivity of climate to the loss of the
Congo basin
rainforest and other ecological disturbance in the region (e.g.,  Bell et al.,  2015,  Malhi et al.,  2013,
Verhegghen et al.,  2012). Moreover, it has recently been reported that the knowledge of surface
hydrology in major large river channels have implications on the duration and extents of flood that
sustain  globally  important  floodplain  and  wetland ecosystems (Carr  et  al.,  2019).  As  the  Congo
basin’s rainfall climatology is very significant to global tropical rainfall during transition seasons (e.g.,
Ndehedehe et  al.,  2018b,  Washington et  al.,  2013),  this  again  reinforces the importance of  the
Congo basin hydro-climatology to global climate change. Hence, key hypothesis future assessment
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and consideration is to understand if the depletion of the Congo forest through uncontrolled logging
and deforestation impacts on the global water cycle. 
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Figure 1: Spatio-temporal SPEI patterns of the Congo basin using 12-month gridded SPEI values (a-f). Localised spatial SPEI
patterns (right) corresponds to the temporal evolutions (left) and actual SPEI values to be used for drought classification
(drought threshold is in red) are jointly derived from the spatial and temporal patterns. The SPEI time series (blue) are
filtered to cushion the effect of residual short-term seasonal signals and also for better representation.
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Figure 2: Estimated areas affected by various drought intensities (extreme, severe, and moderate) over the
Congo basin during 1980-2000 (a) and 2001-2015 (b) periods. The SPEI-derived drought affected areas (%)
are characterized based on the classification thresholds defined in McKee et al. (1993) and Ndehedehe et al.
(2019). Note this SPEI is based on a 12-month aggregation.

Figure 3: Spatial distribution of trends in GRACE-derived TWS (2002- 2017) over the Congo basin. Panels
(a)-(c) show the linear rates of TWS changes over the study area in the Congo basin delineated by the red line.
Panels (d)-(f) show the trend map smoothed with a Gaussian filter using 150 km radius for visualization.
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Figure 4: Aerial averaged temporal series of TWS (2002-2017) estimated from three different GRACE 
mascon products. Gaps in the time series are periods with missing data. The TWS time series based on
mascon solutions provided by CSR (a), GSFC (b) and JPL (c) within the Congo Basin and their respective
linear trends depicted by the dashed lines. The error bars show the respective monthly errors for each solution.

Figure 5: Leading modes of TWS (2002-2017) over the Congo basin. Averaged spatial patterns (a, c, and
e) corresponds to the temporal series (b, d, and f). The observed correlation value between TWS and surface
water storage is significant at α= 0.05.
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Figure 6: Assessing climate influence on surface water hydrology over the Congo basin. (a) Relationship
between river discharge and SPEI, and (b) relationship of Congo river discharge with TWS and surface
water storage. TWS here is the GRACE-hydrological signal in the second orthogonal mode (TWS-2, Fig. 5).
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Figure 7: Modelling the temporal dynamics of Congo river discharge (1980-2010) using dominant patterns of
(a) Atlantic, (b) Pacific, and (c) Indian SST anomalies in the SVM regression scheme.

Figure 8: Surface water storage over the Congo basin during the extreme drought period of 2004 (a, c, e, and
g) and the 2007 wet episodes (b, d, f, and h).
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