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Abstract

The so-called regularized Biot-Savart laws (RBSLs, Titov et al. 2018) provide an efficient and flexible method for modeling

pre-eruptive magnetic configurations whose characteristics are constrained by observational image and magnetic-field data. This

method allows one to calculate the field of magnetic flux ropes (MFRs) with small circular cross-sections and an arbitrary axis

shape. The field of the whole configuration is constructed as a superposition of (1) such a flux-rope field, (2) an ambient potential

field determined, for example, by the radial field component of an observed magnetogram, and (3) a so-called compensating

potential field that counteracts deviations of the radial field caused by the axial current of the MFR. The RBSL kernels are

determined from the requirement that the MFR field for a straight cylinder must be exactly force-free. For a curved MFR,

however, the magnetic forces are generally unbalanced over the whole path of the MFR. To reduce this imbalance, we apply

a modified Gauss-Newton method to minimize the magnitude of the residual magnetic forces per unit length and the unit

axial current of the MFR. This is done by iteratively adjusting the MFR axis path and axial current. We then try to relax

the resulting optimized configuration in a subsequent line-tied zero-beta MHD simulation toward a force-free equilibrium. By

considering several examples, we demonstrate how this approach works depending on the initial parameters of the MFR and

the ambient magnetic field. Our method will be beneficial for both the modeling of particular eruptive events and theoretical

studies of idealized pre-eruptive magnetic configurations. This research is supported by NSF, NASA’s HSR, SBIR, and LWS

Programs, and AFOSR
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ABSTRACT
The so-called regularized Biot-Savart laws (RBSLs, Titov et al. 2018) provide an efficient and flexible
method for modeling pre-eruptive magnetic configurations whose characteristics are constrained by
observational image and magnetic-field data. This method allows one to calculate the field of magnetic flux
ropes (MFRs) with small circular cross-sections and an arbitrary axis shape. The field of the whole
configuration is constructed as a superposition of (1) such a flux-rope field, (2) an ambient potential field
determined, for example, by the radial field component of an observed magnetogram, and generally (3) a so-
called compensating potential field that counteracts deviations of the radial field caused by the axial current
of the MFR.  With an appropriate subphotospheric clousure of the MFR, we have made the compensating
magnetic field negligible in the modeled configuration.  The RBSL kernels are determined from the
requirement that the MFR field for a straight cylinder must be exactly force-free. For a curved MFR,
however, the magnetic forces are generally unbalanced over the whole path of the MFR. To reduce this
imbalance, we apply a modified Gauss-Newton method to minimize the magnitude of the residual magnetic
forces per unit length and the unit axial current of the MFR. This is done by iteratively adjusting the MFR
axis path and axial current. We then try to relax the resulting optimized configuration in a subsequent line-tied
zero-beta MHD simulation toward a force-free equilibrium. By considering several examples, we demonstrate
how this approach works depending on the initial parameters of the MFR and the ambient magnetic field. Our
method will be beneficial for both the modeling of particular eruptive events and theoretical studies of
idealized pre-eruptive magnetic configurations.

This research is supported by NSF, NASA’s DRIVE, HSR, SBIR, and LWS Programs, and AFOSR
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1. THE RBSL METHOD UPDATED
   We model a pre-eruptive magnetic configuration in two major steps. We construct first an approximate force-free configuration
by using so-called regularized Biot-Savart laws (RBSLs, Titov et al. 2018) and then relax it toward a force-free state via a line-
tied zero-beta MHD simulation.  In this work, we present a new development of this method, which allows one now to
substantially reduce residual magnetic forces in the configuration prior to its subsequent relaxation.
  The modeled magnetic field is obtained by superimposing three different components as follows:

where B  represents the potential magnetic field produced by photospheric magnetic sources with a given distribution of the
normal component of magnetic field. The other two components, B  and B , are, respectively, azimuthal and axial magnetic
fields generated by axial net current I and axial net flux F of a thin magnetic flux rope (MFR). These components in turn are

where A  and A  are axial and azimuthal vector potentials, respectively, defined relative to the axis of MFR. 

Figure 1. Magnetic flux rope (MFR) with a circular cross-section of radius a(l) and coronal and subphotospheric axis paths C
and C*, respectively, defined by a radius-vector R(l), where l is the path arc length.

    The axis is a closed curve consisted of coronal and subphotospheric paths, C and C*, respectively, and represented by a vector 
R(l) that depends on the arc length l of the curve (Figure 1). For these vector potentials, we adopt here the RBSLs proposed
earlier in (Titov et al. 2018) by assuming for simplicity that our MFR has a constant rather than variable cross-sectional radius a.
Then the axial vector potential at a given point x is described by

(1)

where r = r(l) = (x - R(l)) / a, R' = dR/dl is a unit vector tangential to the axis path. The double brackets henceforth contain the
unit in which the value displayed on the left is measured.
   The RBSL-kernel of A  is

(2)

p

I F

I F

I
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whose domain of definition smoothly extends to r=0 with

In the limit of vanishing curvature of the MFR, this A  by  construction provides a straight cylindrical MFR with a parabolic
profile of the axial current density.
   We assume that the closure of the coronal current I flowing along the path C is made with a fictitious subphotospheric path C*
that is simply a mirror image of C about the photospheric boundary plane. This constraint on the shape of the path allows one to
vanish the resulting normal component of  B  at the boundary.
  To cause a similar behavior of the field B  at the boundary, we modify the azimuthal vector potential, compared to our previous
approach described in (Titov et al. 2018), as

(3)

This expression implies that the corresponding axial fluxes flow along C and C* in opposite directions.  Since C* is a mirror
image of C about the boundary plane, these fluxes meet at the same angles to the boundary and thereby cancel each other out. 
Due to this trick, the resulting normal component of B   also becomes vanishing at the boundary.

The RBSL-kernel of A  is

(4)

whose domain of definition smoothly extends to r=0 with

   In the limit of vanishing curvature of the axis path, A  by construction provides the axial magnetic field and and azimuthal
current density in a force-free straight cylindrical MFR with a parabolic profile of the axial current density provided

where the positive and negative signs correspond to right- and left-handed twist (chirality) of the MFR, respectively.
   We assume that this relationship also holds true for a curved MFR.  In this way, we manage to keep the resulting configuration
as close as possible to an equilibrium for sufficiently thin MFRs, which quantitatively means that κ a << 1 along the axis path of
curvature κ(l). The appropriate power-law decays of K (r) and K (r) at r>1 ensure that, externally, our MFR manifests itself as a
current and flux carrying thread described by classical Biot-Savart laws (Jackson1962).
  We extend below the RBSL method by supplementing it with an optimization procedure that enables one to minimize residual
magnetic forces in a modeled MFR by suitably adjusting its shape and axial current I.

I
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2. AXIS-PATH MODEL OF THE MFR
   A special scrutiny is required in constructing a discretized model of the axis path C to make its optimization process stable.  We
represent  C in terms of a cubic spline that smoothly joins N+1 points, R , ..., R , called control nodes (see Figure 2).  Instead of
l, it is convenient to parameterize C by a continuous parameter v whose values coincide at the control nodes with the numbers  0,
..., N.  Any other point R(v) of C is determined then by the vector function

(5)

in which S (v) are piecewise cubic polynomials of v.  They are uniquely defined by the requirements

supplemented with the corresponding smoothness and endpoint conditions at the control nodes.

Figure 2. The coronal  axis path C is represented by a vector function R(ν), which is defined in terms of a cubic spline of N+1
equidistant control nodes R  (white circles) uniformly parametrized by parameter ν from 0 to N. The gray circles show evaluation
nodes at which the line density f  of the magnetic force is calculated by Eq.  (10) via the integral of the Lorentz force, taken with
a certain weight, over the corresponding cross-sections S  perpendicular to the path. The subphotospheric axis path C* is a copy
of C mirrored about a plane that locally approximates the spherical solar boundary.

   The arc length l(v) of  C as a function of v is a solution of the following ordinary differential equation (ODE):

(6)

in which

0 N

i
N

i

ν

ν
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(7)

is the v-derivative of   Eq. (5).  By integrating Eq. (6) from 0 to N, one obtains the total arc length L of C.  The inverted Eq. (6)
yields another ODE

whose solutions define the inverse relationship v(l) between l- and v-parameterizations of the curve C.
  The described ODEs help us to keep the control nodes R  equidistant along the path at each iteration toward its optimized shape,
which brings some kind of stiffness to the  path during its deformation.  The axis path defined by Eq. (5) with equidistant control
nodes is henceforth called canonical.
   The control nodes, different from the footpoints of the path,  are allowed to be displaced only along the binormal M and normal
N of the Frenet-Serret basis of the path.  For our path model, they are calculated by using Eq. (7) and

as follows:

(8)

With these expressions evaluated at v=v , one can obtain the normal N  and binormal M  along which the corresponding control
nodes R =1, ..., N-1, are displaced in the optimization process.
   In contrast, the control nodes R  and R  as being the footpoints of the path are allowed to be displaced strictly along the solar
surface.
This implies that

which are the corresponding unit coordinate vectors at the footpoints of the path defined in spherical coordinate system with the
origin at the center of the Sun.  Thus, a small variation of the axis path described by Eq. (5) can be written as

(9)

where the node displacements ξ  and η  are normalized to a.  We hold these displacements to be << 1 through all iterations of the

i

j j j

j

0 N

i i
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optimization process.
   The subphotospheric axis path C* at each iteration is chosen to be a copy of C mirrored about the plane that passes through the
footpoints R  and R  and has the normal

where

is an average of the footpoints.  For the distance between R  and R  much smaller than the radius of the Sun, this plane well
approximates a plane touching the solar surface at the point O.  The corresponding mirror images of the control nodes are given
by

By using the same direction and type of parameterization as for the path C (Eq. (5)), one can determine its corresponding
mirrored points at C* from

This closure of C makes it  possible to minimize the normal component of magnetic field that the flux-rope currents produce at
the boundary, as mentioned above.  The normal component of the resulting field then is almost due to the potential field B , or, in
other words, it becomes almost identical to the component derived from observations.  A difference between them is only due to
the curvature of the solar surface, which is relatively small for typical source regions of CMEs.  The configurations of a larger
size require a more sophisticated approach, which will be published separately elsewhere.

0 N

0 N

p
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3. OPTIMIZATION OF THE MFR PARAMETERS
   In order to estimate how far our approximate MFR configuration deviates from an equilibrium, we have to determine the line
density of the residual magnetic force along MFR, or, in other words, the magnetic force f  per unit length of the MFR.   Its
expression can be derived by integrating Maxwell stress tensor over the surface of an elementary wedge of the rope with the
following result

(10)

where R and R'' are given for our path model by Eqs. (5) and (8). One can show that f  is very sensitive to the curvature of the
path, which  motivated us to evaluate it for the purpose of optimization at points different from the control nodes R , because it
tends to have local maxima at R .  For the evaluation of f , therefore, we choose the points that are equidistantly separated from
the nearest control nodes.
   The total current density in our RBSL flux rope is

where j  and j  are axial and azimuthal current densities, whose expressions can be derived from Eqs. (1)-(2) and (3)-(4),
respectively.
   Let the potential field B  and axial current I be measured in B  and I  units, respectively, such that

and so

where the dimensionless coefficient C  is yet to be determined in further optimization.  Then f  can be written as

(11)

where the first and second terms are two separate parts of f  due to j ✕ B  and j ✕ (B  + σ B ), respectively.  The current density
and magnetic field components are calculated here by using differential formulations of RBSLs, which allow one to represent our
RBSL integrals as solutions of certain ODEs.  This makes it possible to exploit the power of the adaptive step refinement in the
existing ODE solvers for calculating the required integral values.
   On the basis of the derived f , we constructed several metrics for measuring how far from equilibrium an MFR configuration is
and used them as cost functions in a minimization procedure to obtain approximate equilibria. The construction invokes the
nonlinear least squares method and the corresponding minimization is performed iteratively by varying MFR parameters,
namely, the axial current and coordinates of the control nodes. More precisely, these parameters include the dimensionless
parameter C  and 2(N + 1)-dimensional vector of the node displacements

where the subscript T denotes matrix transposition. The metrics or cost functions are constructed as a mean square of a 3D vector
characteristic w  of magnetic forces determined at cross-sections S , which in matrix notations is

(12)

We have found that two of such characteristics provide the most interesting results.
   The first characteristics is derived from Eq. (10) by dividing it on I.

v

v

i

i v

I F

p u u

I v

v p I F

v

I

ν ν
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After normalizing it in the same way as  Eq. (11), one obtains

(13)

which is nothing else than a residual magnetic force per unit current and per unit length of the MFR.  Thus, the cost function
based on this characteristic is simply a mean square of the effective magnetic field with which the currents of the rope interact.
   The second characteristic is derived by dividing Eq. (13) on the normalized self-force C |f  |, which yields

(14)

   Although both introduced cost functions reach the same absolute minimum W = 0 at vanishing | f |, their minimization yields
generally different results with different nonvanishig minimums of W.  Note that the parameter C (1/C  )  enters quadratically
into the first (second) W, which allows one to find immediately its optimal value for a given axis path.  In the first case, we
obtain

(15)

and in the second case

(16)

   The optimization of the axis path is a less trivial problem that generally can be tackled only numerically, because both cost
functions have a very complex nonlinear dependence on coordinates of the  control nodes.  Therefore, we will solve this
numerical problem iteratively in small steps.  Let us first perturb w  with small displacements of the nodes (Eq. (9)) and linearize
it around an unperturbed path to obtain

(17)

where w  is the unperturbed characteristic and

is a 3 × 2(N + 1)-dimensional Jacobian matrix determined numerically in terms of Fréchet derivatives along the basis vectors M
and N ,  j = 0, ..., N.  The substitution of Eq. (17) into Eq. (12) turns W into a quadratic form in 𝝌𝝌 with a symmetric and positive
definite matrix J J , so that with the minimization of this form we arrive at the classical Gauss–Newton method (Fletcher
2000). This method alone, however, is not sufficient for our purposes, as it may generally result in |𝝌𝝌| that is too large in value
and, therefore, invalidate our linearization approach.
   To be self-consistent with this approach, one needs to minimize W subject to the constraint 𝝌𝝌 𝝌𝝌 = const ≪ 1. This is reached
by extending the cost function as follows:

where 𝜆 is a Lagrange multiplier, known in the least-squares method as damping parameter (Levenberg 1944; Marquardt 1963).
Taking the derivative of this extended cost function with respect to 𝝌𝝌 and setting the result to zero yields the following linear
system of so-called normal equations:

I v IF

v

I I

ν

ν
0

j

j
T
ν ν

T

8



(18)

In this form, the derived system is applicable to both cases defined by Eqs. (13) and (14). However, their Jacobian matrices are
different: in the first case

where

and in the second case

To initialize optimization procedure, we first reconstruct an approximate axis path of the MFR by using observational data and
convert it to the canonical form, as described in Section 2.  For this canonical path, we compute then the corresponding w  and
J . By putting w  = w  in Eq. (18) we solve it for 𝝌𝝌 at several different values of the parameter 𝜆 > 0 until the inequality max |𝝌𝝌|
≪ 1 is satisfied.  We consider that 𝝌𝝌 satisfying this inequality is an acceptable solution, which we use then to calculate by Eqs.
(5) and (9) a new axis path R + δR for the next iterate. We iterate in this manner until W stops decreasing. The canonical path in
this sequence of iterates that corresponds to a minimum of W is regarded as a sought-for optimal path. 
   From the standpoint of the minimization of W only, it would be self-consistent to use at each iterate the expression for C
derived from the same W as the normal equations.  However, if one takes into account the subsequent MHD relaxation of the
resulting optimized configuration, this part of the method has to be modified.
   It turns out that, for configurations with the ambient potential field of a bipolar type, Eq. (15) provides C  of somewhat low
values, such that the corresponding MFRs after relaxation appear to be pushed too much downward to the solar surface and,
therefore, to be partially deprived of the initial coherency in the structure.  In this respect, the use of Eq. (16) for C  leads to
better equilibria, where the MFRs hover over the surface or barely touch it as well-defined entities.  Bearing this in mind, we
have employed only Eq. (16) irrespective of which cost function W is used for optimizing axis paths.

ν

ν ν
0

ν

I

I

I

9



4. ILLUSTRATION OF HOW THE METHOD WORKS
    Let us see how our updated RBSL method works for modeling simple yet realistic magnetic configurations. For this purpose,
we choose the 2009 February 13 CME event where the pre-eruptive magnetic field had a characteristic sigmoidal structure above
the polarity inversion line (PIL) of the source region (Miklenic et al. 2011).  We do not intend here to perfectly reproduce this
structure.  Rather, our aim is to check what new features the configuration acquires compared to our previous attempts.  In
contrast to Titov et al. (2018), for example, our new solutions employ the optimization procedure and (essentially) match the
observations of the radial component of the photospheric field.
   As explained in Section 3, the result of the MFR optimization is generally not unique and particularly depends on the form of
the used cost function W.  Below we apply two of them with w   given by Eqs. (13) and (14)  and call henceforth the
corresponding optimized axis paths Solution 1 and 2, respectively.  For analyzing the magnetic structure of the obtained
configurations, we calculate the squashing degree (Titov et al. 2002) or squashing factor Q of elementary magnetic flux tubes
(Titov 2007), which characterizes the divergence of magnetic field lines in these tubes.
    For both solutions we set the same initial axis path (yellow line in Figure 3) and a = 0.01 R , where R  is the radius of the
Sun. This initial path and the subsequently iterated paths were well approximated by nine equidistant control nodes.  In each
iteration, we kept the maximal displacement of the control nodes strictly equal to 0.1 a. 

SSoolluuttiioonn  11
   The minimum of the cost function W with w   given by Eq. (13) turns out to be relatively shallow.  The minimum is reached at
the 3rd iteration of the optimization procedure with the resulting C ≃ -4.12 and W reduced by ~25% relative to its initial value.

Figure 3. The initial (yellow) vs. optimized (red) axis path of
Solution 1; the photospheric B -map (grayshaded) is shown
with the used grid oulined in gray; for the optimized
configuration, and B -signed log (Q) map (sky-blue for
negative and crimson for positive polarities, respectively; the
saturation level for the distirubiton is log (Q)=4.0) is
superimposed on top of the B -map; the middle cross-section
displays the corresponding log (Q)-distribution by using the
inverted grayscale palette with fully transparent colors at
log (Q)<2.  The same color coding is used for similar maps
below.

The magnetic topology of the optimized configuration prior to MHD relaxation

   The structural skeleton of the optimized configuration is formed by two bald-patch separatrix surfaces (BPSSs) originating at
two segments of the polarity inversion line (PIL) of the photospheric B -distribution.  These BPSSs divide the volume enclosing
the MFR into several domains and contain so-called BP-BP separators (red, orange, and magenta thick lines in Figure 4), which
are the field lines that touch the photosphere at two different bald-patch (BP) points of the PIL and lie at the intersection of two
BPSSs (Titov & Démoulin 1999).
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Figure 4. BPSS structure of the optimized MFR configuration: (a) BP-BP separators (red, orange, and magenta), (b)
BPSS (yellow field lines) that envelopes the MFR, BPSSs (light-magenta field lines) that bounds a small arcade below the MFR,
and BPSS (green field lines) that fills a gap between two separators (red and orange thick lines) and belongs to the MFR
boundary, (c) BPSS (green field lines) that bounds the MFR itself; additional panels in the right column show zoomed regions in
the middle of the structure to reveal the relations between the field lines and the corresponding cross-sectional log (Q)-map.

   The separator colored in red in Figure 4 lies at the intersection of two BPSSs below the MFR and is very similar to the one
discovered earlier by Titov & Démoulin (1999) in a simple analytical model of a pre-eruptive configuration with a toroidal-arc
MFR.  In addition, the structural skeleton of Solution 1 has several other topological features, which are not covered by that
model.  The most interesting of them is the BPSS that envelopes and touches the MFR boundary along the other separator (
thick magenta line in Figure 4).  The appearance of this feature is likely due to the fact that, by construction, the used
superposition of the MFR and ambient potential fields does not perturb the prescribed photospheric B -distribution.
   Although all these BPSSs disappear in subsequent line-tied MHD relaxation, the resulting relaxed configuration acquires
several quasi-separatrix layers (QSLs, Priest & Démoulin 1995; they are identified here through the squashing factor Q as
defined by Titov 2007), which provide a similar partition of the core field of the configuration (see Figures 5-7).

The optimized configuration before and after line-tied MHD relaxation

   Due to relatively large unbalanced residual forces, the optimized configuration undergoes a dramatic transformation during the
line-tied relaxation toward a force-free state (cf. panels (a) and (b) in Figure 5).  By comparing congutate footpoins of the field
lines before and after the relaxation (cf. panels (c) and (d) in Figure 5), one can see that this transformation is realized by
magnetic reconnection with a significant change of the field-line connectivity.  It is of particular interest that the relaxation
results in a qualitatively different distribution of the electric current (cf. panels (e) and (f) in Figure 5).
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Figure 5. The elements of the configuration before (left column) and after (right column) line-tied zero-beta MHD relaxation. 
The field lines shown in panels (a) and (b) have the same footpoints; the latter are depicted in panels (c) and (d) by small balls,
which together with small bars of the same color in panel (c) represent the conjugate footpoints.  Panels (e) and (f) show the
corresponding iso-surfaces j/j  =  0.438 (magenta) of the current density.  Panel (f) also presents an iso-surface α/|α| =
0.079 (semi-transparent cyan) of the force-free parameter to designate a layer of return current.

   The outermost set of field lines (blue) in the middle of the structure is a magnetic arcade that envelopes the core of the relaxed
configuration, which contains a sigmodial MFR (green) encompassing almost untwisted flux and two magnetic loops (yellow;
called below "arms") adjacent to the lateral sides of the MFR.   In the middle of the configuration, these loops are nearly
horizontal and adjoined to a vertical current layer.  The loops are larger in size than the envelope arcade and, at larger distances
from the current layer, wrap around the MFR (see Figure 5b and 6) to add twist and sigmoidality to the core structure.

 Figure 6. A zoomed region of the relaxed configuration near its middle cross-
section: the field lines of the envelope arcade (blue), MFR (green), vertical current
layer (light-magenta), and flux tubes (yellow thick lines; called "arms" below)
adjacent to the current layer are shown.

   The vertical current layer has three sublayers with the central sublayer being a
narrow sheared arcade of relatively short field lines (light-magenta in Figure 6) that
are aligned along the PIL.  The adjacent other two sublayers (see Figure 7f) contain
much longer field lines arching above the MFR and current layer, so that one of
their footpoints resides next to the sheared arcade, while the other lies far away
from the PIL on the outskirt of the conjugate polarity.  These field lines, colored in
orange in Figure 5b, have similar shapes as the neighboring yellow ones, but they
are interlocked with the MFR field lines (green) differently.  Features such as the

vertical current layer with the neighboring sheared field lines are generic for many existing models of pre-eruptive configurations
(e.g., see Kusano et al. 2012 and Xia et al. 2014).
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Figure 7. Maps of the field line length (1st column), force-free parameter α ( 2nd column), and log (Q)  (3rd column) in the
middle cross-section for Solution1 before (1st row) and after (2nd row) line-tied zero-beta MHD relaxation of the optimized
configuration. The greyshaded log (Q)–maps are blended with the corresponding blue-red α-maps.

    It is very instructive to compare maps of the force-free parameter α and log (Q) in the middle cross-section of the optimized
configuration before and after its relaxation (Figure 7). This comparison shows that the axial current distributed initially across
the MFR transforms during the relaxation into several force-free current layers aligned with the QSLs in the configuration.

SSoolluuttiioonn  22
   The minimum of the cost function W with w   given by Eq. (14) is also relatively shallow.  It is reached at the 4th iteratation of
the optimization procedure with the resulting C ≃ -3.72 and W reduced by ~24% relative to its initial value.

Figure 8. The initial (yellow) vs. optimized (red) axis path of
Solution 2; photospheric B -map (grayshaded) is shown with
the used grid oulined in gray; for the optimized configuration,
and B -signed log (Q) map (sky-blue for negative and
crimson for positive polarities, respectively; the saturation
level for the distirubiton is log (Q)=4.0) is superimposed on
top of the B -map; the middle cross-section displays the
corresponding log (Q)-distribution by using the inverted
grayscale palette with fully transparent colors at log (Q)<2. 
The same color coding is used for similar maps below.

   Due to a lower value of the resulting optimized axial current, the relaxed configuration has a more compact structure compared
to Solution 1.  In contrast to the latter, the middle part of the MFR is pushed during the relaxation downward to the boundary,
which prevents the formation of a vertical current layer.  In all other respects, Solution 1 and 2 are very similar (see Figures
9-11).
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Figure 9. The magnetic structure of the MFR configuration described by Solution 2: the optimized configuration before (a) and
after (b,c,d) line-tied zero-beta MHD relaxation with three major types of field lines (d) that form the resulting configuration; (c)
the corresponding iso-surfaces of the current density j/j  =  0.438 (magenta) and force-free parameter α/|α| = 0.079 (semi-
transparent cyan); the field lines shown in panels (a) and (b) have the same footpoints.  Panel (d) presents also the corresponding
α-map in the middle cross-section of the configuration and several representative field lines that succinctly illustrate the
structure.

   Figure 10 shows maps of the force-free parameter α and log (Q) in the middle cross-section of the optimized configuration
before and after line-tied MHD relaxation. As for Solution 1, it demonstrates that the current density distributed initially over the
entire cross-section of the MFR transforms during the relaxation into several current layers aligned with the QSLs that are
formed in the configuration by this process.
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Figure 10. Maps of the field line length (1st column), force-free parameter α ( 2nd column), and log (Q)  (3rd column) in the
middle cross-section for Solution1 before (1st row) and after (2nd row) line-tied zero-beta MHD relaxation of the optimized
configuration. The greyshaded log (Q)–maps are blended with the corresponding blue-red α-maps.

Figure 11. Top view of the field-line structure (1st raw) and j/j  =  0.438 (magenta) and α/|α| = 0.079 (semi-transparent
cyan) isosurfaces (2nd raw) corresponding to our solutions vs. EUV images (2nd column) of the pre-eruptive configuration of the
2009 February 13 CME  event.

   Figure 11 enables us to compare the obtained solutions with the corresponding EUV images of the pre-eruptive configuration. 
One can see that both solutions satisfactorily reproduce the observed sigmoidal shape of the core field. However, the size of the
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sigmoid of Solution 2  apparently corresponds much better to the observations.  This comparison shows that the result of the
relaxation is rather sensitive to the choice of the cost function in the optimization procedure.
   It is interesting that our previous model (Titov et al. 2018) did not invoke the optimization of the MFR parameters and did not
preserve the radial component of the photospheric field obtained from observations at the footprints of the MFR.  Nevertheless, it
also qualitatively reproduced the sigmoid shape starting from a different initial axis path with the footpoints anchored to the
photosphere.  This indicates a certain robustness of the RBSL method used in both models.
    In conclusion, it should be emphasized that our particular Solutions 1 and 2 qualitatively describe also the magnetic structure
of other sigmoidal pre-eruptive configurations.  Indeed, the representative field lines shown in Figure 9d can easily be identified
as "envelope", "elbows", and "arms" revealed in different observations of typical eruptive events occuring in bipolar active
regions (Moore et al. 2001).
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5. SUMMARY
   We have updated our RBSL method (Titov et al. 2018) for modeling pre-eruptive magnetic configurations by extending it in
two ways.  First, we have modified the method so that it allows us now to construct in a straightforward manner an MFR field
with a vanishing or negligibly small normal component at the boundary.  This is particularly worthwhile for the locations of the
MFR footprints, at which the original method previously required using a more complicated approach in order to preserve the
photospheric normal component derived from observations or prescribed in the model.  Its perturbation now is only due to the
curvature of the solar surface and, therefore, negligible if the distance between the footprints of the MFR is much less than the
solar radius.  Second, we have developed an efficient technique for optimizing the axial current and shape of the MFR to
minimize residual magnetic forces in a modeled MFR configuration prior to its line-tied MHD relaxation. The optimization is
performed by using Gauss-Newton method of least squares, which is presently implemented as a package of programs written in
Fortran and Maple.   It allows one to make the optimization on laptops within less than hour for the cases considered so far.  The
performance can be improved by implementing the optimization method fully in Fortran.
   We have applied our updated method to modeling pre-eruptive configurations of the February 13 CME event.  This application
has demostrated the viability of the method and revealed its new capabilities.  Our optimized solutions were relaxed in line-tied
zero-beta MHD simulations toward force-free states to provide sigmodial configurations whose cores have a nontrivial magnetic
structure.  The cores contain an MFR nested within a sheared magnetic arcade, which are both separated from the neighboring
structure by curved current layers.  Depending on how large the total axial current in the relaxed configuration is, the core can
also contain a vertical current layer nested below the MFR within the arcade.  This vertical current layer itself is another sheared
arcade of a smaller height whose central narrow region is filled with short field lines.  It is interesting that all these current layers
are well aligned with QSLs formed in the configuration during its relaxation.  The partition of the core field by the QSLs reveals
building blocks that match very well to morphological features typically observed in eruptive configurations with a bipolar
distribution of the photospheric magnetic field (Moore et al. 2001).
     The demonstrated new capabilities of the updated RBSL method suggest that it will be beneficial for the modeling of
particular eruptive events as well as for theoretical studies of idealized pre-eruptive magnetic configurations.
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