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Abstract

The 2017 National Academy of Sciences Decadal Survey highlighted several high priority objectives to be pursued during the next

decadal timeframe, and the next-generation Cloud Convection Precipitation (CCP) observing system is thereby contemplated.

In this study, we investigate the capability for ice cloud remote sensing of two CCP candidate observing systems that include

a W-band cloud radar and a submillimeter-wave radiometer by developing hybrid Bayesian algorithms for the active-only,

passive-only, and synergistic retrievals. The hybrid Bayesian algorithms combine the Bayesian MCI and optimization process to

retrieve quantities and uncertainty estimates. The radar-only retrievals employ an optimal estimation methodology, while the

radiometer-involved retrievals employ ensemble approaches to maximize the posterior probability density function. The a priori

information is obtained from the Tropical Composition, Cloud and Climate Coupling (TC4) in situ data and CloudSat radar

observations. Simulation experiments are conducted to evaluate the retrieval accuracies by comparing the retrieved parameters

with the known values. The experiment results suggest that the radiometer measurements provide little information on the

vertical distributions of ice cloud microphysics. Radar observations have better capacity for retrieving water content compared

to particle number concentration. The synergistic information is demonstrated to be helpful in improving retrieval accuracies,

especially for the ice water path retrievals. The end-to-end simulation experiments also provide a framework that could be

extended to the inclusion of other remote sensors to further assess the CCP observing system in future studies.
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Abstract13

The 2017 National Academy of Sciences Decadal Survey highlighted several high prior-14

ity objectives to be pursued during the next decadal timeframe, and the next-generation15

Cloud Convection Precipitation (CCP) observing system is thereby contemplated. In this16

study, we investigate the capability for ice cloud remote sensing of two CCP candidate17

observing systems that include a W-band cloud radar and a submillimeter-wave radiome-18

ter by developing hybrid Bayesian algorithms for the active-only, passive-only, and syn-19

ergistic retrievals. The hybrid Bayesian algorithms combine the Bayesian MCI and op-20

timization process to retrieve quantities and uncertainty estimates. The radar-only re-21

trievals employ an optimal estimation methodology, while the radiometer-involved re-22

trievals employ ensemble approaches to maximize the posterior probability density func-23

tion. The a priori information is obtained from the Tropical Composition, Cloud and Cli-24

mate Coupling (TC4) in situ data and CloudSat radar observations. Simulation exper-25

iments are conducted to evaluate the retrieval accuracies by comparing the retrieved pa-26

rameters with the known values. The experiment results suggest that the radiometer mea-27

surements provide little information on the vertical distributions of ice cloud microphysics.28

Radar observations have better capacity for retrieving water content compared to par-29

ticle number concentration. The synergistic information is demonstrated to be helpful30

in improving retrieval accuracies, especially for the ice water path retrievals. The end-31

to-end simulation experiments also provide a framework that could be extended to the32

inclusion of other remote sensors to further assess the CCP observing system in future33

studies.34

1 Introduction35

The 2017 earth science decadal survey (Board et al., 2019) identified five designated36

foundational observations to be pursued during the 2017-2027 time frame, and the Aerosols37

(A), and Clouds, Convection, and Precipitation (CCP) are included as designated ob-38

servables (DOs). In the preformulation study, the A and CCP DOs were merged to ex-39

ploit synergies in the measurement systems. The objective of the preformulation study40

was to identify measurables that can achieve the science objectives of the DOs. As such,41

the study identified observing system architectures that maximize science benefit while42

limiting cost and risk. To narrow in on a set of viable architectures, the ACCP study43

relied on a suite of Observing System Simulation Experiments (OSSEs) aimed at address-44

ing pixel-level retrieval uncertainties and sampling trade-offs for various geophysical vari-45

ables that were deemed important to achieving science goals.46

The properties of ice clouds are among the critical geophysical variables in the CCP47

science objectives. Ice clouds play a significant role in modulating the energy budget of48

the earth system by absorbing upwelling long-wave radiation emitted from the lower tro-49

posphere and reflecting incoming solar short-wave radiation (Liou, 1986; Su et al., 2017).50

Studies suggest that ice clouds are a net heat source to the climate system (Stephens &51

Webster, 1984; Berry & Mace, 2014) while contributing a positive feedback to the cli-52

mate system (Zelinka & Hartmann, 2011).53

The radiative effects of ice clouds depend on the vertically integrated and the ver-54

tical distribution of ice particle characteristics (Ackerman et al., 1988; Hartmann & Berry,55

2017). Microwave RAdio Detection And Ranging (RADAR) and the submillimeter-wave56

radiometry are two critical techniques for ice cloud remote sensing that are strongly syn-57

ergistic when combined (Buehler et al., 2012). The microwave radar provides radar re-58

flectivity that constrain ice cloud microphysical quantities in a vertically resolved sense59

while the submillimeter-wave radiometer constrains integrated mass and particle size.60

These two techniques are also highly complementary. The nadir looking microwave cloud61

radar provides high resolution of ice cloud vertical profiles but are limited to the along-62

track measurements, whereas the scanning submillimeter-wave radiometer has a wide63
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swath but provides limited information about cloud vertical structure. Combing the strength64

of both observing sensors enhances our capability to better acquire ice cloud spatial dis-65

tributions.66

Several retrieval algorithms have been developed specifically for ice cloud radiom-67

etry studies. All applicable algorithms that could be roughly classified as statistical ap-68

proaches and optimization approaches are under the framework of Bayes theorem. The69

statistical approaches, including the Bayesian Monte Carlo Integration (MCI) (Evans et70

al., 2002, 2005) and the Neural Network (Jimenez et al., 2007; Brath et al., 2018), builds71

up an a priori database by randomly generating atmospheric/cloud cases according to72

a prior probability density function (PDF) and simulating instrument-specific measure-73

ments. The retrieval results are obtained through interpolation over the precalculated74

databases. To solve the sparsity of database cases in the measurement space, optimiza-75

tion algorithms are developed to maximize the posterior PDF. Evans et al. (2012) ap-76

plied the Optimal Estimation Method (OEM) and Markov Chain Monte Carlo (MCMC)77

to retrieve ice cloud profiles from the Compact Scanning Submillimeter Imaging Radiome-78

ter (CoSSIR; (Evans et al., 2005)) observations during the Tropical Composition, Cloud79

and Climate Coupling (TC4; (Toon et al., 2010)) experiment. Liu et al. (2018) proposed80

an ensemble estimation algorithm that does not use the gradient information but always81

relies on estimating posterior PDF to minimize the cost function. For the combined radar82

and radiometer retrievals, Pfreundschuh et al. (2020) developed OEM algorithms for the83

upcoming Ice Cloud Imager radiometer (Kangas et al., 2014) and a conceptual W-band84

cloud radar to investigate to synergies between the active and passive observations.85

The objective of this paper is to develop candidate algorithms for synergistic radar86

and radiometer retrievals to quantitively assess the capability of sensing designated ice87

cloud geophysical variables for the next-generation ACCP observing system. The algo-88

rithms for active-only, passive-only, and combined retrievals use a hybrid Bayesian frame-89

work, which combines the Bayesian MCI and optimization process to retrieve ice cloud90

quantities with uncertainty estimates. This paper is structured as follows: Section 2 de-91

scribes the objective submillimeter-wave radiometer and the reference cloud sense used92

for testing the retrieval accuracies; Section 3 describes the hybrid Bayesian algorithms93

for the radar-only, radiometer-only, and synergistic retrievals in detail; Section 4 describes94

the a priori database that is derived from in situ data and CloudSat Cloud Profiling Radar95

observations; Section 5 conducts the retrieval simulation experiments and quantitively96

evaluates the retrieval performance; and finally, Section 6 presents the summaries and97

conclusions.98

2 Simulated observations99

2.1 remote sensors100

The remote sensors we evaluate in this study include a W-Band radar and a (sub)millimeter101

wave radiometer both of which are candidates in the ACCP observing system. The W-102

band cloud radar that we assume here is similar to the Cloud Profiling Radar (CPR) in103

the CloudSat satellite (Stephens et al., 2008; Tanelli et al., 2008). The passive radiome-104

ter we consider is conical-scanning with 16 horizontally polarized channels at the frequen-105

cies of 118 1.1, 118 1.5, 118 2, 118 5, 183 1, 183 2, 183 3, 183 6, 240, 310, 380 0.75,106

380 1.5, 380 3, 380 6, 660, and 880 GHz. Most frequency channels are centered on wa-107

ter vapor absorption lines. This radiometer has a 45 off-nadir angle and a 750 km swath108

width. Figure 1 shows the simulated clear-sky brightness temperature (BT) spectrum109

for a tropical atmospheric scenario. All passive sensors channel positions and a detailed110

view of the double sidebands located on either side of a central frequency are shown.111
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Figure 1. Simulated clear-sky brightness temperature spectrum at a tropical atmospheric

scenario. All ACCP radiometer channel positions and a detailed view of the double sidebands

located on either side of a central frequency are present.

2.2 reference cloud scenes112

The major consideration in selecting reference cloud scenes is to guarantee its in-113

dependence with the cloud microphysics in the a priori retrieval database (see more de-114

tails in Section 4.2), but also to keep the two datasets consistent in a geographic con-115

text. In this study, we select cloud profiles along a tropical transect that are simulated116

using the Environment and Climate Change Canada (ECCC) model (Chen et al., 2018)117

and those profiles were made available to the ACCP Science Impacts Team (Kollias, per-118

sonal communication). The model outputs provide the water content and number con-119

centration for cloud ice, snow, liquid cloud, and rain, but only frozen cloud particles (ice120

and snow) are used in this study since only ice cloud vertical profiles are presently syn-121

thesized in the a priori database (refer to Section 4.2 for more details). In the numer-122

ical models, cloud ice is generally characterized by high particle number densities and123

small particle sizes, while snow is characterized by lower number densities and larger par-124

ticle size. The model outputs have a vertical resolution of 100-meter, but all atmospheric125

profiles and microphysical cloud parameters are interpolated according to a range gate126

spacing similar to CloudSat. We select a transect among the ECCC mode outputs which127

covers the region between -2.5 and 9 latitude. The selected cloud scenes for testing con-128

tain 1280 atmosphere/cloud profiles in total.129

We develop the forward model for both active and passive simulations based on the130

Atmospheric Radiative Transfer Simulator (Buehler et al., 2005; Eriksson et al., 2011).131

ARTS is dedicated to radiative transfer calculations in the millimeter and submillime-132

ter spectral range. The recently published Single Scattering Databases (SSD) for total133

random orientation (Eriksson et al., 2018) and azimuthal random orientation (Brath et134

al., 2020) make it more powerful in investigating various ice cloud properties. The ARTS135
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forward model developed in this study employs the two-moment scheme that requires136

both water content and number concentration as input to describe the particle size dis-137

tribution (PSD). The frozen particles are assumed to be randomly orientated, and the138

scattering properties for both ice and snow are approximated by the EvansSnow habit139

from the ARTS SSD database. The forward model used during the optimization pro-140

cess applies the same particle habit since the uncertainties introduced by various par-141

ticle habits are not investigated in this study.142

Figure 2 shows the vertical distribution of water content and number concentra-143

tion for cloud ice and snow particles along the selected latitudinal transact and the cor-144

responding W-band radar simulations. The radar minimum sensitivity is set to be -30145

dBz, thus some thin clouds are not detected. Compared to the number concentration,146

the radar simulations show more tendency to follow the variation of IWC. Figure 3 shows147

the IWP and the corresponding BT simulations for all ACCP radiometer channels. A148

clear relationship between the IWP and BT depression is evident. The channels with higher149

central frequency are more sensitive to the change of water path. For the double side-150

bands centered on the same center frequency, the large frequency-offset channels show151

higher brightness temperature values in clear sky conditions, and they have larger BT152

depressions when encountering thick ice cloud layers.153

Figure 4 shows the scatterplot of the BT difference between simulations in the clear154

sky and cloudy conditions versus IWP for different channels. The 118 GHz channels demon-155

strate sensitivity when the IWP is over 103g/m2. This is not surprising since the 118 GHz156

channels are primely designed for sensing temperature profiles. For the 183 GHz and 380157

GHz channels, the biggest BT differences are up to 50 K and 80 K, respectively. Also,158

the 380 GHz channels simulations show more separation for the same IWP values, im-159

plying that the high-frequency channels are more sensitive to the IWC vertical distri-160

butions. The BT difference for the 660 GHz and 880GHz window channels are notice-161

able even when the IWP is below 100 g/m2, and the difference values could up to 110162

K under our reference cloud sense. These two channels make the ACCP radiometer ca-163

pable of sensing thin clouds that are usually composed of small particles. However, both164

660 and 880 GHz show signs of saturation for IWP in excess of 103g/m2.165

3 Hybrid Bayesian algorithms166

We developed different hybrid Bayesian algorithms for the radar-only, radiometer-167

only, and synergistic retrievals of ice cloud parameters from the reference cloud scenes.168

All hybrid algorithms combine Bayesian MCI with optimization processes to retrieve quan-169

tities and uncertainty estimates. Bayesian MCI introduces the prior information by gen-170

erating an ensemble of atmospheric cases that are distributed according to the prior PDF171

to build up the retrieval database, which is highly efficient since the retrievals are done172

by interpolating the database cases and no more forward model calculations are required.173

By assuming the uncertainties for different measurement variables to be independent,174

the conditional PDF, which is also the posterior PDF, can be written as:175

pcond(x|yobs) ∝ exp(−
1

2
χ2) χ2 =

M∑
j=1

(ysim,j − yobs,j)2

σ2
j

(1)176

where pcond is the conditional probability of the measurement vector yobs given a par-177

ticular atmospheric state x, ysim is the simulated observation vector, and σ2
j is the un-178

certainty of observation and forward model. The retrieved quantities and uncertainties179

are calculated by Monte Carlo Integration over the state vectors to find the mean vec-180
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Figure 2. Vertical distribution of water content (WC) and number concentration (NC) for

ice and snow particles along the selected latitudinal transact and the corresponding W-band

radar reflectivity simulations. The radar simulations are computed using Atmospheric Radiative

Transfer Simulator (ARTS) forward model.
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Figure 3. Integrated water content for ice and snow particles for the selected latitudinal tran-

sect and the corresponding brightness temperature simulations for all ACCP radiometer channels.

Figure 4. Scatterplot of the brightness temperature difference between simulations in the

clear sky and cloudy conditions as a function of ice water path for all ACCP radiometer channels.
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tor and the associated standard deviation:181

x̄ =

∑
i xiexp(−

1
2χ

2
i )∑

i exp(−
1
2χ

2
i )

σx̄ =

√∑
i(xi − x̄)2exp(− 1

2χ
2
i )∑

i exp(−
1
2χ

2
i )

(2)182

The biggest problem for the Bayesian MCI is the sparsity in the measurement space183

for a retrieval database with a finite number of cases. If we increase the length of the184

observation vector or decrease the measurement uncertainties, the number of database185

cases that match the observation vector become smaller and the Bayesian MCI fails. When186

this happens, the optimization process is begun to maximize the posterior PDF.187

3.1 Radar-only retrievals188

The optimization algorithm for radar retrievals is based on the robust and efficient189

OEM algorithm. OEM assumes that the forward model is moderately nonlinear and that190

both prior PDF and conditional PDF are Gaussians. OEM maximizes the posterior PDF191

by minimizing the following cost function:192

J = (F (x)− y)TS−1
y (F (x)− y) + (x− xa)TS−1

a (x− xa) (3)193

where F (x) is the forward model simulation, Sy and Sa are the covariance matrix for194

the measurement and prior uncertainties. In this study, the Levenberg-Marquardt min-195

imization method (Rodgers, 2000) is implemented, and the required Jacobian matrix is196

calculated by perturbing the cloud microphysical parameters in each pixel. The initial197

state vector is constructed by implementing Bayesian MCI to each reflectivity value in198

different layers using the precalculated radar retrieval database described in Section 4.1.199

The posterior error covariance matrix specified below is used to characterize the retrieval200

uncertainties:201

S = (S−1
a +KTS−1

y K)−1 (4)202

where K is the Jacobian matrix to linearize the forward model. This covariance matrix203

is also derived based on the local Gaussian approximation and the forward model lin-204

earization assumption. The relative change of the cost function J is considered as the205

criteria for testing converge. The OEM optimization terminates if the relative change206

of J is below a specified threshold or the algorithm is over a certain number of iterations.207

3.2 Radiometer-involved retrievals208

The radiometer-involved retrievals that include the passive-only and the synergis-209

tic retrievals that also include radar do not use the OEM algorithm since it does not con-210

verge if the Jacobian matrix for BT is computed by perturbing vertically resolved ice cloud211

microphysical parameters. The applicable Jacobian matrix is usually obtained in two dif-212

ferent ways. The first one is based on the adjoint modeling of radiative transfer. The ad-213

joint approach is applied in some models like SHDOMPPDA (Evans, 2007), but it is not214

available in the ARTS forward model used here. A second approach is developed by the215

ARTS community, which does not calculate the BT sensitivity to the ice cloud micro-216

physical parameters but to the scaling parameters in a normalized particle size distri-217

bution formalism proposed by Delanoe et al. (2005). In this study, however, since the218

in situ data are analyzed based on different PSD scheme and the a priori information219

is specified in terms of microphysical parameters, this approach is also not employed. In-220

stead, we employ the ensemble approaches to handle the radiometer-involved optimiza-221

tions. The ensemble approaches are discussed in the following two subsections.222
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3.2.1 synergistic retrievals223

The synergistic radar and radiometer retrievals are done by extending the radar224

OEM algorithm to add the radiometer observations. The radar OEM algorithm provides225

the retrieved values and the associated uncertainty estimations. Following this step, the226

Cholesky decomposition is implemented on the covariance matrix and an ensemble of227

random cases with a correlated Gaussian distribution around the radar retrieved vec-228

tor is generated. This is done by decomposing the covariance matrix into a lower trian-229

gular form and then multiplying the result by the standard normalized vectors. The cor-230

responding BT simulations are subsequently computed by the radiative transfer model.231

The final retrieval results are calculated by the Bayesian MCI after evaluating the sim-232

ulated cases according to their distance to the BT measurement vector, as indicated in233

Eq. (2).234

3.2.2 radiometer-only retrievals235

We employ the Ensemble Estimation Algorithm (EnEA) as the optimization pro-236

cedure for radiometer-only retrievals. The EnEA was first proposed by Liu et al. (2018),237

and we continue to develop it as an optimization methodology. This algorithm is nom-238

inally proposed for the submillimeter-wave radiometer, but it is generally applicable to239

other remote sensors as well. The EnEA algorithm has advantages in the following as-240

pects. First, the algorithm does not rely on gradient information to move forward. Since241

the Jacobian calculations are either complex to implement or computationally expen-242

sive, the EnEAs characteristic of no Jacobian dependence makes it suitable for ice cloud243

profile retrievals that have high dimensional state vectors using advanced radiative trans-244

fer models. Second, the EnEA is always is under the Bayesian MCI framework. This frame-245

work not only provides a solid theoretical basis but also offers a straightforward way to246

estimate the retrieval uncertainty associated with each retrieved quantity.247

The EnEA stochastically explores the state vector space by sampling an explicit248

probability distribution function estimated from promising weighted cases found so far249

from the perspective of Bayesian MCI. The algorithm consists of two modules: the es-250

timation module numerically estimates the unknown continuous posterior PDF using the251

discrete cases with posterior values in the last ensemble, and the sampling module syn-252

thesizes new cases according to the accumulated PDF. Started from the situation where253

too few a priori database cases matching the observations, the EnEA artificially inflates254

the measurement uncertainties so that there are enough matches between the observa-255

tion vector and the BT simulations from the a priori profiles. The algorithm then com-256

putes the posterior values and applies a reselect procedure to make the weights of selected257

cases equivalent again. The covariance matrix of selected atmosphere profiles is calcu-258

lated, and then it is used in a principal components method to generate new MCI cases259

having a Gaussian distribution around each of the selected cases, with the Gaussian de-260

viates scaling with the previous posterior PDF. Once a new ensemble of random cases261

is synthesized and the corresponding BT is simulated, the algorithm evaluates these cases262

based on the prior PDF and likelihood PDF, and the optimization cycle starts again.263

As the iteration proceeds, the ensemble evolves and gradually becomes concentrated in264

the most likely area, compensating for the sparse distribution of the original retrieval265

database. The iteration stops when meeting a specified criterion, and the remaining cases266

in the last ensemble are used to calculate the mean parameter values (retrieved values)267

and standard deviations (retrieved uncertainties) by Bayesian MCI. More details about268

the algorithm implementation can be found in (Liu et al., 2018).269

Several components in the EnEA method are updated in this study to make this270

algorithm more applicable in actual retrievals. Firstly, instead of only relying on the Global271

Environmental Multiscale Model (Cote & Staniforth, 1998) output, we build up a pre-272

calculated retrieval database according to the a priori PDF derived from in situ mea-273
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surements and space-borne radar measurements to make the synthesized ice cloud pro-274

files more realistic and representative (Liu & Mace, 2020). Secondly, the retrieval per-275

formance of the EnEA is now evaluated by keeping the ice cloud vertical profiles in the276

a priori database and the ones used for testing to be completely independent. Thirdly,277

a new strategy is applied to deal with the regularization term that constrains the syn-278

thesized profiles to follow our prior knowledge. Liu et al. (2018) employed a normally279

distributed prior PDF which uses the Bayesian MCI estimates that are computed from280

the initial retrieval database by inflating measurement noise as the mean vector. The281

drawbacks of the method are twofold. First, the a priori PDF is required to be Gaus-282

sian, which made the EnEA less attractive since the algorithm is intended to handle the283

retrievals where prior PDF could have any functional form. Second, this method depends284

on a parameter to characterize the strength of the regularization. This parameter needs285

to be tuned experimentally, and the tuning itself could be a difficult optimization prob-286

lem. In this study, the control vector transformation method applied in Evans et al. (2012)287

is employed. This allows the implementation of prior constraints even when the real a288

priori distribution is highly non-Gaussian. This method will be discussed in detail in Sec-289

tion 4.2.290

4 Prior information291

The key element in implementing the Bayesian MCI is to build up the retrieval database,292

which generally consists of two steps: creating random atmosphere and ice cloud prop-293

erties that are distributed according to the prior PDF and computing the simulated radar294

reflectivity or BT using the forward model. In this study, we separately develop two prior295

databases for radar and radiometer retrievals using prior information from in situ mea-296

surements and CloudSat observations.297

4.1 Radar retrieval database298

The realistic ice cloud microphysical probability distributions used for building up299

the radar retrieval database is obtained from the in situ data from instruments flown in300

the TC4 campaign. The in situ ice particle size distribution (PSD) is obtained from the301

two-dimensional stereo (2D-S) probe and the precipitation imaging probe (PIP). The bi-302

modal PSD scheme which approximates both small and large particle distribution modes303

by gamma functions is used to fit the in situ data, and the ice cloud parameters, includ-304

ing ice water content (IWC), number concentration (NC), and particle size are derived.305

More details about TC4 in situ analysis could be found in (Liu & Mace, 2020). A multi-306

variant Gaussian distribution in temperature, ln(IWC), and ln(NC) is used to capture307

the in situ statistics, using the prior idea that the microphysical parameters are approx-308

imately lognormally distributed. Using a multi-variant Gaussian function shows several309

advantages in generalizing the in situ statistics: first, it specifies the microphysical PDF310

using a few parameters; second, it facilitates the following radar OEM algorithm, which311

explicitly requires a normally distributed prior PDF; third, it reasonably covers the space312

where the in situ probes fail to detect, which is important since the random cases need313

to completely cover the possible parameter range. The parameters for the TC4 multi-314

variant Gaussian function are summarized in Table 1. A number of random cases (30,000315

cases in this study) are sampled from the Gaussian function, and the ARTS radar for-316

ward model is used to simulate the reflectivity for each random case.317

Figure 5 shows the two-dimensional histogram for the microphysical quantities and318

reflectivity simulations in the radar retrieval database. The middle panel and the right319

panel indicate that the radar reflectivity simulations have a strong correlation with IWC320

in the whole range, but its correlation with NC is much weaker.321
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Table 1. Ice particle microphysical statistics defining the a priori Gaussian probability distri-

bution derived from the TC4 in situ data

ln(IWC) (g/m3) ln(NC) (/m3) Temperature (K)

mean -6.04 9.88 231.07
std 2.45 1.81 12.41
correlation ρln(iwc)−ln(nc) = 0.69 ρln(iwc)−tp = 0.17 ρln(nc)−tp = −0.10

Figure 5. Two-dimensional histogram for the microphysical quantities and the W-band

radar reflectivity simulations derived from the random cases in the precalculated radar retrieval

database.

4.2 Radiometer retrieval database322

Apart from using the TC4 in situ microphysical statistics, we also use the Cloud-323

Sat observations to acquire the critical coherent vertical correlations to synthesize the324

random ice cloud profiles for radiometer retrieval database creation. The data we use325

include CloudSat radar reflectivity, CALIPSO lidar cloud fraction, and the correspond-326

ing ECMWF profiles of temperature and relative humidity. The active remote sensing327

data profiles are combined with the TC4 cloud microphysical probability distributions328

where we employ the Bayesian MCI algorithm to create vertical profiles of microphys-329

ical properties that are consistent with the measurements and the in situ statistics. Af-330

ter that, the cumulative distribution functions (CDFs) and empirical orthogonal func-331

tions (EOFs) procedures are applied to capture the complete single-point and two-point332

statistics and then to create any number of synthetic microphysical and thermodynamic333

profiles (100,000 profiles in this study) that are statistically consistent with the Bayesian334

retrieval results. A comprehensive discussion on creating synthetic ice cloud profiles can335

also be found in Liu and Mace (2020).336

As mentioned in section 3.2.2, we employ the control vector transformation method337

to implement the prior constraint. The CDFs are used to capture the one-point statis-338

tics by sorting the variable at different layers from smallest to largest in value and cal-339

culating the sum of the assigned equal probabilities up to each datum. The percentile340

ranks at different layers are transformed into Gaussian derivate matrix using the stan-341

dard normal cumulative distribution function:342

ξi = φ−1(R(xi)) (5)343

where φ(ξ) is the standard normal cumulative distribution function, and R(xi) is the per-344

centile ranks for different parameters at different layers. For a new ensemble, the strength345

of the prior constraints for different ice cloud profiles is determined by their ξ values. This346

step allows the implementation of a more realistic prior PDF that is captured by the CDFs.347
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Figure 6. Profiles of ice water content (IWC), number concentration (NC), temperature,

and relative humidity for seven percentiles in the cumulative distributions for the random atmo-

spheric/cloud profiles in the precalculated radiometer retrieval database.

Figure 6 shows the profiles of IWC, NC, temperature, and relative humidity for seven348

percentiles in the cumulative distributions. Layers that are identified as clear are added349

with random Gaussian noise to prevent discontinuity in the CDFs. The mean values for350

the added IWC and NC noise are 10−6g/m3 and 10 m−3, respectively. The left two pan-351

els show that the a priori IWC profiles cover the range from clear condition to about 10352

g/m3, and the NC profiles cover the range up to about 106m−3. The 50% curve only has353

meaningful values in the 11 to 13 km high range, indicating that the ice cloud particles354

are mostly concentrated in this region. The 75% curve implying that a large majority355

of atmospheric conditions outside the 9 to 14km range are effectively clear. The right356

two panels show that the a priori temperature profiles have a small range of tempera-357

ture coverage under the tropical atmospheric conditions applied in this study, and the358

relative humidity profiles have a large possible range, almost coving the entire possible359

values from 0 to 1.360

The precalculated retrieval database provides a good opportunity for estimating361

the degrees of freedoms (DoF) for the ACCP radiometer. The DoF describes the num-362

ber of independent pieces of information in the radiometer measurement since some chan-363

nels provide redundant information. The DoF is usually calculated as the trace of the364

averaging kernel matrix based on the Jacobian matrix (Rodgers, 2000), but a more gen-365

eral method described in Eriksson et al. (2020) is employed here since the Jacobian ma-366

trix for BT is not available in this study. This method calculates the DoF in the mea-367

surement space based on the Empirical Orthogonal Function (EOF) approach. The co-368

variance matrix of a set of simulated BT is decomposed using EOF:369

Sy = EΛET (6)370

where E is the eigenvector and Λ is the diagonal matrix containing the corresponding371

eigenvalues. The Gaussian measurement noise in eigenspace is transformed back using372

the same eigen coordinate axes:373

SΛ = ESξE
T (7)374

where Sξ is the diagonal matrix that contains the square of measurement noise for dif-375

ferent channels. The DoF is defined as the number of diagonal elements in Sy that are376

larger than the corresponding value in SΛ in the same place.377

Figure 7 shows the DoF of the ACCP radiometer as the function of the ice water378

path (IWP) and integrated water vapor (IWV). The necessary radiometer measurement379
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Figure 7. The Degree of Freedoms (DoF) for the ACCP radiometer as the function of the

ice water path and integrated water vapor. The DoF is estimated using the radiometer retrieval

database that has 100,000 random atmospheric/cloud profiles.

noise is configured by referring to the CoSSIR uncertainties that are obtained from cal-380

ibration target fluctuation statistics applied in Evans et al. (2012). The double-sideband381

channels for 118 GHz, 183 GHz, 380 GHz are set to have uncertainties of 1.5K, 1.6K,382

2.3K, and the window channels uncertainties for 240 GHz, 310 GHz, 660 GHz, 880 GHz383

are set to be 2.0 K, 2.3 K, 2.5 K, 4.0K, respectively. The DoF is computed only when384

the number of random cases in a certain IWV-IWP range is larger than 10 to avoid noise385

interference. It can be seen that the DoFs increase with IWP. The DoFs are mostly zero386

when the IWP values are smaller than 20 g/m2, indicating the ACCP radiometers lim-387

itation for IWP detection. The DoFs generally equal to 1 in 20 to 70 IWP range, and388

equal to 2 in 70 to 110 IWP range. This analysis is consistent with the plots in Figure389

4, which show that only the 660Ghz and 880 GHz channels are sensitive to the thin cir-390

rus clouds. When IWP is over 300 g/m2, the DoF is mostly between 6 to 8, and the DoF391

is over 10 very occasionally.392

5 Retrieval Simulation Experiment and Results393

We conduct simulated retrieval experiments to evaluate the retrieval accuracy of394

ice cloud microphysics for the objective ACCP remote sensors. The simulation obser-395

vations for the W-band radar and the submillimeter-wave radiometer under the selected396

reference cloud scenes are presented in section 3.1. After adding measurement noise, the397
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simulated observations are input to the hybrid Bayesian algorithms to retrieve desired398

quantities and uncertainty estimates. The retrieved parameters are then compared to399

the true values to quantitively assess the retrieval accuracies.400

Several configurations in the hybrid Bayesian algorithms are summarized here. The401

independent Gaussian noise with standard deviation according to the absolute instru-402

ment accuracy (1 dBz in this study) is added to the simulated radar observations, but403

we applied 4 dBz Gaussian noise in the Bayesian retrievals to also include the forward404

model uncertainty that would be realized from imperfect knowledge of ice crystal bulk405

density to make the simulation experiments more realistic. The 4 dBz measurement un-406

certainty is estimated based on the study of Mace and Benson, 2017. Similarly, the Gaus-407

sian noise of 1K is added to the simulated BT in each channel to characterize the ab-408

solute accuracy, but more realistic uncertainty estimations specified in section 4.2 are409

used in the Bayesian retrievals. For the radar-only retrievals, the initial state vector for410

the OEM optimization is stochastically generated layer by layer based on the Bayesian411

MCI algorithm using the precalculated radar retrieval database. The retrieval process412

precedes from top down, and the generated radar attenuation is used to correct the radar413

reflectivity below. The Bayesian MCI retrievals are only applied to the layers with cor-414

rected radar reflectivity larger than the minimum sensitivity (-30 dBz). The a priori PDF415

used in the OEM optimization only utilizes the statistical Gaussian parameters listed416

in Table 1, and the vertical correlations between ice cloud microphysics at different lay-417

ers are not considered. For the synergistic retrievals, 500 random cases are generated from418

the radar OEM retrieval results to add BT measurement information using Bayesian MCI.419

For the radiometer-only retrievals, the ensemble estimation retrievals stop when either420

of the two following termination criteria is satisfied: a number of random cases (25 cases421

in this study) matching the observations within a specified χ2 threshold are obtained in422

one ensemble, or the number of iterations exceeds a specified value. The χ2 threshold423

is set as M+4
√
M , where M is the number of radiometer channels. This configuration424

is based on the fact that the mean value and variance of the χ2 istribution are M and425

2M, respectively. Considering that the radiative transfer simulations for an ensemble of426

atmospheric and cloud profiles are computationally intensive, the limitation for the num-427

ber of iterations is set to be 3. 500 random cases in the first ensemble and 100 cases in428

the following two ensembles are generated to statistically explore the state vector space.429

Figure 8 and figure 9 show the direct comparison between the true values and the430

retrieval results for IWC and NC profiles along the ECCC model transect. The retrieval431

results for radar-only, radiometer-only, and combined are presented sequentially. We find432

that there is essentially no information regarding the ice cloud vertical profiles in the ra-433

diometer measurements. For the active-only retrievals, the retrieved IWC profiles real-434

istically reproduce the vertical structure of the reference cloud scenes. The retrieve val-435

ues also correspond to the true values in general, even though sometimes the retrievals436

tend to underestimate the IWC values, especially on the top of the cloud ranging from437

10 km to 15 km in height. By contrast, the active-only retrievals for NC profiles perform438

much worse. The true NC values cover the range from 10 m−3 to over 106 m−3, but the439

radar retrievals do not vary too much, usually concentrating around domains in 103 m−3
440

to 105 m−3 range. The retrieval results again illustrate that the radar measurements are441

much more sensitive to the IWC variation of IWC compared to the NC variation. For442

the synergistic retrievals, obvious perturbations can be observed for both IWC and NC443

profiles and the results become less smooth compared to the radar-only retrievals. The444

added radiometer observations tend to correct the IWC underestimation discussed above.445

Before we further analyze the retrieval results quantitively, we would like to inves-446

tigate the effectiveness of the updated ensemble estimation algorithm first. The algorithm447

is now evaluated by ensuring the independence between the vertical profiles in the pre-448

calculated prior database and the ones in the reference cloud scenes. Also, a new strat-449

egy regarding the addition of prior constraints during ensemble optimization is imple-450
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Figure 8. Comparison between the true values and the retrieval results for ice water content

profiles along the selected latitude transect. The retrieval results for radar-only, radiometer-only,

and combined are presented sequentially.
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Figure 9. Same as figure 8 but for the retrieval results of number concentration.
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mented. The top panel of figure 10 shows the comparison of the minimum χ2 values that451

exist in the a priori database and in the last ensemble after optimization. The χ2 thresh-452

old determined by the number of channels is also shown in a dotted grey line. The de-453

crease of the cost function is observed over the whole range, indicating that the BT sim-454

ulations after optimization better reproduce the measurements within the observation455

uncertainties. For most of the input BT measurements, the best database cases have χ2
456

values smaller than 100, implying that the prior radiometer database with 100,000 ran-457

dom cases covers the BT space well. In these situations, the ensemble estimation algo-458

rithm generally reduces the cost function below the specified χ2 threshold. In the region459

between 2 to 4 latitude, the minimum χ2 values in the a priori database are always over460

100, indicating the inevitable sparsity in the measurement space for a database with a461

finite number of discrete samples. The corresponding optimized χ2 values are still large,462

but the χ2 reduction compared to the original values is clear. The bottom panel shows463

the comparison of the retrieved IWP before and after the ensemble estimation optimiza-464

tion. The retrievals before ensemble optimizations are computed by Bayesian MCI us-465

ing the a priori database, even though only a few cases have contributions to the inte-466

gration. The true IWP values are shown in a black dot line for reference. We find that467

the database retrievals closely follow the true IWP values under the thin ice cloud sit-468

uation, but we find a clear underestimation when the IWP is over 103 g/m2. The database469

retrieval accuracies are highly correlated to the χ2 value shown on the top panel. Some470

database retrievals remain the same for different BT input between 2 to 4 latitude, im-471

plying the fact that the same database cases respond to different observations during MCI,472

which further indicates the sparse distributions in the relevant BT space region. The op-473

timization retrievals do not make clear differences when the IWP values are small, but474

noticeable improvements are seen when IWP is over a certain value. These figures demon-475

strate that the ensemble estimation algorithm effectively improves the retrieval perfor-476

mance compared to the retrievals that only depend on the a priori database. Only the477

ensemble estimation retrieval results are discussed below.478

Figure 11 shows the retrieved IWP values for the passive-only, radar-only, and com-479

bined retrievals based on the hybrid Bayesian algorithms. The top panel directly com-480

pares the retrieved IWP to the true values along the latitudinal transect, and the bot-481

tom panel shows the logarithmic errors to make the comparisons clearer. The logarith-482

mic error is defined as:483

Elog10 = log10(
xretrieved
xtrue

) (8)484

and the 0 dB logarithmic error represents that the retrieved value and true value are iden-485

tical. For the passive-only retrievals, the retrieval errors when IWP is smaller than 100486

g/m2 are high, but the errors become comparable to the active-involved retrievals in other487

circumstances. The active-only retrievals show the tendency to overestimate the IWP488

for thin clouds but underestimate the thick cloud IWP. The combined retrievals are de-489

veloped from the radar OEM results, and substantial improvements in IWP retrieval ac-490

curacy can be seen after adding the ACCP BT measurements. Most retrieval errors are491

between -0.5 dB and 0.5 dB.492

Figure 12 shows the mean IWP absolute logarithmic error in each IWP increment493

as a function of IWP. As expected, the radiometer-only retrieval errors are large for the494

low IWP because the corresponding DoF is very low. The retrieval errors increase when495

IWP is over 103 g/m2, which is primarily because the a priori database does not densely496

cover the relevant region. The IWP absolute errors for the radar-only retrievals remain497

low for the thin cloud. The errors increase when IWP is over 300 g/m2, generally higher498

than the passive-only retrievals under the same cloud scenes. The combined retrievals499

have significant improvements over the whole range, and the mean errors are mainly around500

0.1 dB.501

Figure 13 shows the scatterplots of the retrieved parameters against the true val-502

ues that are colored by density to visualize the retrieval performance. The scatterplots503
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Figure 10. The top panel shows the comparison of the minimum 2 values that exist in the a

priori database and in the last ensemble after optimization for the given brightness temperature

observations. The bottom panel shows the comparison of the retrieved ice water path (IWP)

before and after the ensemble estimation optimization.

for IWC, NC, and IWP are shown in different columns, and the plots for passive-only,504

active-only, and combined retrievals are shown in different rows. Starting from the IWC505

retrievals in the first column, the passive-only retrievals show the largest deviations from506

the diagonal line, which is not surprising since the BT measurements have low sensitiv-507

ity to the vertical distribution of the ice cloud microphysics. The radar-only retrievals508

provide much more accurate results. The scatter of points lies along the diagonal and509

the associated deviations are small. The radar-only retrievals are observed to bias high510

for the tenuous cases and bias low when IWC values are high. The reason for the low-511

end biases is that the radar reflectivity drops below the specified radar sensitivity, and512

the biases at the high end are due to non-Rayleigh effects and attenuation. The com-513

bined retrievals correct the high-end offset, and the scatter plots lie more along the di-514

agonal. The deviations of the combined retrievals are observed to become large. This515

is because the BT measurements are added through an ensemble approach, which gen-516

erates random cases over a large possible range to statistically explore the state vector517

space. For the NC retrievals in the second column, the passive-only retrievals again show518

very little skill. The NC results from the radar-only retrievals do not follow the true val-519

ues well. The retrieved values are always located in the range of 104 m−3 to 105 m−3,520

although the true values vary in a much wider range. The combined retrievals improve521

the NC accuracies a little, but the overall performance is still poor. The IWP retrievals522

show very good performance overall. All retrieved values in different panels follow the523

true values with small associated deviations. The IWP results from passive-only tend524

to underestimate the true values when IWP is small and overestimate the true values525

when IWP is large. The overestimation performance could possibly be corrected if more526

random atmospheric/cloud profiles covering the large IWP range are included in the pre-527

calculated radiometer retrieval database. The active-only retrievals show a similar ten-528
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Figure 11. The top panel shows direct comparison between the retrieved ice water path

(IWP) and the true values along the latitudinal transect. The passive-only, radar-only, and com-

bined retrievals are all displayed. The bottom panel shows the logarithmic errors for different

retrievals to make the comparisons clearer.
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Figure 12. The mean ice water path (IWP) absolute logarithmic error in each IWP increment

as a function of IWP for different retrievals.
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Figure 13. The scatterplots of the retrieved parameters against the true values that are col-

ored by density. The scatterplots for ice water content (IWC), number concentration (NC), and

ice water path (IWP) are shown in different columns, and the plots for passive-only, active-only,

and combined retrievals are shown in different rows.

dency, and significant improvements could be seen for the results from the combined re-529

trievals.530

Figure 14 displays the PDF of the logarithmic errors for different parameters un-531

der different retrieval methods to more quantitively assess the retrieval performance. As532

displayed in the left panel, the IWC logarithmic errors for radiometer-only retrievals cover533

a large range from -4 dB to 2 dB, and the radar-only and combined retrievals are mostly534

concentrated between -1 dB to 1 dB. Compared to the error PDF for radar-only retrievals,535

the PDF for the synergistic retrievals has a smaller offset and smaller variance, even though536

the improvements are not substantial. The NC retrievals displayed in the middle panel537

show little skill with the logarithmic error spreading from -2.5 dB to 2.5 dB. As for the538

IWP retrieval displayed in the right panel, the passive-only and active-only retrievals show539

comparable errors, both distributing between -0.5 dB to 0.5 dB, and significant improve-540

ments for the synergistic retrievals is evident. Figure 15 shows the quantitative statis-541

tics of the absolute logarithmic error to summarize the PDF information. The left panel542

shows the commonly used root-mean-square deviation (RMSD) for different parameters.543

Since the RMSD is easily skewed by a few poor retrievals, the median errors that sep-544
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Figure 14. The probability density function (PDF) of the logarithmic errors for different ice

cloud parameters under different retrieval methods.

Figure 15. The quantitative statistics of the absolute logarithmic error for the retrieved

ice cloud quantities. The left panel shows the root-mean-square deviation (RMSD), and the

right panels show the median errors that separate the higher half from the lower half in all the

retrieval error estimations.

arate the higher half from the lower half in all the retrieval error estimations are displayed545

in the right panel.546

6 Summaries547

In this study we develop a suite of hybrid Bayesian retrieval algorithms for millimeter-548

wave radar and submillimeter-wave radiometer to assess the ACCP observing system ca-549

pability in sensing ice cloud microphysical quantities. The geophysical variables we in-550

vestigate include the IWC, NC, and IWP. The hybrid Bayesian algorithms combine the551

Bayesian MCI and optimization processes to compute retrieval quantities and associated552

uncertainties. The radar-only retrievals employ the OEM optimization algorithm that553

uses gradient information to minimize the cost function. The OEM is initialized by a state554

vector that is constructed by implementing Bayesian MCI to each reflectivity value in555

different layers using the precalculated radar database. The necessary Jacobian matrix556

is calculated by perturbing the ice cloud microphysical quantities in different layers. The557

radiometer-involved retrievals employ ensemble strategies to optimize the ill-posted prob-558

lem. The synergistic radar and radiometer retrievals are done by generating random cases559

from the radar OEM results based on the Cholesky decomposition technique. The BT560
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simulations are then computed, and the Bayesian MCI is implemented to derive the fi-561

nal retrieval results. For the radiometer-only retrievals, the ensemble estimation algo-562

rithm is applied to statistically estimate the posterior pdf using the promising weighted563

cases. The estimation module and the sampling module proceed iteratively to stochas-564

tically explore the state vector space. In addition, a new approach to implement prior565

constrain that allow the a priori PDF to be highly non-Gaussian is proposed to make566

the ensemble algorithm more applicable.567

We conducted simulation experiments to evaluate the accuracy of retrieving ice cloud568

quantities for different remote sensors. The simulated noisy observations are input to the569

hybrid Bayesian algorithms, and the retrieved parameters are compared to the known570

values to determine the retrieval accuracies. A tropical transect of cloud profiles that are571

simulated using the ECCC model is selected as the reference cloud scenes. This choice572

ensures the independence between the atmospheric/cloud profiles for testing and the ver-573

tical profiles in the a priori database. The retrieval of NC remains poor across the var-574

ious methods. We speculate that the addition of an observational constraint such as li-575

dar or visible reflectance will be needed to address NC. This will be the topic of future576

work. Also, we find that the radiometer observations provide little vertical information577

on IWC. The radar-only retrievals demonstrate skill in retrieving the IWC although the578

radar-only IWC retrieval biases high for tenuous volumes where the radar reflectivity drops579

below the sensitivity of the radar. At the high end, the radar-only IWC retrieval biases580

low due to non Rayleigh effects and attenuation. In future work, we will explore the skill581

added by lidar at the low end and lower frequency radar channels at the high end. The582

synergistic radar and radiometer retrievals provide significant improvements in IWP.583

This paper provides an end-to-end idealized simulation experiment that sacrifices584

precise reality in order to demonstrate nuances in the various algorithms. Several dis-585

advantages are worth mentioning. Firstly, the reference cloud scenes only contain frozen586

hydrometers, and the retrieval performance under more complex atmospheric scenarios587

is not investigated. Also, the forward model in this study only applies the EvansSnow588

particle habit, and the uncertainties caused by various particle habits are not considered.589

Secondly, the statistical characteristics are only derived based on selected atmospheric/cloud590

profiles along a latitudinal transect. Since this subset with a finite number of profiles can591

hardly represent the realistic spatial distribution of ice cloud microphysics, the statis-592

tics we derive may differ from the characteristics of the entire possible atmospheric con-593

ditions. Thirdly, apart from the W-band radar and the submillimeter-wave radiometer,594

the ACCP observing system includes other remote sensors that would be highly help-595

ful to improve retrieval accuracies for ice cloud remote sensing. For instance, highly ac-596

curate Doppler velocity measurements may allow for constraints on the ice crystal bulk597

density that could significantly mitigate forward model uncertainties. The retrieval per-598

formance by combining other synergistic information content remains to be investigated.599
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