A superposition algorithm to construct efficient pseudo-random waveform for frequency-domain controlled-source electromagnetic method

Yang Yang¹, Jishan He², and Shucai Li¹

¹Shandong University ²Central South University

November 21, 2022

Abstract

The controlled-source electromagnetic method (CSEM) has been widely used for geophysical surveys, such as controlled-source audio-frequency magnetotellurics (CSAMT) for mineral explorations. Many types of signals are hired for different CSEM applications, such as square wave,2n sequence pseudo-random waveform, binary symmetric wave, and other specific waveforms for MCSEM. In frequency domain CSEM exploration, it is often to change the frequency of transmitting signals to obtain more information from the subsurface, which is sometimes time-consuming. Under such circumstances, we propose a novel method for adaptively constructing a wide-band, high-frequency-density pseudo-random signal. Based on this method, we successfully combine all interested frequencies into one waveform, with the energy of the interested frequencies uniformly or almost uniformly distributed. Benefit on that, for most frequency domain CSEM cases, exploration can be conducted by only one signal. This new kind of signal can significantly improve exploration efficiency compared with the past transmitter waveforms.

A superposition algorithm to construct efficient pseudo-random waveform for frequency-domain controlled-source electromagnetic method

Yang Yang^{*†}, Jishan He[‡], Shucai Li^{*†}

5	* Geotechnical and Structural Engineering Research Center, Shandong University
6	[†] School of Civil Engineering, Shandong University
7	[‡] School of Geoscience and Info-physics, Central South University

Key Points:

1

2

3

4

8

9	• A novel method is proposed to adaptively design efficient transmitter waveforms meet-
10	ing different needs for frequency-domain CSEM.
11	• All interested frequencies are successfully combined into a pseudo random wavefor-
12	m, with the energy of these frequencies evenly distributed.
13	• Interested frequencies of optimal waveform can be log non-uniformly distributed, mak-
14	ing exploration more cost-effective.

Corresponding author: Jishan He, Email:hejishan@mail.csu.edu.cn

15 Abstract

[The controlled-source electromagnetic method (CSEM) has been widely used for geophys-16 ical surveys, such as controlled-source audio-frequency magnetotellurics (CSAMT) for min-17 eral explorations. Many types of signals are hired for different CSEM applications, such as 18 square wave, 2^n sequence pseudo-random waveform, binary symmetric wave, and other spe-19 cific waveforms for MCSEM. In frequency domain CSEM exploration, it is often to change 20 the frequency of transmitting signals to obtain more information from the subsurface, which 21 is sometimes time-consuming. Under such circumstances, we propose a novel method for adap-22 tively constructing a wide-band, high-frequency-density pseudo-random signal. Based on this 23 method, we successfully combine all interested frequencies into one waveform, with the en-24 ergy of the interested frequencies uniformly or almost uniformly distributed. Benefit on that, 25 for most frequency domain CSEM cases, exploration can be conducted by only one signal. 26 This new kind of signal can significantly improve exploration efficiency compared with the 27 past transmitter waveforms.] 28

29 Plain Language Summary

[Frequency domain CSEM has been widely used to obtain subsurface electrical infor-30 mation at different scales or depths by sending different frequencies signal. In past, many in-31 struments conduct exploration by sweeping frequencies, that is, only one frequency square wave 32 or sinusoidal signal was sent at one time. The advantage of this transmission mode is that the 33 signal energy is relatively strong, and it is easier to obtain high signal-to-noise ratio signal-34 s. The disadvantage is the efficiency is relatively low. Scientists have designed composite wave-35 forms to improve the exploration efficiency, but these designed waveforms often contain on-36 ly a few efficient frequency components, and the signal transmission type still needs to be changed 37 during the exploration. Especially when the cost of signal transmission is relatively high, it 38 will increase the cost of exploration and reduce efficiency. Under such circumstances, we pro-39 pose a method to merge all the frequencies of interest into one signal with their amplitude al-40 most the same, so that only one signal is needed to conduct the whole exploration. Since sig-41 nals of different frequencies are collected simultaneously, it can bring a lot of convenience in 42 the later signal processing, and much easier to obtain geophysical data with a high signal-to-43 noise ratio.] 44

45 **1 Introduction**

The frequency-domain controlled-source electromagnetic method(CSEM) method has 46 been widely used in mineral resources, geological hazard exploration, and oil-gas exploration. 47 In frequency domain electromagnetic exploration, the frequency response of ground is embed-48 ded in the received signal, and different frequencies involve different electromagnetic energy 49 penetration characters. That is the basis for the frequency domain sounding method. By cer-50 tain geophysical inverse algorithms, it is possible to obtain detail geophysical information from 51 the subsurface. A electric dipole is usually hired as an artificial signal source, such as controlled-52 source audio-frequency magnetotellurics (CSAMT)(Goldstein & Strangway, 1975)(Jishan, 1991), 53 and Marine CSEM (Constable & Srnka, 2007). 54

The square wave is frequently used as the transmitter waveform. Compared with a sine 55 wave, square wave and pseudo-random waveform signals are easier to implement in hardware, 56 especially when a large current is needed. So CSEM waveforms are usually either binary or 57 ternary signals. In this kind of wave, most of the transmitted energy is in the main frequen-58 cy and first harmonic, although sometimes more harmonics can be used, it is still not conve-59 nient for frequency-domain EM exploration. If we want to get 40 or more frequencies under-60 ground information from 0.1Hz to 10000Hz in CSAMT, the transmitted signals will be changed 61 many times for different frequency information, which is quite time-consuming and inconve-62 nient. 63

In the field of radar communications, a variety of waveforms are designed to meet the 64 needs of different situations(Bell, 1993)(Yang & Blum, 2007)(Sturm & Wiesbeck, 2011)(Aubry 65 et al., 2014). However, due to the different principles of communication and geophysical prospect-66 ing, many methods are not suitable for geophysical prospecting signals designing. According to the characteristics of geophysical prospecting methods, many waveforms based on differ-68 ent methods are designed and created, in which energy is distributed at more frequencies, such 69 as binary symmetric waveform by an analytical method (David et al., 2011), 2ⁿ sequence sig-70 nal based on closed addition in a three-element (Jishan, 2010), pseudo-random binary sequence 71 (PRBS)(Ziolkowski et al., 2011), square waveform shaping by Monte Carlo approach (Mittet 72 & Schaugpettersen, 2007) and specialized waveforms for MCSEM (Constable & Cox, 1996)(Lu 73 & Srnka, 2009). All these waveforms have quite a good spectrum property. In these signal-74 s, it is not necessary to continuously change the sending frequency, but it still needs to be changed 75 especially when there are a lot of frequencies of interest. 76

Under such circumstances, we developed a novel method to design more adaptive and 77 complicated waveforms to obtain more interested frequencies at one time. By taking advan-78 tage of this method, we successfully combine all interested frequencies into one waveform. 79 It simultaneously broadcasts dozens of frequencies at one time, in which amplitudes of inter-80 ested frequencies are almost homogeneous distributed. Benefit on this development, only one 81 signal is needed to conduct explorations for different geophysical purposes without wavefor-82 m changing, which also brings convenience for data processing and denoising(Yang et al., 2018). 83 Furthermore, different frequency-density can be customized in different frequency bands for 84 specialized exploration purposes. 85

86 2 Method

2.1 Principle

The transmitter waveform for frequency-domain CSEM is first generated based on com-88 puter calculation, simulation, and coding, then sent by the Insulated Gate Bipolar Transistor 89 (IGBT)(Kuang & Williams, 2000)(Khanna, 2003) and electric generator for high current. In 90 this article, we will focus on the simulation part of creating an optimal waveform. First, we 91 consider a target waveform that has been created, where there are decades of main frequen-92 cies, i.e. those interested frequencies, meanwhile there also exist a lot of harmonics as well. 93 To evaluate this waveform for CSEM, we set up a criterion for those interested frequencies, 94 which is called the smallest relative root mean square error (RRMSE) to construct an optimal 95 signal with the energy of those interested frequencies evenly distributed. The way to calcu-96 late RRMSE is shown in equation 1. 97

$$RRMSE = \frac{\sqrt{\frac{1}{N}\sum_{i=1}^{n} (x_i - \bar{x})^2}}{\bar{x}}$$
(1)

98

87

In which, RRMSE is related to the relative root mean square error, x_i is the amplitude of the *i*th main frequency, \bar{x} is the average amplitude of all main frequencies. This parameter will be used as the only criterion to evaluate the quality of waveform characteristics. The smaller the parameter value is, the more uniform the main frequency energy is distributed. For every designed signal, we will calculate its RRMSE to judge whether it is qualified or not.

¹⁰⁴ In the first step, we collected all interested frequencies to construct a set of sinusoidal signals, which contains three parameters for each sinusoidal signal, as shown in equation 2.

$$S(t) = A\sin(2\pi f t + \phi) \tag{2}$$

106

In which A is amplitude, f is interested frequency, ϕ is phase, S(t) is signal value. Sec-107 ondly, we put sinusoidal signals to square waves in the following way. If signal bigger than 108 0, then put signal to A, and if smaller than 0, put it to -A. At those zero-value locations, put 109 them to A or -A by index parity. The corresponding rectangular wave as shown in figure 1(a), 110 in which there are only A and -A. For computation convenience, we will put A as a constan-111 t 100 in this paper. Furthermore, with phase changing, we can get different square waves at 112 1Hz. Figure 1(b) shows an example of a sinusoidal signal with 1Hz with phase at 90 degrees 113 and its corresponding square wave. 114

115 In this way, we can construct a series of periodic square wave signals with frequencies respectively at 1, 2, 4, 8, 16, 32, and 64Hz with phase at 0 degrees for example. In this method, 116 frequencies construct for a superimposed signal should comply with the law of mutual mul-117 tiples of 2^n . Figure 1(c) and 1(d) shows 2Hz and 64Hz square wave respectably. Add up al-118 I these square waves to get a superimposed signal as one basic unit. The add-up result is shown 119 in figure 2(a). Benefit on the correlation between frequencies, there is no frequency interfer-120 ence in this superimposed signalthe basic unit, since there will be only odd harmonics for pe-121 riodic square wave and the base frequency of square waves is incremented by a multiple of 122 2. All amplitudes of main frequencies and harmonics are held as original in the monochro-123 matic square wave. 124

Obviously, if we add an odd number of square waves of the same amplitude and dif-125 ferent frequency together, there will be no zero in this superimposed signal. Then an algorith-126 m is operated to put all values bigger than 100 to 100, values smaller than -100 to -100, which 127 will be called "topping operation" in this paper. Then we get a new signal with only 100 and 128 -100 exist, which is a pseudo-random signal as shown in figure 2(b). As shown in figure 2(c), 129 its spectrum is quite suitable for frequency-domain EM exploration. In past, this kind of sig-130 nal is coded based on an algorithm called closed addition in a three-element and has been called 131 7-frequency wave in 2^n sequence pseudo-random signal (Jishan, 2010), since there are 7 main 132 frequencies in it and main frequencies are increased by a multiple 2. Now, we construct this 133 kind of signal by applying the new method proposed in this paper, which gives us more flex-134 ibility to design more complicated waveforms. 135

The amplitudes of the main frequencies are almost the same, but not perfect. As we cal-136 1 a suffix 'with phase at 0 degrees' after 2^n sequence random signal, we introduce a new pa-137 rameter, phase ϕ , into this kind of signal to modified it. By changing the phase ϕ constant-138 ly just like figure 1(b), we can calculate the related mean square error of main frequencies at 139 different phases, for example using the $\frac{2\pi}{360}$ as interval, which means it has 360 possibilities 140 for phase. Corresponding RRMSE for different phase is shown in figure 2(d). The index num-141 ber of minimum point for RRMSE corresponds to 90 degrees. Then we set 90 degrees as the 142 optimal phase to construct the superimposed signal and target pseudo-random signal as shown 143 in figure 2(e). Target waveform and its spectrum are shown in figure 2(f), in which spectrum 144 of interested frequencies and their harmonics are much more evenly distributed, comparing them 145 in figure 2(c). 146

The workflow of the proposed method as shown in 3(a) mainly contains three steps, cre-147 ating square wave construction, constructing a superposed signal, and "topping operation". By 148 applying the same method, we can construct a waveform with 13 main frequencies and spec-149 trum as shown in figure 3(b) and (c). We call this waveform is L1-F13-1Hz-4096Hz signal, 150 in which level 1 means there is only one superimposed signal component, 13 means 13 main 151 frequencies exist and 1Hz-4096Hz means frequencies are from 1Hz to 4096Hz. Actually, with 152 the number of main frequencies increasing, the average amplitude of the main frequencies does 153 not decrease linearly. The reason is based on Parseval identity (Bracewell, 2002), that is the 154 155 energy is positively related to the square sum of the amplitude, so the attenuation of the main frequency energy amplitude does not decrease linearly with the number of main frequencies 156 increasing. In the following example, we will see a waveform with amplitude 100 have more 157 than 40 main frequencies with an average amplitude of more than 15. 158

In computing simulation, RRMSE is calculated based on a discretized signal with a certain sampling frequency. Therefore, some high-frequency harmonic components will be aliased. However, if the sampling frequency is selected appropriately, the frequency where the aliasing occurs corresponds to low energy, and the calculation error caused by the calculation result can be ignored. Therefore, when doing computer simulations, considering the calculation efficiency and accuracy, we choose 16 times the highest frequency as the sampling frequency for calculation.

166

2.2 High level Combined waveforms

Based on this method, we can design a high level of 2^n sequence pseudo-random sig-167 nal by using more superimposed signals. As shown in figure 4(a), signal S1 in have 12 fre-168 quencies, including 1,2,4...2048Hz, while S2 in figure 4(b) have 11 frequencies, including 3,6,12...3072Hz. 169 The fundamental frequency of S2 should be an odd multiple of that of S1. The number of main 170 171 frequencies can be set according to actual needs. Then add S1 and S2 together to get a superposed signal (a new superimposed signal) and operate the "topping algorithm" which is done 172 in level 1 pseudo-random signal designing. If the signal is bigger than 100, then put the val-173 ue to 100, and if smaller than -100, put it to -100, then there will be 23 frequencies in this 174 new signal. But if we add S1 and S2 together and operate directly, the spectrum will be not 175 quite uniformly distributed. Phases of these two components need to be modified simultane-176 ously to get good spectrum property. 177

Suppose signal S1 has a parameter ϕ_1 and signal S2 has a parameter ϕ_2 , by using $\frac{2\pi}{36}$ 178 as phase change unit, then we will have $1296 \quad (36^2)$ possibilities and calculate all RRMSE 179 to choose the best phase combination. The RRMSE curve is shown in figure 4(c), in which 180 there are 1296 values of RRMSE and the red dot is the best phase index location. Based on 181 this best phase, we get the best L2-F23-1Hz-3072Hz signal as shown in figure 4(d), which mean-182 s there are 2 superimposed signal component, 23 main frequencies, and 1Hz-3072Hz frequen-183 cy range. The spectrum of main frequencies is evenly distributed. By this method, we can al-184 so design a much higher level and complicated signal as shown in figure 4(e), an L4-F41-1Hz-185 3072Hz pseudo-random signal for example. 186

Besides this frequency-domain log-uniformly distributed waveforms, we can also design 187 log non-uniformly distributed signals, such as we give much more concern on a certain fre-188 quency band. Superimposed signals (basic units) are shown in figure 5(a), figure5(b), and fig-189 ure 5(c). RRMSE curve to find the best phase combinations is shown in figure 5(d). The tar-190 get waveform is shown in figure 5(e), in which there is a much higher frequency density be-191 tween 64Hz and 512Hz. Besides, there could be more than one concern frequency band, such 192 as we can have two and more interested frequency bands, as shown in figure 5(f). In this sig-193 nal, we have 4 superimposed signal components, total of 27 frequencies, and the spectrum of 194 27 interested frequencies are well evenly distributed. 195

196 **3 Real cases**

In Jinan, Shandong Province, China, we addressed a field test with the voltage 900v, dipole 197 length 1.8km, and ground resistivity 8Ω . The waveform and spectrum of simulated signal L3-198 F39-0.25Hz-3072Hz are shown in figure 6(a), in which there are 39 main frequencies, con-199 structed by 3 superimposed units. The lowest frequency is 0.25Hz, the highest frequency 3072Hz. 200 Because of inductive reactance and ground impact, especially for high frequencies, the real 201 transmitted signal and its spectrum are a little different from the designed signal, as shown in 202 figure 6(b). In real transmitted signals, amplitudes of main frequencies below 200Hz maintain the spectral characteristics well, while amplitudes of main frequencies above 200Hz are 204 influenced by the regularity of the earth and inductive reactance. But in general, this kind of 205 pseudo signal can be hired for real applications. 206

207 4 Discussion

To find an optimal waveform is essentially an inversion problem. But since there is on-208 ly one parameter of phase in this design method, in the process of constructing low-order ef-209 ficient pseudo-random signals, i.e. level 2, level 3, the amount of calculation is not large even 210 through exhaustive methods, so the traversal method is hired to obtain the optimal phase com-211 bination. Besides, the RRMSE is the only criterion, so there is no so-called "local minimum". 212 If the RRMSE is small enough, the corresponding phase will be the best phase to apply to de-213 sign a target waveform. In the case of an odd number of interested frequencies, the superim-214 215 posed signal will not have zeros, so there will be no zeros in the target pseudo-random waveform after "topping operation", which can be more easily implemented in hardware. So in re-216 al cases, the total numbers of interested frequencies would be better odd. 217

The algorithm of "topping operation" can be understood as a process of dividing the su-218 perimposed signal into two parts, one part is the target waveform, and the other part is a clipped 219 part. Adjusting the phase of the square waves can be considered as a process of adjusting the 220 spectrum characteristics of the clipped part and making the target waveform distribution more 221 uniform. Different frequency combinations and different phase split sizes have a certain im-222 pact on the uniformity of the target waveform. And for exploration, as long as its uniformi-223 ty meets the actual needs of exploration, then the corresponding waveform can be an ideal wave-224 form. 225

The biggest difference from the previous method is that a superimposed signal based on the 2^n sequence superimposed waveform is first constructed. Based on this basic unit, odd multiples such as 3, 5, 7, 9, etc., are used to change the fundamental frequency to obtain new superimposed signals with the misalignment spectrum. Then combine with these superimposed signals that are misaligned to realize the spectrum encryption. In this way, the amount of calculation is greatly reduced, which makes the traversal method possible. And GPU parallel computing can greatly accelerate the process to obtain optimal phases.

Essentially, this method is a process of adjusting the energy distribution of different frequencies in the signal by continuously changing the phase of those units. The rising and falling edges of the optimal signal correspond to the direction of the current in the IGBT bridge circuit. As long as the transition time of the bridge circuit is small enough, we can transmit any waveform we generate.

238 5 Conclusion

Based on the proposed method in this paper, we can adaptively design waveform for the 239 frequency-domain controlled-source electromagnetic method. All interested frequencies can 240 be combined into a pseudo-random waveform, with the energy of these frequencies evenly dis-241 tributed. By using such a waveform, exploration efficiency can be greatly improved, since we 242 can obtain all frequencies information simultaneously and do not need to change the transmit-243 ter waveform. In the strong interference city area, we only need to extend the acquisition time 244 to obtain a high signal-to-noise ratio data, without considering which frequency acquisition 245 time needs to increase, making exploration more adaptive. 246

Besides, it is easy to design frequency domain log non-uniformly distributed signal adaptively, by putting more energy to much more concern frequencies, making exploration costeffective. In most cases, waveforms can be designed and constructed in seconds. Furthermore,
we can build a waveform library for different exploration purposes.

251 Acknowledgments

This research is funded by the National Natural Science Foundation of China (No.42004056), National Key Research and Development Project (No.2019YFC0604902), and China Postdoc-

toral Science Foundation(No.2019M652386). We will use WDC for Geophysics, Beijing as

the repository. And data archiving is underway. Now data related to this article can be obtained from Supporting Information.

257 **References**

- Aubry, A., De Maio, A., Piezzo, M., & Farina, A. (2014). Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization. *IEEE Transactions* on Aerospace and Electronic Systems, 50(2), 1138-1152.
- Bell, M. R. (1993). Information theory and radar waveform design. *IEEE Transactions on Information Theory*, *39*(5), 1578-1597.
- Bracewell, R. (2002). The fourier transform and its applications. American Journal of
 Physics, 34.
- ²⁶⁵ Constable, S., & Cox, C. S. (1996). Marine controlled-source electromagnetic sounding:
 ²⁶⁶ 2. the pegasus experiment. *Journal of Geophysical Research: Solid Earth*, 101(B3),
 ²⁶⁷ 5519.
- Constable, S., & Srnka, L. J. (2007). An introduction to marine controlled-source electro magnetic methods for hydrocarbon exploration. *Geophysics*, 72(2), WA3-WA12.
- David, M., Steven, C., & Kerry, K. (2011). Broad band waveforms and robust processing for
 marine csem surveys. *Geophysical Journal International*, 184(2), 689-698.
- ²⁷² Goldstein, M. A., & Strangway, D. W. (1975). Audio-frequency magnetotellurics with a ²⁷³ grounded electric dipole source. *Geophysics*, *40*(4), 669.
- Jishan, H. (1991). Controlled source audio-frequency magnetotellurics." central south industry university press. Central South Industry University Press (Chinese).
- Jishan, H. (2010). Closed addition in a three-element set and 2n sequence pseudo-random
 signal coding. *Journal of Central South University(Science and Technology)*, 41(2),
 632-637.
- Khanna, V. K. (2003). Insulated gate bipolar transistor igbt theory and design. Wiley-IEEE
 Press.
- Kuang, S., & Williams, B. W. (2000). A review of igbt models. *Power Electronics IEEE Transactions on*, 15(6), 1250-1266.
- Lu, X., & Srnka, L. J. (2009). Logarithmic spectrum transmitter waveform for controlled source electromagnetic surveying. U.S. Patent 7,539,279.
- Mittet, R., & Schaugpettersen, T. (2007). Shaping optimal transmitter waveforms for marine csem surveys. *Geophysics*, *73*(1), 539.
- Sturm, C., & Wiesbeck, W. (2011). Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. *Proceedings of the IEEE*, 99(7), 1236-1259.
- Yang, Y., & Blum, R. S. (2007). Mimo radar waveform design based on mutual information
 and minimum mean-square error estimation. *IEEE Trans.aerosp.electron.syst*, 43(1),
 330-343.
- Yang, Y., Li, D., Tong, T., Zhang, D., Zhou, Y., & Chen, Y. (2018, 04). Denoising controlled source electromagnetic data using least-squares inversion. *GEOPHYSICS*, 83, 1-67.
- Ziolkowski, A., Wright, D., & Mattsson, J. (2011). Comparison of pseudo-random binary
 sequence and square-wave transient controlled-source electromagnetic data over the
 peon gas discovery, norway. *Geophysical Prospecting*, 59(6), 1114-1131.

(a) Sinusoidal signal at 0 degrees and corresponding square wave

(c) Square wave of 2Hz with phase at 0 degrees

(b) Sinusoidal signal at 90 degrees and corresponding square wave

(d) Square wave of 64Hz with phase at 0 degrees

Figure 1: Sinusoidal signal at different phases and corresponding square waves.

at 0 degrees

(a) Superimposed signal after superposition(b) Superimposed signal and its corresponding based on 7 squares signal in different frequencies pseudo random signal

(c) 2^n sequence pseudo random signal with phase at 0

 $\mathsf{u}_{\mathsf{result}}^{\mathsf{result}} \mathsf{u}_{\mathsf{result}}^{\mathsf{result}} \mathsf{u}_{\mathsf{result$

(d) L1-F7 related root mean square error curve of (e) Superimposed signal with phase at 90 degrees (f) 7 frequencies 2^n sequence pseudo random interested frequencies and its corresponding signal signal with phase at 90 degrees

Figure 2: 7 frequencies 2^n sequence pseudo random signal respectively with phase at 0, 90 degrees and its spectrum.

(a) Workflow of the optimal waveform construction

(b) Superimposed 13 frequency signal with phase at 51 degrees and its corresponding target signal

Figure 3: Workflow of the optimal waveform construction and optimal transmitter waveform sample.(a) In step 1, a set of sinusoidal signals with frequencies increasing by multiples of 2 or 2^n are created first and then are put into corresponding square waves. All these frequencies share same phase ϕ . In step 2, we add all these square waves together to get a basic unit. High level will contain more than one superposed wave. In step 3, by "topping operation" mentioned in this paper, we get a set of candidate transmitter waveforms. Different ϕ in sinusoidal signals will lead to different waveforms. By calculating RRMSE of interested frequencies at different ϕ , we can get in which phase the transmitter waveform is optimal. (b) It shows a example of optimal L1-F13–1Hz-4096Hz transmitter waveform and its superimposed signal. (c) It shows the optimal L1-F13–1Hz-4096Hz transmitter waveform and its spectrum.

(a) 1-2048Hz superimposed signal with phase at 40 degrees(marked as S1)

(c) L2-F23-1Hz-3072Hz RRMSE curve

(b) 3-3072Hz superimposed signal with phase at 210 degrees(marked as S2)

(d) L2-F23-1Hz-3072Hz optimal transmitter waveform

(e) L4-F41-1Hz-3072Hz optimal transmitter waveform and its spectrum

Figure 4: The process to construct L2-F23-1Hz-3072Hz optimal transmitter waveform and higher level waveform example.

(a) 0.125-2048Hz superimposed signal component with phase(b) 48-384Hz superimposed signal component with phase at at 300 degrees 90 degrees

(c) 8-64Hz superimposed signal component with phase at 330 degrees

(e) L3-F23-0.125Hz-2048Hz optimal transmitter waveform and its spectrum

(d) L3-F23-0.125Hz-2048Hz RRMSE curve

(f) L4-F27-0.125Hz-2048Hz optimal transmitter waveform and its spectrum

Figure 5: The process to construct L3-F23-1Hz-3072Hz optimal transmitter waveform and higher level waveform example.

(simulated with amplitude 100A)

(a) L3-F39-0.25Hz-3072Hz designed pseudo random signal (b) L3-F39-0.25Hz-3072Hz real transmitter waveform (dipole length 1.8km)

