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Abstract

Global Sensitivity Analysis (GSA) has long been recognized as an indispensable tool for model analysis. GSA has been exten-

sively used for model simplification, identifiability analysis, and diagnostic tests, among others. Nevertheless, computationally

efficient methodologies are sorely needed for GSA, not only to reduce the computational overhead, but also to improve the

quality and robustness of the results. This is especially the case for process-based hydrologic models, as their simulation time

is often too high and is typically beyond the availability for a comprehensive GSA. We overcome this computational barrier by

developing an efficient variance-based sensitivity analysis using copulas. Our data-driven method, called VISCOUS, approxi-

mates the joint probability density function of the given set of input-output pairs using Gaussian mixture copula to provide a

given-data estimation of the sensitivity indices. This enables our method to identify dominant hydrologic factors by recycling

pre-computed set of model evaluations or existing input-output data, and thus avoids augmenting the computational cost. We

used two hydrologic models of increasing complexity (HBV and VIC) to assess the performance of the proposed method. Our

results confirm that VISCOUS and the original variance-based method can detect similar important and unimportant factors.

However, while being robust, our method can substantially reduce the computational cost. The results here are particularly

significant for, though not limited to, process-based models with many uncertain parameters, large domain size, and high spatial

and temporal resolution.
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Abstract 1 

Global Sensitivity Analysis (GSA) has long been recognized as an indispensable tool for model 2 

analysis. GSA has been extensively used for model simplification, identifiability analysis, and 3 

diagnostic tests, among others. Nevertheless, computationally efficient methodologies are sorely 4 

needed for GSA, not only to reduce the computational overhead, but also to improve the quality 5 

and robustness of the results. This is especially the case for process-based hydrologic models, as 6 

their simulation time is often too high and is typically beyond the availability for a comprehensive 7 

GSA. We overcome this computational barrier by developing an efficient variance-based 8 

sensitivity analysis using copulas. Our data-driven method, called VISCOUS, approximates the 9 

joint probability density function of the given set of input-output pairs using Gaussian mixture 10 

copula to provide a given-data estimation of the sensitivity indices. This enables our method to 11 

identify dominant hydrologic factors by recycling pre-computed set of model evaluations or 12 

existing input-output data, and thus avoids augmenting the computational cost. We used two 13 

hydrologic models of increasing complexity (HBV and VIC) to assess the performance of the 14 

proposed method. Our results confirm that VISCOUS and the original variance-based method can 15 

detect similar important and unimportant factors. However, while being robust, our method can 16 

substantially reduce the computational cost. The results here are particularly significant for, though 17 

not limited to, process-based models with many uncertain parameters, large domain size, and high 18 

spatial and temporal resolution. 19 

 20 

Plain Language Summary 21 

Unraveling how various uncertain and interacting factors influence hydrologic models’ behavior 22 

underscores the need for continued development of the effective tools for model analysis. 23 

Methodologies such as sensitivity analysis (SA) are powerful methods in this regard, as they 24 

provide information on how a variable of interest in the model changes over time or in space by 25 

varying its uncertain driving factors. However, many such methods are sampling-based 26 

techniques, for which two major issues preclude their efficient application. First, the need for an 27 

ad-hoc experimental design (i.e., sampling method) makes it impossible to reuse an existing 28 

ensemble of model runs or a generic sample of input-output data for SA. Second, sampling-based 29 

methods often require many model evaluations, which makes the computational burden 30 

unmanageable for complex modelling problems. These unique obstacles can hamper obtaining 31 

stable and robust results for computationally expensive models. We address this issue by proposing 32 

an efficient data-driven method, which can perform SA on fixed data sets, i.e., without the need 33 

for further sampling. Our method is based on copula theory and can successfully identify key 34 

drivers of uncertainty, when only a (small) sample of the input-output space is available. 35 

 36 

1. Introduction 37 

1.1. On the high computational cost incurred by the sampling-based global sensitivity 38 

analysis 39 

With the rapid development of the computing capability and speed of processors, an increasing 40 

number of distributed and semi-distributed process-based hydrologic models are introduced to 41 
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simulate the quantity and quality of water on a range of spatiotemporal scales (Fatichi et al., 2016; 1 

Clark et al., 2017; Baroni et al., 2019). The ever-growing complexity of these models is driven by 2 

the need to represent Nature, leading to a greater sophistication of the modeled processes and a 3 

higher number of processes included, though, some observers suggest a sociological element 4 

linked to modelers’ hubris (Saltelli et al., 2020). The increased complexity ultimately results in 5 

modification of the model structure through embedding new components into the model, for 6 

example, by adding extra parameters, new feedbacks, or changing the boundary conditions.  7 

This high level of complexity in hydrological models can inevitably cause a high level of 8 

uncertainty, which needs to be quantified in order to glean useful information about the system’s 9 

behavior and make robust decisions (Hall, 2007; Refsgaard et al., 2007; Clark et al., 2008; Gupta 10 

et al., 2008), notably in the face of deep uncertainty (Maier et al., 2016). Therefore, a 11 

comprehensive analysis of the behavior of such models can shed light on how an output of interest 12 

represents a distinct aspect of the hydrologic cycle, and can provide an informative view of the full 13 

spectrum of the system’s behavior under different conditions. This is of vital importance, 14 

particularly when coping with a range of decision-making problems, such as investigating the 15 

system’s response to a diverse range of plausible scenarios (e.g., future hydroclimatic conditions).  16 

Global Sensitivity Analysis (GSA) (Saltelli et al., 2008; Slatelli et al., 1993) is one of the powerful 17 

tools for model analysis and has been broadly applied to a wide range of modelling problems, 18 

including model calibration, identifiability analysis, model simplification, and diagnostic testing 19 

(see, e.g., Rakovec et al., 2014; Guse et al., 2016; Markstorm et al., 2016; Huo et al., 2019; Quinn 20 

et al., 2019; Dell'Oca et al., 2020). GSA is well recognized to be an essential means of solving 21 

some of the outstanding challenges associated with complexity of the hydrologic models, including 22 

but not limited to (Razavi and Gupta, 2015): (1) determining importance of the input factors, which 23 

is helpful for factor prioritization and data acquisition; (2) detecting non-influential factors, whose 24 

variations have no impact on the behavior of the model and can be fixed to reduce model 25 

complexity; and (3) apportioning the total uncertainty of the output of interest to multiple sources 26 

of uncertainty. 27 

However, a comprehensive GSA of the hydrologic models typically requires many model runs, 28 

and accordingly a tremendous amount of computational resources. This is mainly due to the high 29 

number of interacting, uncertain input factors causing the “curse of dimensionality” problem. This 30 

means that the number of samples required for GSA grows exponentially with the number of input 31 

factors/dimensionality of the model to maintain a desired level of stability and robustness (Saltelli 32 

et al., 2019). When using a sampling-based strategy to perform GSA, the curse of dimensionality 33 

along with the highly nonlinear nature of the response surfaces in hydrologic models become two 34 

major obstacles for efficient GSA. In other words, adequate exploration of the factor space and 35 

characterizing nonlinearity of the response surface necessitate a large sample size in traditional 36 

sampling-based GSA, which results in a considerable number of model evaluations.  37 

The problem of high computational demand incurred by the sampling-based GSA manifests itself 38 

in the fact that a majority of the recent GSA studies in environmental modelling and hydrology 39 

(approximately 70%) have used relatively low-dimensional models (Sheikholeslami et al., 2019). 40 

In contrast, the number of factors in complex, state-of-the-art hydrologic models is relatively high. 41 

More importantly, due to the high number of model evaluations required by existing GSA 42 

techniques and the computationally expensive nature of the hydrologic models, analysts usually 43 
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tend to conduct GSA without evaluating its stability and convergence (for more discussion see, 1 

e.g., Nossent et al. 2011; Cosenza et al., 2013; Ferretti et al., 2016; Sarrazin et al. 2016; Mai and 2 

Tolson, 2019). It is therefore common to choose the sample size (number of model runs) only 3 

based on the available computational budget, which in turn can result in lack of robustness, and 4 

consequently contaminate the assessment of the sensitivities (Hill et al., 2016). Therefore, devising 5 

strategies to minimize the computational cost of the GSA techniques is one of the major challenges 6 

in the quest to understand hydrologic models’ behavior. In the next subsection, we critically review 7 

three cost-effective strategies that have been adopted in the literature to accelerate GSA of the 8 

computationally expensive models. 9 

 10 

1.2. Strategies for breaking down the barriers that deter an efficient GSA 11 

1.2.1. Improved sampling strategies for GSA 12 

Sampling from the input/factor space is a cornerstone of the sampling-based model analysis 13 

methods. An initial set of sample points needs to be drawn from the factor space in sampling-based 14 

GSA to extract the sensitivity-related information. However, the high dimensionality of the factor 15 

space, along with the nonlinearity of the model response surface, requires many properly 16 

distributed sample points. This issue can make sampling-based GSA very time-consuming, if not 17 

unattainable, particularly when the computationally expensive models are used. The number of 18 

model runs needed for a comprehensive GSA can be effectively reduced if the utilized sampling 19 

strategy conveys the maximum amount of information from the output space with minimum 20 

sample size (Andres, 1997). A number of studies have shown that utilizing an appropriate sampling 21 

plan for GSA can decrease the number of model runs several orders of magnitude (see, e.g., 22 

Castaings et al., 2012; Gan et al., 2014; Gong et al., 2015).  23 

Therefore, any sampling-based GSA must be equipped with an improved sampling strategy (also 24 

known as an optimal design) that attempts to limit the computational load by optimizing some 25 

basic sample quality merits (Crombecq et al., 2011). A proper sample set should contain sample 26 

points that are uniformly distributed over the entire factor space such that all regions of the factor 27 

space are equally explored (this criterion is known as space-fillingness) (Pronzato and Müller, 28 

2012; Sheikholeslami et al., 2019). As shown by Janouchová and Kučerová (2013), a sample set 29 

with poor space-filling properties can cause large errors when estimating sensitivity measures. 30 

Additionally, there are alternative sampling methods that were only designed for specific GSA 31 

methods (see, e.g., Chan et al., 2000; Saltelli 2002; Campolongo et al., 2007; Ruano et al., 2012; 32 

Razavi and Gupta, 2016). In a comprehensive study, Lo Piano et al. (2021) investigated 33 

computational efficiency of the several sample-based estimators for variance-based sensitivity 34 

indices. One of the main drawbacks of these sampling strategies is that the sample size should be 35 

specified a priori. In fact, the entire sample set is generated at one stage. Therefore, there is a risk 36 

of using larger sample sizes, which may unnecessarily increase the computational cost 37 

(Sheikholeslami and Razavi, 2017). 38 

 39 
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1.2.2. Emulation techniques for GSA 1 

Constructing a cheaper-to-run emulator to replace the original computationally expensive model 2 

is another common approach to lower the computational cost in GSA (Ratto et al., 2012). Given a 3 

set of pre-existing model runs as a “training dataset”, this strategy first fits a statistical model 4 

(called emulator or surrogate model) to approximate the relationship between input factors and 5 

model output. Then, sensitivity measures are estimated using the learned emulator via either Monte 6 

Carlo–based methods or analytical approaches. Examples of the Monte Carlo-based emulators for 7 

GSA include neural networks (Marseguerra et al., 2003) and polynomial regression (Iooss et al., 8 

2006) (for a comprehensive comparison of various Monte Carlo-based emulation techniques see 9 

Storlie et al. (2009) and Verrelst et al. (2016)). On the contrary, there are emulators that allow to 10 

estimate sensitivity measures analytically from the fitted surrogate model, including Gaussian 11 

radial basis functions (Chen et al., 2005), polynomial chaos expansions (Sudret, 2008), Gaussian 12 

process model (Bounceur et al., 2015), complex linear model (Jourdan, 2012), and sparse 13 

polynomial chaos (Wu et al., 2020). Since variance-based method is an established good GSA 14 

practice, many of these emulation-based algorithms have been only developed for estimating 15 

variance-based sensitivity indices. Note that unlike the above-mentioned emulators which fit the 16 

(static) model output, dynamic emulation modelling provides a low-order emulator that preserves 17 

the dynamical nature of the original model. Monte Carlo-based approach is often used to identify 18 

dominant modes of dynamic behavior in dynamic emulation modelling (Young 1999; Young and 19 

Ratto, 2009).  20 

Because emulators are only an approximation of the original model, the emulation-based GSA 21 

results are typically prone to two types of uncertainties (O’Hagan, 2006): (i) the code uncertainty 22 

and (ii) the uncertainty due to finite sample size. The former is associated with the emulator’s 23 

degree of accuracy, while the latter is due to not knowing the output of the model at unsampled 24 

regions outside of the training dataset. Therefore, quantifying uncertainty of the emulation-based 25 

GSA results is necessary and can function as a quality check. Another eminent challenge is that 26 

these emulation techniques usually work well when the problem at hand has a relatively low 27 

number of factors. But when the dimensionality of the problem is reasonably high, they become 28 

practically unsuitable for finding influential factors due to the curse of dimensionality and over-29 

fitting issues (Becker et al., 2018). 30 

 31 

1.2.3. A given-data approach to GSA 32 

A disadvantage of most of the efficient GSA algorithms cited so far is the requirement of a special 33 

sampling design. This means that available data from previous model runs (generated for other 34 

modelling purposes, e.g., for uncertainty propagation, model emulation, or calibration) cannot be 35 

reused for GSA purposes. To overcome this issue, the given-data approach (otherwise known as 36 

data-driven method) has been introduced. The given-data principle states that the sensitivity-37 

related information can be extracted from a finite (generic) sample of existent dataset, independent 38 

of having a model and/or without re-running the model (Borgonovo et al. 2017). In this context, 39 

Pliscke (2010); Strong et al. (2012); Strong and Oakley (2013); Wainwright et al. (2014); Li and 40 

Mahadevan (2016) presented computationally frugal algorithms for calculating variance-based 41 

sensitivity indices. Plischke et al. (2013) also proposed a class of data-driven techniques, known 42 

as moment-independent methods, which do not rely on any specific moment. More recently, 43 
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Sheikholeslami and Razavi (2020) developed a new data-driven method based on theory of 1 

variogram analysis of response surfaces for GSA from given data. To the authors’ knowledge, the 2 

given-data approach was first applied to hydrologic modelling by Borgonovo et al. (2017) and 3 

Sheikholeslami and Razavi (2020).  4 

The rationale for given-data approach is as follows: If the sample of input-output data contains 5 

enough information to determine the dominant factors that exert strong influence on system’s 6 

behavior, then the given-data estimator can be utilized as a post-processing GSA module for the 7 

pre-computed model evaluations. Using this approach, given a sample of input-output data 8 

representing the behavior of the system, which might be obtained from observations, laboratory or 9 

field experiments, we can directly calculate the sensitivity measures from a generic sample set, 10 

without having a model. In a burgeoning era of big data, this becomes more profitable than ever 11 

because data collection is becoming much easier and faster. Due to a large factor space of the high-12 

dimensional models, generating ‘representative’ input-output data for GSA may require many 13 

properly distributed sample points (or observations) to explore a full spectrum of the system’s 14 

behavior. Given this, regardless of the chosen method for GSA from given data, it is beneficial to 15 

spend some time up front to find an optimal sample set by prudently using sampling algorithms 16 

before performing GSA. 17 

Compared to aforementioned strategies that have been utilized to enable a computationally 18 

tractable GSA, the given-data approach has several advantages. First, the use of improved 19 

sampling techniques (section 1.2.1) does not eliminate the need for running the computationally 20 

expensive models. On the other hand, the given-data approach mainly focuses on situations where 21 

analysts want to conduct GSA retrospectively, i.e., using data from previous experiments, such as 22 

calibration or uncertainty analysis. Second, emulation-based GSA techniques (section 1.2.2) have 23 

major issues that render them less useful compared to given-data approach. Emulation-based GSA 24 

mainly suffers from two major drawbacks (i) choosing the best emulator is not easy due to the 25 

existing of a plethora of different emulators, and (ii) some emulators also need an ad-hoc 26 

experimental designs and specific arrangement of sample points for the sake of efficiency, while 27 

the given-data approach assumes that the sample is arbitrary.  28 

 29 

1.3. Objectives and scope 30 

The primary goal of this paper is to develop a data-driven variance-based GSA method that is 31 

based on the copula functions. The method is mainly designed to alleviate the high-computational 32 

demand associated with GSA of the process-based hydrologic models. At present, unlike the 33 

sampling-based GSA methods, most of the given-data GSA methods only focus on estimating the 34 

variance-based first-order sensitivity index (i.e., main effect) and cannot estimate the total effect 35 

index and interactions (see, e.g., Strong et al., 2012; Strong and Oakley, 2013; Sparkman et al., 36 

2016). Hence, the secondary objective of this paper is to develop an efficient data-driven method 37 

to simultaneously compute first-order and total effect indices. 38 

Our proposed GSA method (hereafter called VISCOUS) utilizes a class of functions known as 39 

Gaussian mixture copula (Tewari et al., 2011) to model the joint probability distribution of the 40 

inputs and outputs, which might have multimodal densities and nonlinear dependencies. By 41 

approximating the conditional distribution of the output, when the inputs are conditioned at 42 
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particular values, VISCOUS extracts sensitivity-related information directly from the given data, 1 

without augmenting the computational cost. This avoids the need for additional model runs and 2 

will help modelers to efficiently identify dominant factors, particularly when dealing with 3 

computationally expensive models. Furthermore, VISCOUS can be effectively used to rank the 4 

strength of relationships in multivariate data sets (not shown in this paper). We demonstrate how 5 

well VISCOUS approximates the variance-based sensitivity indices, when only a fixed amount of 6 

input-output data is available, using two real-world case studies. These include a conceptual 7 

rainfall-runoff model (HBV) and a physically-based hydrologic model (VIC) configured for 8 

simulating the streamflow values of a head water basin in the Canadian Rockies. 9 

The reminder of this paper is organized as follows: in Section 2 we briefly review the conventional 10 

variance-based GSA algorithm, summarize the concepts of copulas and mixture models, present 11 

our copula-based data-driven GSA method, and discuss its implementation details. In Section 3, 12 

we describe two hydrologic modelling case studies followed by explaining the setup for 13 

computational experiments. Section 4 applies the proposed GSA method to these case studies and 14 

reports numerical results and analyses. Finally, we conclude the paper in Section 5 and provide 15 

recommendations for future work. 16 

 17 

2. Methodology 18 

2.1. Original variance-based GSA method 19 

We denote the output of a model 𝑦 = 𝑔(𝑿) as a function of an m-dimensional input vector 𝑿 =20 

[𝑥1, 𝑥2, … , 𝑥𝑚]
𝑇 , where 𝑥𝑖 (𝑖 = 1,2, … ,𝑚) is an uncertain factor of the model, such as model 21 

parameters, initial conditions, or boundary conditions. Here, we also assume 𝑔(. )  is a 22 

deterministic, scalar function of input variables. In the context of variance-based GSA, uncertainty 23 

of the input vector 𝑿 is often modeled in a probabilistic framework, i.e., 𝑿 is deemed to be a 24 

random vector and uncertainty of the 𝑿 propagates through 𝑔(𝑿). Therefore, the model output 25 

uncertainty can be expressed in terms of its variance. Basically, in variance-based GSA the main 26 

goal is to apportion the model output variance into fractions attributed to each input factor and 27 

their interactions. As a result, we can quantify how much the variability of an individual (uncertain) 28 

input factor 𝑥𝑖  (and its interaction with other factors) contributes to the variability of the output. 29 

To do this, Sobol method (Sobol, 2001) uses a well-known variance decomposition formula 30 

(known as generalized Hoeffding-Sobol decomposition, Hoeffding, 1948), as follows: 31 

𝑉𝑦 = 𝑣𝑎𝑟(𝑔(𝑿)) =∑𝑉𝑖

𝑚

𝑖=1

+ ∑ ∑ 𝑉𝑖𝑗

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

+⋯+ 𝑉1…𝑚                                                        (1) 32 

In Eq. (1), variance of the 𝑔(𝑿) is decomposed into the partial variances, where the first-order 33 

partial variance, 𝑉𝑖 , represents the contribution of an individual input factor 𝑥𝑖  to the output 34 

variance 𝑉𝑦, i.e., 35 

𝑉𝑖 = 𝑣𝑎𝑟[Ε𝑿~𝑖(𝑦|𝑥𝑖)]                                                                                                                                                   (2) 36 
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In other words, if we fix 𝑥𝑖, the expected reduction in output variance will be 𝑉𝑖. Moreover, 𝑉𝑖𝑗 1 

describes the portion of the output variance explained by the interaction between 𝑥𝑖 and 𝑥𝑗, and so 2 

on for higher order interactions (𝑉𝑖𝑗𝑘 , …). Variance-based GSA uses a set of indices to measure the 3 

importance of each input factor. By normalizing Eq. (1) by the total variance, 𝑉𝑦, we obtain: 4 

∑𝑆𝑖

𝑚

𝑖=1

+ ∑ ∑ 𝑆𝑖𝑗

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

+⋯+ 𝑆1…𝑚 = 1                                                                                                        (3) 5 

where 𝑆𝑖 =
𝑉𝑖
𝑉𝑦
⁄ , 𝑆𝑖𝑗 =

𝑉𝑖𝑗
𝑉𝑦
⁄ , … ,  𝑆1…𝑚 =

𝑉1…𝑚
𝑉𝑦
⁄   6 

𝑆𝑖 is the first-order sensitivity index (henceforth called main effect), which corresponds to 𝑥𝑖 and 7 

measures main effect of the 𝑥𝑖  on model output. 𝑆𝑖𝑗  is the second-order sensitivity index and 8 

accounts for the interaction between 𝑥𝑖 and 𝑥𝑗. Similarly, the higher order indices can be defined.  9 

Because the total number of terms in Eq. (3) is equal to 2𝑚 − 1, quantifying all higher order 10 

indices becomes computationally prohibitive for models with many factors (large values of m). In 11 

such situations, an alternative variance-based measure, known as total effect index (Homma and 12 

Saltelli, 1996; Saltelli et al., 2000), is typically used to assess the higher order interaction effects. 13 

This index measures the first and all higher order effects of an individual input factor 𝑥𝑖 by: 14 

𝑆𝑇𝑖 = 𝑆𝑖 +∑𝑆𝑖𝑗

𝑚

𝑗≠𝑖

+⋯+ 𝑆𝑖𝑗…𝑚 = 1 −
𝑣𝑎𝑟[Ε𝑥𝑖(𝑦|𝑿~𝑖)]

𝑉𝑦
=
Ε𝑿~𝑖[𝑣𝑎𝑟(𝑦|𝑿~𝑖)]

𝑉𝑦
                                          (4) 15 

where 𝑿~𝑖 = [𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … 𝑥𝑚]
𝑇 is the vector of all input factors except 𝑥𝑖 . Eq. (4) can be 16 

interpreted as follows: if we fix all input factors, except 𝑥𝑖,  then the expected variance that is left 17 

can be expressed by 𝑆𝑇𝑖. In fact, it is easy to show that the interaction effect between 𝑥𝑖 and all 18 

other factors can be calculated by subtracting 𝑆𝑖 from 𝑆𝑇𝑖 (Saltelli, 2002).  19 

The main and total effect variance-based sensitivity indices are often estimated using a sampling-20 

based strategy, wherein the Monte Carlo integration technique is applied to Eq. (2) and (4). Several 21 

numerical schemes for sampling-based strategy have been developed to compute theses indices 22 

(Tarantola et al., 2006; Kucherenko and Song, 2017). In this study, a widely-used and 23 

computationally affordable algorithm introduced by Saltelli (2002) and Saltelli et al. (2010) is 24 

utilized. We briefly describe this algorithm in the following as the basis for the comparison of our 25 

method with conventional variance-based GSA. 26 

The sampling-based algorithm starts by randomly generating two independent sample matrices: 𝑨 27 

and 𝑩, each of size 𝑁 ×𝑚. Then, for calculating the i-th sensitivity index, an additional sample 28 

matrix  𝑪(𝑖) (𝑖 = 1,2, … ,𝑚) of size 𝑁 ×𝑚 is constructed by combining the columns of 𝑨 and 𝑩, 29 

such that 𝑪(𝑖) contains all columns of 𝑩 except the i-th column which is taken from 𝑨. Using the 30 

Jansen (1999)’s estimator, the sensitivity indices can be obtained from: 31 

𝑣𝑎𝑟[Ε𝑿~𝑖(𝑦|𝑥𝑖)] = 𝑉𝑦 −
1

2𝑁
∑(𝑔(𝑩𝑘) − 𝑔 (𝑪

(𝑖)
𝑘))

2
𝑁

𝑘=1

                                                                              (5) 32 
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Ε𝑿~𝑖[𝑣𝑎𝑟(𝑦|𝑿~𝑖)] =
1

2𝑁
∑(𝑔(𝑨𝑘) − 𝑔 (𝑪

(𝑖)
𝑘))

2
𝑁

𝑘=1

                                                                                     (6) 1 

where 𝑨𝑘 denotes the k-th row of the matrix 𝑨.  2 

Estimating both 𝑆𝑖  and 𝑆𝑇𝑖  using Eq. (5) and (6) results in 𝑁(𝑚 +  2) model evaluations for 3 

which 2𝑁 simulations are needed for evaluating model output values corresponding to 𝑨 and 𝑩 4 

(i.e., 𝑔(𝑨) and 𝑔(𝑩)) and 𝑁 ×𝑚 simulations are required to obtain 𝑔(𝑪(𝑖)) for all 𝑖 = 1,2, … ,𝑚. 5 

Note that achieving convergence and stability when computing variance-based sensitivity indices 6 

requires a sufficiently large samples size, i.e., 𝑁 is typically selected to be some arbitrarily large 7 

number. 8 

 9 

2.2. The proposed copula-based method for GSA from given data 10 

Our proposed given-data approach (VISCOUS) is a probabilistic framework that estimates 11 

variance-based GSA indices from a given input-output sample. VISCOUS is a non-parametric 12 

approach and does not require generating new sample set for GSA, instead it recycles the existing 13 

data for determining factor importance. An essential building block of our proposed method is to 14 

infer the joint probability density function of the given data using copula-based models. The 15 

theoretical background and implementation details of VISCOUS are provided in the following 16 

subsections. 17 

 18 

2.2.1. Linking copula theory to variance-based GSA 19 

Estimating the expected value of the model output conditioned on a factor, Ε𝑿~𝑖(𝑦|𝑥𝑖), is the 20 

cornerstone of the variance-based method (see Eq. (2) and (4)). For a given set of model output 21 

values (𝒀) obtained from running a simulation model using a sample of input factors (𝑿), let 𝑓𝑿,𝒀 22 

denote the multivariate joint probability density function (PDF) of 𝒀 and 𝑿. Assume the marginal 23 

PDF along the i-th direction is 𝑓𝑥𝑖  and the conditional distribution of 𝒀 on 𝑿 is 𝑓𝒀|𝑿. Then, the 24 

conditional expectation can be written as (Beckman and McKAy, 1987): 25 

Ε𝑿~𝑖(𝑦|𝑥𝑖) = ∫𝑦𝑓𝒀|𝑿(𝑦|𝑥𝑖)𝑑𝑦 =  ∫𝑦
𝑓
𝑿,𝒚
(𝑥𝑖, 𝑦)

𝑓
𝑥𝑖

𝑑𝑦                                                                                    (7) 26 

Therefore, if 𝑓𝑿,𝒀 accurately describes the joint PDF of the input-output sample (𝑿, 𝒀), we can 27 

simply compute various sensitivity indices based on Eq. (7). This has been motivated a number of 28 

studies to investigate several strategies for characterizing the joint PDF of the input-output data 29 

for the purpose of variance-based GSA (see, e.g., Cheng et al., 2015; Wei et al., 2015; Jia and 30 

Taflanidis, 2016; Sparkman et al., 2016). In this paper, we rely on the copula theory which bridges 31 

one-dimensional marginal distributions to multidimensional joint distribution. Copula theory 32 

provides a powerful tool to model dependence structure between random variables from their 33 

associated marginals. Based on Sklar (1959)’s theorem, the joint cumulative distribution function 34 
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(CDF) of the input-output sample 𝐹(𝑿, 𝒀), can be expressed as a unique function of the marginal 1 

distributions: 2 

𝐹(𝑿, 𝒀) = 𝒞(𝐹(𝑿), 𝐹𝑦(𝒀);  𝜆)                                                                                                                             (8) 3 

where 𝐹(𝑿) = [𝑢1, 𝑢2, … , 𝑢𝑚] is the vector of marginal CDFs of 𝑿, 𝐹𝑦(𝒀) = 𝑢𝒀 is the CDF of the 4 

model output, and 𝒞 is a copula function parameterized by 𝜆. The kernel density function can be 5 

used to transform the input-output sample into [𝑢1, 𝑢2, … , 𝑢𝑚, 𝑢𝒀].  6 

Therefore, if the copula function and the marginal distributions are differentiable, the joint PDF of 7 

the (𝑿, 𝒀) can be obtained as product of the individual marginal densities and the copula density:  8 

𝑓𝑿,𝒀 = 𝑐(𝐹(𝑿),𝐹𝑦(𝒀);  𝜆) × 𝑓𝑥1
× 𝑓

𝑥2
…× 𝑓

𝑥𝑚
× 𝑓

𝒀
                                                                                       (9) 9 

where 𝑐 is the PDF of the copula function, 𝑓𝒀 and 𝑓𝑥𝑖  (𝑖 = 1,2, … ,𝑚) are the PDFs of the model 10 

output and input variables; respectively. If the forms of the marginal PDFs and the copula density 11 

are known, Eq. (9) is utilized for estimating the unknown multivariate joint PDF. On the other 12 

hand, in case of a known multivariate joint PDF, the copula density can be derived by rearranging 13 

Eq. (9) as: 14 

𝑐(𝐹(𝑿), 𝐹𝑦(𝑌); 𝜆) =
𝑓𝑿,𝒀

𝑓
𝑥1
× 𝑓

𝑥2
…× 𝑓

𝑥𝑚
× 𝑓

𝑦

                                                                                                 (10) 15 

For example, in case of standard normal multivariate Gaussian, having marginal densities with 16 

zero mean and unit variance along all dimensions, Eq. (10) can be solved analytically to obtain 17 

Gaussian copulas. The Gaussian copula has been previously used in conjunction with various GSA 18 

algorithms, including method of Morris (Ţene et al., 2018), variance-based method (Sainte-Marie 19 

and Cournède, 2019), and moment-independent method (Wei et al., 2014; Plischke and 20 

Borgonovo, 2019). However, the usefulness of the formal Gaussian copula can be severely limited, 21 

when the input-output sample has multiple modes with nonlinear relationships. This issue is crucial 22 

for GSA of the hydrologic models, as it is not uncommon to encounter a highly complex and 23 

nonlinear response surfaces with multimodality, sharp discontinuities, and small-scale roughness 24 

in hydrology (Duan et al., 1992; Kavetski and Clark, 2010).  25 

Alternatively, it has been shown that other types of copula functions such as empirical 26 

checkerboard copula (Deheuvels, 1979) and Gaussian mixture copula model (Tewari et al., 2011; 27 

Li et al., 2011) are more effective in modeling nonlinear relationships, particularly of non-28 

Gaussian data (see, e.g., Genest et al., 2017; Bilgrau et al., 2016; Fan et al., 2016; Kasa et al., 29 

2020). In the present work, to capture the complex behavior of the hydrologic models, we 30 

developed an estimator based on Gaussian mixture copula model for constructing the joint PDFs, 31 

as presented in the following sub-section. Note that our proposed framework for GSA is not limited 32 

to the Gaussian mixture copula models and can be extended to any types of copula functions. 33 

 34 
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2.2.2. Gaussian mixture copula-based estimator for sensitivity indices 1 

Gaussian mixture copula model (GMCM) combines advantages of the copula theory with 2 

capability of the Gaussian mixture models (GMM) in approximating an arbitrary PDF, wherein 3 

GMM is defined as a mixture statistical model of a finite number of Gaussian distributions. In fact, 4 

GMCM infers the dependence structure of the multivariate data through coupling GMM into 5 

copulas. Using Eq. (10), GMCM estimates the PDF of the copula function by (Tewari et al., 2011): 6 

𝑐𝐺𝑀𝐶𝑀(𝐹(𝑿), 𝐹𝑦(𝑌);𝚯) =
𝜓(𝚿−1(𝑢1),𝚿

−1(𝑢2), … ,𝚿
−1(𝑢𝒀); 𝚯)

𝜙(𝚿−1(𝑢1)) × 𝜙(𝚿−1(𝑢2)) × …× 𝜙(𝚿−1(𝑢𝒀))
                       (11) 7 

where 𝚿−1denotes the inverse function of the standard normal distribution, and 𝜓 is the joint PDF 8 

of GMM, which can be expressed by the weighted sum of 𝜂-component Gaussian densities 𝜙, i.e., 9 

𝜓(𝒛;𝚯) = ∑𝜔𝑘 × 𝜙(𝒛;𝝁
(𝑘), 𝚺(𝑘))

𝜂

𝑘=1

                                                                                                    (12) 10 

where 𝒛 = [𝚿−1(𝑢1),𝚿
−1(𝑢2),… ,𝚿

−1(𝑢𝒀)], 𝜔𝑘  is the weight for the k-th GMM component 11 

(note that all elements of the 𝜔𝑘  sum to unity), 𝝁(𝑘)  is the mean vector, 𝚺(𝑘)  represents the 12 

covariance matrix for the k-th component, and 𝚯 = {𝜔𝑘 ,𝝁
(𝑘), 𝚺(𝑘)} comprises all the weights, mean 13 

vectors, and covariance matrices for 𝑘 = 1,2, … , 𝜂.  14 

After building GMCM, the conditional expectation can be calculated by combining Eq. (9) and 15 

(11) with (7). Importantly, the integration in Eq. (7) can be performed without re-running the 16 

original computer model (or physical model), which makes VISCOUS a computationally frugal 17 

method. We use a Monte Carlo-based approximation to evaluate the integral, as below: 18 

Ε𝑿~𝑐(𝑦|𝑿 = 𝒙c) ≈
1

𝑁𝑀𝐶
∑𝐹𝑦

−1(𝑢𝒀
(𝑗))𝑐𝐺𝑀𝐶𝑀(𝒖𝑐, 𝑢𝒀

(𝑗);𝚯)

𝑁𝑀𝐶

𝑗=1

                                                                     (13) 19 

𝑣𝑎𝑟[Ε𝑿~𝑐(𝑦|𝑿 = 𝒙c)]20 

≈
1

2𝑁𝑀𝐶
3 ∑   ∑ (∑ 𝐹𝑦

−1(𝑢𝒀
(𝑘))𝑐𝐺𝑀𝐶𝑀(𝒖𝑐

(𝑖), 𝑢𝒀
(𝑘);𝚯)

𝑁𝑀𝐶

𝑘=1

𝑁𝑀𝐶

𝑗=1

𝑁𝑀𝐶

𝑖=1

21 

−∑𝐹𝑦
−1(𝑢𝒀

(𝑘))𝑐𝐺𝑀𝐶𝑀(𝒖𝑐
(𝑗), 𝑢𝒀

(𝑘);𝚯)

𝑁𝑀𝐶

𝑘=1

)

2

                                                                    (14) 22 

where 𝑿 = 𝒙c is the given random input factor of interest for which the Sobol indices should be 23 

estimated, 𝑁𝑀𝐶 is the number of Monte Carlo samples for integration, 𝐹𝑦
−1(. ) is the inverse CDF 24 

of 𝒀, and 𝒖𝑐 = 𝐹𝑐(𝑿 = 𝒙c) is the marginal CDF of the input factor of interest.  25 

 26 
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2.2.3. Steps for performing VISCOUS 1 

There are six main steps involved in applying the proposed VISCOUS framework. In the following 2 

we outline the algorithmic implementation of these steps in detail: 3 

Step 1. From the given data extract 𝑿 = 𝒙c (and the corresponding output values 𝒀) for which the 4 

variance-based sensitivity indices should be estimated.  5 

Step 2. Use kernel density function to convert the given data matrix (𝑿, 𝒀) into marginal CDFs, 6 

i.e., 𝐹(𝑿) = [𝑢1, 𝑢2, … , 𝑢𝑚] and 𝐹𝑦(𝒀) = 𝑢𝒀,. 7 

Step 3. Transform marginal CDFs of Step 2 into data of standard normal distribution, i.e., 8 

𝚿−1(𝑢1),𝚿
−1(𝑢2),… ,𝚿

−1(𝑢𝒀). 9 

Step 4. Build a mixture model (i.e., GMM) by fitting 𝜂 Gaussian density components to the data 10 

obtained from Step 3. If 𝑝 is the number of indices that GSA needs to be performed, we build 𝑝 11 

copula models for calculating each index. For example, estimating {𝑆1, 𝑆2, 𝑆12}  requires 12 

constructing 𝑝 =  3  copula models. A critical step here is choosing optimal number of the 13 

components, 𝜂 , in Eq. (12). To find the optimal value of 𝜂 , we utilized a likelihood-based 14 

goodness-of-fit statistic known as Bayes Information Criterion (BIC). BIC compares multiple 15 

models with varying values of 𝜂 and chooses the optimal number of components associated with 16 

the lowest BIC value (Steele and Raftery, 2010). 17 

Step 5. Fit GMCM copula (Eq. (11)) using the data of Step 3 and GMM obtained from Step 4. 18 

We employed the expectation-maximization (EM) algorithm of Tewari et al. (2011) for estimating 19 

GMCM’s parameters. Starting from initial values for parameters Θ, the EM algorithm iteratively 20 

attempts to maximize the likelihood function. To avoid the risk of trapping into local optima., we 21 

used several starting points within an iterative loop for global optimum investigation. To do this, 22 

we applied k-means clustering strategy for initialization of the EM algorithm (for more details see 23 

McLachlan and Peel (2000)). Note that a similar strategy was implemented in the R-package of 24 

Bilgrau et al. (2016) and fitgmdist function of the MATLAB for parameter estimation.  25 

Step 6. Compute the variance-based sensitivity indices using Eq. (13) and (14) based on the 26 

GMCM model learned from Step 5. We arbitrarily set 𝑁𝑀𝐶 = 10
4 to reduce the numerical error of 27 

integration. 28 

In Appendix, we exemplify the use of VISCOUS and demonstrate its efficiency and effectiveness 29 

by focusing on an analytical test function adopted from Kucherenko et al. (2011). 30 

We conclude this section by highlighting the key distinctions between our proposed given-data 31 

approach and emulation techniques for GSA. First, the latter is mainly designed to approximate an 32 

output value corresponding to an individual realization of the uncertain input factors (see section 33 

1.2.2), while the former approximates a distribution of the output given probability distributions 34 

of the input factors. Particularly, for a given set of input-output data, VISCOUS trains GMCM in 35 

the probability space, but emulators are always constructed in the output space. Second, to perform 36 

GSA and assess the output uncertainty associated with uncertainty of a given input factor, 37 

emulators typically need to be evaluated many times for multiple realizations of that uncertain 38 
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factor. On the other hand, one run of our non-parametric approach yields the conditional 1 

probability distributions of the output, without repeated runs of the model (or surrogate model).  2 

Another major difference is that the dimensionality of the joint PDF obtained by GMCM in 3 

VISCOUS is independent of the dimensionality of the original model. This makes VISCOUS a 4 

suitable candidate in case of high-dimensional models for which fitting an emulator often suffers 5 

from the curse of dimensionality (see section 1.2.2). In VISCOUS, the dimensionality of the joint 6 

PDF is 𝑠 + 1, where 𝑠 is the order of the variance-based GSA indices. By way of example, the 7 

joint PDF is only two-dimensional when computing the first-order indices. 8 

 9 

3. Numerical Experiments 10 

3.1. Study site  11 

In this study, we set up two hydrologic models for simulating the streamflow values of the Bow 12 

River at Banff, Alberta, Canada (Figure 1(a)) with a basin area of approximately 2,210 km2. The 13 

river is in the eastern Front Range of the Rocky Mountains. The temperature in this part of the 14 

Rockies can dip below –40°C in winter on mountain tops and rise up to +40°C in summer in Bow 15 

Valley (basin average temperature are depicted in Figure 2). Most parts of the basin receive a 16 

large proportion of their precipitation as snowfall (~50%), which results in substantial water 17 

storage as snowpack, and thus snowmelt (beginning in mid-April) is the dominant process that 18 

strongly controls the dynamics and generation of the runoff in the Bow River Basin (Nivo-glacial 19 

regime). The average basin elevation is 2,130 m ranging from 1,380 m above mean sea level at the 20 

outlet (town of Banff) to above 3,000 m at the highest elevations (Figure 1(b)). The basin annual 21 

precipitation is approximately 1,000 mm with range of 500 mm for the Bow Valley up to 2,000 22 

mm for the mountain peaks (based on weather research and forecasting model, WRF, simulation 23 

for continental United States, Rasmussen and Liu (2017)). The predominant land cover (Figure 24 

1(c)) is conifer forest in the Bow Valley, and rocks and gravels for mountain peaks above the tree 25 

line.  26 
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 1 

Figure 1. The upper panel shows (a) the location of the Bow River Basin at Banff, and (b) Bow 2 

River Basin elevation. The lower panel shows (c) computational units forced at WRF original 3 

resolution at 4 km color coded based on land cover type, and (d) river network topology and 4 

associated sub-basins that is used for the vector-based routing. 5 

 6 
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 1 

Figure 2. Time series plots illustrating (a) daily precipitation (upper panel), (b) temperature 2 

(middle panel), and (c) observed streamflow (lower panel) for the Bow River Basin at Banff, 3 

Alberta, Canada, from 2003 to 2013. 4 

 5 

3.2. A conceptual rainfall-runoff model: HBV 6 

We first illustrate the utility of the proposed GSA algorithm using the HBV model, which is a 7 

lumped, conceptual hydrologic model (Bergström,1995; Seibert, 1997). HBV simulates daily 8 

streamflow timeseries using input data of mean temperature, precipitation (daily values) and 9 

potential evapotranspiration (monthly estimates). The model consists of three main components: 10 

(i) snow module, (ii) soil moisture module, and (iii) flow routing module. The latter is composed 11 

of two reservoirs for quick flow (non-linear reservoir) and slow flow generations (linear reservoir). 12 

HBV transforms the simulated outflow using a triangular weighting function for channel routing. 13 

In this study, we implemented a slightly modified version of the HBV model developed by Razavi 14 

et al. (2019). The total number of calibration parameters was set to 10. Table 1 summarizes 15 

parameter description, units of measurements, and their feasible ranges of variation. Note that the 16 

feasible ranges of these parameters were determined using a combination of expert knowledge and 17 

previous studies. 18 

 19 
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Table 1. Parameters of the HBV model used in this study  1 

Parameter[unit] Range Definition 

TT [°C] [-4,4] Air temperature threshold for melting/freezing  

C0 [mm/°C per day] [0,10] Base melt factor 

ETF [1/°C] [0,1] Temperature anomaly correction of potential evapotranspiration 

LP [mm] [0,1] Soil moisture below which evaporation becomes supply limited 

FC [mm] [50,500] Field capacity of soil  

beta [-] [0,7] Shape parameter for soil release equation 

FRAC [-] [0.05,0.9] Fraction of soil release entering fast reservoir 

K1 [-] [0.05,1] Fast reservoir coefficient 

alpha [-] [1,3] Shape parameter for fast reservoir equation 

K2 [-] [0,0.05] Slow reservoir coefficient 

 2 

3.3. A distributed physically-based hydrologic model: VIC 3 

As the second case study we utilized a more computationally expensive, process-based model, 4 

known as Variable Infiltration Capacity (VIC). The VIC model is developed as a simple land 5 

model (Liang et al., 1994) which simulates both mass and energy fluxes. The model setup used in 6 

this study has 18 parameters and is based on the concept of flexible vector-based configuration for 7 

land models (for more details on the model set up refer to configuration Case-2-4km in Gharari et 8 

al., 2020). Description of the model parameters are presented in Table 2. Parameter ranges were 9 

specified using a combination of expert knowledge and previous studies, and recommendations in 10 

the manual. 11 

In our implementation, the VIC model considers soil type, vegetation, and is forced with 7 12 

meteorological variables from WRF simulations with spatial resolution of 4km (Rasmussen and 13 

Liu 2017). The soil column is modeled using three layers, wherein the upper two layers are 14 

responsible for the surface flow generation, and the third layer generates the slow response runoff. 15 

Furthermore, the traditional 4-parameter baseflow layer is replaced with a simplified 1-parameter 16 

layer instead (for further implementation details refer to Gharari et al., 2020). In the VIC model, 17 

the saturation excess mechanism generates all fast response runoff, and a gravity-driven process 18 

controls the drainage between the three soil layers of each grid cell (Liang et al., 1994).  19 

Furthermore, the streamflow was simulated using a vector-based routing tool named mizuRoute 20 

(Mizukami et al., 2016). mizuRoute uses a Gamma distribution-based unit hydrograph to route 21 

runoff from hillslope to the river channel (read in-basin routing). Moreover, mizuRoute has an in-22 

channel impulse response function routing scheme based on diffusive wave along the river 23 
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segment. Note that four mizuRoute parameters (i.e., parameters 15-18 in Table 2) were also 1 

considered for perturbation in our experiment. 2 

 3 

Table 2. Parameters of the VIC and mizuRoute routing model 4 

Parameter 

[unit] 
Range Definition 

binf [-] [0.01,0.50] The variable infiltration parameter 

Eexp [-] [3,12] The slope of water retention curve 

Ksat [mm/day] [5,1000] Saturated hydraulic conductivity 

d1f [m] [0.05,0.20] The depth of top soil layer for forested area 

d1nf [m] [0.05,0.2] The depth of top soil layer for non-forested area 

d2f [m] [0.20,2.0] The depth of the second soil layer for forested area 

d2nf [m] [0.20,2.0] The depth of the second soil layer for non-forested area 

d1rf [-] [0.20,0.80] The root distribution for top soil layer for forested area 

d1rnf [-] [0.20,0.80] The root distribution for top soil layer for non-forested area 

d2rf [-] [0.20,0.80] The root distribution for the second soil layer for forested area 

d2rnf [-] [0.20,0.80] 
The root distribution for the second soil layer for non-forested 

area 

Kslow [1/day] [0.001,0.90] 
Slow reservoir coefficient for simplified baseflow 

representation  

SLAI [-] [0.5-1.5] Scale factor to scale the leaf area index (LAI) 

Sstomatal [-] [0.5-1.5] Scale factor to scale the stomal resistance  

Gshape [-] [0.5,5.0] Shape factor for in-basin routing for Gamma function  

Gscale [s] [3600,172800] Scale factor for in basin routing for Gamma function 

V [m/s] [0.5, 1.5] Velocity of the diffusive wave  

Ddiff [m/s2] [500, 10000] Diffusivity for the diffusive wave 

 5 
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3.4. Configuration of the computational experiments 1 

3.4.1. Selecting output function 2 

Residual-based summary statistics, such as Nash-Sutcliffe efficiency criterion (𝐸𝑁𝑆), are common 3 

objective functions in hydrology and have been widely used for sensitivity analysis to investigate 4 

which parameters significantly influence the model predictions. This provides valuable 5 

information for parameter estimation and model calibration methods. Therefore, we calculated the 6 

𝐸𝑁𝑆 in our experiments and considered it as the response function for GSA, as follows: 7 

  8 

𝐸𝑁𝑆 = 1 −
∑ (𝑄𝑡

𝑜𝑏𝑠 − 𝑄𝑡
𝑠𝑖𝑚)

2𝑇
𝑡=1

∑ (𝑄𝑡
𝑜𝑏𝑠 − �̅�)

2𝑇
𝑡=1

                                                                                                        (15) 9 

where 𝑇 is the number of time steps, 𝑄𝑡
𝑜𝑏𝑠 is the observed streamflow values at time 𝑡, 𝑄𝑡

𝑠𝑖𝑚 is 10 

the simulated value of the streamflow at time 𝑡 , and �̅�  is the mean value of the observed 11 

streamflow values. Here, we compared the simulated flows with the observed streamflow data of 12 

the Water Survey Canada (gauge ID of 05BB001).  13 

 14 

3.4.2. Generating synthetic datasets for VISCOUS runs 15 

To evaluate the effectiveness of the proposed VISCOUS method and ensure a meaningful 16 

comparison, the GSA results obtained by the sampling-based algorithm were deemed to be the 17 

‘true’ sensitivities. Therefore, we first ran the conventional sampling-based GSA algorithm for 18 

both case studies using the method described in Section 2.1.3. For the first case study, the HBV 19 

model was run using a large sample size to ensure the stability and convergence of the sampling-20 

based algorithm, resulting in 1,000,008 evaluations. The computational efficiency of the HBV 21 

model made it feasible to select this large sample size, and consequently enabled us to benchmark 22 

our results against the true sensitivities. Note that, in practice, the bootstrap method along with 23 

sensitivity of sensitivity analysis can be used to avoid a large number of simulations, when 24 

assessing the robustness and convergence of the GSA results in computationally expensive models. 25 

For the second case study, we focused on the GSA of the VIC model using a dataset consisting of 26 

21,000 realizations of the input parameters and the corresponding 𝐸𝑁𝑆 values. A high-performance 27 

computing system operating parallelly on 250 cores was used to execute 21,000 realizations of the 28 

VIC model requiring about four days to complete the task.  29 

In the next step, we produced synthetic input-output datasets by randomly sampling (with 30 

progressively increasing sample size) from the available model evaluations (1,000,008 and 21,000 31 

input-output pairs of HBV and VIC, respectively). Each input-output sample set was considered 32 

to be a set of ‘given data’. Then, we applied our VISCOUS method to all the given sample sets 33 

and compared the results with true sensitivities.  34 

 35 
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3.4.3. Accounting for randomness in sampling variability 1 

Because of the randomness in our experiments, the performance of the GSA methods can be quite 2 

sensitive to the choice of the sample points, i.e., the results can be afflicted by the randomness in 3 

the selection of sample points drawn from the input-output space. This necessitates the use of 4 

several trials with different random seeds for each experiment to obtain a more reliable measure 5 

of the algorithm performance. Therefore, we replicated all experiments 50 times in this study, each 6 

replication using different random seed. This allowed us to see a range of possible performances 7 

for the proposed algorithm, and thus evaluate its robustness. Note that the progressive Latin 8 

hypercube sampling  strategy (Sheikholeslami and Razavi, 2017) was used to randomly generate 9 

parameter sets.  10 

 11 

4. Results and Discussion  12 

4.1. Comparison of the proposed VISCOUS and original variance-based methods  13 

4.1.1. Results for the main effects  14 

Figure 3 and 4 show the main effect indices (𝑆𝑖) for the 10-parameter HBV model and the 18-15 

parameter VIC model estimated by the original variance-based and VISCOUS methods. For the 16 

original variance-based method, the sampling-based algorithm described in Section 2.1.3 was 17 

applied; for the VISCOUS method, Eq. (13) was applied to the given set of input-output data. In 18 

Figure 3, calculation of the final/true sensitivity indices (the dashed horizontal lines) required 19 

about 1,000,000 model evaluations using the original variance-based method, while the proposed 20 

VISCOUS method has been applied by increasing the size of input-output data incrementally up 21 

to 50,000 (i.e., 1,000, 2,000, …, 50,000). The VISCOUS-based estimates of the main effect indices 22 

for VIC depicted in Figure 4 were also obtained by randomly sampling with progressively 23 

increasing size (i.e., 1,000, 1,800, 1,600, …, 21,000) from the available pre-computed model 24 

evaluations. In addition, Figure 3 and 4 show the 90% intervals of the estimated sensitivity indices 25 

obtained from 50 replicates of the experiments. Overall, these results suggest that both VISCOUS 26 

and the original variance-based methods yielded similar main effect indices across the parameter 27 

space, thereby confirming the accuracy of our proposed method in estimating the sensitivity 28 

indices for HBV and VIC.  29 
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 1 

Figure 3. Convergence plots of the main effect (first-order) sensitivity indices for the HBV model. 2 

The main effect indices were estimated using the proposed VISCOUS method. The (light red) 3 

envelopes depict the 90% intervals of the 50 independent trials of this experiment. The dashed 4 

(dark red) horizontal lines show the true values of the sensitivity indices for the HBV parameters 5 

obtained by the conventional variance-based algorithm.  6 
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 1 

Figure 4. Convergence plots of the main effect (first-order) sensitivity indices for the VIC model. 2 

The main effect indices were estimated using the proposed VISCOUS method. The (light red) 3 

envelopes depict the 90% intervals of the 50 independent trials of this experiment. The dashed 4 

(dark red) horizontal lines show the true values of the sensitivity indices for the VIC parameters 5 

obtained by the conventional variance-based algorithm.  6 

 7 

To assess the effect of sampling uncertainty and evaluate the robustness of VISCOUS to sampling 8 

variability, the 5th and 95th percentiles (90% intervals) of the 50 realizations of each experiment 9 

are presented in Figure 3 and 4. For HBV (see Figure 3), the results show that our proposed 10 

method converged to the true sensitivity indices within the 90% interval when the samples size 11 

was larger than about 8,000. In addition, by analyzing Figure 3 we see that sensitivity indices 12 

associated with three important parameters of HBV (FRAC, C0, and beta in Figure 3) show a high 13 

variability compared to other parameters, when the sample size was small (less than 8,000). For 14 

the VIC model (see Figure 4), the 90% intervals indicate that most of the sensitivity indices 15 

reached a reasonable convergence when the sample size was larger than about 13,000. Note that 16 

width of the 90% intervals of the sensitivity indices in the case of VIC are quite narrow for the 17 

sample seizes greater than 17,000.  18 
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It is worth mentioning that three HBV parameters with lower sensitivity (alpha, EFT, and K1 in 1 

Figure 3) have not converged to true indices (slightly overestimated) even when the sample size 2 

was 50,000. The main effect values associated with these less important parameters are very small 3 

(close to zero), and therefore overestimation of the sensitivity indices is mainly because of the 4 

numerical errors in the Monte Carlo integration step (Eq. (13-14). Like HBV, some of the less 5 

important parameters of VIC exhibit poor convergence behavior in Figure 4 (i.e., d1rnf, Sstomatal, 6 

and V). If the goal of conducting GSA is finding the accurate estimates of these sensitivity indices, 7 

a larger sample size should be used to achieve a higher degree of accuracy. However, when dealing 8 

with computationally expensive models, estimating accurate values of the sensitivity indices is 9 

often not of interest. In practice, one might focus on determining if a parameter belongs to a high, 10 

medium, or low-influence group rather than on its exact ranking, particularly taking into account 11 

that parameter ranking usually converges faster than sensitivity indices (Sarrazin et al., 2016; 12 

Sheikholeslami et al., 2019).   13 

 14 

4.1.2. Results for the interaction effects 15 

One straightforward approach to quantify the interaction effects in variance-based GSA is to 16 

calculate the sum of main effects (Borgonovo et al., 2017). The sum of main effects explains to 17 

what extent model parameters are individually important, while the remainder to one implies the 18 

degree to which the interaction among parameters is influential, i.e., the remainder (1 − ∑ 𝑆𝑖
𝑚
𝑖=1 ) 19 

is fraction of the output variance because of the interactions among all model parameters (see Eq. 20 

(3)). Based on our results for HBV, the sum of main effect indices is about 0.80 (80% of the 21 

variance), suggesting that interactions (expressed by total effect index, 𝑆𝑇𝑖 in Eq. (4)) have very 22 

limited relevance for the this case study. Hence, the HBV response (i.e., 𝐸𝑁𝑆  values) can be 23 

approximately considered as an additive function of the parameters over their feasible ranges.  24 

However, for the VIC model the sum of main effect indices is about 0.50 (50% of the variance), 25 

indicating that interactions play a significant role in the variability of the VIC model output. As a 26 

result, in this section, we opted for presenting the total effect results only for VIC. To investigate 27 

the interaction effects, we calculated total effect sensitivity indices, 𝑆𝑇𝑖 , using the proposed 28 

VISCOUS algorithm. Figure 5 compares the total effect and main effect indices of an arbitrarily 29 

chosen realization out of 50 independent realizations of this experiment for the VIC model. As can 30 

be seen, most of the parameters show a significant total effect compared to the main effect.  31 
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 1 

Figure 5. Parameter importance measured by (a) main effect and (b) total effect sensitivity indices 2 

estimated using the proposed VISCOUS method for the VIC model. Subplot (c) visualizes the 3 

relation between the main effect indices and corresponding total effect indices. Each diamond in 4 

subplot (c) represents one parameter of the model. Note that these results belong to an arbitrarily 5 

chosen realization out of 50 independent trials of the experiment. 6 

 7 

Figure 5(a) and (b) highlights a clear difference between total effect and main effect indices. We 8 

closely examine this difference in Figure 5(c). As shown, most of the parameters lie further toward 9 

the top-left corner of Figure 5(c), confirming the strong dependencies/interactions between 10 

parameters of the VIC. This is an important sign of a possible non-identifiability issue in our 11 

model. In fact, it has been asserted that parameters associated with low main effects but having 12 

large total effects are typically less identifiable (see, e.g., Borgonovo et al. (2017); Hill et al. 13 

(2016); Ratto et al. (2007)). For example, Hill and Tiedeman (2007) reported the same observation 14 
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for their groundwater problem with dominant interaction effects. On the other hand, if parameters 1 

lie close to the ideal (1:1) line (red line in Figure 5(c)), they are likely identifiable. Note that 2 

having small main effects but high total effects does not necessarily indicate that parameters are 3 

non-identifiable (i.e., insensitivity is not a sufficient condition for non-identifiability). 4 

Figure 5(c) may also be an indication of a badly defined calibration problem, which typically 5 

corresponds to a highly over-parameterized model. In such models, non-identifiability problem 6 

can be mainly attributed to the negligible influence of most of the parameters and their associated 7 

physical processes on the 𝐸𝑁𝑆 values (parameters with low sensitivity in Figure 5(a)). The non-8 

identifiability can also occur due to the compensation among parameters, wherein changes in one 9 

parameter may be compensated for by changes in other parameters, as evident by strong interaction 10 

between VIC parameters in Figure 5(b). Overall, our results follow the identifiability analysis of 11 

Gharari et al. (2020). For example, they have also reported that two soil parameters (Ksat and Eexp) 12 

were non-identifiable for the utilized configuration of VIC. As shown in Figure 5(c), these 13 

parameters have very small main effects but high total effects, implying lack of identification. 14 

 15 

4.2. High importance hydrological factors identified by the VISCOUS method 16 

To characterize dominant processes affecting model responses, we implemented the recently 17 

developed grouping-based importance ranking approach of Sheikholeslami et al. (2019). This 18 

approach uses agglomerative hierarchical clustering to categorize the parameters into distinct 19 

groups based on similarities between their sensitivity indices, and then ranks parameters according 20 

to importance group rather than individually. Figure 6 shows parameter grouping results of the 21 

HBV and the VIC models obtained from VISCOUS-based estimations of the main effect indices 22 

from 50 independent trials of the experiments.  23 

As shown in Figure 6, we can categorize the HBV parameters into three importance groups 24 

according to their sensitivities:{FRAC, C0, K2} is the strongly influential group; {FC, TT, beta} 25 

is the moderately influential group; and {alpha, ETF, K1, LP} with the least influence on 𝐸𝑁𝑆. For 26 

VIC, parameters can be also allocated into three groups as well: strongly influential 27 

parameters{Kslow, d2f}; moderately influential parameters {binf, Gscale, Ddiff}; and the rest of the 28 

parameters were ranked as least influential parameters.  29 
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Figure 6. Parameter grouping for the 18-parameter VIC and the 10-parameter HBV models using 1 

the VISCOUS results. The parameters in the horizontal axis are sorted from the most important (to 2 

the left) to the unimportant (to the right) ones. The height of the vertical lines representant how 3 

similar/different parameters are from each other with respect to their influence on the model output. 4 

Note that this grouping is based on the main effect indices. 5 

 6 

Factor importance ranking and grouping results in Figure 6 point at dominant hydrological 7 

processes that govern the streamflow generation mechanisms in the Bow River basin. Figure 6 8 

reveals that slow reservoir coefficient in both models (Kslow in VIC and K2 in HBV) is among the 9 

most important parameters influencing streamflow simulations. Note that we observe a strong 10 

yearly cycle for the Bow River due to the presence of snow and glaciers (see time series in Figure 11 

2). In cold or mountainous regions, such as the Bow River where its headwaters are in the glaciated 12 

eastern slopes of the Canadian Rockies, snow melting and release of water from glacier storage 13 

greatly contribute to streamflow generation as opposed to rainfall. For example, Hopkinson and 14 

Young (1998) reported that the glacial contributions to streamflow in extremely dry years can be 15 

responsible for up to 50% of the late-summer flow in the Bow River at Banff. A significant 16 

contribution of these parameters to simulation of the streamflow can be due to the fact that Kslow 17 

in VIC and K2 in HBV are responsible for the basin storage and timing of the release for getting 18 

the recession limb of the hydrograph correctly.  19 

Soil moisture parameters in both models (binf in VIC and beta in HBV) also play a key role in 20 

streamflow simulation (see moderately influential parameters in Figure 6). These parameters have 21 

significant effect on the partitioning of the precipitation into infiltration and runoff. An increase in 22 

binf results in a lower infiltration capacity, and consequently yields higher runoff values simulated 23 

by VIC. For HBV, however, a higher beta reduces runoff from soil, thereby increasing evaporation 24 

and reducing flow. These findings are consistent with previous studies conducted by Gou et al. 25 

(2020); Melsen et al. (2016); Demaria et al. (2007). 26 

Overall, based on our parameter grouping in Figure 6, it can be concluded that dominant factors 27 

of the HBV model mainly control the soil (FRAC and FC) and snowmelt (C0) processes. FRAC 28 

determines the fraction of soil release entering fast reservoir, as a result a higher FRAC value 29 

allows high flow of water from soil to the fast reservoir. FC accounts for partitioning of the 30 

precipitation into runoff and soil moisture. Hence, both FRAC and FC have a direct role on runoff 31 

generation in the basin. The high importance of C0 can be justified because the hydrological 32 

regime of the Bow River is highly influenced by the snow accumulation and melt, and the amount 33 

of snowmelt is linearly proportional to temperature via C0.  34 

In the VIC model, d2f is one of the most important parameters. An explanation might be the fact 35 

that d2f together with SLAI are controlling the transpiration from plants. Also, notice the high total 36 

effect value associated with SLAI in Figure 5b. The transpiration process in VIC is based on the 37 

Jarvis (1976)’s formulation, which is very sensitive to the leaf area index, SLAI, assigned to each 38 

vegetation type. This parameter together with d2f can significantly affect the simulated evaporation 39 

from the forested areas (dominant vegetation type), and therefore adjust the transpiration as one of 40 

the major water balance components to get a closer streamflow to observation. Lastly, from Figure 41 

6 we observe that two mizuRout routing parameters (Gscale and Ddiff) are highly important 42 
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parameters of the model. These parameters are mainly responsible for peak time and flashiness of 1 

the hydrograph. 2 

 3 

5. Conclusions and Future Research 4 

Achieving robust and stable sensitivity analysis results while minimizing the computational cost 5 

has greatly increased the need for development of the computationally efficient algorithms for 6 

global sensitivity analysis (GSA). In particular, a high computational cost incurred by the 7 

sampling-based GSA methods limits their application to complex process-based hydrologic 8 

models (Clark et al., 2017). To tackle this problem, we developed an effective data-driven 9 

algorithm for variance-based sensitivity analysis using copulas (VISCOUS). In VISCOUS, there 10 

is no assumption on the underlying structure of the input-output data because distributions, 11 

correlations, and interactions between input factors and model output are learned only from 12 

available data. Motivations behind developing VISCOUS include: 13 

• VISCOUS is a given-data approach. This means that it makes use of any collected datasets 14 

or pre-existing model runs, and accordingly prevents augmenting computational burden. 15 

Hence, VISCOUS enables modelers to efficiently conduct GSA for cases in which properties 16 

of the input-output distributions and of the underlying response surface are unknown and 17 

only a (sub-)sample of the input-output space is available. 18 

• VISCOUS opens the possibility to incorporate information about the dependence structure 19 

between model parameters into the variance-based GSA. The dependencies can be specified 20 

by modelling their joint distribution. VISCOUS uses Gaussian mixture copula model 21 

(GMCM) to approximate the joint probability density function of the input-output sample 22 

for estimating several variance-based sensitivity indices.  23 

We discussed numerical implementation and algorithmic details of our proposed given-data 24 

estimator, and examined its performance using two popular hydrologic models of increasing 25 

complexity (HBV and VIC). VISCOUS efficiently identified dominant parameters (and processes) 26 

of the VIC and HBV models that significantly influence prediction of the streamflow values in the 27 

Bow River Basin at Banff, Alberta, Canada. Overall, the numerical experiments indicate that: 28 

• Parameter sensitivities obtained by VISCOUS are on par with the original sampling-based 29 

method of Sobol, while our method requires lower computational demand.  30 

• VISCOUS is robust to sampling variability and randomness. The level of accuracy achieved 31 

by our proposed method is promising for practical purposes, such as for factor prioritization 32 

and factor ranking. 33 

• Parameter identifiability of the physically-based distributed hydrologic models (VIC in 34 

present study) can be troublesome and efficient GSA methods such as VISCOUS can serve 35 

as a computationally tractable tool for diagnosing lack of identification. 36 

• VISCOUS provides physically sound results regarding the sensitivity behavior of the 37 

parameters, even in cases where the sample size (or number of simulations) is limited. Our 38 
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sensitivity analysis results correspond well with the expected behavior and dynamics of 1 

runoff generation in cold regions. 2 

Future studies should include an extension of the proposed method to multi-criteria sensitivity 3 

analysis of the hydrologic models. Our data-driven approach, in principle, can be used in the setting 4 

of multi-criteria sensitivity analysis to efficiently estimate the sensitivity indices for models with 5 

multiple dependent outputs. One possible option is to combine VISCOUS with multiple-response 6 

emulators of Liu et al. (2019), which integrates the copula functions with multiple-response 7 

Gaussian process emulator. In addition, since the GMCM used in VISCOUS has a set of design 8 

parameters, a “sensitivity analysis of sensitivity analysis” (SA of SA; Puy et al., 2020) should be 9 

tried in future studies to investigate VISCOUS’ sensitivity to its own design parameters. 10 

Furthermore, our proposed method has a great potential to be applied to GSA of the new generation 11 

of complex hydrological models, such as the SUMMA framework (Clark et al., 2015a,b). 12 

VISCOUS can facilitate fast and effective GSA for computationally demanding models and can 13 

help achieve accurate and robust results. Finally, testing our method on real-world datasets 14 

obtained from field observations, remote sensing, or laboratory experiments is an interesting 15 

avenue for further research. This can help gain an in-depth insight into the underlying system’s 16 

behavior, thereby better supporting model development and understanding. 17 

 18 

Data and Code Availability  19 

The WRF simulations are available from Rasmussen and Liu (2017). The HBV and VIC models 20 

are available through Razavi et al. (2019) and Gharari et al. (2020), respectively. The MATLAB 21 

codes for the proposed VISCOUS method will be available on GitHub upon publication of the 22 

manuscript (https://github.com/Razi-Sheikh/VISCOUS). 23 
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 34 

Appendix A. Illustration Using an Analytical Test Function 35 

We consider a type C benchmark problem for GSA introduced by Kucherenko et al. (2011), which 36 

has the following mathematical form: 37 

https://github.com/Razi-Sheikh/VISCOUS
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𝑌(𝑥1, 𝑥2, … , 𝑥𝑑) =∏ |4𝑥𝑗 − 2|
𝑑

𝑗=1
                                                                                                                    (A1) 1 

where factors 𝑥𝑗  (𝑗 = 1,2, … , 𝑑) are uniformly distributed over a [0,1]𝑑 hypercube. 2 

This function has dominant higher-order interaction terms with no unimportant subset of factors. 3 

Kucherenko et al. (2011) mathematically proved that for the function defined in Eq. (A1): 4 
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where 𝑆𝑗  and 𝑆𝑇𝑗 are the first order and total order sensitivity indices for the j-th factor 6 

(𝑗 = 1,2, … , 𝑑), respectively. The non-linearity and non-monotonicity of this function along with 7 

the availability of analytical results (Eq. (A2)) make it a suitable problem for the study of GSA 8 

methods. As can be seen from Eq. (A1), this function is the product of contributions from each 9 

input factor, it is non-additive and features interactions of all orders.  10 

In this study, for illustrative purposes, the number of factors was set to 𝑑 = 10, and the true values 11 

of 𝑆1 𝑆𝑇1⁄  and ∑𝑆𝑗  were used to evaluate the performance of our proposed approach. To 12 

implement VISCOUS, 100,000 points were randomly sampled from [0,1]10  using Latin 13 

hypercube sampling strategy. In the next step, we produced synthetic input-output datasets by 14 

randomly sampling with progressively increasing sample size (i.e., 1,000, 2,000, …, 100,000) from 15 

the available 100,000 evaluations of the function. Each input-output sample set was considered to 16 

be a set of ‘given data’. Then, we applied our VISCOUS method to all the given sample sets and 17 

compared the results with analytical values. In addition, we replicated this experiment 50 times, 18 

each replication using different random seed. 19 

Figure A1 compares the VISCOUS-based estimates of the 𝑆1 𝑆𝑇1⁄  and ∑𝑆𝑗 with their true values. 20 

Overall, these results suggest that VISCOUS results are in good agreement with theoretical values, 21 

thereby confirming the accuracy of our proposed method in estimating the sensitivity indices. 22 

Figure S1 also depicts the 5th and 95th percentiles (90% intervals) of the 50 realizations of each. 23 

Note that width of the 90% intervals rapidly become narrower when the sample size increases. 24 

 25 
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 1 

Figure A1. Convergence results for the type C function defined in Eq. (A1). The main and total 2 

effect indices were estimated using the proposed VISCOUS method. The (light blue) envelopes 3 

depict the 90% intervals of the 50 independent trials of this experiment. The dashed (dark red) 4 

horizontal lines show the true values of ∑𝑆𝑗 (subplot a) and 𝑆1 𝑆𝑇1⁄  (subplot b). 5 
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